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1 INTRODUCTION

This article is concernedwith the power of adaptivity in property testing, specifically property test-
ing of Boolean functions. At a high level, a property tester for Boolean functions is a randomized
algorithm, which, given black-box query access to an unknown and arbitrary Boolean function
f : {0, 1}n → {0, 1}, aims to distinguish between the case that f has some particular property of
interest versus the case that f is far in Hamming distance from every Boolean function satisfying
the property. The main goals in the study of property testing algorithms are to develop testers that
make as few queries as possible and to establish lower bounds matching these query-efficient algo-
rithms. Property testing has by now been studied for many different types of Boolean functions,
including linear functions and low-degree polynomials overGF (2) [2, 6, 11], literals, conjunctions,
s-term monotone, and non-monotone DNFs [18, 34], monotone and unate functions [3, 4, 13–16,
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21, 25, 29, 30], various types of linear threshold functions [9, 32, 33], size-s decision trees and
s-sparse GF (2) polynomials and parities [9, 10, 18], functions with sparse or low-degree Fourier
spectrum [26], and much more. See, e.g., References [23, 24, 35, 36] for some fairly recent broad
overviews of property testing research.
In this article, we consider the property of being a k-junta, which is one of the earliest and most

extensively studied properties in the Boolean function property testing literature. Recall that f
is a k-junta if it has at most k relevant variables, i.e., there exist k distinct indices i1, . . . , ik and
a k-variable function д : {0, 1}k → {0, 1} such that f (x ) = д(xi1 , . . . ,xik ) for all x ∈ {0, 1}n . Given
k = k (n) : N→ N and ϵ = ϵ (n) : N→ R>0, we say an algorithm that has black-box access to an
unknown and arbitrary f : {0, 1}n → {0, 1} is an ϵ-tester or ϵ-testing algorithm for k-juntas if it
accepts with probability at least 5/6 when f is a k (n)-junta and rejects with probability at least
5/6 when f is ϵ (n)-far from all k (n)-juntas (meaning that f disagrees with any k (n)-junta д on at
least ϵ (n) · 2n many inputs).
Property testers come in two flavors, adaptive and non-adaptive. An adaptive tester receives

the value of f on its ith query string before selecting its (i + 1)-st query string, while a non-
adaptive tester selects all of its query strings before receiving the value of f on any of them. Note
that non-adaptive testers can evaluate all of their queries in one parallel stage of execution, while
this is in general not possible for adaptive testers. This means that if evaluating a query is very
time-consuming, non-adaptive algorithms may sometimes be preferable to adaptive algorithms
even if they require more queries. For this and other reasons, it is of interest to understand when,
and to what extent, adaptive algorithms can use fewer queries than non-adaptive algorithms (see
References [37, 38] for examples of property testing problems where indeed adaptive algorithms
are provably more query-efficient than non-adaptive ones).
The query complexity of adaptive junta testing algorithms is at this point well understood. In

Reference [17], Chockler and Gutfreund showed that even adaptive testers require Ω(k ) queries
to distinguish k-juntas from random functions on k + 1 variables, which are easily seen to be
constant-far from k-juntas. Blais [8] gave an adaptive junta testing algorithm that uses only
O (k logk + k/ϵ ) queries, which is optimal (for constant ϵ) up to a multiplicative factor ofO (logk ).

Prior to the current work, the picture was significantly less clear for non-adaptive junta test-
ing. In the first work on junta testing, Fischer et al. [20] gave a non-adaptive tester that makes
O (k2 (logk )2/ϵ ) queries. This was improved by Blais [7] with a non-adaptive tester that uses
only O (k3/2 (logk )3/ϵ ) queries. On the lower bounds side, Reference [7] also showed that for all
ϵ ≥ k/2k , any non-adaptive algorithm for ϵ-testing k-juntas must make Ω (k/(ϵ log(k/ϵ ))) queries.
Buhrman et al. [12] gave an Ω(k logk ) lower bound (for constant ϵ) for non-adaptively testing
whether a function f is a size-k parity; their argument also yields an Ω(k logk ) lower bound (for
constant ϵ) for non-adaptively ϵ-testing k-juntas. More recently, Reference [40] obtained a new
lower bound for non-adaptive junta testing that is incomparable to both the Reference [7] and

Reference [12] lower bounds. They showed that for all ϵ : k−ok (1) ≤ ϵ ≤ ok (1), any non-adaptive
ϵ-tester for k-juntas must make

Ω

(

k logk

ϵc log(log(k )/ϵc )

)

many queries, where c is any absolute constant less than 1. For certain restricted values of ϵ such as
ϵ = 1/ logk , this lower bound is larger than the O (k/ϵ + k logk ) upper bound for Reference [8]’s
adaptive algorithm, so the Reference [40] lower bound shows that in some restricted settings,
adaptive junta testers can outperform non-adaptive ones. However, the difference in performance
is quite small, at most a o(logk ) factor. We further note that all of the lower bounds [7, 12, 40]
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are of the form Ω̃(k )1 for constant ϵ , and hence rather far from the Õ (k3/2)/ϵ upper bound of
Reference [7].

1.1 Our Results

The main result of the article is the following theorem:

Theorem 1. Let α ∈ (0.5, 1) be an absolute constant. Let k = k (n) : N→ N and ϵ = ϵ (n) : N→
R>0 be two functions that satisfy k (n) ≤ αn and 2−n ≤ ϵ (n) ≤ 1/6 for all sufficiently large n. Then

any non-adaptive ϵ-tester for k-juntas must make Ω̃(k3/2/ϵ ) many queries.2

Together with the Õ (k3/2)/ϵ non-adaptive upper bound from Reference [7], Theorem 1 settles
the query complexity of non-adaptive junta testing up to poly-logarithmic factors.

1.2 High-Level Overview of Our Approach

Our lower bound approach differs significantly from previous work. Buhrman et al. [12] lever-
aged the connection between communication complexity lower bounds and property testing lower
bounds that was established in the work of Reference [9] and applied an Ω(k logk ) lower bound
on the one-way communication complexity of k-disjointness to establish their lower bound. Both
References [7] and [40] are based on edge-isoperimetry results for the Boolean hypercube (the
edge-isoperimetric inequality of Harper [27], Bernstein [5], Lindsey [31], and Hart [28] in the case
of Reference [7], and a slight extension of a result of Frankl [22] in Reference [40]). In contrast,
our lower bound argument takes a very different approach; it consists of a sequence of careful
reductions, and employs an upper bound on the total variation distance between two Binomial
distributions (see Claim 15).

Below we provide a high level overview of the proof of the lower bound given by Theorem 1.
First, it is not difficult to show that Theorem 1 is a consequence of the following more specific
lower bound for the case where k = αn:

Theorem 2. Let α ∈ (0.5, 1) be an absolute constant. Let k = k (n) : N→ N and ϵ = ϵ (n) : N→
R>0 be two functions that satisfy k (n) = αn and 2−(2α−1)n/2 ≤ ϵ (n) ≤ 1/6 for sufficiently large n.

Then any non-adaptive ϵ-tester for k-juntas must make Ω̃(n3/2/ϵ ) many queries.

See Appendix A for the proof that Theorem 2 implies Theorem 1.
We now provide a sketch of how Theorem 2 is proved. It may be convenient for the reader, on

the first reading, to consider α = 3/4 and to think of ϵ as being a small constant such as 0.01.
Fix a sufficiently large n. Let k = αn and ϵ = ϵ (n) with ϵ satisfying the condition in Theo-

rem 2. We proceed by Yao’s principle and prove lower bounds for deterministic non-adaptive
algorithms that receive inputs drawn from one of two probability distributions, Dyes and Dno,
over n-variable Boolean functions. The distributionsDyes andDno are designed so that a Boolean
function f ← Dyes is a k-junta with probability 1 − o(1) and f ← Dno is ϵ-far from every k-junta
with probability 1 − o(1). In Section 2, we defineDyes andDno, and establish the above properties.
By Yao’s principle, it then suffices to show that any q-query non-adaptive deterministic algorithm

(i.e., any set of q queries) that succeeds in distinguishing them must have q = Ω̃(n3/2/ϵ ).
This lower bound proof consists of two components:

(1) A reduction from a simple algorithmic task called Set-Size-Set-Queries (SSSQ for short),
which we discuss informally later in this subsection and we define formally in Section 3.

1We write Ω̃(f ) to denote f /polylog(f ) and Õ (f ) for f · polylog(f ).
2The precise lower bound is Ω( k3/2

ϵ log3 (k ) log3 (k/ϵ )
).
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This reduction implies that the non-adaptive deterministic query complexity of distin-
guishing Dyes and Dno is at least as large as that of SSSQ.

(2) A lower bound of Ω̃(n3/2/ϵ ) for the query complexity of SSSQ.

Having outlined the formal structure of our proof, let us give some intuition, which may hope-
fully be helpful in motivating our construction and reduction. Our yes-functions and no-functions
have very similar structure to each other, but are constructed with slightly different parameter
settings. The first step in drawing a random function from Dyes is choosing a uniform random
subset M of Θ(n) “addressing” variables from x1, . . . ,xn . A random subset A of the complemen-
tary variablesM is also selected, and for each assignment to the variables inM (let us denote such
an assignment by i), there is an independent random function hi over a randomly selected subset
Si of the variables in A. A random function from Dno is constructed in the same way, except that
now the random subset A is chosen to be slightly larger than in the yes case. This disparity in the
size of A between the two cases causes random functions from Dyes to almost always be k-juntas
and random functions from Dno to almost always be far from k-juntas.
An intuitive explanation of why this construction is amenable to a lower bound for non-adaptive

algorithms is as follows. Intuitively, for an algorithm to determine that it is interacting with (say)
a random no-function rather than a random yes-function, it must determine that the subset A
is larger than it should be in the yes case. Since the set M of Θ(n) many “addressing” variables is
selected randomly, if a non-adaptive algorithm uses two query strings x ,x ′ that differ in more than
a few coordinates, it is very likely that the random set M will contain a variable where x and x ′

differ, and therefore, x and x ′ will correspond to two different random functions hi ,hi′ . Hence,
every pair of query strings x ,x ′ that correspond to the samehi can differ only in a few coordinates
with high probability. This phenomenon significantly limits the power of a non-adaptive algorithm
distinguishingDyes andDno, and allows us to reduce from the algorithmic task SSSQ at the price
of only a small quantitative cost in query complexity, see Section 4.

At a high level, the SSSQ task involves distinguishing whether or not a hidden set (correspond-
ing to A) is “large.” An algorithm for this task can only access certain random bits, whose biases
are determined by the hidden set and whose exact distribution is inspired by the exact definition
of the random functions hi over the random subsets Si . The SSSQ problem is much easier to work
with compared to the original problem of distinguishing Dyes and Dno. In particular, we give a
reduction from an even simpler algorithmic task called Set-Size-Element-Queries (SSEQ for short)
to SSSQ (see Section 5.1) and the query complexity lower bound for SSSQ follows directly from
the lower bound for SSEQ presented in Section 5.2. We hope that the SSSQ problem and/or the
SSEQ problem may find other applications in lower bounds for query algorithms.
Let us give a high-level description of the SSEQ task to provide some intuition for how we

prove a query lower bound on it. Roughly speaking, in this task an oracle holds an unknown and
random subset A of [m] (here m = Θ(n)), which is either “small” (size roughly m/2) or “large”
(size roughlym/2 + Θ(

√
n · logn)), and the task is to determine whether A is small or large. The

algorithm may repeatedly query the oracle by providing it, at the jth query, with an element i j ∈
[m]; if i j � A then the oracle responds 0 with probability 1, and if i j ∈ A then the oracle responds 1

with probability ϵ/
√
n and 0 otherwise. Intuitively, the only way for an algorithm to determine that

the unknown set A is (say) large, is to determine that the fraction of elements of [m] that belong
to A is 1/2 + Θ(logn/

√
n) rather than 1/2; this in turn intuitively requires sampling Ω(n/ log2 n)

many random elements of [m] and for each one ascertaining with high confidence whether or
not it belongs to A. But the nature of the oracle access described above for SSEQ is such that for
any given i ∈ [m], at least Ω(

√
n/ϵ ) many repeated queries to the oracle on input i are required to

reach even a modest level of confidence as to whether or not i ∈ A. As alluded to earlier, the formal
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argument establishing our lower bound on the query complexity of SSEQ relies on an upper bound
on the total variation distance between two binomial distributions.

1.3 Organization and Notation

We start with the definitions ofDyes andDno as well as proofs of their properties in Section 2. We
then introduce SSSQ in Section 3, and give a reduction from SSSQ to the problem of distinguishing
Dyes andDno in Section 4. More formally, we show that any non-adaptive deterministic algorithm
that distinguishesDyes andDno can be used to solve SSSQwith only anO (logn) factor loss in the
query complexity. Finally, we prove in Section 5 a lower bound for the query complexity of SSSQ.
Theorem 2 then follows by combining this lower bound with the reduction in Section 4.
We use boldfaced letters such as f ,A, S to denote random variables. Given a string x ∈ {0, 1}n

and � ∈ [n], we write x (�) to denote the string obtained from x by flipping the �th coordinate. An

edge along the �th direction in {0, 1}n is a pair (x ,y) of strings with y = x (�) , and we refer to the
strings x and y in {0, 1}n as the vertices of the edge (x ,y). We say an edge (x ,y) is bichromatic with

respect to a function f (or simply f -bichromatic) if f (x ) � f (y). Given x ∈ {0, 1}n and S ⊆ [n], we
use x |S ∈ {0, 1}S to denote the projection of x on S .

2 THEDyes ANDDno DISTRIBUTIONS

Let α ∈ (0.5, 1) be an absolute constant. Let n be a sufficiently large integer, with k = αn, and let ϵ
be the distance parameter that satisfies

2−(2α−1)n/2 ≤ ϵ ≤ 1/6. (1)

In this section, we describe a pair of probability distributionsDyes andDno supported over Boolean
functions f :{0, 1}n → {0, 1}. We then show that f ← Dyes is a k-junta with probability 1 − o(1),
and that f ← Dno is ϵ-far from being a k-junta with probability 1 − o(1).
We start with some parameters settings. Define

δ
def
= 1 − α ∈ (0, 0.5), p

def
=

1

2
, pno

def
=

1

2
+

logn
√
n
,

m
def
= 2δn + δ

√
n logn, t

def
= n −m = (2α − 1)n − δ

√
n logn, N

def
= 2t .

A function f ← Dyes is drawn according to the following randomized procedure:

(1) Sample a random subsetM ⊂ [n] of size t . Let Γ = ΓM : {0, 1}n → [N ] be the function that

maps x ∈ {0, 1}n to the integer encoded by x |M in binary plus one. Note that |M| = n −
t =m.

(2) Sample an A ⊆ M by including each element ofM in A independently with probability p.
(3) Sample independently a sequence of N random subsets S = (Si : i ∈ [N ]) of A as follows:

for each i ∈ [N ], each element of A is included in Si independently with probability ϵ/
√
n.

Next we sample a sequence of N functions H = (hi : i ∈ [N ]), by letting hi : {0, 1}n →
{0, 1} be a random function over the coordinates in Si , i.e., we sample an unbiased bit
zi (b) for each string b ∈ {0, 1}Si independently and set hi (x ) = zi (x |Si ).

(4) Finally, f = fM,A,H : {0, 1}n → {0, 1} is defined usingM,A and H as follows (note that we
can skip S since the choice of S is included in the choice of H):

f (x ) = hΓM (x ) (x ), for each x ∈ {0, 1}n .

In words, an input x is assigned the value f (x ) as follows: according to the coordinates
of x in the set M (which intuitively should be thought of as unknown), one of the N

functions hi (each of which is, intuitively, a random function over an unknown subset Si
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Fig. 1. An example of how an input x ∈ {0, 1}n is evaluated by f ∼ Dyes (or Dno). The relevant variables

of x are shaded gray. The output f (x ) is computed in two steps. First, the input x is indexed into one of

N functions h1, . . . ,hN according to ΓM (x ) = x |M + 1. Second, letting i = ΓM (x ), the output f (x ) is equal to

hi (x ), which depends on the values of x |Si for a subset Si ⊂ A.

of coordinates) is selected and evaluated on x ’s coordinates in Si . For intuition, we note

that both M and M will always be of size Θ(n), the size of A will almost always be Θ(n),
and for a given i ∈ [N ] the expected size of Si will typically be Θ(ϵ

√
n) (though the size

of Si may not be as highly concentrated as the other sets when ϵ is tiny).

A function f ← Dno is generated using the same procedure except that A is a random subset of

M drawn by including each element of M in A independently with probability pno (instead of p).
See Figure 1 for an example of how an input x ∈ {0, 1}n is evaluated by f ∼ Dyes or Dno.

2.1 Most Functions Drawn fromDyes are k-juntas

We first prove that f ← Dyes is a k-junta with probability 1 − o(1).
Lemma 3. A function f ← Dyes is a k-junta with probability 1 − o(1).
Proof. By the definition of Dyes, all the relevant variables of f ∼ Dyes belong to M ∪ A. Note

that |M| = t . On the other hand, the expected size of A is δn + δ
√
n logn/2. By a Chernoff bound

(see, e.g., Chapter 1 of Reference [19]), we have

|A| ≤ δn +
δ
√
n logn

2
+

δ
√
n logn

4
< δn + δ

√
n logn

with probability 1 − o(1). When this happens, we have |M ∪ A| < αn = k . �

2.2 Most Functions Drawn fromDno are ϵ-far from k-juntas

Next we prove that f ← Dno is ϵ-far from any k-junta with probability 1 − o(1). The details of
the argument are somewhat technical so we start by giving some high-level intuition, which is
relatively simple. Since pno = p + log(n)/

√
n, a typical outcome of A drawn from Dno is slightly

larger than a typical outcome drawn from Dyes, and this difference causes almost every outcome
of |M ∪ A| in Dno (with M ∪ A being the set of relevant variables for f ← Dno) to be larger than
k by at least 9

√
n. As a result, the relevant variables of any k-junta must miss either (a) at least

one variable from M, or (b) at least 9
√
n variables from A. Missing even a single variable from M

causes the k-junta to be far from f (this is made precise in Claim 6 below). On the other hand,
missing 9

√
n variables from A means that with probability Ω(ϵ ), at least one variable is missing

from a typical Si (recall that these are random (ϵ/
√
n)-dense subsets of A). Because hi is a random

function over the variables in Si , missing even a single variable would lead to a constant fraction
of error when hi is the function determining the output of f .

Lemma 4. A function f ← Dno is ϵ-far from being a k-junta with probability 1 − o(1).
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Proof. Fix any subset M ⊂ [n] of size t , and consider f = f M,A,H where A and H are sampled
according to the procedure for Dno. With probability 1 − o(1) over the choice of A, we have

|A| ≥ pnom −
δ
√
n logn

2
≥ δn + 2δ

√
n logn and |M ∪ A| ≥ k + δ

√
n logn. (2)

Assume this is the case for the rest of the proof and fix any such setA ⊂ M . It suffices to show that
f = f M,A,H is ϵ-far from any k-junta with probability 1 − o(1), where H is sampled according to

the rest (steps 3 and 4) of the procedure for Dno (by sampling Si from A and then hi over Si ).
The plan for the rest of the proof is the following. For each V ⊂ M ∪A of size 9

√
n, we use EV

to denote the size of the maximum set of vertex-disjoint, f -bichromatic edges along directions in
V only. We will prove the following claim:

Claim 5. For each V ⊂ M ∪A of size 9
√
n, we have EV ≥ ϵ2n with probability 1 − exp(−2Ω(n) )

over the choice of H.

Note that when EV ≥ ϵ2n , we have dist( f ,д) ≥ ϵ for every function д that does not depend on

any variable inV . This is because, for every f -bichromatic edge (x ,x (�) ) along a coordinate � ∈ V ,

we must have f (x ) � f (x (�) ) since the edge is bichromatic but д(x ) = д(x (�) ) as д does not depend
on the �th variable. As a result, f must disagree with д on at least ϵ2n many points.
Assuming Claim 5 for now, we can apply a union bound over all

(

|M ∪A|
9
√
n

)

≤
(

n

9
√
n

)

≤ 2O (
√
n logn)

possible choices ofV ⊂ M ∪A to conclude that with probability 1 − o(1), f = f M,A,H is ϵ-far from

all functions that do not depend on at least 9
√
n variables inM ∪A. By Equation (2), this set includes

all k-juntas. This concludes the proof of the Lemma 4 modulo the proof of Claim 5. �

In the rest of the section, we prove Claim 5 for a fixed subset V ⊂ M ∪A of size 9
√
n. We start

with the simpler case when V ∩M is nonempty.

Claim 6. If V ∩M � ∅, then EV ≥ 2n/5 with probability 1 − exp(−2Ω(n) ) over the choice of H.

Proof. Fix an � ∈ V ∩M ; we will argue that with probability 1 − exp(−2Ω(n) ) there are at
least 2n/5f -bichromatic edges along direction �. This suffices since such edges are clearly
vertex-disjoint.
Observe that since � ∈ M , every x ∈ {0, 1}n has Γ(x ) � Γ(x (�) ). For each b ∈ {0, 1}M , let Xb be

the set of x ∈ {0, 1}n with x |M = b. We partition {0, 1}n into 2t−1 pairsXb andXb (�) , where b ranges
over the 2t−1 strings in {0, 1}M with b� = 0. For each such pair, we use Db to denote the number
of f -bichromatic edges between Xb and Xb (�) . We are interested in lower bounding

∑

b Db .

We will apply Hoeffding’s inequality (see, e.g., Chapter 1 of Reference [19]). For this purpose
we note that the Db ’s are independent (since they depend on distinct hi ’s), always lie between 0

and 2m , and each one has expectation 2m−1. The latter is because each edge (x ,x (�) ) has f (x ) and

f (x (�) ) drawn as two independent random bits, which is the case since Γ(x ) � Γ(x (�) ). Thus, the
expectation of

∑

b Db is 2n−2. By Hoeffding’s inequality, we have

Pr

[ ���
∑

Db − 2n−2��� ≥ 2n

20

]
≤ 2 · exp

(

−2(2
n/20)2

2t−1 · 22m

)

= exp
(

−2Ω(n)
)

since t = Ω(n). This finishes the proof of the claim. �

Nowwe may assume thatV ⊂ A (and |V | = 9
√
n). We use I to denote the set of i ∈ [N ] such that

Si ∩V � ∅. The following claim shows that I is large with extremely high probability:

Claim 7. We have |I| ≥ 4.4ϵN with probability at least 1 − exp(−2Ω(n) ) over the choice of S.
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Proof. For each i ∈ [N ] we have (using 1 − x ≤ e−x for all x and 1 − x/2 ≥ e−x for x ∈ [0, 1.5]):

Pr[i ∈ I] = 1 −
(

1 − ϵ
√
n

)9
√
n

≥ 1 − e−9ϵ ≥ 4.5ϵ,

since ϵ/
√
n is the probability of each element of A being included in Si and ϵ ≤ 1/6 so 9ϵ ≤ 1.5.

Using ϵ ≥ 2−(2α−1)n/2 from (1), we have E[ |I|] ≥ 4.5ϵN = 2Ω(n) . Since the Si ’s are independent,

a Chernoff bound implies that |I| ≥ 4.4ϵN with probability 1 − exp(−2Ω(n) ). �

By Claim 7, we fix S1, . . . , SN to be any sequence of subsets of A that satisfy |I | ≥ 4.4ϵN in the
rest of the proof, and it suffices to show that over the random choices of h1, . . . ,hN (where each

hi is chosen to be a random function over Si ), EV ≥ ϵ2n with probability at least 1 − exp(−2Ω(n) ).
To this end we use ρ (i ) for each i ∈ I to denote the first coordinate of Si in V , and Zi to denote

the set of x ∈ {0, 1}n with Γ(x ) = i . Note that the Zi ’s are disjoint. We further partition each Zi
into disjoint Zi,b , b ∈ {0, 1}Si , with x ∈ Zi,b iff x ∈ Zi and x |Si = b. For each i ∈ I and b ∈ {0, 1}Si
with bρ (i ) = 0, we useDi,b to denote the number of f -bichromatic edges between Zi,b and Zi,b (ρ (i ))

along the ρ (i )th direction. It is clear that such edges, over all i and b, are vertex-disjoint and thus,

EV ≥
∑

i ∈I

∑

b ∈{0, 1}Si
bρ (i )=0

Di,b . (3)

We will apply Hoeffding’s inequality. Note that Di,b is 2m−|Si | with probability 1/2, and 0 with
probability 1/2. Thus, the expectation of the RHS of Equation (3) is

∑

i ∈I
2 |Si |−1 · 2m−|Si |−1 = |I | · 2m−2 ≥ 1.1ϵ2n ,

using |I | ≥ 4.4ϵN . Since all the Di,b ’s are independent, by Hoeffding’s inequality we have

Pr
[ ���RHS of (3) − |I | · 2m−2��� ≥ 0.01 |I | · 2m−2

]
≤ 2 · exp

(

− 2(0.01 |I | · 2m−2)2
∑

i ∈I 2 |Si |−1 · 22(m−|Si |)

)

≤ exp
(

−2Ω(n)
)

,

since |I | ≥ Ω(ϵN ) = 2Ω(n) . Therefore, with probability 1 − exp(2−Ω(n) ), we have

EV ≥ 0.99 · |I | · 2m−2 > ϵ2n .

This concludes the proof of Claim 5. �

3 THE SET-SIZE-SET-QUERIES (SSSQ) PROBLEM

We first introduce the SSSQ problem, which is an artificial problem that we use as a bridge to prove
Theorem 2. We use the same parameters p,pno, andm from the definition ofDyes andDno, with n
being sufficiently large (som = Ω(n) is also sufficiently large).

We start by definingAyes andAno, two distributions over subsets of [m]: A ∼ Ayes is drawn by
independently including each element of [m] with probability p and A ∼ Ano is drawn by inde-
pendently including each element with probability pno. In SSSQ, the algorithm needs to determine
whether an unknown A ⊆ [m] is drawn from Ayes or Ano. (For intuition, to see that this task
is reasonable, we observe here that a straightforward Chernoff bound shows that almost every
outcome of A ∼ Ayes is larger than almost every outcome of A ∼ Ano by Ω(

√
n logn).)

Let A be a subset of [m] that is hidden in an oracle. An algorithm accesses A (to tell whether it
is drawn fromAyes orAno) by interacting with the oracle in the following way: each time it calls
the oracle, it does so by sending a subset of [m] to the oracle. The oracle responds as follows: for
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each j in the subset, it returns a bit that is 0 if j � A, and is 1 with probability ϵ/
√
n and 0 with

probability 1 − ϵ/
√
n if j ∈ A. The cost of such an oracle call is the size of the subset provided to

the oracle.
More formally, a deterministic and non-adaptive algorithm Alg = (д,T ) for SSSQ accesses the

set A hidden in the oracle by submitting a list of queries T = (T1, . . . ,Td ), for some d ≥ 1, where
each Ti ⊆ [m] is a set. (Thus, we call each Ti a set query, as part of the name SSSQ.)

—Given T , the oracle returns a list of random vectors v = (v1, . . . ,vd ), where vi ∈ {0, 1}Ti
and each bitvi, j is independently distributed as follows: if j � A, thenvi, j = 0, and if j ∈ A,
then

vi, j =

⎧⎪⎨⎪⎩
1 with probability ϵ/

√
n

0 with probability 1 − (ϵ/
√
n).

(4)

Note that the random vectors in v depend on both T and A.
—Givenv = (v1, . . . ,vd ), Alg returns (deterministically) the value of д(v ) ∈ {“yes,” “no”}.

The performance of Alg = (д,T ) is measured by its query complexity and its advantage.

—The query complexity of Alg is defined as
∑d

i=1 |Ti |, the total size of all the set queries. On
the other hand, the advantage of Alg is defined as

Pr
A∼Ayes

[
Alg(A) = “yes”

]
− Pr

A∼Ano

[
Alg(A) = “yes”

]
.

Remark 8. In the definition above,д is a deterministic map from all possible sequences of vectors
returned by the oracle to “yes” or “no.” Considering only deterministic as opposed to randomized
д is without loss of generality since given any query sequence T , the highest possible advantage
can always be achieved by a deterministic map д.

We prove the following lower bound for any deterministic, non-adaptive Alg in Section 5.

Lemma 9. Any deterministic, non-adaptive Alg for SSSQ with advantage at least 2/3 satisfies

d∑

i=1

|Ti | ≥
n3/2

ϵ · log3 n · log2 (n/ϵ )
.

4 REDUCING FROM SSSQ TO DISTINGUISHINGDyes ANDDno

In this section, we reduce from SSSQ to the problem of distinguishing the pair of distributions
Dyes and Dno. More precisely, let Alg∗ = (h,X ) be a deterministic and nonadaptive algorithm

that makes q ≤ (n/ϵ )2 string queries3 X = (x1, . . . ,xq ) to a hidden function f drawn from either
Dyes or Dno, applies the (deterministic) map h to return h( f (x1), . . . , f (xq )) ∈ {“yes,” “no”}, and
satisfies

Pr
f ∼Dyes

[
Alg∗ ( f ) = “yes”

]
− Pr

f ∼Dno

[
Alg∗ ( f ) = “yes”

]
≥ 3/4. (5)

We show how to define from Alg∗ = (h,X ) an algorithm Alg = (д,T ) for the problem SSSQ with
query complexity at most τ · q and advantage 2/3, where τ = cα · 5 log(n/ϵ ) and

cα = −
1

log(1.5 − α ) > 0 with (1.5 − α )cα = 1/2

is a constant that depends on α . Given this reduction it follows from Lemma 9 that q ≥ Ω̃(n3/2/ϵ ).

This finishes the proof of Theorem 2.

3Any algorithm that makes more than this many queries already fits the Ω̃(n3/2/ϵ ) lower bound we aim for.
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We first give a sketch of the reduction and some intuition behind the proof. Fixing a sub-
set M of [n] of size t , we use X1, . . . ,Xd , for some d ≥ 1, to denote a partition of the query
strings x1, . . . ,xq such that xi and x j belong to the same X� if and only if (xi ) |M = (x j ) |M . For
each � ∈ [d], we use T� to denote the set of indices k ∈ M such that xk � yk for some strings
x ,y ∈ X� . The first part of the proof shows that there exists an M such that (1) Alg∗ can distin-
guish Dyes and Dno conditioning on M = M (recall in both Dyes and Dno, M is a subset of [n] of
size t drawn uniformly at random), and (2) ‖x − y‖1 ≤ τ for all � ∈ [d] and x ,y ∈ X� , which in turn
implies that

∑

�∈[d] |T� | ≤ τ · q. Indeed, we show that most draws from M satisfy both properties;
the intuition behind (2) is that two query strings with a large Hamming distance would have dif-

ferent projections onM with high probability. Fixing such anM , we identify indices ofM as those
of [m] in SSSQ (by picking an arbitrary bijection between them) and show that T = (T1, . . . ,Td )

can be used to obtain an algorithm Alg = (д,T ) for SSSQ, with query complexity at most τ · q,
for some appropriate д. The intuition is that in SSSQ we receive intersections of T� with random
subsets S� drawn independently from the hidden subset A, which can be used to simulate random
functions h� over S� evaluated on strings in X� .

We start the reduction with some notation. For a fixedM of size t , we use Eyes (M ) to denote the
distribution of A and H sampled in the randomized procedure for Dyes, conditioning on M = M .
We define Eno (M ) similarly. Then conditioning onM = M , f ∼ Dyes is distributed as fM,A,H with
(A,H) ∼ Eyes (M ) and f ∼ Dno is distributed as fM,A,H with (A,H) ∼ Eno (M ). This allows us to
rewrite Equation (5) as

1

( n
t
)
·
∑

M : |M |=t

(

Pr
(A,H)∼Eyes (M )

[
Alg∗ ( f M,A,H) = “yes”

]
− Pr

(A,H)∼Eno (M )

[
Alg∗ ( f M,A,H) = “yes”

])
≥ 3

4
.

We sayM ⊂ [n] is good if any two queries xi and x j inX with Hamming distance ‖xi − x j ‖1 ≥ τ

have different projections onM , i.e., (xi ) |M � (x j ) |M . We prove below that mostM ’s are good.

Claim 10. PrM[M is not good] = o(1).

Proof. For each pair of strings xi and x j inX with Hamming distance at least τ , the probability
of them having the same projection on M (drawn uniformly from all size-t subsets) is at most

( n−τ
t
)

( n
t
)
=

(n − τ − t + 1) · · · (n − t )
(n − τ + 1) · · ·n ≤

(

1 − t

n

)τ

≤
(

2(1 − α ) + o(1)
)τ
< (1.5 − α )τ ≤ O

(
ϵ

n

)5

,

by our choices of cα and τ . The claim follows by a union bound over at most q2 ≤ (n/ϵ )4 pairs. �

We can split the sum Equation (5) into two sums: the sum over good M and the sum over bad
M . By Claim 10, the contribution from the badM is at most o(1), and thus we have that

1

( n
t
)
·
∑

good M

(

Pr
(A,H)∼Eyes (M )

[
Alg∗ ( f M,A,H) = “yes”

]
− Pr

(A,H)∼Eno (M )

[
Alg∗ ( f M,A,H) = “yes”

])

is at least 3/4 − o(1). Thus, there must exist a good setM ⊂ [n] of size t with

Pr
(A,H)∼Eyes (M )

[
Alg∗ ( f M,A,H) = “yes”

]
− Pr

(A,H)∼Eno (M )

[
Alg∗ ( f M,A,H) = “yes”

]
≥ 2/3. (6)

Fix such a good M . We use Alg∗ = (h,X ) and M to define an algorithm Alg = (д,T ) for SSSQ as

follows (note that the algorithm Alg below actually works over the universeM (of sizem) instead
of [m] as in the original definition of SSSQ but this can be handled by picking any bijection between

M and [m]; accordingly, A ∼ Ayes is drawn by including each element ofM with probability p and

A ∼ Ano is drawn by including each element ofM with probability pno). We start with T :
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(1) First we use M to define an equivalence relation ∼ over the query set X , where xi ∼ x j
if (xi ) |M = (x j ) |M . Let X1, . . . ,Xd , d ≥ 1, denote the equivalence classes of X , and let us
write ρ (�) for each � ∈ [d] to denote the value Γ(x ) ∈ [N ] that is shared by all strings
x ∈ X� .

(2) Next we define a sequence of subsets of M , T = (T1, . . . ,Td ), as the set queries of Alg,
where

T� =
{
i ∈ M : ∃x ,y ∈ X� such that xi � yi

}
. (7)

To upper bound |T� |, fixing an arbitrary string x ∈ X� and recalling thatM is good, we have that

|T� | ≤
∑

y∈X�

‖x − y‖1 ≤
∑

y∈X�

τ = τ · |X� |.

As a result, the query complexity of Alg (using T as its set queries) is at most

d∑

�=1

|T� | ≤ τ ·
d∑

�=1

|X� | ≤ τ · q.

It remains to define h and then prove that the advantage of Alg = (д,T ) for SSSQ is at least
2/3. Indeed the д that we define is a randomized map and we describe it as a randomized pro-
cedure below (by Remark 8, one can extract from д a deterministic map that achieves the same
advantage):

(1) Given v1, . . . ,vd , v� ∈ {0, 1}T� , as the strings returned by the oracle upon being given T ,
let

R� =

{
j ∈ T� : v�, j = 1

}
. (8)

For each � ∈ [d], the procedure draws a random function f � : {0, 1}R� → {0, 1}, by flipping
2 |R� | many independent and unbiased random bits.

(2) Next, for each query x ∈ X� , � ∈ [d], we feed f � (x |R�
) toh as the bit that the oracle returns

upon the query x . Finally the procedure returns the result (“yes” or “no”) that h returns.

In the rest of the proof we show that the advantage of Alg = (д,T ) is exactly the same as the LHS
of Equation (6) and thus, is at least 2/3.

For convenience, we useVyes to denote the distribution of responsesv = (v1, . . . ,vd ) toT when
A ∼ Ayes, andVno to denote the distribution when A ∼ Ano. Then the advantage of Alg is

Pr
v∼Vyes

[
д(v ) = “yes”

]
− Pr

v∼Vno

[
д(v ) = “yes”

]
.

It suffices to show that

Pr
v∼Vyes

[
д(v ) = “yes”

]
= Pr

(A,H)∼Eyes (M )

[
Alg∗ ( f M,A,H) = “yes”

]
and (9)

Pr
v∼Vno

[
д(v ) = “yes”

]
= Pr

(A,H)∼Eno (M )

[
Alg∗ ( f M,A,H) = “yes”

]
. (10)

We showEquation (9); the proof of Equation (10) is similar. From the definition ofVyes and Eyes (M ),
the distribution of (R� : � ∈ [d]) derived from v ∼ Vyes using Equation (8) is the same as the dis-
tribution of (Sρ (�) ∩T� : � ∈ [d]): both are sampled by first drawing a random subset A of M and
then drawing a random subset of A ∩T� independently by including each element of A ∩T� with
the same probability ϵ/

√
n (recall, in particular, Equation (4) and step 3 of the randomized proce-

dure specifyingDyes in Section 2). Since f M,A,H (x ) for x ∈ X� is determined by a random Boolean

function hρ (�) from {0, 1}Sρ (�) to {0, 1}, and since all the queries in X� only differ by coordinates
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in T� , the distribution of the q bits that д feeds to h when v ∼ Vyes is the same as the distribution
of ( f (x ) : x ∈ X ) when f ∼ Eyes (M ). This finishes the proof of Equation (9), and concludes our
reduction argument.

5 A LOWER BOUND ON THE NON-ADAPTIVE QUERY COMPLEXITY OF SSSQ

Wewill prove Lemma 9 by first giving a reduction from an even simpler algorithmic task, whichwe
describe next in Section 5.1. We will then prove a lower bound for the simpler task in Section 5.2.

5.1 Set-Size-Element-Queries (SSEQ)

Recall the parametersm,p,pno, and ϵ and the two distributionsAyes andAno used in the definition
of problem SSSQ. We now introduce a simpler algorithmic task called the SSEQ problem using the
same parameters and distributions. As in the SSSQ problem, the goal is to distinguish between the
case in which a hidden subset A is drawn from Ayes or from Ano.

Let A be a subset of [m] hidden in an oracle. An algorithm accesses the oracle to tell whether it
is drawn from Ayes or Ano. The difference between SSSQ and SSEQ is the way A is accessed. In
SSEQ, an algorithm Alg′ = (h, �) submits a vector � = (�1, . . . , �m ) of nonnegative integers.

—On receiving �, the oracle returns a random response vector b ∈ {0, 1}m , where each entry
bi is distributed independently as follows: if i � A then bi = 0, and if i ∈ A, then

bi =

{

1 with probability λ(�i )
0 with probability 1 − λ(�i )

, where λ(�i ) = 1 −
(

1 − ϵ
√
n

)�i

.

Equivalently, for each i ∈ A, the oracle independently flips �i coins, each of which is 1 with
probability ϵ/

√
n, and at the end returns bi = 1 to the algorithm if and only if at least one

of the coins is 1. Thus, we refer to each �i as �i element-queries for the ith element.
—After receiving the vector b from the oracle, Alg′ returns the value h(b) ∈ {“yes,” “no”}.
Here h is a deterministic map from {0, 1}m to {“yes,” “no”}.

Similar to before, the performance of Alg′ is measured by its query complexity and its advantage:

—The query complexity of Alg′ = (h, �) is defined as ‖�‖1 =
∑m

i=1 �i . For its advantage, we
let Byes denote the distribution of response vectors b to query � when A ∼ Ayes, and Bno

denote the distribution when A ∼ Dno. The advantage of Alg
′
= (h, �) is then defined as

Pr
b∼Byes

[
h(b) = “yes”

]
− Pr

b∼Bno

[
h(b) = “yes”

]
.

Remark 11. It is worth pointing out (we will use it later) that the highest possible advantage over
all deterministic maps h is a monotonically non-decreasing function of the coordinates of �. To see
this, let A be the underlying set and let � and �′ be two vectors with �i ≤ �′i for every i ∈ [m]. Let

b and b ′ be the random vectors returned by the oracle upon � and �′. Then we can define b∗ using
b ′ as follows: b∗i = 0 if b ′i = 0; otherwise when b ′i = 1, we set

b∗i =

{
1 with probability λ(�i )/λ(�

′
i )

0 with probability 1 − λ(�i )/λ(�′i )
.

One can easily verify that the distribution of b is exactly the same as the distribution of b∗. Hence
there is a randomized map h′ such that the advantage of (h′, �′) is at least as large as the high-
est possible advantage achievable using �. The remark now follows by our earlier observation in
Remark 8 that the highest possible advantage using �′ is always achieved by a deterministic h′.

The following lemma reduces the proof of Lemma 9 to proving a lower bound for SSEQ.
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Lemma 12. Given any deterministic and non-adaptive algorithm Alg = (д,T ) for SSSQ, there is a

deterministic and non-adaptive algorithm Alg′ = (h, �) for SSEQ with the same query complexity as

Alg and advantage at least as large as that of Alg.

Proof. We show how to construct Alg′ = (h, �) from Alg = (д,T ), where h is a randomized
map, such that Alg′ has exactly the same query complexity and advantage as those of Alg. The
lemma then follows from the observation we made earlier in Remark 8.
We define � first. Given T = (T1, . . . ,Td ) for some d ≥ 1, � = (�1, . . . , �m ) is defined as

�j =
���{i ∈ [d] : j ∈ Ti }���.

So ‖�‖1 =
∑d

i=1 |Ti |. Recall from Section 4 thatVyes andVno denote the distributions supported on
responses v = (v1, . . . ,vd ) to T in SSSQ when A ∼ Ayes and A ∼ Ano, respectively. To define h,
we describe a randomized procedure P that, given any b ∈ {0, 1}m , outputs a sequence of random
vectorsv = (v1, . . . ,vd ), which simulatesVyes if b ∼ Byes andVno if b ∼ Bno. In other words, we
define P below and prove the following claim:

Claim 13. If b ∼ Byes (or Bno), then P (b) is distributed the same asVyes (orVno, respectively).

Assuming Claim 13, we can set h = д ◦ P and the advantage of Alg′ would be the same as that
of Alg. In the rest of the proof, we describe the randomized procedure P and prove Claim 13.
Given b ∈ {0, 1}m , P outputs a sequence of random vectorsv = (v1, . . . ,vd ) as follows:

—If bj = 0, then for each i ∈ [d] with j ∈ Ti , P setsvi, j = 0.
—If bj = 1 (this implies that �j > 0 and j ∈ Ti for some i ∈ [d]), P sets (vi, j : i ∈ [d], j ∈ Ti ) to
be a length-r , where r = |{i ∈ [d] : j ∈ Ti }|, binary string in which each bit is independently
1 with probability ϵ/

√
n and 0 with probability 1 − ϵ/

√
n, conditioned on its not being 0r .

Proof of Claim 13. It suffices to prove that, fixing any A ⊆ [m] as the underlying set hidden
in the oracle, the distribution of v is the same as that of P (b). The claim then follows since in the
definitions of both Byes andVyes (or Bno andVno), A is drawn from Ayes (or Ano, respectively).

Consider a sequence v of d vectors v1, . . . ,vd with vi ∈ {0, 1}Ti for each i ∈ [d], and let

nj,1 = |{i ∈ [d] : j ∈ Ti and vi, j = 1}| and nj,0 = |{i ∈ [d] : j ∈ Ti and vi, j = 0}|,
for each j ∈ [m]. Then thev returned by the oracle (in SSSQ) is equal to v with probability:

1
[
∀j � A, nj,1 = 0

]
·
∏

j ∈A

(

ϵ
√
n

)nj,1 (

1 − ϵ
√
n

)nj,0

, (11)

since all coordinates vi, j are independent. (Here 1 denotes the indicator function, so 1[E] is 1 if
event E holds and is 0 otherwise.) On the other hand, the probability of P (b) = v is

1
[
∀j � A, nj,1 = 0

]
·
∏

j ∈A

��1
[
nj,0 = �j

]
·
(

1 − ϵ
√
n

)�j

+ 1
[
nj,1 ≥ 1

]
·
(

ϵ
√
n

)nj,1 (

1 − ϵ
√
n

)nj,0�� ,
which is exactly the same as the probability ofv = v in Equation (11). �

This finishes the proof of Lemma 12. �

5.2 A Lower Bound for SSEQ

We prove the following lower bound for SSEQ, from which Lemma 9 follows:

Lemma 14. Any deterministic, non-adaptive Alg′ for SSEQ with advantage at least 2/3 satisfies

‖�‖1 > s
def
=

n3/2

ϵ · log3 n · log2 (n/ϵ )
.
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Proof. Assume for contradiction that there is an algorithm Alg′ = (h, �) with ‖�‖1 ≤ s and
advantage at least 2/3. Let �∗ be the vector obtained from � by rounding each positive �i to the
smallest power of 2 that is at least as large as �i (and taking �

∗
i = 0 if �i = 0). From Remark 11, there

must be a map h∗ such that (h∗, �∗) also has advantage at least 2/3 but now we have (1) ‖�∗‖1 ≤ 2s
and (2) every positive entry of �∗ is a power of 2. Below we abuse notation and still use Alg′ =
(h, �) to denote (h∗, �∗): Alg′ = (h, �) satisfies ‖�‖1 ≤ 2s , every positive entry of � is a power of 2,
and has advantage at least 2/3. We obtain a contradiction below by showing that any such � can
only have an advantage of o(1).
Let L = �log(2s )� = O (log(n/ϵ )). Given that ‖�‖1 ≤ 2s we can partition {i ∈ [m] : �i > 0} into

L + 1 binsC0, . . . ,CL , where binCj contains those coordinates i ∈ [m] with �i = 2j . We may make
two further assumptions on Alg′ = (h, �) that will simplify the lower bound proof:

—We may reorder the entries in decreasing order and assume without loss of generality that

� =
����
2L, . . . , 2L
︸������︷︷������︸

cL

, 2L−1, . . . , 2L−1
︸�����������︷︷�����������︸

cL−1

, . . . , 1, . . . , 1
︸��︷︷��︸

c0

, 0, . . . , 0
����
, (12)

where c j = |Cj | satisfies
∑

j c j · 2j ≤ 2s . This is without loss of generality since Ayes and
Ano are symmetric in the coordinates (and so are Byes and Bno).

—For the same reason, we may assume that the map h(b) depends only on the number of 1’s
of b in each set Cj , which we refer to as the summary S (b) of b:

S (b)
def
=

(

‖b |CL ‖1, ‖b |CL−1 ‖1, . . . , ‖b |C0 ‖1
)

∈ ZL+1≥0 .

To see that this is without loss of generality, consider a randomized procedure P that, given
b ∈ {0, 1}m , applies an independent random permutation over the entries ofCj for each bin
j ∈ [0 : L]. One can verify that the random map h′ = h ◦ P only depends on the summary
S (b) of b but achieves the same advantage as h.

Given a query � as in (12), we define Syes to be the distribution of S (b) for b ∼ Byes (recall that
Byes is the distribution of the vector b returned by the oracle upon the query � when A ∼ Ayes).
Similarly, we defineSno as the distribution of S (b) forb ∼ Bno. As h only depends on the summary
the advantage is at most dTV (Syes,Sno), which we upper bound below by o(1).

From the definition of Byes (or Bno, respectively) and the fact thatAyes (orAno, respectively) is
symmetric over them coordinates, we have that the L + 1 entries of Syes (of Sno, respectively) are
mutually independent, and that their entries for each Cj , j ∈ [0 : L], are distributed as Bin(c j ,pλj )
(as Bin(c j ,pnoλj ), respectively), where we have λj = 1 − (1 − (ϵ/

√
n))2

j
.

To prove that dTV (Syes,Sno) = o(1) and achieve the desired contradiction, we will give upper
bounds on the total variation distance between their Cj -entries for each j ∈ {0, . . . ,L}.

Claim 15. For every j ∈ [0 : L], we have dTV (X,Y) ≤ o (1/L), where X ∼ Bin(c j ,pλj ) and Y ∼
Bin(c j ,pnoλj ).

We delay the proof of Claim 15, but assuming it we may simply apply the following well-known
proposition to conclude that dTV (Syes,Sno) = o(1).

Proposition 16 (Subadditivity of Total Variation Distance). Let X = (X1, . . . ,Xk ) and

Y = (Y1, . . . ,Yk ) be two tuples of independent random variables. ThendTV (X,Y) ≤
∑k

i=1 dTV (Xi ,Yi ).

This gives us a contradiction and finishes the proof of Lemma 14. �

Below we prove Claim 15.
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Proof of Claim 15. Consider any fixed j ∈ [0 : L]. The claim is trivial when c j = 0 sowe assume
below that c j > 0.

Let r j = pλj and x j = logn · λj/
√
n. Then X ∼ Bin(c j , r j ) and Y ∼ Bin(c j , r j + x j ). As indicated

in Equation (2.15) of Reference [1], Equation (15) of Reference [39] gives

dTV (X,Y) ≤ O

(
τj (x j )

(1 − τj (x j ))2

)

, where τj (x j )
def
= x j

√

c j + 2

2r j (1 − r j )
, (13)

whenever τj (x j ) < 1. Substituting for x j and r j , we have (using c j ≥ 1, r j ≤ 1/2 and p = 1/2)

τj (x j ) = O

(
logn · λj√

n
·
√

c j

r j

)

= O ��logn ·
√

λj · c j
n

�� = O
���
1

L
·

√

n1/2 · λj
2j · ϵ · logn

��� ,
where the last inequality follows from

c j · 2j ≤ 2s ≤ O

(

n3/2

ϵ · log3 n · L2

)

.

Finally, note that (using 1 − x > e−2x for small positive x and 1 − x ≤ e−x for all x )

1 − λj =
(

1 − ϵ
√
n

)2j

≥
(

e−2ϵ/
√
n
)2j

= e−2
j+1ϵ/

√
n ≥ 1 −O (2jϵ/

√
n),

so that
√
n ·λj
2j ·ϵ = O (1). This implies τj (x j ) = o(1/L). The claim then follows from Equation (13). �

APPENDIX

A PROOF OF THEOREM 1 ASSUMING THEOREM 2

We prove the following claim in Appendix A.1.

Claim 17. Let ϵ (n) be a function that satisfies 2−n ≤ ϵ (n) ≤ 1/5 for sufficiently large n. Then any

non-adaptive algorithm that accepts the all-0 function with probability at least 5/6 and rejects every
function that is ϵ-far from (n − 1)-juntas with probability at least 5/6 must make Ω(1/ϵ ) queries.

Next let k (n) and ϵ (n) be the pair of functions from the statement of Theorem 1. We consider a
sufficiently large n (letting k = k (n) and ϵ = ϵ (n) below) and separate the proof into two cases:

2−(2α−1)k/(2α ) ≤ ϵ ≤ 1/6 and 2−n ≤ ϵ < 2−(2α−1)k/(2α ) .

For the first case, if k = O (1) then the bound we aim for is simply Ω̃(1/ϵ ), which follows trivially
fromClaim 17 (sincek ≤ αn < n − 1 and the all-0 function is ak-junta). Otherwise, we combine the
following reduction with Theorem 2: any ϵ-tester for k-juntas over n-variable functions can be
used to obtain an ϵ-tester for k-juntas over (k/α )-variable functions. This can be done by adding
n − k/α dummy variables to any (k/α )-variable function to make the number of variables n (as
k ≤ αn). The lower bound then follows from Theorem 2 since α is a constant. For the second

case, the lower bound claimed in Theorem 1 is Ω̃(1/ϵ ), which follows again from Claim 17. This
concludes the proof of Theorem 1 given Theorem 2 and Claim 17.

A.1 Proof of Claim 17

Let C be a sufficiently large constant. We prove Claim 17 by considering two cases:

ϵ ≥ C logn

2n
and ϵ <

C logn

2n
.

Journal of the ACM, Vol. 65, No. 6, Article 40. Publication date: November 2018.



40:16 X. Chen et al.

For the first case of 2nϵ ≥ C logn, we use D1 to denote the following distribution over n-variable
Boolean functions: to draw д ∼ D1, independently for each x ∈ {0, 1}n the value of д(x ) is set to 0
with probability 1 − 3ϵ (recall that ϵ ≤ 1/5) and 1 with probability 3ϵ .
We prove the following lemma for the distribution D1:

Lemma 18. With probability at least 1 − o(1), д ∼ D1 is ϵ-far from every (n − 1)-junta.

Proof. Note that every (n − 1)-junta is such that for some i ∈ [n], the function does not depend
on the i-th variable; we refer to such a function as a type-i junta. An easy lower bound for the dis-

tance from a functionд to all type-i juntas is the number ofд-bichromatic edges (x ,x (i ) ) divided by

2n . When д ∼ D1 each edge (x ,x (i ) ) is independently д-bichromatic with probability 6ϵ (1 − 3ϵ ) ≥
12ϵ/5 (as ϵ ≤ 1/5). Thus when 2nϵ ≥ C logn, the expected number of such edges is at least

2n−1 · (12ϵ/5) ≥ (6/5) · 2nϵ ≥ (6/5) ·C logn.

Using a Chernoff bound, the probability of having fewer than 2nϵ bichromatic edges along direc-
tion i is at most 1/n2 whenC is sufficiently large. The lemma follows from a union bound over i . �

As a result, when 2nϵ ≥ C logn, if A is a non-adaptive algorithm with the property described
in Claim 17, then A must satisfy

Pr
[
A accepts the all-0 function

]
− Pr

д∼D1

[A accepts д ] ≥ 2/3 − o(1).

But any such non-adaptive algorithmmustmakeΩ(1/ϵ ) queries as otherwisewith high probability
all of its queries to д ∼ D1 would be answered 0, and hence its behavior would be the same as if it
were running on the all-0 function.
Finally, we work on the case when 1 ≤ 2nϵ = O (logn). The proof is the same except that we letд

be drawn fromD2, which we define to be the distribution where all entries of д ∼ D2 are 0 except
for exactly 2nϵ of them picked uniformly at random. The claim follows from the following lemma:

Lemma 19. With probability at least 1 − o(1), д ∼ D2 is ϵ-far from every (n − 1)-junta.

Proof. This follows from the observation that, with probability 1 − o(1), no two points picked
form an edge.When this occurs, we have 2nϵ bichromatic edges along the ith direction for all i . �
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