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a b s t r a c t

We present a family of index 1 abelian current graphs whose derived embeddings can be

modified into triangular embeddings of K12s for s ≥ 3. Our construction is significantly

simpler than previous methods for finding genus embeddings of K12s, which utilized either

large index or nonabelian groups.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Showing that the complete graph Kn can be embedded in the orientable surface of genus
⌈

(n − 3)(n − 4)

12

⌉

proves the Map Color Theorem for orientable surfaces of positive genus [6]. The case of the graphs K12s was of particular

difficulty, as its original solution utilized nonabelian current groups. Namely, Terry et al. [7] employed the representation

theory of finite fields to label the arcs of a current graph with elements from a nonabelian group of order 12s.

To avoid the difficulties that arise fromusing nonabelian groups, Pengelley and Jungerman [5] announced a solution using

index 4 current graphs with the cyclic group Z12s, but gave details only for s = 1 and s ≡ 0 (mod 8). Korzhik [3] improved

on their method, giving four families of current graphs, one for each residue s mod 4, for s = 4 and s ≥ 6. Unfortunately, the

aforementioned current graphs in this high index regime are even more complicated than those of Terry et al. [7], despite

the much simpler group involved.

Mahnke [4] proved that there do not exist index 1 current graphs with abelian current groups that directly generate

orientable triangular embeddings of K12s. We circumvent this barrier by using index 1 current graphs with cyclic groups

Z12s−4 to first generate certain orientable embeddings of K12s−4, which then can be modified into the desired orientable

triangular embeddings of K12s.

2. Graph embeddings generated by current graphs

For more information on topological graph theory, especially a formal treatment of current graphs, see Gross and

Tucker [1]. Proofs of correctness for the combinatorial techniques described here can be found in Ringel [6]. In this paper,
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we only consider embeddings in orientable surfaces—the analogous statement for the nonorientable genus of K12s is swiftly

handled in §8.2 of Ringel [6].

A consequence of Euler’s formula is that the genus of a simple graph G is at least

|E(G)| − 3|V (G)| + 6

6
,

and this value is attained by a triangular embedding of G, i.e., an embedding where every face is triangular. Our main result is

thus a new construction for triangular embeddings of K12s, which are embeddings in the surface of genus (4s−1)(3s−1). The

expression for the genus of a triangular embedding also implies, roughly speaking, that a handle corresponds to six edges

in such an embedding. This relationship is crucial for so-called ‘‘additional adjacency’’ solutions in the proof of the Map

Color Theorem, where a triangular embedding of a nearly complete graph is augmented using handles to obtain a genus

embedding of a complete graph. Ringel et al. were successful in finding non-triangular genus embeddings in this manner,

but in the present paper we apply an additional adjacency step that terminates in another triangular embedding.

A cellular embedding of a simple graph on a surface can be described combinatorially by a rotation system, where each

vertex v is assigned a rotation, a cyclic permutation of its neighbors. The faces of the embedding can be traced out from the

rotation system, but here, only the following specialization for triangular embeddings is necessary:

Proposition 2.1. An embedding is triangular if and only if the corresponding rotation system satisfies the following property: for

all vertices i, j, k, if the rotation at vertex i is of the form

i. . . . j k . . . ,

then the rotation at j is of the form

j. . . . k i . . .

A current graph is a directed graph D embedded in a surface, whose arcs are labeled using elements from a group Γ .

We refer to these labels as currents and Γ as the current group. The index of a current graph is the number of faces in its

embedding. For the remainder of the paper, except in the Appendix, we only consider index 1 current graphs and take Γ

to be the cyclic groups Z12s−4. Let the excess of a vertex be the sum of its incoming currents minus the sum of its outgoing

currents. A vertex satisfies Kirchhoff’s current law (KCL) if its excess is zero.

All aforementionedwork onK12s, includingMahnke’s nonexistence result [4], dealswith current graphswhere the derived

graphs are exactly K12s. Our departure fromprevious approaches is thatwe first construct a triangular embedding of K12s−K4

using an index 1 current graph, then use an additional handle to add the sixmissing edges. Triangular embeddings ofK12s−K4

were known to Jungerman and Ringel [2], but for our purposes, we construct a different family of current graphs that satisfy

additional properties. These current graphs exist for s ≥ 3—to handle the smaller cases, we appeal to a well-known index

4 current graph (see Ringel [6, p. 82]) for s = 1, and in the Appendix, we describe another index 4 current graph for s = 2.

Pengelley and Jungerman [5] and Korzhik [3] announced an index 4 solution for this small case, but no such current graph

appears in either paper or elsewhere in the literature.

In order to obtain a triangular embedding of K12s − K4, we use an index 1 current graph with current group Z12s−4 to

generate a particular embedding of K12s−4. All of its faces are triangular except for four (12s−4)-gonal faces whose boundary

walks are Hamiltonian cycles. These (12s−4)-gonal faces are induced by vortices in the current graph, i.e., vertices where KCL

is not satisfied. In our drawings, we label each incident face corner of a vortexwith a letter. To obtain a triangular embedding

of K12s − K4, we subdivide each of the (12s−4)-gonal faces using new vertices labeled with those letters.

Our aforementioned current graphs with current groups Z12s−4 satisfy the following ‘‘construction principles’’, which we

paraphrase from Jungerman and Ringel [2]:

(C1) Every vertex has degree 1, 2, or 3.

(C2) The embedding of D has one face, i.e. the current graph is of index 1.

(C3) For every element γ ∈ Z12s−4 \ {0}, exactly one of γ or −γ appears as a current on exactly one arc of D.

(C4) KCL holds at every vertex of degree 3.

(C5) There is exactly one vertex of degree 1 with excess 6s−2, the order 2 element of Z12s−4. All other vertices of degree 1

have an excess that generates Z12s−4.

(C6) A vertex of degree 2 is incident with two arcs with odd currents, and its excess generates the subgroup of even

elements of Z12s−4.

The one face boundary can be expressed as a cyclic sequence that alternates between arcs and face corners. Its log is

obtained by replacing arcs with their currents, and corners with their vortex letters, if any. If an arc labeled γ is traversed in

the same direction as its orientation, the arc is replaced by γ ; if it is traversed in the reverse direction, the arc is replaced by

−γ . By (C5), the order 2 element appears twice consecutively in the log,which by convention,we condense into one instance.

The standard interpretation is that the derived graph actually has a ‘‘doubled 1-factor’’ which is then suppressed—for this
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Fig. 1. An index 1 current graph with current group Z32 generating a triangular embedding of K36 − K4 . Solid and hollow vertices represent clockwise and

counterclockwise rotations, respectively.

reason, the degree 1 endvertex of the arc labeled with 6s−2 ∈ Z12s−4 is not considered a vortex and hence has no letter
assigned to it.

The log of a current graph describes a symmetric embedding of a certain derived graph, whose vertices are the elements
of Z12s−4 and the vortex letters. For example, the log of the current graph in Fig. 1 is the cyclic sequence

3 x 1 y 31 z 29 24 20 2 21 25 15 6 16 22 7 . . .

28 8 5 23 17 10 26 9 14 12 4 11 13 w 19 30 18 27.
(1)

The log describes the rotation at vertex 0 (i.e. the identity element of Z12s−4) and furthermore determines the rest of the
rotation system. We obtain the rotation at vertex k ∈ Z12s−4 by adding k to each of the elements of Z12s−4 in the log. For
the vortices of degree 1, we leave their letters unchanged, but for vortices of degree 2, such as the one corresponding to the
letters x and z in this example, we switch the letters’ positions if k is odd. A partial picture of the rotation system would
therefore look like

0. 3 x 1 y 31 z 29 24 20 2 21 25 · · ·

1. 4 z 2 y 0 x 30 25 21 3 22 26

2. 5 x 3 y 1 z 31 26 22 4 23 27

3. 6 z 4 y 2 x 0 27 23 5 24 28

4. 7 x 5 y 3 z 1 28 24 6 25 29
...

. . .

The rotations at the lettered vertices are ‘‘manufactured’’ such that the embedding near these vertices is triangular, which
we do with the help of Proposition 2.1. For example, the rotation at vertex x is of the following form:

x. . . . 31 30 1 0 3 2 5 4 . . .

Because the current graph satisfies the construction principles, the entire embedding is triangular, and the rotations at the
lettered vertices form proper cyclic permutations of all the elements of Z32. This is a triangular embedding of K36 − K4, as
the only missing adjacencies are those between lettered vertices. We will show in the next section how we can add the
remaining edges using one handle to get a triangular embedding of K36 as desired.

3. A new construction for triangular embeddings of K12s, s ≥ 3

For s ≥ 4, consider the current graphs in Fig. 2 with current groups Z12s−4. By examining their logs near the vortices and
the curved arcs in part (a), we find that the rotation at vertex 0 is of the form

0. x 1 y 12s−5 z . . . 6s+2 2 6s+3 . . . 6s−2 6 6s−3 . . . 6s−5 w . . .

For s = 3, the rotation (1) of the current graph in Fig. 1 differs from this general form in that the two elements adjacent to 6
are swapped. That is, it is of the form

0. x 1 y 12s−5 z . . . 6s+2 2 6s+3 . . . 6s−3 6 6s−2 . . . 6s−5 w . . .

Fig. 3 illustrates how this partial information allowsus to add themissing edges using edge flips and ahandle. In particular,
adding the edge (x, y) at the cost of the edge (0, 1) allows us to install a handle that merges three faces containing the four
lettered vertices. We then add the missing edges near this handle or via sequences of edge flips. The minor discrepancy
between the logs for s = 3 and s ≥ 4 manifests in one of the quadrilaterals in Fig. 3—that quadrilateral is merely mirrored
for s = 3, so the corresponding edge flip is still permissible and the rest of the additional adjacency solution is identical. The
resulting embeddings of K12s are triangular for all s ≥ 3, completing the construction.

Remark. The arcs labeled 9 and 6s−12 in Fig. 2(a) extend the arithmetic sequence in Fig. 2(b), but unfortunately the rotations
assigned to their endpoints must differ from the pattern in Fig. 2(b). Thus, generalizing this family of current graphs to the
s = 3 case is impossible.
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Fig. 2. The fixed part of the current graph (a) contains the salient currents for adding one handle, and the simple ladder (b) inside the box. The label on the

box indicates the number of ‘‘rungs’’ in the ladder, whose orientations alternate and whose currents form an arithmetic sequence.

Fig. 3. The embedding near vertex 0 is augmented using a handle, which is represented by excising two disks and identifying their boundaries. For the

edge flips, the dashed edges are replaced by the thick solid edges. The quadrilateral inside the box has the reverse orientation for s = 3.

Appendix. A triangular embedding of K24 using cyclic groups

Fig. A.1 details an index 4 current graph that generates a triangular embedding of K24 using the cyclic group Z24. The logs

of this current graph are

[0]. 19 16 4 1 21 20 12 8 3 5 2 13 11 22 10 17 7 14 6 15 9 18 23

[1]. 5 8 20 23 3 4 12 16 21 19 22 11 13 2 14 7 17 10 18 9 15 6 1

[2]. 19 20 21 1 4 23 5 6 15 9 18 8 16 10 17 7 14 12 2 13 11 22 3

[3]. 5 4 3 23 20 1 19 18 9 15 6 16 8 14 7 17 10 12 22 11 13 2 21

To generate the rotation at vertex k ∈ Z24, take the log [k mod 4] and add k to each element. One can verify that the

embedding is triangular using Proposition 2.1. Formore information on index 4 current graphs and the additional difficulties

they incur, see Pengelley and Jungerman [5] or Korzhik [3].
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Fig. A.1. This index 4 current graph,which generates a triangular embedding of K24 , was discovered using techniques found in Pengelley and Jungerman [5].

The ends labeled ‘‘A’’ and ‘‘B’’ are identified to form a cylindrical digraph.
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