
Lower Bounds for Tolerant Junta and Unateness

Testing via Rejection Sampling of Graphs

Amit Levi1

University of Waterloo, Canada

amit.levi@uwaterloo.ca

Erik Waingarten2

Columbia University, USA

eaw@cs.columbia.edu

Abstract

We introduce a new model for testing graph properties which we call the rejection sampling model.

We show that testing bipartiteness of n-nodes graphs using rejection sampling queries requires

complexity Ω̃(n2). Via reductions from the rejection sampling model, we give three new lower

bounds for tolerant testing of Boolean functions of the form f : {0, 1}n → {0, 1}:

Tolerant k-junta testing with non-adaptive queries requires Ω̃(k2) queries.

Tolerant unateness testing requires Ω̃(n) queries.

Tolerant unateness testing with non-adaptive queries requires Ω̃(n3/2) queries.

Given the Õ(k3/2)-query non-adaptive junta tester of Blais [7], we conclude that non-adaptive

tolerant junta testing requires more queries than non-tolerant junta testing. In addition, given

the Õ(n3/4)-query unateness tester of Chen, Waingarten, and Xie [19] and the Õ(n)-query non-

adaptive unateness tester of Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri

[3], we conclude that tolerant unateness testing requires more queries than non-tolerant unate-

ness testing, in both adaptive and non-adaptive settings. These lower bounds provide the first

separation between tolerant and non-tolerant testing for a natural property of Boolean functions.

2012 ACM Subject Classification Theory of computation → Probabilistic computation

Keywords and phrases Property Testing, Juntas, Tolerant Testing, Boolean functions

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.52

Related Version A full version of the paper is available at https://arxiv.org/abs/1805.

01074v1.

1 Introduction

Over the past decades, property testing has emerged as an important line of research in

sublinear time algorithms. The goal is to understand randomized algorithms for approximate

decision making, where the algorithm needs to decide (with high probability) whether a

huge object has some property by making a few queries to the object. Many different

types of objects and properties have been studied from this property testing perspective

(see the surveys by Ron [35, 36] and the recent textbook by Goldreich [26] for overviews of

contemporary property testing research). This paper deals with property testing of Boolean

functions f : {0, 1}n → {0, 1} and property testing of graphs with vertex set [n].

1 Research supported by NSERC Discovery grant and the David R. Cheriton Graduate Scholarship. Part
of this work was done while the author was visiting Columbia University.

2 This work is supported in part by the NSF Graduate Research Fellowship under Grant No. DGE-16-
44869, CCF-1703925, CCF-1563155, and CCF-1420349.

© Amit Levi and Erik Waingarten;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 52; pp. 52:1–52:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

52:2 Lower Bounds for Tolerant Junta and Unateness Testing

In this paper we describe a new model of graph property testing, which we call the

rejection sampling model. For n ∈ N and a subset P of graphs on the vertex set [n], we say a

graph G on vertex set [n] has property P if G ∈ P and say G is ε-far from having property P
if all graphs H ∈ P differ on at least εn2 edges3. The problem of ε-testing P with rejection

sampling queries is the following task:

Given some ε > 0 and access to an unknown graph G = ([n], E), output “accept” with

probability at least 2
3 if G has property P, and output “reject” with probability at

least 2
3 if G is ε-far from having property P . The access to G is given by the following

oracle queries: given a query set L ⊆ [n], the oracle samples an edge (i, j) ∼ E

uniformly at random and returns {i, j} ∩ L.

We measure the complexity of algorithms with rejection sampling queries by considering

the sizes of the queries. The complexity of an algorithm making queries L1, . . . , Lt ⊆ [n] is∑t
i=1 |Li|.
The rejection sampling model allows us to study testers which rely on random sampling of

edges, while providing the flexibility of making lower-cost queries. This type of query access

strikes a delicate balance between simplicity and generality: queries are constrained enough

for us to show high lower bounds, and at the same time, the flexibility of making queries allows

us to reduce the rejection sampling model to Boolean function testing problems. Specifically,

we reduce to tolerant junta testing and tolerant unateness testing (see Subsection 1.1).

Our main result in the rejection sampling model is regarding non-adaptive algorithms.

These algorithms need to fix their queries in advance and are not allowed to depend on

answers to previous queries (in the latter case we say that the algorithm is adaptive). We

show a lower bound on the complexity of testing whether an unknown graph G is bipartite

using non-adaptive queries.

I Theorem 1. There exists a constant ε > 0 such that any non-adaptive ε-tester for

bipartiteness in the rejection sampling model has cost Ω̃(n2).4

More specifically, Theorem 1 follows from applying Yao’s principle to the following lemma.

I Lemma 2. Let G1 be the uniform distribution over the union of two disjoint cliques of size

n/2, and let G2 be the uniform distribution over complete bipartite graphs with each part of

size n/2. Any deterministic non-adaptive algorithm that can distinguish between G1 and G2

with constant probability using rejection sampling queries, must have complexity Ω̃(n2).

We discuss a number of applications of the rejection sampling model (specifically, of

Lemma 2) in the next subsection. In particular, we obtain new lower bounds in the tolerant

testing framework introduced by Parnas, Ron, and Rubinfeld in [34] for two well-studied

properties of Boolean functions (specifically, k-juntas and unateness; see the next subsection

for definitions of these properties). These lower bounds are obtained by a reduction from

the rejection sampling model; we show that too-good-to-be-true Boolean function testers for

these properties imply the existence of rejection sampling algorithms which distinguish G1

and G2 with õ(n2) complexity. Therefore, we may view the rejection sampling model as a

useful abstraction in studying the hard instances of tolerant testing k-juntas and unateness.

3 The distance definition can be modified accordingly when one considers bounded degree or sparse
graphs.

4 We use the notations Õ, Ω̃ to hide polylogarithmic dependencies on the argument, i.e. for expressions of
the form O(f logc f) and Ω(f/ logc f) respectively (for some absolute constant c).

A. Levi and E. Waingarten 52:3

1.1 Applications to Tolerant Testing: Juntas and Unateness

Given n ∈ N and a subset P of n-variable Boolean functions, a Boolean function f : {0, 1}n →
{0, 1} has property P if f ∈ P. The distance between Boolean functions f, g : {0, 1}n → {0, 1}
is dist(f, g) = Prx∼{0,1}n [f(x) 6= g(x)]. The distance of f to the property P is dist(f, P) =

ming∈P dist(f, g). We say that f is ε-close to P if dist(f, P) ≤ ε and f is ε-far from P if

dist(f, P) > ε. The problem of tolerant property testing [34] of P asks for query-efficient

randomized algorithms for the following task:

Given parameters 0 ≤ ε0 < ε1 < 1 and black-box query access to a Boolean function

f : {0, 1}n → {0, 1}, accept with probability at least 2
3 if f is ε0-close to P and reject

with probability at least 2
3 if f is ε1-far from P.

An algorithm which performs the above task is an (ε0, ε1)-tolerant tester for P. A (0, ε1)-

tolerant tester is a standard property tester or a non-tolerant tester. As noted in [34], tolerant

testing is not only a natural generalization, but is also very often the desirable attribute

of testing algorithms. This motivates the high level question: how does the requirement of

being tolerant affect the complexity of testing the properties studied? We make progress

on this question by showing query-complexity separations for two well-studied properties of

Boolean functions: k-juntas, and unate functions.

(k-junta) A function f : {0, 1}n → {0, 1} is a k-junta if it depends on at most k of its

variables, i.e., there exists k distinct indices i1, . . . ik ∈ [n] and a k-variable function

g : {0, 1}k → {0, 1} where f(x) = g(xi1
, . . . , xik

) for all x ∈ {0, 1}n.

(unateness) A function f : {0, 1}n → {0, 1} is unate if f is either non-increasing or non-

decreasing in every variable. Namely, there exists a string r ∈ {0, 1}n such that the

function f(x ⊕ r) is monotone with respect to the bit-wise partial order on {0, 1}n.

While separations between tolerant and non-tolerant testing of Boolean function properties

were known for an (artificial) property (see Subsection 1.2), these results are the first to give

such lower bounds for a natural class of well-studied properties of Boolean functions. The

first such theorem we state concerns non-adaptive tolerant testers for k-juntas.

I Theorem 3. For any α < 1, there exists constants 0 < ε0 < ε1 < 1 such that for any

k = k(n) ≤ αn, any non-adaptive (ε0, ε1)-tolerant k-junta tester must make Ω̃(k2) queries.

We give a noteworthy consequences of the Theorem 3. In [7], Blais gave a non-adaptive

Õ(k3/2)-query tester for (non-tolerant) testing of k-juntas, which was shown to be optimal

for non-adaptive algorithms by Chen, Servedio, Tan, Waingarten and Xie in [17]. Combined

with Theorem 3, this shows a polynomial separation in the query complexity of non-adaptive

tolerant junta testing and non-adaptive junta testing.

The next two theorems concern tolerant testers for unateness.

I Theorem 4. There exists constants 0 < ε0 < ε1 < 1 such that any (possibly adaptive)

(ε0, ε1)-tolerant unateness tester must make Ω̃(n) queries.

I Theorem 5. There exists constant 0 < ε0 < ε1 < 1 such that any non-adaptive (ε0, ε1)-

tolerant unateness tester must make Ω̃(n3/2) queries.

A similar separation in tolerant and non-tolerant testing occurs for the property of

unateness as a consequence of Theorem 4 and Theorem 5. Recently, in [3], Baleshzar,

Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri gave a non-adaptive Õ(n)-query

tester for (non-tolerant) unateness testing, and Chen, Waingarten and Xie [18] gave an

ITCS 2019

52:4 Lower Bounds for Tolerant Junta and Unateness Testing

(adaptive) Õ(n3/4)-query tester for (non-tolerant) unateness testing. We thus, conclude

that by Theorem 4 and Theorem 5, tolerant unateness testing is polynomially harder than

(non-tolerant) unateness testing, in both adaptive and non-adaptive settings.

1.2 Related Work

The properties of k-juntas and unateness have received much attention in property testing

research ([24, 20, 7, 8, 10, 37, 17, 9] study k-juntas, and [27, 31, 14, 3, 18, 19] study unateness).

We briefly review the current state of affairs in (non-tolerant) k-junta testing and unateness

testing, and then discuss tolerant testing of Boolean functions and the rejection sampling

model.

Testing k-juntas. The problem of testing k-juntas, introduced by Fischer, Kindler, Ron,

Safra, and Samorodnitsky [24], is now well understood up to poly-logarithmic factors.

Chockler and Gutfreund [20] show that any tester for k-juntas requires Ω(k) queries (for a

constant ε1). Blais [8] gave a junta tester that uses O(k log k + k/ε1) queries, matching the

bound of [20] up to a factor of O(log k) for constant ε1. When restricted to non-adaptive

algorithms, [24] gave a non-adaptive tester making Õ(k2/ε1) queries, which was subsequently

improved in [7] to Õ(k3/2)/ε1. In terms of lower bounds, Buhrman, Garcia-Soriano, Matsliah,

and de Wolf [10] gave a Ω(k log k) lower bound for ε = Ω(1), and Servedio, Tan, and Wright

[37] gave a lower bound which showed a separation between adaptive and non-adaptive

algorithms for ε1 = 1
log k . These results were recently improved in [17] to Ω̃(k3/2/ε1), settling

the non-adaptive query complexity of the problem up to poly-logarithmic factors.

Testing unateness. The problem of testing unateness was introduced alongside the problem

of testing monotonicity in Goldreich, Goldwasser, Lehman, Ron, and Samorodnitsky [27],

where they gave the first O(n3/2/ε1)-query non-adaptive tester. Khot and Shinkar [31]

gave the first improvement by giving a Õ(n/ε1)-query adaptive algorithm. A non-adaptive

algorithm with Õ(n/ε1) queries was given in [13, 3]. Recently, [18, 2] show that Ω̃(n)

queries are necessary for non-adaptive one-sided testers. Subsequently, [19] gave an adaptive

algorithm testing unateness with query complexity Õ(n3/4/ε2
1). The current best lower bound

for general adaptive testers appears in [18], where it was shown that any adaptive two-sided

tester must use Ω̃(n2/3) queries.

Tolerant testing. Once we consider tolerant testing, i.e., the case ε0 > 0, the picture is not

as clear. In the paper introducing tolerant testing, [34] observed that standard algorithms

whose queries are uniform (but not necessarily independent) are inherently tolerant to some

extent. Nevertheless, achieving (ε0, ε1)-tolerant testers for constants 0 < ε0 < ε1, can require

applying different methods and techniques (see e.g, [30, 34, 25, 1, 32, 33, 22, 11, 6, 5, 38]).

By applying the observation from [34] to the unateness tester in [3], the tester accepts

functions which are O(ε1/n)-close to unate with constant probability. We similarly obtain

weak guarantees for tolerant testing of k-juntas. Diakonikolas, Lee, Matulef, Onak, Rubinfeld,

Servedio, and Wan [21] observed that one of the (non-adaptive) junta testers from [24] accepts

functions that are poly(ε1, 1/k)-close to k-juntas. Chakraborty, Fischer, Garcia-Soríano, and

Matsliah [15] noted that the analysis of the junta tester of Blais [8] implicitly implies an

exp(k/ε1)-query complexity tolerant tester which accepts functions that are ε1/c-close to

some k-junta (for some constant c > 1) and rejects functions that are ε1-far from every

k-junta. Recently, Blais, Canonne, Eden, Levi and Ron [9] showed that when required to

distinguish between the cases that f is ε1/10-close to a k-junta, or is ε1-far from a 2k-junta,

poly(k, 1/ε1) queries suffice.

A. Levi and E. Waingarten 52:5

For general properties of Boolean functions, tolerant testing could be much harder than

standard testing. Fischer and Fortnow [23] used PCPs in order to construct a property of

Boolean functions P which is (0, ε1)-testable with a constant number of queries (depending

on ε1), but any (1/4, ε1)-tolerant test for P requires nc queries for some c > 0. While

[23] presents a strong separation between tolerant and non-tolerant testing, the complexity

of tolerant testing of many natural properties remains open. We currently neither have

a poly(k, 1
ε1

)-query tester which (ε0, ε1)-tests k-juntas, nor a poly(n, 1
ε1

)-query tester that

(ε0, ε1)-tests unateness or monotonicity when ε0 = Θ(ε1).

Testing graphs with rejection sampling queries. Even though the problem of testing

graphs with rejection sampling queries has not been previously studied, the model shares

characteristics with previous studied frameworks. These include sample-based testing studied

by Goldreich, Goldwasser, and Ron in [28, 29], where the oracle receives random samples

from the input. One crucial difference between rejection sampling algorithms (which always

query [n]) and sample-based testers is the fact that rejection sampling algorithms only receive

positive examples (in the form of edges), as opposed to random positions in the adjacency

matrix (which may be a negative example indicated the non-existence of an edge).

The rejection sampling model for graph testing also bears some resemblance to the

conditional sampling framework for distribution testing introduced in Canonne, Ron, and

Servedio, as well as Chakraborty, Fischer, Goldhirsh, and Matsliah [12, 16], where the

algorithm specifies a query set and receives a sample conditioned on it lying in the query set.

1.3 Techniques and High Level Overview

We first give an overview of how the lower bound in the rejection sampling model (Lemma 2)

implies lower bounds for tolerant testing of k-juntas and unateness, and then we give an

overview of how Lemma 2 is proved.

Reducing Boolean Function Testing from Rejection Sampling. This work should be

considered alongside some recent works showing lower bounds for testing the properties of

monotonicity, unateness, and juntas in the standard property testing model [4, 18, 17]. At a

high level, the lower bounds for Boolean function testing proceed in three steps:

1. First, design a randomized indexing function Γ : {0, 1}n → [N] that partitions the Boolean

cube {0, 1}n into roughly equal parts in a way compatible with the property (either junta,

or unateness). We want to ensure that algorithms that make few queries cannot learn too

much about Γ, and that queries falling in the same part are close in Hamming distance.

2. Second, define two distributions over functions hi : {0, 1}n → {0, 1} for each i ∈ [N]. The

hard functions are defined by f(x) = hΓ(x)(x), so that one distribution corresponds to

functions with the property, and the other distribution corresponds to functions far from

the property.

3. Third, show that any testing algorithm for the property is actually solving some algorithmic

task (determined by the distributions of hi) which is hard when queries are close in

Hamming distance.

The first step in the above-mentioned plan is standard (given familiarity with [18] and

[17]). We will use a construction from [17] for the junta lower bound and a Talagrand-based

construction (similar to [18], but somewhat simpler) for the unateness lower bounds. The

novelty in this work lies in steps 2 and 3. We will define the distributions over sub-functions

hi such that the resulting Boolean functions f(x) = hΓ(x)(x) either is ε0-close to desired

ITCS 2019

52:6 Lower Bounds for Tolerant Junta and Unateness Testing

property (k-juntas and unateness), or is ε1-far from having the desired property (k-juntas

and unateness). Then, we will show that any algorithm for tolerant testing of k-juntas or

unateness must be able to solve a hard instance of bipartiteness testing in the rejection

sampling model.

At a very high level, our reductions will follow by associating to each distribution of

Boolean functions f : {0, 1}n → {0, 1} a distribution over graphs G defined on a subset of [n]

(these will be G1 and G2). The edges of a graph G sampled from G1 or G2 will encode how the

variables of f interact with one another, and the distance of f to k-junta (or unateness) will

depend on a global parameter of the G.5 In addition, Boolean function queries on f will be

interpreted as rejection sampling queries to G, so that tests distinguishing the distributions

of Boolean functions will give rise to rejection sampling algorithms which distinguish between

G1 and G2. Since we will show a lower bound in the rejection sampling model, we will obtain

a lower bound for tolerant testing of k-juntas and unateness.

For a more detailed discussion of the distributions and the reductions see Sections 3

and 4.

Distinguishing G1 and G2 with Rejection Sampling Queries. In order to prove Lemma 2,

one needs to rule out any deterministic non-adaptive algorithm which distinguishes between

G1 and G2 with rejection sampling queries of complexity õ(n2). In order to keep the discussion

at a high level, we identify three possible “strategies” for determining whether an underlying

graph is a complete bipartite graph, or a union of two disjoint cliques:

1. One approach is for the algorithm to sample edges and consider the subgraph obtained

from edges returned by the oracle. For instance, the algorithm may make all rejection

sampling queries to be [n]. These queries are expensive in the rejection sampling model,

but they guarantee that an edge from the graph will be observed. If the algorithm is lucky,

and there exists a triangle in the subgraph observed, the graph must not be bipartite, so

it must come from G2.

2. Another sensible approach is for the algorithm to forget about the structure of the

graph, and simply view the distribution on the edges generated by the randomness in the

rejection sampling oracle as a distribution testing problem. Suppose for simplicity that

the algorithm makes rejection sampling queries [n]. Then, the corresponding distributions

supported on edges from G1 and G2 will be Ω(1)-far from each other, so a distribution

testing algorithm can be used.

3. A third, more subtle, approach is for the algorithm to use the fact that G1 and G2

correspond to the union of two cliques and a complete bipartite graph, and extract

knowledge about the non-existence of edges when making queries which return either ∅
or a single vertex. More specifically, suppose that by having observed some edges, the

algorithm observes two connected components L1 and L2. If when querying L1 ∪ L2

multiple times, we do not observe an edge, it is more likely the underlying graph comes

from G1 than G2. Specifically, if G ∼ G1 and L1 lies in one clique and L2 lies in the other

clique, there would be no edges with edges from L1 and L2; on the other hand, if G ∼ G2,

then L1 and L2 would always have some edges between them.

5 The relevant graph parameter in k-juntas and unateness will be different. Luckily, both graph parameters
will have gaps in their value depending on the distribution the graphs were drawn from (either G1 or G2).
This allows us to reuse the work of proving Lemma 2 to obtain Theorem 3, Theorem 4, and Theorem 5.

A. Levi and E. Waingarten 52:7

The three strategies mentioned above all fail to give õ(n2) rejection sampling algorithms.

The first approach fails because with a budget of õ(n2), rejection sampling algorithms will

observe subgraphs which consist of various trees of size at most log n, thus we will not observe

cycles. The second approach fails since the distributions are supported on Ω(n2) edges, so

distribution testing algorithms will require Ω(n) edges (which costs Ω(n2)) to distinguish

between G1 and G2. Finally, the third approach fails since algorithms will only observe

o(n) responses from the oracle corresponding to lone vertices which will be split roughly

evenly among the unknown parts of the graph, so these observations will not be enough to

distinguish between G1 and G2.

Our lower bound rules out the three strategies sketched above when the complexity is

õ(n2), and shows that if the above three strategies do not work (in any possible combination

with each other as well), then no non-adaptive algorithm of complexity õ(n2) will work. The

main technical challenge is to show that the above strategies are the only possible strategies

to distinguish G1 and G2. In Section 5, we give a more detailed, yet still high-level discussion

of the proof of Lemma 2.

Finally, the analysis of Lemma 2 is tight; there is a non-adaptive rejection sampling

algorithm which distinguishes G1 and G2 with complexity Õ(n2). The algorithm (based on

the first approach mentioned above) is simple: make Õ(n) queries L = [n], and if we observe

an odd-length cycle, we output “G1”, otherwise, output “G2”.

1.4 Preliminaries

We use boldfaced letters such as A, M to denote random variables. Given a string x ∈ {0, 1}n

and j ∈ [n], we write x(j) to denote the string obtained from x by flipping the j-th coordinate.

An edge along the j-th direction in {0, 1}n is a pair (x, y) of strings with y = x(j). In addition,

for α ∈ {0, 1} we use the notation x(j→α) to denote the string x where the jth coordinate is

set to α. Given x ∈ {0, 1}n and S ⊆ [n], we use x|S ∈ {0, 1}S to denote the projection of x

on S. For a distribution D we write d ∼ D to denote an element d drawn according to the

distribution. We sometimes write a ≈ b ± c to denote b − c ≤ a ≤ b + c.

2 The Rejection Sampling Model

In this section, we define the rejection sampling model and the distributions over graphs

we will use throughout this work. We define the rejection sampling model tailored to our

specific application of proving Lemma 2.

I Definition 6. Consider two distributions, G1 and G2 supported on graphs with vertex

set [n]. The problem of distinguishing G1 and G2 with a rejection sampling oracle aims to

distinguish between the following two cases with a specific kind of query:

Cases: We have an unknown graph G ∼ G1 or G ∼ G2.

Rejection Sampling Oracle: Each query is a subset L ⊆ [n]; an oracle samples an edge

(j1, j2) from G uniformly at random, and the oracle returns v = {j1, j2} ∩ L. The

complexity of a query L is given by |L|.
We say a non-adaptive algorithm Alg for this problem is a sequence of query sets

L1, . . . , Lq ⊆ [n], as well as a function Alg : ([n] ∪ ([n] × [n]) ∪ {∅})
q → {“G1”, “G2”}. The

algorithm sends each query to the oracle, and for each query Li, the oracle responds

vi ∈ [n] ∪ ([n] × [n]) ∪ {∅}, which is either a single element of [n], an edge in G, or ∅. The

algorithm succeeds if:

Pr
G∼G1,

v1,...,vq

[Alg(v1, . . . , vq) outputs “G1”] − Pr
G∼G2,

v1,...,vq

[Alg(v1, . . . , vq) outputs “G1”] ≥ 1

3
.

ITCS 2019

52:8 Lower Bounds for Tolerant Junta and Unateness Testing

The complexity of Alg is measured by the sum of the complexity of the queries, so we let

cost(Alg) =
∑q

i=1 |Li|.
While our interest in this work is primarily on lower bounds for the rejection sampling

model, an interesting direction is to explore upper bounds of various natural graph properties

with rejection sampling queries. Our specific applications only require ruling out non-adaptive

algorithms, but one may define adaptive algorithms in the rejection sampling model and

study the power of adaptivity in this setting as well.

2.1 The Distributions G1 and G2

Let G1 and G2 be two distributions supported on graphs with vertex set [n] defined as follows.

Let A ⊆ [n] be a uniform random subset of size n
2 .

G1 =
{

KA ∪ K
A

: A ⊆ [n] random subset size
n

2

}

G2 =
{

K
A,A : A ⊆ [n] random subset size

n

2

}
,

where for a subset A, KA is the complete graph on vertices in A and KA,A is the complete

bipartite graph whose sides are A and A.

3 Tolerant Junta Testing

In this section, we will prove that distinguishing the two distributions G1 and G2 using

a rejection sampling oracle reduces to distinguishing two distributions Dyes and Dno over

Boolean functions, where Dyes is supported on functions that are close to k-juntas and Dno

is supported on functions that are far from any k-junta with high probability.

3.1 High Level Overview

We start by providing some intuition of how our constructions and reduction implement

the plan set forth in Subsection 1.3 for the property of being a k-junta. We define two

distributions supported on Boolean functions, Dyes and Dno, so that functions in Dyes are

ε0-close to being k-juntas and functions in Dno are ε1-far from being k-juntas (where ε0 and

ε1 are appropriately defined constants and k = 3n
4).

As mentioned in the introduction, our distributions are based on the indexing function

used in [17]. We draw a uniform random subset M ⊆ [n] of size n/2 and our function

Γ = ΓM : {0, 1}n → [2n/2] projects the points onto the variables in M. Thus, it remains to

define the sequence of functions H = (hi : {0, 1}n → {0, 1} : i ∈ [2n/2]).

We will sample a graph G ∼ G1 (in the case of Dyes), and a graph G ∼ G2 (in the

case of Dno) supported on vertices in M. Each function hi : {0, 1}n → {0, 1} is given by

first sampling an edge (j1, j2) ∼ G and letting hi be a parity (or a negated parity) of the

variables xj
1

and xj
2
. Thus, a function f from Dyes or Dno will have all variables being

relevant, however, we will see that functions in Dyes have a group of n
4 variables which can

be eliminated efficiently6.

We think of the sub-functions hi defined with respect to edges from G as implementing

a sort of gadget: the gadget defined with respect to an edge (j1, j2) will have the property

that if f eliminates the variable j1, it will be “encouraged” to eliminate variable j2 as well.

6 We say that a variable is eliminated if we change the function to remove the dependence of the variable.

A. Levi and E. Waingarten 52:9

In fact, each time an edge (j1, j2) ∼ G is used to define a sub-function hi, any k-junta

g : {0, 1}n → {0, 1} where variable j1 or j2 is irrelevant will have to change half of the

corresponding part indexed by Γ. Intuitively, a function f ∼ Dyes or Dno (which originally

depends on all n variables) wants to eliminate its dependence of n − k variables in order to

become a k-junta. When f picks a variable j ∈ M to eliminate (since variables in M are

too expensive), it must change points in parts where the edge sampled is incident on j. The

key observation is that when f needs to eliminate multiple variables, if f picks the variables

j1 and j2 to eliminate, whenever a part samples the edge (j1, j2), the function changes the

points in one part and eliminates two variables. Thus, f eliminates two variables by changing

the same number of points when there are edges between j1 and j2.

At a high level, the gadgets encourage the function f to remove the dependence of

variables within a group of edges, i.e., the closest k-junta will correspond to a function g

which eliminates groups of variables with edges within each other and few outgoing edges.

More specifically, if we want to eliminate n
4 variables from f , we must find a bisection of the

graph G whose cut value is small; in the case of G1, one of the cliques will have cut value 0,

whereas any bisection of a graph from G2 will have a high cut value, which makes functions

in Dyes closer to 3n
4 -juntas than functions in Dno.

The reduction from rejection sampling is straight-foward. We consider all queries which

are indexed to the same part, and if two queries indexed to the same part differ on a variable

j, then the algorithm “explores” direction j. Each part i ∈ [2n/2] where some query falls in

has a corresponding rejection sampling query Li, which queries the variables explored by the

Boolean function testing algorithm.

3.2 The Distributions Dyes and Dno

The goal of this subsection is to define the two distributions Dyes and Dno, supported over

Boolean functions with n variables. Functions f ∈ Dyes will be close to being a k-junta with

high probability, and functions f ∼ Dno will be far from any k-junta with high probability.

We note that it suffices to consider k = 3n
4 to obtain Theorem 3. We refer the reader to the

full version of the paper for the reduction from arbitrary k to k = 3n
4 .

Distribution Dyes. A function f from Dyes is generated from a tuple of three random

variables, (M, A, H), and we set f = fM,A,H. The tuple is drawn according to the following

randomized procedure:

1. Sample a uniformly random subset M ⊆ [n] of size m
def
= n

2 . Let N = 2m and ΓM :

{0, 1}n → [N] be the function that maps x ∈ {0, 1}n to a number encoded by x|M ∈ [N].

2. Sample A ⊆ M of size n
4 uniformly at random, and consider the graph G defined on

vertices [M] with G = KA ∪ K
A

, i.e., G is a uniformly random graph drawn according

to G1.

3. Define a sequence of N functions H = {hi : {0, 1}n → {0, 1} : i ∈ [N]} drawn from a

distribution E(G). For each i ∈ {1, . . . , N/2}, we let hi(x) =
⊕

`∈M
x`.

For each i ∈ {N/2 + 1, . . . , N}, we will generate hi independently by sampling an edge

(j1, j2) ∼ G uniformly at random, as well as a uniform random bit r ∼ {0, 1}. We let

hi(x) = xj
1

⊕ xj
2

⊕ r.

4. Using M, A and H, define fM,A,H = hΓM(x)(x) for each x ∈ {0, 1}n.

ITCS 2019

A. Levi and E. Waingarten 52:11

I Lemma 9. Suppose there exists a deterministic non-adaptive algorithm Alg making q

queries to Boolean functions f : {0, 1}2n → {0, 1}. Then, there exists a deterministic non-

adaptive algorithm Alg′ making rejection sampling queries to an n-vertex graph such that:

Pr
f∼Dyes

[Alg(f) “accepts”] = Pr
G∼G1

[Alg′(G) outputs “G1”], and

Pr
f∼Dno

[Alg(f) “accepts”] = Pr
G∼G2

[Alg′(G) outputs “G1”].

and has cost(Alg′) = O(q log n) with probability 1 − o(1) over the randomness in Alg′.

4 Tolerant Unateness Testing

In this section, we show how to reduce distinguishing distributions G1 and G2 to distinguishing

between Boolean functions which are close to unate and Boolean functions which are far

from unate. We start with a high level overview of the constructions and reduction, and then

proceed to give formal definitions and the reductions for adaptive and non-adaptive tolerant

testing.

4.1 High Level Overview

We now describe how our constructions and reduction implement the plan set forth in

Subsection 1.3 for the property of unateness. Similarly to Section 3, we define two distributions

Dyes and Dno supported on Boolean functions, so that functions in Dyes are ε0-close to being

unate, and functions in Dno are ε1-far from being unate (where ε0 and ε1 are appropriately

defined constants).

We will use a randomized indexing function Γ : {0, 1}n → [N] ∪ {0∗, 1∗} based on the

Talagrand-style constructions from [4, 18] to partition {0, 1}n in a unate fashion, specifically,

Γ will satisfy that for all i 6= j ∈ [N], if x, y ∈ {0, 1}n have Γ(x) = i and Γ(y) = j, then x and

y are incomparable, x 6≺ y and y 6≺ x. Again, we will then use a graph G ∼ G1 or G2 to define

the sequence of sub-function H = (hi : {0, 1}n → {0, 1} : i ∈ [N]). The sub-functions hi will

be given by a parity (or negated parity) of three variables: two variables will correspond

to the end points of an edge sampled (j1, j2) ∼ G, the third variable will be one of two

pre-specified variables, which we call m1 and m2. Consider for simplicity the case when

hi(x) = xj
1

⊕ xj
2

⊕ xm1
, and assume that we require that variable m1 is non-decreasing.

Similarly to Section 3, the functions hi are thought of as gadgets. We will have that if hi

is defined with respect to an edge (j1, j2) and m1, then the function f will be “encouraged”

to make variables j1 and j2 have opposite directions, i.e., either j1 is non-increasing and j2

is non-decreasing, or j1 is non-decreasing and j2 is non-increasing. In order to see why the

three variable parity implements this gadget, we turn our attention to Figure 2 and Figure 3.

Intuitively, the function f needs to change some of its inputs to be unate, and it must

choose whether the variables j1 and j2 will be monotone (non-decreasing) or anti-monotone

(non-increasing). Suppose f decides that the variable j1 should be monotone and j2 be

anti-monotone, and m1 will always be monotone (since it will be too expensive to make it

anti-monotone). Then, when hi(x) = xj1
⊕ xj2

⊕ xm1
, hi will have some violating edges, i.e.,

edges in direction j1 which are decreasing, or edges in direction j2 which are increasing, or

edges in direction m1 which are decreasing (see Figure 2, where these violating edges are

marked in red). In this case, there exists a way that f may change 1
4 -th fraction of the points

and remove all violating edges (again, this procedure is shown in Figure 2).

ITCS 2019

52:14 Lower Bounds for Tolerant Junta and Unateness Testing

The function f : {0, 1}n → {0, 1} is given by f(x) = fT,A,H(x) where:

fT,A,H(x) =





1 |x|M| > n
4 +

√
n

0 |x|M| < n
4 − √

n

1 ΓT(x) = 1∗

0 ΓT(x) = 0∗

hΓT(x)(x) otherwise

. (2)

We now turn to define the distribution E(M) supported on terms T, as well as the multiplexer

map ΓT : {0, 1}n → [N]. As mentioned above, T ∼ E(M) will be a sequence of N terms

(Ti : i ∈ [N]), where each Ti is given by a DNF term: Ti(x) =
∧

j∈Ti
xj , where the set

Ti ⊆ M is a uniformly random
√

n-element subset. Given the sequence of terms T, we let:

ΓT(x) =





0∗ ∀i ∈ [N], Ti(x) = 0

1∗ ∃i1 6= i2 ∈ [N], Ti1
(x) = Ti2

(x) = 1

i Ti(x) = 1 for a unique i ∈ [N]

.

It remains to define the distribution Dyes supported on Boolean functions. The function

f ∼ Dyes will be defined almost exactly the same. We still have f = fT,A,H as defined above,

however, the graph G will be different. In particular, we will let G = K
A,A.

Fix any set M ⊆ [n] of size n
2 and let m1, m2 ∈ M be two distinct indices and M ′ =

M \ {m1, m2}. For any T ∼ E(M ′), let X ⊆ {0, 1}n be the subset of points indexed to some

subfunction hi:

X
def
=

{
x ∈ {0, 1}n : |x|M | ∈ [n/4 − √

n, n/4 +
√

n] and ΓT (x) ∈ [N]
}

,

and define γ ∈ (0, 1) be the parameter: γ
def
= ET∼E(M ′)

[|X|
2n

]
.

In addition, let Xi ⊆ X be the subset of points x ∈ X with ΓT (x) = i, and note that the

subsets X1, . . . , XN partition X, where each |Xi| ≤ 2n−√
n. With probability 1 − o(1) over

the draw of T ∼ E(M), we have:

3N/4∑

i=1

|Xi| = 2n · 3γ

4

(
1 ± 1

n

)
and

N∑

i=3N/4+1

|Xi| = 2n · γ

4

(
1 ± 1

n

)
. (3)

Thus, we only consider functions f ∼ Dyes (or ∼ Dno) where the sets M , and T satisfy (3).

We consider any set A ⊆ M of size n
4 . Now, consider any graph G defined over vertices

in M , and we let:

χ(G) = min

{
EG(S, S) + EG(S, S)

EG(M, M)
: S ⊆ M

}
.

In other words, we note that χ(G) is one minus the fractional value of the maximum cut, and

the value of χ(G) is minimized for the set S achieving the maximum cut of G. The following

lemma relates the distance to unateness of a function f = fT,A,H with H ∼ H(m1, m2, G),

where G is an underlying graph defined on vertices in M .

I Lemma 10. Let G be any graph defined over vertices in M . If f = fT,A,H where

H ∼ H(m1, m2, G), then with probability at least 1 − o(1),

γ

16

(
1 +

1

2
· χ(G)

)
− o(1) ≤ dist(f , Unate) ≤ γ

16

(
1 +

1

2
· χ(G)

)
+ o(1).

We consider the constants ε0 = γ
16 and ε1 = 5γ

64 .

I Corollary 11. We have that f ∼ Dyes has dist(f , Unate) ≤ ε0 + o(1) with high probability,

and f ∼ Dno has dist(f , Unate) ≥ ε1 − o(1) with high probability.

52:18 Lower Bounds for Tolerant Junta and Unateness Testing

A A A A

C1

C3

C2

C4

C1

C2

C3

C4

Figure 7 A consistently partition of the components C1, C2, C3 and C4 according to G1 (on the

left) and G2 (on the right).

I Lemma 16 (Good Outcomes Lemma). Consider a fixed v1, . . . , vt ∈ [n] ∪ ([n] × [n]) ∪ {∅}
forming components C1, . . . , Cα where events ET and EF are satisfied. Then, we have:

Pr
G∼G1

v1,...,vt

[EO ∧ EB | EC,yes] ≤ (1 + o(1)) Pr
G∼G2

v1,...,vt

[EO | EC,no].

I Lemma 17 (Bad Outcomes Lemma). We have that:

Pr
G∼G1

v1,...,vt

[¬ET ∨ ¬EF ∨ ¬EB] = o(1).

Assuming the above three lemmas, we may prove Lemma 14.

References

1 Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance

to a monotone function. Random Structures and Algorithms, 31(3):371–383, 2007.

2 Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya

Raskhodnikova, and C. Seshadhri. A lower bound for nonadaptive, one-sided error

testing of unateness of Boolean functions over the hypercube. arXiv preprint, 2017.

arXiv:1706.00053.

3 Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya

Raskhodnikova, and C. Seshadhri. Optimal Unateness Testers for Real-Values Functions:

Adaptivity Helps. In Proceedings of the 44th International Colloquium on Automata, Lan-

guages and Programming (ICALP ’2017), 2017.

4 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity.

In Proceedings of the 48th ACM Symposium on the Theory of Computing (STOC ’2016),

pages 1021–1032, 2016.

5 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant Testers of Image

Properties. In Proceedings of the 43th International Colloquium on Automata, Languages

and Programming (ICALP ’2016), pages 90:1–90:14, 2016.

6 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Proceedings

of the 46th ACM Symposium on the Theory of Computing (STOC ’2014), 2014.

7 Eric Blais. Improved bounds for testing juntas. In Approximation, Randomization and

Combinatorial Optimization. Algorithms and Techniques, pages 317–330. Springer, 2008.

A. Levi and E. Waingarten 52:19

8 Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st ACM Symposium

on the Theory of Computing (STOC ’2009), pages 151–158, 2009.

9 Eric Blais, Clément L Canonne, Talya Eden, Amit Levi, and Dana Ron. Tolerant junta

testing and the connection to submodular optimization and function isomorphism. In

Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2018),

pages 2113–2132, 2018.

10 Harry Buhrman, David Garcıa-Soriano, Arie Matsliah, and Ronald de Wolf. The non-

adaptive query complexity of testing k-parities. Chicago Journal of Theoretical Computer

Science, 6:1–11, 2013.

11 Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and tolerant

testers for connectivity and diameter. In Approximation, Randomization, and Combinato-

rial Optimization. Algorithms and Techniques, pages 411–424. Springer, 2013.

12 Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing probability distributions

using conditional samples. SIAM Journal on Computing, 44(3):540–616, 2015.

13 Deeparnab Chakrabarty and Seshadhri Comandur. An o(n) monotonicity tester for boolean

functions over the hypercube. SIAM Journal on Computing, 45(2):461–472, 2016.

14 Deeparnab Chakrabarty and C. Seshadhri. A Õ(n) non-adaptive tester for unateness. arXiv

preprint, 2016. arXiv:1608.06980.

15 Sourav Chakraborty, Eldar Fischer, David García-Soriano, and Arie Matsliah. Junto-

symmetric functions, hypergraph isomorphism and crunching. In Proceedings of the 27th

Conference on Computational Complexity (CCC ’2012), pages 148–158. IEEE, 2012.

16 Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power of

conditional samples in distribution testing. SIAM Journal on Computing, 45(4):1261–1296,

2016.

17 Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling the

query complexity of non-adaptive junta testing. In Proceedings of the 32nd Conference on

Computational Complexity (CCC ’2017), 2017.

18 Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower bounds

for testing monotonicity and unateness. In Proceedings of the 49th ACM Symposium on

the Theory of Computing (STOC ’2017), 2017.

19 Xi Chen, Erik Waingarten, and Jinyu Xie. Boolean Unateness Testing with Õ(n3/4) Adap-

tive Queries. In Proceedings of the 58th Annual IEEE Symposium on Foundations of Com-

puter Science (FOCS ’2017), 2017.

20 Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Information Pro-

cessing Letters, pages 301–305, 2004.

21 Ilias Diakonikolas, Homin K Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld,

Rocco A Servedio, and Andrew Wan. Testing for concise representations. In Proceedings

of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’2007),

pages 549–558. IEEE, 2007.

22 Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high dimen-

sions. ACM Transactions on Algorithms, 6(3):52, 2010.

23 Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for Boolean properties.

Theory of Computing, 2(9):173–183, 2006.

24 Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Testing

juntas. Journal of Computer and System Sciences, 68(4):753–787, 2004. doi:10.1016/j.

jcss.2003.11.004.

25 Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties. SIAM

Journal on Computing, 37(2):482–501, 2007.

26 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.

ITCS 2019

52:20 Lower Bounds for Tolerant Junta and Unateness Testing

27 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samordinsky. Testing

Monotonicity. Combinatorica, 20(3):301–337, 2000.

28 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to

learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

29 Oded Goldreich and Dana Ron. On sample-based testers. ACM Transactions on Compu-

tation Theory, 8(2), 2016.

30 Venkatesan Guruswami and Atri Rudra. Tolerant locally testable codes. In Approximation,

Randomization and Combinatorial Optimization. Algorithms and Techniques, pages 306–

317. Springer, 2005.

31 Subhash Khot and Igor Shinkar. An Õ(n) queries adaptive tester for unateness. In Ap-

proximation, Randomization and Combinatorial Optimization. Algorithms and Techniques,

pages 37:1–37:7, 2016.

32 Swastik Kopparty and Shubhangi Saraf. Tolerant linearity testing and locally testable

codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, pages 601–614. Springer, 2009.

33 Sharon Marko and Dana Ron. Approximating the distance to properties in bounded-degree

and general sparse graphs. ACM Transactions on Algorithms, 5(2):22, 2009.

34 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance

approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.

35 Dana Ron. Property testing: A learning theory perspective. Foundations and Trends® in

Machine Learning, 1(3):307–402, 2008.

36 Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and

Trends® in Theoretical Computer Science, 5(2):73–205, 2010.

37 Rocco A Servedio, Li-Yang Tan, and John Wright. Adaptivity helps for testing juntas.

In Proceedings of the 30th Conference on Computational Complexity (CCC ’2015), pages

264–279, 2015.

38 Roei Tell. A Note on Tolerant Testing with One-Sided Error. In Electronic Colloquium on

Computational Complexity (ECCC), volume 23, page 32, 2016.

