Lower Bounds for Tolerant Junta and Unateness
Testing via Rejection Sampling of Graphs

Amit Levi!

University of Waterloo, Canada
amit.leviQuwaterloo.ca

Erik Waingarten?
Columbia University, USA
eaw@cs.columbia.edu

—— Abstract

We introduce a new model for testing graph properties which we call the rejection sampling model.

We show that testing bipartiteness of n-nodes graphs using rejection sampling queries requires
complexity ﬁ(n2) Via reductions from the rejection sampling model, we give three new lower
bounds for tolerant testing of Boolean functions of the form f: {0,1}"™ — {0,1}:

Tolerant k-junta testing with non-adaptive queries requires ﬁ(kQ) queries.

Tolerant unateness testing requires ﬁ(n) queries.

Tolerant unateness testing with non-adaptive queries requires ﬁ(n?’/ 2) queries.
Given the 5(k3/ 2)-query non-adaptive junta tester of Blais [7], we conclude that non-adaptive
tolerant junta testing requires more queries than non-tolerant junta testing. In addition, given
the O(n3/4)-query unateness tester of Chen, Waingarten, and Xie [19] and the O(n)-query non-
adaptive unateness tester of Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri
[3], we conclude that tolerant unateness testing requires more queries than non-tolerant unate-
ness testing, in both adaptive and non-adaptive settings. These lower bounds provide the first
separation between tolerant and non-tolerant testing for a natural property of Boolean functions.

2012 ACM Subject Classification Theory of computation — Probabilistic computation
Keywords and phrases Property Testing, Juntas, Tolerant Testing, Boolean functions
Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.52

Related Version A full version of the paper is available at https://arxiv.org/abs/1805.
01074v1.

1 Introduction

Over the past decades, property testing has emerged as an important line of research in
sublinear time algorithms. The goal is to understand randomized algorithms for approximate
decision making, where the algorithm needs to decide (with high probability) whether a
huge object has some property by making a few queries to the object. Many different
types of objects and properties have been studied from this property testing perspective
(see the surveys by Ron [35, 36] and the recent textbook by Goldreich [26] for overviews of
contemporary property testing research). This paper deals with property testing of Boolean
functions f: {0,1}" — {0,1} and property testing of graphs with vertex set [n].

L Research supported by NSERC Discovery grant and the David R. Cheriton Graduate Scholarship. Part
of this work was done while the author was visiting Columbia University.

2 This work is supported in part by the NSF Graduate Research Fellowship under Grant No. DGE-16-
44869, CCF-1703925, CCF-1563155, and CCF-1420349.

© Amit Levi and Erik Waingarten;

oY licensed under Creative Commons License CC-BY
10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 52; pp. 52:1-52:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

52:2

Lower Bounds for Tolerant Junta and Unateness Testing

In this paper we describe a new model of graph property testing, which we call the
rejection sampling model. For n € N and a subset P of graphs on the vertex set [n], we say a
graph G on vertex set [n] has property P if G € P and say G is e-far from having property P
if all graphs H € P differ on at least en? edges®. The problem of e-testing P with rejection
sampling queries is the following task:

Given some ¢ > 0 and access to an unknown graph G = ([n], E), output “accept” with
probability at least % if G has property P, and output “reject” with probability at
least % if G is e-far from having property P. The access to G is given by the following
oracle queries: given a query set L C [n], the oracle samples an edge (4,j) ~ E
uniformly at random and returns {¢,5} N L.

We measure the complexity of algorithms with rejection sampling queries by considering
the sizes of the queries. The complexity of an algorithm making queries Ly,...,L; C [n] is
S 1 Lil-

The rejection sampling model allows us to study testers which rely on random sampling of
edges, while providing the flexibility of making lower-cost queries. This type of query access
strikes a delicate balance between simplicity and generality: queries are constrained enough
for us to show high lower bounds, and at the same time, the flexibility of making queries allows
us to reduce the rejection sampling model to Boolean function testing problems. Specifically,
we reduce to tolerant junta testing and tolerant unateness testing (see Subsection 1.1).

Our main result in the rejection sampling model is regarding non-adaptive algorithms.
These algorithms need to fix their queries in advance and are not allowed to depend on
answers to previous queries (in the latter case we say that the algorithm is adaptive). We
show a lower bound on the complexity of testing whether an unknown graph G is bipartite
using non-adaptive queries.

» Theorem 1. There exists a constant € > 0 such that any non-adaptive e-tester for
bipartiteness in the rejection sampling model has cost Q(n?).4

More specifically, Theorem 1 follows from applying Yao’s principle to the following lemma.

» Lemma 2. Let G; be the uniform distribution over the union of two disjoint cliques of size
n/2, and let Gy be the uniform distribution over complete bipartite graphs with each part of
size n/2. Any deterministic non-adaptive algorithm that can distinguish between Gi and Go
with constant probability using rejection sampling queries, must have complezity §~2(n2)

We discuss a number of applications of the rejection sampling model (specifically, of
Lemma 2) in the next subsection. In particular, we obtain new lower bounds in the tolerant
testing framework introduced by Parnas, Ron, and Rubinfeld in [34] for two well-studied
properties of Boolean functions (specifically, k-juntas and unateness; see the next subsection
for definitions of these properties). These lower bounds are obtained by a reduction from
the rejection sampling model; we show that too-good-to-be-true Boolean function testers for
these properties imply the existence of rejection sampling algorithms which distinguish G;
and Gy with 6(n?) complexity. Therefore, we may view the rejection sampling model as a
useful abstraction in studying the hard instances of tolerant testing k-juntas and unateness.

3 The distance definition can be modified accordingly when one considers bounded degree or sparse
graphs.

4 We use the notations O, Q to hide polylogarithmic dependencies on the argument, i.e. for expressions of
the form O(flog® f) and Q(f/log® f) respectively (for some absolute constant c).

A. Levi and E. Waingarten

1.1 Applications to Tolerant Testing: Juntas and Unateness

Given n € N and a subset P of n-variable Boolean functions, a Boolean function f: {0,1}" —
{0, 1} has property P if f € P. The distance between Boolean functions f,g: {0,1}" — {0,1}
is dist(f, g) = Pryqo,13»[f(x) # g(x)]. The distance of f to the property P is dist(f,P) =
mingep dist(f, g). We say that f is e-close to P if dist(f,P) < € and f is e-far from P if
dist(f,P) > €. The problem of tolerant property testing [34] of P asks for query-efficient
randomized algorithms for the following task:

Given parameters 0 < g9 < €7 < 1 and black-box query access to a Boolean function
f:{0,1}™ — {0, 1}, accept with probability at least % if f is gg-close to P and reject
with probability at least % if f is e;-far from P.

An algorithm which performs the above task is an (g¢, 1)-tolerant tester for P. A (0,e1)-
tolerant tester is a standard property tester or a non-tolerant tester. As noted in [34], tolerant
testing is not only a natural generalization, but is also very often the desirable attribute
of testing algorithms. This motivates the high level question: how does the requirement of
being tolerant affect the complexity of testing the properties studied? We make progress
on this question by showing query-complexity separations for two well-studied properties of
Boolean functions: k-juntas, and unate functions.

(k-junta) A function f: {0,1}"™ — {0,1} is a k-junta if it depends on at most k of its

variables, i.e., there exists k distinct indices iy,...i; € [n] and a k-variable function

g: {0,1}* — {0,1} where f(z) = g(z;,,...,x;,) for all x € {0,1}".

(unateness) A function f: {0,1}™ — {0, 1} is unate if f is either non-increasing or non-

decreasing in every variable. Namely, there exists a string r» € {0,1}" such that the

function f(z @ r) is monotone with respect to the bit-wise partial order on {0,1}".

While separations between tolerant and non-tolerant testing of Boolean function properties
were known for an (artificial) property (see Subsection 1.2), these results are the first to give
such lower bounds for a natural class of well-studied properties of Boolean functions. The
first such theorem we state concerns non-adaptive tolerant testers for k-juntas.

» Theorem 3. For any o < 1, there exists constants 0 < €9 < g1 < 1 such that for any
k = k(n) < an, any non-adaptive (g9,1)-tolerant k-junta tester must make Q(k?) queries.

We give a noteworthy consequences of the Theorem 3. In [7], Blais gave a non-adaptive
O(k3/?)-query tester for (non-tolerant) testing of k-juntas, which was shown to be optimal
for non-adaptive algorithms by Chen, Servedio, Tan, Waingarten and Xie in [17]. Combined
with Theorem 3, this shows a polynomial separation in the query complexity of non-adaptive
tolerant junta testing and non-adaptive junta testing.

The next two theorems concern tolerant testers for unateness.

» Theorem 4. There exists constants 0 < €9 < €1 < 1 such that any (possibly adaptive)
(€0,€1)-tolerant unateness tester must make Q(n) queries.

» Theorem 5. There exists constant 0 < g9 < £1 < 1 such that any non-adaptive (g9,¢1)-
tolerant unateness tester must make Q(n®/?) queries.

A similar separation in tolerant and non-tolerant testing occurs for the property of
unateness as a consequence of Theorem 4 and Theorem 5. Recently, in [3], Baleshzar,
Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri gave a non-adaptive O(n)-query
tester for (non-tolerant) unateness testing, and Chen, Waingarten and Xie [18] gave an

52:3

ITCS 2019

52:4

Lower Bounds for Tolerant Junta and Unateness Testing

(adaptive) O(n®/4)-query tester for (non-tolerant) unateness testing. We thus, conclude
that by Theorem 4 and Theorem 5, tolerant unateness testing is polynomially harder than
(non-tolerant) unateness testing, in both adaptive and non-adaptive settings.

1.2 Related Work

The properties of k-juntas and unateness have received much attention in property testing
research ([24, 20, 7, 8, 10, 37, 17, 9] study k-juntas, and [27, 31, 14, 3, 18, 19] study unateness).
We briefly review the current state of affairs in (non-tolerant) k-junta testing and unateness
testing, and then discuss tolerant testing of Boolean functions and the rejection sampling
model.

Testing k-juntas. The problem of testing k-juntas, introduced by Fischer, Kindler, Ron,
Safra, and Samorodnitsky [24], is now well understood up to poly-logarithmic factors.
Chockler and Gutfreund [20] show that any tester for k-juntas requires (k) queries (for a
constant 7). Blais [8] gave a junta tester that uses O(klogk + k/c1) queries, matching the
bound of [20] up to a factor of O(logk) for constant ;. When restricted to non-adaptive
algorithms, [24] gave a non-adaptive tester making 6(k2 /€1) queries, which was subsequently
improved in [7] to O(k3/2)/e;. In terms of lower bounds, Buhrman, Garcia-Soriano, Matsliah,
and de Wolf [10] gave a Q(klog k) lower bound for e = (1), and Servedio, Tan, and Wright
[37] gave a lower bound which showed a separation between adaptive and non-adaptive
1

algorithms for €1 = 7. These results were recently improved in [17] to Q(k3/2 Jey), settling

the non-adaptive query complexity of the problem up to poly-logarithmic factors.

Testing unateness. The problem of testing unateness was introduced alongside the problem
of testing monotonicity in Goldreich, Goldwasser, Lehman, Ron, and Samorodnitsky [27],
where they gave the first O(n?/?/e;)-query non-adaptive tester. Khot and Shinkar [31]
gave the first improvement by giving a 6(71/ e1)-query adaptive algorithm. A non-adaptive
algorithm with 6(71/51) queries was given in [13, 3]. Recently, [18, 2] show that ﬁ(n)
queries are necessary for non-adaptive one-sided testers. Subsequently, [19] gave an adaptive
algorithm testing unateness with query complexity 6(713/ 1/¢2). The current best lower bound
for general adaptive testers appears in [18], where it was shown that any adaptive two-sided
tester must use Q(n2/3) queries.

Tolerant testing. Once we consider tolerant testing, i.e., the case g9 > 0, the picture is not
as clear. In the paper introducing tolerant testing, [34] observed that standard algorithms
whose queries are uniform (but not necessarily independent) are inherently tolerant to some
extent. Nevertheless, achieving (g¢, £1)-tolerant testers for constants 0 < gy < €1, can require
applying different methods and techniques (see e.g, [30, 34, 25, 1, 32, 33, 22, 11, 6, 5, 38]).

By applying the observation from [34] to the unateness tester in [3], the tester accepts
functions which are O(e1/n)-close to unate with constant probability. We similarly obtain
weak guarantees for tolerant testing of k-juntas. Diakonikolas, Lee, Matulef, Onak, Rubinfeld,
Servedio, and Wan [21] observed that one of the (non-adaptive) junta testers from [24] accepts
functions that are poly(eq, 1/k)-close to k-juntas. Chakraborty, Fischer, Garcia-Sorfano, and
Matsliah [15] noted that the analysis of the junta tester of Blais [8] implicitly implies an
exp(k/e1)-query complexity tolerant tester which accepts functions that are £1/c-close to
some k-junta (for some constant ¢ > 1) and rejects functions that are e;-far from every
k-junta. Recently, Blais, Canonne, Eden, Levi and Ron [9] showed that when required to
distinguish between the cases that f is e1/10-close to a k-junta, or is e1-far from a 2k-junta,
poly(k,1/e1) queries suffice.

A. Levi and E. Waingarten

For general properties of Boolean functions, tolerant testing could be much harder than
standard testing. Fischer and Fortnow [23] used PCPs in order to construct a property of
Boolean functions P which is (0, e1)-testable with a constant number of queries (depending
on £1), but any (1/4,e1)-tolerant test for P requires n® queries for some ¢ > 0. While
[23] presents a strong separation between tolerant and non-tolerant testing, the complexity
of tolerant testing of many natural properties remains open. We currently neither have
a poly(k, é)—query tester which (g9,£1)-tests k-juntas, nor a poly(n, é)-query tester that
(€0,€1)-tests unateness or monotonicity when ey = O(eq).

Testing graphs with rejection sampling queries. Even though the problem of testing
graphs with rejection sampling queries has not been previously studied, the model shares
characteristics with previous studied frameworks. These include sample-based testing studied
by Goldreich, Goldwasser, and Ron in [28, 29], where the oracle receives random samples
from the input. One crucial difference between rejection sampling algorithms (which always
query [n]) and sample-based testers is the fact that rejection sampling algorithms only receive
positive examples (in the form of edges), as opposed to random positions in the adjacency
matrix (which may be a negative example indicated the non-existence of an edge).

The rejection sampling model for graph testing also bears some resemblance to the
conditional sampling framework for distribution testing introduced in Canonne, Ron, and
Servedio, as well as Chakraborty, Fischer, Goldhirsh, and Matsliah [12, 16], where the

algorithm specifies a query set and receives a sample conditioned on it lying in the query set.

1.3 Techniques and High Level Overview

We first give an overview of how the lower bound in the rejection sampling model (Lemma 2)
implies lower bounds for tolerant testing of k-juntas and unateness, and then we give an
overview of how Lemma 2 is proved.

Reducing Boolean Function Testing from Rejection Sampling. This work should be

considered alongside some recent works showing lower bounds for testing the properties of

monotonicity, unateness, and juntas in the standard property testing model [4, 18, 17]. At a

high level, the lower bounds for Boolean function testing proceed in three steps:

1. First, design a randomized indexing function I': {0,1}"™ — [N] that partitions the Boolean
cube {0,1}" into roughly equal parts in a way compatible with the property (either junta,
or unateness). We want to ensure that algorithms that make few queries cannot learn too

much about I, and that queries falling in the same part are close in Hamming distance.

2. Second, define two distributions over functions h;: {0,1}™ — {0, 1} for each i € [N]. The
hard functions are defined by f(x) = hp(,)(2), so that one distribution corresponds to
functions with the property, and the other distribution corresponds to functions far from
the property.

3. Third, show that any testing algorithm for the property is actually solving some algorithmic
task (determined by the distributions of h;) which is hard when queries are close in
Hamming distance.

The first step in the above-mentioned plan is standard (given familiarity with [18] and
[17]). We will use a construction from [17] for the junta lower bound and a Talagrand-based
construction (similar to [18], but somewhat simpler) for the unateness lower bounds. The
novelty in this work lies in steps 2 and 3. We will define the distributions over sub-functions
h; such that the resulting Boolean functions f(z) = hy(,)(z) either is go-close to desired

52:5

ITCS 2019

52:6

Lower Bounds for Tolerant Junta and Unateness Testing

property (k-juntas and unateness), or is e1-far from having the desired property (k-juntas
and unateness). Then, we will show that any algorithm for tolerant testing of k-juntas or
unateness must be able to solve a hard instance of bipartiteness testing in the rejection
sampling model.

At a very high level, our reductions will follow by associating to each distribution of
Boolean functions f: {0,1}™ — {0, 1} a distribution over graphs G defined on a subset of [n]
(these will be Gy and Gs). The edges of a graph G sampled from G; or G» will encode how the
variables of f interact with one another, and the distance of f to k-junta (or unateness) will
depend on a global parameter of the G.?> In addition, Boolean function queries on f will be
interpreted as rejection sampling queries to G, so that tests distinguishing the distributions
of Boolean functions will give rise to rejection sampling algorithms which distinguish between
Gy and Gs. Since we will show a lower bound in the rejection sampling model, we will obtain
a lower bound for tolerant testing of k-juntas and unateness.

For a more detailed discussion of the distributions and the reductions see Sections 3
and 4.

Distinguishing G; and G2 with Rejection Sampling Queries. In order to prove Lemma, 2,
one needs to rule out any deterministic non-adaptive algorithm which distinguishes between
G1 and G with rejection sampling queries of complexity 6(n?). In order to keep the discussion
at a high level, we identify three possible “strategies” for determining whether an underlying
graph is a complete bipartite graph, or a union of two disjoint cliques:

1. One approach is for the algorithm to sample edges and consider the subgraph obtained
from edges returned by the oracle. For instance, the algorithm may make all rejection
sampling queries to be [n]. These queries are expensive in the rejection sampling model,
but they guarantee that an edge from the graph will be observed. If the algorithm is lucky,
and there exists a triangle in the subgraph observed, the graph must not be bipartite, so
it must come from Gs.

2. Another sensible approach is for the algorithm to forget about the structure of the
graph, and simply view the distribution on the edges generated by the randomness in the
rejection sampling oracle as a distribution testing problem. Suppose for simplicity that
the algorithm makes rejection sampling queries [n]. Then, the corresponding distributions
supported on edges from G; and Go will be (1)-far from each other, so a distribution
testing algorithm can be used.

3. A third, more subtle, approach is for the algorithm to use the fact that G; and G
correspond to the union of two cliques and a complete bipartite graph, and extract
knowledge about the non-existence of edges when making queries which return either ()
or a single vertex. More specifically, suppose that by having observed some edges, the
algorithm observes two connected components L; and Ls. If when querying Li U Lo
multiple times, we do not observe an edge, it is more likely the underlying graph comes
from G; than G,. Specifically, if G ~ G; and L lies in one clique and Lo lies in the other
clique, there would be no edges with edges from L; and Lo; on the other hand, if G ~ G5,
then L; and Ly would always have some edges between them.

5 The relevant graph parameter in k-juntas and unateness will be different. Luckily, both graph parameters
will have gaps in their value depending on the distribution the graphs were drawn from (either G1 or Ga).
This allows us to reuse the work of proving Lemma 2 to obtain Theorem 3, Theorem 4, and Theorem 5.

A. Levi and E. Waingarten

The three strategies mentioned above all fail to give 6(n?) rejection sampling algorithms.
The first approach fails because with a budget of 6(n?), rejection sampling algorithms will
observe subgraphs which consist of various trees of size at most log n, thus we will not observe
cycles. The second approach fails since the distributions are supported on (n?) edges, so
distribution testing algorithms will require (n) edges (which costs Q(n?)) to distinguish
between G; and Gs. Finally, the third approach fails since algorithms will only observe
o(n) responses from the oracle corresponding to lone vertices which will be split roughly
evenly among the unknown parts of the graph, so these observations will not be enough to
distinguish between G; and Gs.

Our lower bound rules out the three strategies sketched above when the complexity is
0(n?), and shows that if the above three strategies do not work (in any possible combination
with each other as well), then no non-adaptive algorithm of complexity 6(n?) will work. The
main technical challenge is to show that the above strategies are the only possible strategies
to distinguish G; and Gs. In Section 5, we give a more detailed, yet still high-level discussion
of the proof of Lemma 2.

Finally, the analysis of Lemma 2 is tight; there is a non-adaptive rejection sampling
algorithm which distinguishes G; and Gy with complexity O(n?). The algorithm (based on
the first approach mentioned above) is simple: make O(n) queries L = [n], and if we observe
an odd-length cycle, we output “G,”, otherwise, output “Go”.

1.4 Preliminaries

We use boldfaced letters such as A, M to denote random variables. Given a string x € {0,1}"
and j € [n], we write U) to denote the string obtained from z by flipping the j-th coordinate.
An edge along the j-th direction in {0,1}" is a pair (z,y) of strings with y = (). In addition,
for o € {0,1} we use the notation (/%) to denote the string 2 where the jth coordinate is
set to a. Given x € {0,1}" and S C [n], we use x|s € {0,1}° to denote the projection of x
on S. For a distribution D we write d ~ D to denote an element d drawn according to the
distribution. We sometimes write a ® b+ c to denote b—c<a < b+ c.

2 The Rejection Sampling Model

In this section, we define the rejection sampling model and the distributions over graphs
we will use throughout this work. We define the rejection sampling model tailored to our
specific application of proving Lemma 2.

» Definition 6. Consider two distributions, G; and Gy supported on graphs with vertex
set [n]. The problem of distinguishing G; and G» with a rejection sampling oracle aims to
distinguish between the following two cases with a specific kind of query:

Cases: We have an unknown graph G ~ G; or G ~ G,.

Rejection Sampling Oracle: Each query is a subset L C [n]; an oracle samples an edge

(1,J2) from G uniformly at random, and the oracle returns v = {j,4,} N L. The

complexity of a query L is given by |L|.

We say a non-adaptive algorithm Alg for this problem is a sequence of query sets
Ly,...,L, C [n], as well as a function Alg: ([n]U ([n] x [n]) U{0})? — {“G17,“G2"}. The
algorithm sends each query to the oracle, and for each query L;, the oracle responds
v; € [n] U ([n] x [n]) U{0}, which is either a single element of [n], an edge in G, or (). The
algorithm succeeds if:

W =

Pr [Alg(vi,...,v,) outputs “G1”] — Pr [Alg(vi,...,v,) outputs “G,"] >
G~Gr, G~Go,
V1,...,Vg V1,..,0g

52:7

ITCS 2019

52:8

Lower Bounds for Tolerant Junta and Unateness Testing

The complexity of Alg is measured by the sum of the complexity of the queries, so we let
cost(Alg) = S0, |Ls|.

While our interest in this work is primarily on lower bounds for the rejection sampling
model, an interesting direction is to explore upper bounds of various natural graph properties
with rejection sampling queries. Our specific applications only require ruling out non-adaptive
algorithms, but one may define adaptive algorithms in the rejection sampling model and
study the power of adaptivity in this setting as well.

2.1 The Distributions G; and G»

Let G; and Go be two distributions supported on graphs with vertex set [n] defined as follows.

Let A C [n] be a uniform random subset of size 3.

G = {KA U K4 : A C [n] random subset size g}
Gy = {KA,X : A C [n] random subset size g} ,

where for a subset A, K4 is the complete graph on vertices in A and K , % is the complete
bipartite graph whose sides are A and A.

3 Tolerant Junta Testing

In this section, we will prove that distinguishing the two distributions G; and Gy using
a rejection sampling oracle reduces to distinguishing two distributions Dy.s and Dy, over
Boolean functions, where Dyes is supported on functions that are close to k-juntas and Dy,
is supported on functions that are far from any k-junta with high probability.

3.1 High Level Overview

We start by providing some intuition of how our constructions and reduction implement
the plan set forth in Subsection 1.3 for the property of being a k-junta. We define two
distributions supported on Boolean functions, Dyes and Dy, so that functions in Dy.s are
go-close to being k-juntas and functions in D,,, are £1-far from being k-juntas (where ¢ and
€1 are appropriately defined constants and k = %")

As mentioned in the introduction, our distributions are based on the indexing function
used in [17]. We draw a uniform random subset M C [n] of size n/2 and our function
T =Twm: {0,1}" — [27/?] projects the points onto the variables in M. Thus, it remains to
define the sequence of functions H = (h;: {0,1}" — {0,1} : 4 € [27/?]).

We will sample a graph G ~ G; (in the case of Dy.s), and a graph G ~ G (in the
case of Dy,) supported on vertices in M. Each function h;: {0,1}" — {0,1} is given by
first sampling an edge (§1,7,) ~ G and letting h; be a parity (or a negated parity) of the
variables xj and z;,. Thus, a function f from Dyes or Dy, will have all variables being
relevant, however, we will see that functions in Dyes have a group of 7 variables which can
be eliminated efficiently®.

We think of the sub-functions h; defined with respect to edges from G as implementing
a sort of gadget: the gadget defined with respect to an edge (j1,j2) will have the property
that if f eliminates the variable ji, it will be “encouraged” to eliminate variable jo as well.

6 We say that a variable is eliminated if we change the function to remove the dependence of the variable.

A. Levi and E. Waingarten

In fact, each time an edge (j;,J5) ~ G is used to define a sub-function h;, any k-junta
g:{0,1}™ — {0,1} where variable j; or j, is irrelevant will have to change half of the
corresponding part indexed by I'. Intuitively, a function f ~ Dyes or Dy, (which originally
depends on all n variables) wants to eliminate its dependence of n — k variables in order to
become a k-junta. When f picks a variable j € M to eliminate (since variables in M are
too expensive), it must change points in parts where the edge sampled is incident on j. The
key observation is that when f needs to eliminate multiple variables, if f picks the variables
j1 and js to eliminate, whenever a part samples the edge (j1, j2), the function changes the
points in one part and eliminates two variables. Thus, f eliminates two variables by changing
the same number of points when there are edges between j; and js.

At a high level, the gadgets encourage the function f to remove the dependence of
variables within a group of edges, i.e., the closest k-junta will correspond to a function g

which eliminates groups of variables with edges within each other and few outgoing edges.

More specifically, if we want to eliminate 7 variables from f, we must find a bisection of the
graph G whose cut value is small; in the case of G;, one of the cliques will have cut value 0,
whereas any bisection of a graph from G, will have a high cut value, which makes functions
in Dy.s closer to %”—juntas than functions in Dy,.

The reduction from rejection sampling is straight-foward. We consider all queries which
are indexed to the same part, and if two queries indexed to the same part differ on a variable
7, then the algorithm “explores” direction j. Each part ¢ € [2"/ 2] where some query falls in
has a corresponding rejection sampling query L;, which queries the variables explored by the
Boolean function testing algorithm.

3.2 The Distributions Dy, and D,,

The goal of this subsection is to define the two distributions Dy.s and Dy, supported over
Boolean functions with n variables. Functions f € Dyes will be close to being a k-junta with

high probability, and functions f ~ D, will be far from any k-junta with high probability.

We note that it suffices to consider k = 37” to obtain Theorem 3. We refer the reader to the
full version of the paper for the reduction from arbitrary k to k = ‘%”.

Distribution Dy. A function f from Dyes is generated from a tuple of three random
variables, (M, A, H), and we set f = fam,a,m- The tuple is drawn according to the following
randomized procedure:

1. Sample a uniformly random subset M C [n] of size m & 5. Let N = 2™ and 'y :

{0,1}™ — [N] be the function that maps x € {0,1}" to a number encoded by z|m € [N].

2. Sample A C M of size 7 uniformly at random, and consider the graph G defined on

vertices [M] with G = K U K4, i.e., G is a uniformly random graph drawn according
to gl.

3. Define a sequence of N functions H = {h;: {0,1}" — {0,1} : i € [N]} drawn from a
distribution £(G). For each i € {1,...,N/2}, we let h;(x) = @, ¢
For each i € {N/2+1,..., N}, we will generate h; independently by sampling an edge
(j1,J2) ~ G uniformly at random, as well as a uniform random bit r ~ {0,1}. We let

hi(z) = a5, & 2, © -

4. Using M, A and H, define fyr,a 1 = hry(2)(2) for each 2 € {0,1}".

52:9

ITCS 2019

52:10

Lower Bounds for Tolerant Junta and Unateness Testing

Dyes Dno

A A A A
Figure 1 Example of graphs G from Dyes and Dyo. On the left, the graph G is the union of two
cliques of size %, corresponding to Dyes. We note that x(G) = %, since if we let S = A (pictured as
the blue set), we see that S contains half of the edges. On the right, the graph G is the complete
bipartite graph with side sizes %, corresponding to Dno. We note that x(G) = %: consider any set
S C M of size at least % pictured in the blue region, and let o = |S N A| and 8 = |S N A, where
a+p8>% 50 BE(S,9)+ E(S5,5) > (3)* —aB > (3)°(1 - §).

Distribution D,,. A function f drawn from Dy, is also generated by first drawing the tuple
(M, A,H) and setting f = fam,a,u. Both M and A are drawn using the same procedure;
the only difference is that the graph G = K, ¢, i.e., G is a uniformly random graph drawn

according to Go. Then H ~ £(G) is sampled from the modified graph G.
We let k 4 3 g o 1, and €, wf 3. Consider a fixed subset M C [n] which
satisfies [M| = 2, and a fixed subset A C M which satisfies [A| = 2. Let G be a

graph defined over vertices in M, and for any subsets S;,Sy C M, let Eg(S;,S2) =
{(41,72) € G : j1 € S1,J2 € S2}|, be the number of edges between sets S; and Sa. Addition-
ally, we let

Eq(S,S) + Eg(S,9)
Eq(M, M)

(G) = min | SIS\ 2 5})

be the minimum fraction of edges adjacent to a set S of size at least 7. The following lemma
relates the distance of a function f = fas,a,u where H ~ £(G) to being a k-junta to x(G).
We then apply this lemma to the graph in Dyes and Dy, to show that functions in Dy are
gp-close to being k-juntas, and functions in D, are e;-far from being k-juntas.

> Lemma 7. Let G be any graph defined over vertices in A. If f = fa,au, where H ~ E(G),
then with probability at least 1 — o(1),

L X(G) = o(1) < dist(f. k-Tunta) <

; X(G) +o(1).

> =

» Corollary 8. We have that f ~ Dyes has dist(f, k-Junta) < e + o(1) with probability
1 —o0(1), and that f ~ Dy, has dist(f, k-Junta) > €1 — o(1) with probability 1 — o(1).

The proof shows that distinguishing the two distributions G; and Gs using rejection
sampling oracle reduces to distinguishing the two distributions Dyes and Dy,.

A. Levi and E. Waingarten

» Lemma 9. Suppose there exists a deterministic non-adaptive algorithm Alg making q
queries to Boolean functions f: {0,1}?" — {0,1}. Then, there exists a deterministic non-
adaptive algorithm Alg' making rejection sampling queries to an n-vertex graph such that:

« g / @, 25

fFDryes[Alg(f) accepts”] = Glilél [Alg (G) outputs “Gy7), and
Pr [Al “ ts’ = Pr [Alg'(G tputs “Gy 7).
ngno[g(f) “accepts’] GNE2[g'(G) outputs “Gy "

and has cost(Alg') = O(qlogn) with probability 1 — o(1) over the randomness in Alg'.

4 Tolerant Unateness Testing

In this section, we show how to reduce distinguishing distributions G; and G, to distinguishing
between Boolean functions which are close to unate and Boolean functions which are far
from unate. We start with a high level overview of the constructions and reduction, and then
proceed to give formal definitions and the reductions for adaptive and non-adaptive tolerant
testing.

4.1 High Level Overview

We now describe how our constructions and reduction implement the plan set forth in
Subsection 1.3 for the property of unateness. Similarly to Section 3, we define two distributions
Dyes and Dy, supported on Boolean functions, so that functions in Dy.s are eo-close to being
unate, and functions in D,,, are e1-far from being unate (where £y and €, are appropriately
defined constants).

We will use a randomized indexing function I': {0,1}" — [N] U {0*,1*} based on the
Talagrand-style constructions from [4, 18] to partition {0,1}" in a unate fashion, specifically,
I will satisfy that for all i # j € [N], if z,y € {0,1}" have I'(z) = ¢ and I'(y) = j, then z and
y are incomparable, £ y and y £ x. Again, we will then use a graph G ~ G; or Gs to define
the sequence of sub-function H = (h;: {0,1}" — {0,1} : i € [N]). The sub-functions h; will
be given by a parity (or negated parity) of three variables: two variables will correspond
to the end points of an edge sampled (j,,75) ~ G, the third variable will be one of two
pre-specified variables, which we call m; and ms. Consider for simplicity the case when
hi(r) = 25, ® xj, ® p,,, and assume that we require that variable m; is non-decreasing.

Similarly to Section 3, the functions h; are thought of as gadgets. We will have that if h;
is defined with respect to an edge (j1,j2) and mq, then the function f will be “encouraged”
to make variables j; and j, have opposite directions, i.e., either j; is non-increasing and jo
is non-decreasing, or j; is non-decreasing and js is non-increasing. In order to see why the
three variable parity implements this gadget, we turn our attention to Figure 2 and Figure 3.

Intuitively, the function f needs to change some of its inputs to be unate, and it must
choose whether the variables j; and jo will be monotone (non-decreasing) or anti-monotone
(non-increasing). Suppose f decides that the variable j; should be monotone and js be
anti-monotone, and m; will always be monotone (since it will be too expensive to make it
anti-monotone). Then, when h;(z) = z;, & z;, ® Tm,, h; will have some violating edges, i.e.,
edges in direction j; which are decreasing, or edges in direction jo which are increasing, or
edges in direction m; which are decreasing (see Figure 2, where these violating edges are

1

marked in red). In this case, there exists a way that f may change ;-th fraction of the points

and remove all violating edges (again, this procedure is shown in Figure 2).

52:11

ITCS 2019

52:12

Lower Bounds for Tolerant Junta and Unateness Testing

Figure 2 Example of a function h;: {0,1}" — {0,1} with h;(z) = z;;, ® xj, © Tm, with variable
j1 (which ought to be monotone), j2 (which ought to be anti-monotone), and m; (which is always
monotone). The image on the left-hand side represents h;, and the red edges correspond to violating
edges for variables ji,j2 and m;. In other words, the red edges correspond to anti-monotone edges
in variables ji, monotone edges in variables ja, and anti-monotone edges in direction m;. On the
right-hand side, we show how such a function can being “fixed” into a function hj: {0,1}" — {0,1}
by changing %—fraction of the points.

In contrast, suppose that f decides that the variables j; and jo both should be monotone.
Then, when h;(x) = 2, ® xj, ® Ty, , the violating edges (shown in Figure 3) form vertex-
disjoint cycles of length 6 in {0, 1}", thus, the function f will have to change %-th fraction of
the points in order to remove all violating edges. In other words, when there is an edge (j1, j2)
sampled in h;, the function f is “encouraged” to make j; and js have opposite directions,
and “discouraged” to make j; and jo have the same direction. The other cases are presented
in Figures 4, 5, and 6.

In order for f to become unate, it must first choose whether each variable will be monotone
or anti-monotone. f will choose all variables in M to be monotone, the variable m; to be
monotone, and mo to be anti-monotone, but will have to make a choice for each variable in
M, corresponding to each vertex of the graph G. As discussed above, for each edge (ji,j2)
in the graph, f is encouraged to make these orientations opposite from each other, so f will
want to look for the maximum cut on the graph, whose value will be different in G; and Gs.

Similarly to the case in Section 3, the reduction will follow by defining the rejection
sampling queries L; corresponding to variables explored in sub-function h;. The unate
indexing functions I' are not as strong as the indexing functions from the Section 3, so
for each query in the Boolean function testing algorithm, our reduction will lose some cost
in the rejection sampling algorithm. In particular, the adaptive reduction loses n cost for
each Boolean function query, since adaptive algorithms can efficiently explore variables
with a binary search; this gives the SNI(TL) lower bound for tolerant unateness testing. The
non-adaptive reduction loses O(y/nlogn) cost for each Boolean function query since queries
falling in the same part may be Q(y/n) away from each other (the same scenario occurs in
the non-adaptive monotonicity lower bound of [18]). The non-adaptive reduction is more
complicated than the adaptive reduction since it is not exactly a black-box reduction (we
require a lemma from Section 5). This gives the f~2(n3/ 2) lower bound for non-adaptive
tolerant unateness testing.

A. Levi and E. Waingarten

mq mi
+_ g + +' 7 +
n J2 WAl J2

Figure 3 Example of a function h;: {0,1}" — {0,1} with h;(z) = z;, ® z;, ® Tm, with variables
j1 and j2 (which ought to be monotone), and m; (which ought to be monotone). On the left side,
we indicate the violating edges with red arrows, and note that the functions in the left and right
differ by 2-fraction of the points. We also note that any function hj: {0,1}" — {0,1} which has ji,
j2 and m; monotone must differ from h; on at least %—fraction of the points because the violating
edges of h; form a cycle of length 6.

4.2 The Distributions D and D,,

We now turn to describing a pair of distributions Dy.s and Dy, supported on Boolean
functions f: {0,1}™ — {0,1}. These distributions will have the property that for some
constants €9 and €1 with 0 < g¢ < &,

; Pr [dist(f, Unate) < eg] =1—o0(1) and Pr [dist(f, Unate) > e1] = 1 —o(1).

We first define a function f ~ Dy, where we fix the parameter N = 2V7,

1. Sample some set M C [n] of size [M| = % uniformly at random and let m;,my ~ M be
two distinct indices.

2. Welet T ~ E(M \ {m1,m2}) (which we describe next). T is a sequence of terms
(T; : i € [N]) which is used to defined a multiplexer map I'r: {0,1}" — [N] U {0*,1*}.

3. We sample A C M of size |A| = % and define a graph as G = Ka U K.

4. We now define the distribution over sub-functions H = (h; : i € [N]) ~ H(m1, m2, G).
For each function h;: {0,1}" — {0,1}, we generate h; independently:

When ¢ < 3N/4, we sample j ~ {mq, my} and we let:

Tj J=my
h"('”):{ "z §=ms
i J=

Otherwise, if ¢ > 3N /4, we sample an edge (j,J5) ~ G and an index j5 ~ {my,mo}
we let:

h(z) = % © 8, @25, Jz=mu
g, D Tg, DTGy I3 =M

52:13

ITCS 2019

52:14

Lower Bounds for Tolerant Junta and Unateness Testing

The function f: {0,1}" — {0,1} is given by f(z) = fr a u(z) where:

1 lzm| > 4 +/n
0 M| < § —Vn

fT,A,H(x) = 1 FT(I) = 1* . (2)
0 Dr(x) =0*

hr.(z)(x) otherwise

We now turn to define the distribution £(M) supported on terms T, as well as the multiplexer
map I'r: {0,1}™ — [N]. As mentioned above, T ~ £(M) will be a sequence of N terms
(T; : i € [N]), where each T; is given by a DNF term: T;(z) = Acr,
T; C M is a uniformly random +/n-element subset. Given the sequence of terms T, we let:
0* Vie[N],T;(x)=0
FT(.Z‘) = 1* iy # 19 € [N],Til (,CC) = Tiz (LL') =1
i T;(z) =1 for a unique i € [N]

x;, where the set

It remains to define the distribution Dycs supported on Boolean functions. The function
f ~ Dyes will be defined almost exactly the same. We still have f = fr a g as defined above,
however, the graph G will be different. In particular, we will let G = K AR

Fix any set M C [n] of size § and let my,mg € M be two distinct indices and M’ =
M\ {mq,ma}. For any T ~ E(M’), let X C {0,1}"™ be the subset of points indexed to some

subfunction h;:
X % {z € {0,1}" : ol € [n/4 = v, n/4+ /n] and Tr(x) € [N]},

o X
and define v € (0,1) be the parameter: ~ def Ereu) [|2n|] .

In addition, let X; C X be the subset of points z € X with I'r(z) = ¢, and note that the
subsets X1, ..., Xy partition X, where each |X;| < 27~ V™. With probability 1 — o(1) over
the draw of T ~ £(M), we have:

3N/4 3y 1 N 5 1
Z|Xi|:2"~4(1j:n) and | > |Xi|:2"-4<1in>. (3)
i=1 1=3N/4+1

Thus, we only consider functions f ~ Dyes (or ~ Dy,) where the sets M, and T satisfy (3).

We consider any set A C M of size %+ Now, consider any graph G defined over vertices

in M, and we let:

Ec(S,S)+ Eq(S,S

x(G) = min{ el)i ﬁ()

EG(M7 M)

In other words, we note that x(G) is one minus the fractional value of the maximum cut, and

the value of x(G) is minimized for the set S achieving the maximum cut of G. The following

lemma relates the distance to unateness of a function f = fr 4 u with H ~ H(m, ms, G),
where G is an underlying graph defined on vertices in M.

:SCM}.

» Lemma 10. Let G be any graph defined over vertices in M. 1If f = fr.am where
H ~ H(my, mo,G), then with probability at least 1 — o(1),

x (1 + % : X(g)) —o(1) < dist(f, Unate) < (1 + % - x(G)) +o(1).

16

s &[=

We consider the constants g = % and € =

» Corollary 11. We have that f ~ Dyes has dist(f, Unate) < ¢ + o(1) with high probability,
and f ~ Dy, has dist(f, Unate) > e — o(1) with high probability.

A. Levi and E. Waingarten

mq mi
- . . + - . . +
n J2 WAl J2

Figure 4 Similarly to Figure 2, this is an example of a function h;: {0,1}" — {0,1} with
hi(z) = z;, ® zj, ® Tm, variables j1 (which ought to be anti-monotone), j» (which ought to be
monotone), and my (which is always monotone) being “fixed” into a function h;: {0,1}" — {0,1}
defined on the right-hand side.

4.3 Reducing from Rejection Sampling
In order to reduce from rejection sampling, we need the following two lemmas.

» Lemma 12. Suppose there ezists a deterministic algorithm Alg making q queries to Boolean
functions f:{0,1}*" — {0,1}. Then, there exists a deterministic non-adaptive algorithm

Alg’ making rejection sampling queries to an n-vertex graph with cost(Alg') = gn such that:

Pr [Al “ ts”] = Pr [Alg'(G) outputs “Gy 7, d
fNDrW[g(f) “accepts”] GNEQ[g (G) outputs “Gs” an
Pr [Al “ ts”] = Pr [Alg'(G) outputs “Gy").
JPr [Alg(f) “accepts’] = P [AI/(G) outputs ;"

» Lemma 13. Suppose there exists a deterministic non-adaptive algorithm Alg making q
queries to Boolean functions f: {0,1}?" — {0,1} where ¢ < 1ong—8n' Then, there exists a
deterministic non-adaptive algorithm Alg’ making rejection sampling queries to an n-vertex
graph such that:

Pr [Alg(f) “accepts”) ~ Pr [Alg'(G) outputs “Go " + o(1), and
F~Dyes G~G2

Pr [Alg(f) “accepts”] ~ Pr [Alg'(G) outputs “Go”| £ o(1).
f~Duo G~G1

and has cost(Alg') < qv/nlogn with probability 1 — o(1) over the randomness in Alg’.
Combining Lemma 12 with Theorem 1, we conclude Theorem 4, and combining Lemma 13

with Theorem 1, we conclude Theorem 5.

5 A lower bound for distinguishing G; and G, with rejection samples

In this section, we derive a lower bound for distinguishing G; and Gy with rejection samples.

n?
log®

» Lemma 14. Any deterministic non-adaptive algorithm Alg with cost(Alg) < —, has:

Pr [Alg outputs “G1"] < (1 +0(1)) Pr [Alg outputs “G1”] + o(1).
G~G1 G~Ga

52:15

ITCS 2019

52:16

Lower Bounds for Tolerant Junta and Unateness Testing

Figure 5 Similarly to Figure 2, this is an example of a function h;: {0,1}" — {0,1} with
hi(x) = —xj, ® zj, B Tm, variables j1 (which ought to be anti-monotone), j> (which ought to be
monotone), and m2 (which is always anti-monotone) being “fixed” into a function hj: {0,1}" — {0,1}
defined on the right-hand side.

. 2

We assume Alg is a deterministic non-adaptive algorithm with cost(Alg) < é—n. Alg
makes queries Ly, ..., L; C [n] and the oracle returns vy, ..., v, some of which are edges,
some are lone vertices, and some are (). Let G, C G be the graph observed by the algorithm
by considering all edges in vy, ...,v;. We let |G,| be the number of edges.

Before going on to prove the lower bound, we use the following simplification. First, we
assume that any algorithm Alg has all its queries Ly, ..., L, satisfying that either |L;| < $7
or L; = [n]. Thus, it suffices to show for this restricted class of algorithms, the cost must be

2
at least ﬁﬁ
5.1 High Level Overview

We will argue outcome-by-outcome; i.e., we consider the possible ways the algorithm can act,
which depends on the responses to the queries the algorithm gets. Consider some responses
v1,...,v € [n]U([n] % [n]) U {0}, where each v; may be either a lone vertex, an edge, or 0.
Suppose that upon observing this outcome, the algorithm outputs “G;”. There will be two
cases:
The first case is when the probability of observing this outcome from Gs is not too much
lower than the probability of observing this outcome from G;. In these outcomes, we will
not get too much advantage in distinguishing G; and Gs.
The other case is when the probability of observing this outcome from G is substantially
lower than the probability of observing this outcome from G;. These cases do help us
distinguish between G; and Go; thus, we will want to show that collectively, the probability
that we observe these outcomes from Gy is o(1).
We will be able to characterize the outcomes which fall into the first case and the second
case by considering a sequence of events. In particular we define five events which depend on

v1,...,0t, as well as the random choice of A. Consider the outcome vy, ..., v, which together
form components C1, ...,Cs. The events are the following”:
7 We note that the first two event are not random and depends on the values v1,...,vt, and the rest are

random variables depending on the partition A and the oracle responses v1, ..., v¢.

A. Levi and E. Waingarten

Figure 6 Examples of functions h;: {0,1}" — {0,1} with orientations on the variables and
violating edges. On the left-hand side, h;(x) = -z, ® T, Tm, with variables j; and j2 (which
ought to be monotone), and ms (which is always anti-monotone). On the right-hand side, h;(z) =
—Zj, D Tj, B Tm, with variables j; and j» (which ought to be anti-monotone), and mq (which is
always anti-monotone). We note that the violating edges form a cycle of length 6, so any unate
function whose orientations on j1 and js are as indicated (both monotone on the left-hand side, and
both anti-monotone on the right-hand side) must disagree on a g-fraction of the points.

1. &r (Observe small trees): this is the event where the values of vy, ..., v; form components
Cq,...,C, which are all trees of size at most logn.

2. & (Observe few non-empty responses): this is the event where the values of vy, ..., v
have at most Fg?l_n non-@ responses. This event implies that the total number of vertices
in the responses vy,...,v; is at most Fg’ﬁi—n.

3. Ecyes and Ec o (Consistency condition of the components observed): these are the
events where A C [n] partitions the components Cq,...,C, in a manner consistent with
G1 in E¢ yes OF G2 in Ec o, i.€., either every C; is contained within A or A (in the case
of Gy, or edges in every C; cross the partition on vertices induced by A (in the case of
Gs2). These events are random variables that depend only on A. It will become clear that
in order to observe the outcome v1,...,v; in G, event €¢ yes must be triggered, and in
Go, event € no must be triggered. See Figure 7 for an illustration.

4. £ (Observe specific responses): this event is over the randomness in A, as well as the
randomness in the responses of the oracle vy,...,v;. The event is triggered when the

responses of the oracle are exactly those dictated by vy, ..., v ie., for all i € [t], v; = v;.

5. £p (Balanced lone vertices condition): this event is over the randomness in A, as well as
the responses vy, ...,v;. The event occurs when the queries L; corresponding to lone
vertices v; have |L; N A| and |L; N A| roughly equal, and roughly half of v; fall in A.

Having defined these events, the lower bound follows by the following three lemmas. The

first lemma says that for any outcomes satisfying £ and £, the probability over A of

being consistent in G; cannot be much higher than in Gs. The second lemma says that the
outcomes satisfying the events described above do not help in distinguishing G; and Gs. The

third lemma says that good outcomes occur with high probability over G;.

» Lemma 15 (Consistency Lemma). Consider a fized v1,...,v; € [n] U ([n] x [n]) U {0}
forming components C1,...,C, where events Er and Er are satisfied. Then, we have:

<
G:EIél [gC-,yes] = (1 + 0(1)) G:EIQ'Q [gC,no]'

Vi,...,V¢ V1,---,Vt

52:17

ITCS 2019

52:18 Lower Bounds for Tolerant Junta and Unateness Testing

Figure 7 A consistently partition of the components C1, C2,C3 and C4 according to G1 (on the
left) and G2 (on the right).

» Lemma 16 (Good Outcomes Lemma). Consider a fized vy, ...,v: € [n] U ([n] x [n]) U {0}
forming components C1,...,C, where events Er and Ep are satisfied. Then, we have:

G]-::Ig'l [EoNEB | 80-,3;65] < (1+o0(1)) Glzléz [Eo | SC,noy

Vi,...,U¢ Vi,-.-,V¢

» Lemma 17 (Bad Outcomes Lemma). We have that:

P — - -/ = 1 .
ngl [£T vV 8F vV 83] 0()
Vi,...,U¢

Assuming the above three lemmas, we may prove Lemma 14.

—— References

1 Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance
to a monotone function. Random Structures and Algorithms, 31(3):371-383, 2007.

2 Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya
Raskhodnikova, and C. Seshadhri. A lower bound for nonadaptive, one-sided error
testing of unateness of Boolean functions over the hypercube. arXiv preprint, 2017.
arXiv:1706.00053.

3 Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya
Raskhodnikova, and C. Seshadhri. Optimal Unateness Testers for Real-Values Functions:
Adaptivity Helps. In Proceedings of the 44th International Colloquium on Automata, Lan-
guages and Programming (ICALP ’2017), 2017.

4 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity.
In Proceedings of the 48th ACM Symposium on the Theory of Computing (STOC ’2016),
pages 1021-1032, 2016.

5 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant Testers of Image
Properties. In Proceedings of the 43th International Colloquium on Automata, Languages
and Programming (ICALP ’2016), pages 90:1-90:14, 2016.

6 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. L,-testing. In Proceedings
of the 46th ACM Symposium on the Theory of Computing (STOC '2014), 2014.

7 Eric Blais. Improved bounds for testing juntas. In Approximation, Randomization and
Combinatorial Optimization. Algorithms and Techniques, pages 317-330. Springer, 2008.

A. Levi and E. Waingarten

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st ACM Symposium
on the Theory of Computing (STOC ’2009), pages 151-158, 2009.

Eric Blais, Clément L. Canonne, Talya Eden, Amit Levi, and Dana Ron. Tolerant junta
testing and the connection to submodular optimization and function isomorphism. In
Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2018),
pages 2113-2132, 2018.

Harry Buhrman, David Garcia-Soriano, Arie Matsliah, and Ronald de Wolf. The non-
adaptive query complexity of testing k-parities. Chicago Journal of Theoretical Computer
Science, 6:1-11, 2013.

Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and tolerant
testers for connectivity and diameter. In Approxzimation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, pages 411-424. Springer, 2013.

Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing probability distributions
using conditional samples. SIAM Journal on Computing, 44(3):540-616, 2015.

Deeparnab Chakrabarty and Seshadhri Comandur. An o(n) monotonicity tester for boolean
functions over the hypercube. SIAM Journal on Computing, 45(2):461-472, 2016.
Deeparnab Chakrabarty and C. Seshadhri. A 9] (n) non-adaptive tester for unateness. arXiv
preprint, 2016. arXiv:1608.06980.

Sourav Chakraborty, Eldar Fischer, David Garcia-Soriano, and Arie Matsliah. Junto-
symmetric functions, hypergraph isomorphism and crunching. In Proceedings of the 27th
Conference on Computational Complexity (CCC '2012), pages 148-158. IEEE, 2012.
Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power of
conditional samples in distribution testing. SIAM Journal on Computing, 45(4):1261-1296,
2016.

Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling the
query complexity of non-adaptive junta testing. In Proceedings of the 32nd Conference on
Computational Complexity (CCC ’2017), 2017.

Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower bounds
for testing monotonicity and unateness. In Proceedings of the 49th ACM Symposium on
the Theory of Computing (STOC '2017), 2017.

Xi Chen, Erik Waingarten, and Jinyu Xie. Boolean Unateness Testing with O(n®/4) Adap-
tive Queries. In Proceedings of the 58th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS ’2017), 2017.

Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Information Pro-
cessing Letters, pages 301-305, 2004.

Ilias Diakonikolas, Homin K Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld,
Rocco A Servedio, and Andrew Wan. Testing for concise representations. In Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS '2007),
pages 549-558. IEEE, 2007.

Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high dimen-
sions. ACM Transactions on Algorithms, 6(3):52, 2010.

Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for Boolean properties.
Theory of Computing, 2(9):173-183, 2006.

Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Testing

juntas. Journal of Computer and System Sciences, 68(4):753-787, 2004. doi:10.1016/j.

jcss.2003.11.004.

Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties. SIAM
Journal on Computing, 37(2):482-501, 2007.
Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.

52:19

ITCS 2019

52:20

Lower Bounds for Tolerant Junta and Unateness Testing

27

28

29

30

31

32

33

34

35

36

37

38

Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samordinsky. Testing
Monotonicity. Combinatorica, 20(3):301-337, 2000.

Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653-750, 1998.

Oded Goldreich and Dana Ron. On sample-based testers. ACM Transactions on Compu-
tation Theory, 8(2), 2016.

Venkatesan Guruswami and Atri Rudra. Tolerant locally testable codes. In Approzimation,
Randomization and Combinatorial Optimization. Algorithms and Techniques, pages 306—
317. Springer, 2005.

Subhash Khot and Igor Shinkar. An 5(n) queries adaptive tester for unateness. In Ap-
proximation, Randomization and Combinatorial Optimization. Algorithms and Techniques,
pages 37:1-37:7, 2016.

Swastik Kopparty and Shubhangi Saraf. Tolerant linearity testing and locally testable
codes. In Approzimation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 601-614. Springer, 2009.

Sharon Marko and Dana Ron. Approximating the distance to properties in bounded-degree
and general sparse graphs. ACM Transactions on Algorithms, 5(2):22, 2009.

Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012-1042, 2006.

Dana Ron. Property testing: A learning theory perspective. Foundations and Trends® in
Machine Learning, 1(3):307-402, 2008.

Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and
Trends® in Theoretical Computer Science, 5(2):73-205, 2010.

Rocco A Servedio, Li-Yang Tan, and John Wright. Adaptivity helps for testing juntas.
In Proceedings of the 30th Conference on Computational Complezity (CCC ’2015), pages
264-279, 2015.

Roei Tell. A Note on Tolerant Testing with One-Sided Error. In Electronic Colloguium on
Computational Complexity (ECCC), volume 23, page 32, 2016.

