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1. Introduction

Showing that the complete graph K;, can be embedded in the orientable surface of genus

(n—3)(n—-4)
=

proves the Map Color Theorem for orientable surfaces of positive genus [6]. The case of the graphs Kj,s was of particular
difficulty, as its original solution utilized nonabelian current groups. Namely, Terry et al. [7] employed the representation
theory of finite fields to label the arcs of a current graph with elements from a nonabelian group of order 12s.

To avoid the difficulties that arise from using nonabelian groups, Pengelley and Jungerman [5] announced a solution using
index 4 current graphs with the cyclic group Z1s, but gave details only fors = 1and s = 0 (mod 8). Korzhik [3] improved
on their method, giving four families of current graphs, one for each residue s mod 4, fors = 4 and s > 6. Unfortunately, the
aforementioned current graphs in this high index regime are even more complicated than those of Terry et al. [7], despite
the much simpler group involved.

Mahnke [4] proved that there do not exist index 1 current graphs with abelian current groups that directly generate
orientable triangular embeddings of Ki,s. We circumvent this barrier by using index 1 current graphs with cyclic groups
Z12s—4 to first generate certain orientable embeddings of K;»s_4, which then can be modified into the desired orientable
triangular embeddings of K.

2. Graph embeddings generated by current graphs

For more information on topological graph theory, especially a formal treatment of current graphs, see Gross and
Tucker [1]. Proofs of correctness for the combinatorial techniques described here can be found in Ringel [6]. In this paper,
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we only consider embeddings in orientable surfaces—the analogous statement for the nonorientable genus of Ky, is swiftly
handled in §8.2 of Ringel [6].

A consequence of Euler’s formula is that the genus of a simple graph G is at least

[E(G)| = 3|V(G)| + 6
6 9

and this value is attained by a triangular embedding of G, i.e., an embedding where every face is triangular. Our main result is
thus a new construction for triangular embeddings of K155, which are embeddings in the surface of genus (4s—1)(3s—1). The
expression for the genus of a triangular embedding also implies, roughly speaking, that a handle corresponds to six edges
in such an embedding. This relationship is crucial for so-called “additional adjacency” solutions in the proof of the Map
Color Theorem, where a triangular embedding of a nearly complete graph is augmented using handles to obtain a genus
embedding of a complete graph. Ringel et al. were successful in finding non-triangular genus embeddings in this manner,
but in the present paper we apply an additional adjacency step that terminates in another triangular embedding.

A cellular embedding of a simple graph on a surface can be described combinatorially by a rotation system, where each
vertex v is assigned a rotation, a cyclic permutation of its neighbors. The faces of the embedding can be traced out from the
rotation system, but here, only the following specialization for triangular embeddings is necessary:

Proposition 2.1. An embedding is triangular if and only if the corresponding rotation system satisfies the following property: for
all vertices i, j, k, if the rotation at vertex i is of the form

i jk ...,
then the rotation at j is of the form

oo ki

A current graph is a directed graph D embedded in a surface, whose arcs are labeled using elements from a group I".
We refer to these labels as currents and I as the current group. The index of a current graph is the number of faces in its
embedding. For the remainder of the paper, except in the Appendix, we only consider index 1 current graphs and take I
to be the cyclic groups Zq2s—4. Let the excess of a vertex be the sum of its incoming currents minus the sum of its outgoing
currents. A vertex satisfies Kirchhoff’s current law (KCL) if its excess is zero.

All aforementioned work on K1, including Mahnke’s nonexistence result 4], deals with current graphs where the derived
graphs are exactly K;,s. Our departure from previous approaches is that we first construct a triangular embedding of Kys — Ky
using an index 1 current graph, then use an additional handle to add the six missing edges. Triangular embeddings of Ky,s — K4
were known to Jungerman and Ringel [2], but for our purposes, we construct a different family of current graphs that satisfy
additional properties. These current graphs exist for s > 3—to handle the smaller cases, we appeal to a well-known index
4 current graph (see Ringel [6, p. 82]) for s = 1, and in the Appendix, we describe another index 4 current graph for s = 2.
Pengelley and Jungerman [5] and Korzhik [3] announced an index 4 solution for this small case, but no such current graph
appears in either paper or elsewhere in the literature.

In order to obtain a triangular embedding of K;; — K4, we use an index 1 current graph with current group Ziys_4 to
generate a particular embedding of K1,s_4. All of its faces are triangular except for four (12s—4)-gonal faces whose boundary
walks are Hamiltonian cycles. These (12s—4)-gonal faces are induced by vortices in the current graph, i.e., vertices where KCL
is not satisfied. In our drawings, we label each incident face corner of a vortex with a letter. To obtain a triangular embedding
of Kq25 — K4, we subdivide each of the (12s—4)-gonal faces using new vertices labeled with those letters.

Our aforementioned current graphs with current groups Z1,s_4 satisfy the following “construction principles”, which we
paraphrase from Jungerman and Ringel [2]:

(C1) Every vertex has degree 1, 2, or 3.

(C2) The embedding of D has one face, i.e. the current graph is of index 1.

(C3) For every element y € Zis_4 \ {0}, exactly one of y or —y appears as a current on exactly one arc of D.

(C4) KCL holds at every vertex of degree 3.

(C5) There is exactly one vertex of degree 1 with excess 6s—2, the order 2 element of Z,5_4. All other vertices of degree 1
have an excess that generates Zi3s_4.

(C6) A vertex of degree 2 is incident with two arcs with odd currents, and its excess generates the subgroup of even
elements of Z1ys_4.

The one face boundary can be expressed as a cyclic sequence that alternates between arcs and face corners. Its log is
obtained by replacing arcs with their currents, and corners with their vortex letters, if any. If an arc labeled y is traversed in
the same direction as its orientation, the arc is replaced by y; if it is traversed in the reverse direction, the arc is replaced by
—y.By (C5), the order 2 element appears twice consecutively in the log, which by convention, we condense into one instance.
The standard interpretation is that the derived graph actually has a “doubled 1-factor” which is then suppressed—for this
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Fig. 1. Anindex 1 current graph with current group Zs, generating a triangular embedding of K35 — Kj. Solid and hollow vertices represent clockwise and
counterclockwise rotations, respectively.

reason, the degree 1 endvertex of the arc labeled with 6s—2 € Z15;_4 is not considered a vortex and hence has no letter
assigned to it.

The log of a current graph describes a symmetric embedding of a certain derived graph, whose vertices are the elements
of Z155_4 and the vortex letters. For example, the log of the current graph in Fig. 1 is the cyclic sequence

3 x 1 y 31 z 29 24 20 2 21 25 15 6 16 22 7 (1)
28 8 5 23 17 10 26 9 14 12 4 11 13 w 19 30 18 27.

The log describes the rotation at vertex 0 (i.e. the identity element of Z5s_4) and furthermore determines the rest of the
rotation system. We obtain the rotation at vertex k € Zis_4 by adding k to each of the elements of Z1,5_4 in the log. For
the vortices of degree 1, we leave their letters unchanged, but for vortices of degree 2, such as the one corresponding to the
letters x and z in this example, we switch the letters’ positions if k is odd. A partial picture of the rotation system would
therefore look like

0. 3 x 1 y 31 z 29 24 20 2 21 25
1. 4 z 2 y 0 x 30 25 21 3 22 26
2.5 x 3y 1 z 31 26 22 4 23 27
3.6 z 4y 2 x 0 27 23 5 24 28
4. 7 x 5 y 3 z 1 28 24 6 25 29

The rotations at the lettered vertices are “manufactured” such that the embedding near these vertices is triangular, which
we do with the help of Proposition 2.1. For example, the rotation at vertex x is of the following form:

X ... 31 30 1 0 3 2 5 4

Because the current graph satisfies the construction principles, the entire embedding is triangular, and the rotations at the
lettered vertices form proper cyclic permutations of all the elements of Zs,. This is a triangular embedding of K35 — K4, as
the only missing adjacencies are those between lettered vertices. We will show in the next section how we can add the
remaining edges using one handle to get a triangular embedding of K3 as desired.

3. A new construction for triangular embeddings of K;35,s > 3

For s > 4, consider the current graphs in Fig. 2 with current groups Z3s_4. By examining their logs near the vortices and
the curved arcs in part (a), we find that the rotation at vertex 0 is of the form

00 x 1 y 12s=5 z ... 6s+2 2 6s+3 ... 6s—2 6 6s—3 ... 6s—5 w

For s = 3, the rotation (1) of the current graph in Fig. 1 differs from this general form in that the two elements adjacent to 6
are swapped. That is, it is of the form

0. x 1 y 12s=5 z ... 6s+2 2 6s+3 ... 6s—=3 6 6s—2 ... 6s—=5 w

Fig. 3illustrates how this partial information allows us to add the missing edges using edge flips and a handle. In particular,
adding the edge (x, y) at the cost of the edge (0, 1) allows us to install a handle that merges three faces containing the four
lettered vertices. We then add the missing edges near this handle or via sequences of edge flips. The minor discrepancy
between the logs for s = 3 and s > 4 manifests in one of the quadrilaterals in Fig. 3—that quadrilateral is merely mirrored
for s = 3, so the corresponding edge flip is still permissible and the rest of the additional adjacency solution is identical. The
resulting embeddings of K, are triangular for all s > 3, completing the construction.

Remark. The arcs labeled 9 and 6s— 12 in Fig. 2(a) extend the arithmetic sequence in Fig. 2(b), but unfortunately the rotations
assigned to their endpoints must differ from the pattern in Fig. 2(b). Thus, generalizing this family of current graphs to the
s = 3 case is impossible.
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Fig. 2. The fixed part of the current graph (a) contains the salient currents for adding one handle, and the simple ladder (b) inside the box. The label on the
box indicates the number of “rungs” in the ladder, whose orientations alternate and whose currents form an arithmetic sequence.
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Fig. 3. The embedding near vertex 0 is augmented using a handle, which is represented by excising two disks and identifying their boundaries. For the
edge flips, the dashed edges are replaced by the thick solid edges. The quadrilateral inside the box has the reverse orientation for s = 3.

Appendix. A triangular embedding of K, using cyclic groups

Fig. A.1 details an index 4 current graph that generates a triangular embedding of K>4 using the cyclic group Z,4. The logs
of this current graph are

[0]. 1916 4 1212012 8 3 5 21311221017 714 615 9 18 23
[1]. 5 82023 3 4121621192211 13 214 7171018 915 6 1
[2]. 192021 1 423 5 615 918 8161017 7 1412 2131122 3
[3]. 5 4 32320 11918 915 616 8 14 7 17 10 12 22 11 13 2 21

To generate the rotation at vertex k € Z4, take the log [k mod 4] and add k to each element. One can verify that the
embedding is triangular using Proposition 2.1. For more information on index 4 current graphs and the additional difficulties
they incur, see Pengelley and Jungerman [5] or Korzhik [3].
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Fig.A.1. Thisindex 4 current graph, which generates a triangular embedding of K»4, was discovered using techniques found in Pengelley and Jungerman [5].
The ends labeled “A” and “B” are identified to form a cylindrical digraph.
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