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ABSTRACT
A popular methodology for building binary decision-making classi-

fiers in the presence of imperfect information is to first construct a

calibrated non-binary “scoring" classifier, and then to post-process

this score to obtain a binary decision. We study various fairness (or,

error-balance) properties of this methodology, when the non-binary

scores are calibrated over all protected groups, and with a variety

of post-processing algorithms. Specifically, we show:

First, there does not exist a general way to post-process a cal-

ibrated classifier to equalize protected groups’ positive or nega-

tive predictive value (PPV or NPV). For certain "nice" calibrated

classifiers, either PPV or NPV can be equalized when the post-

processor uses different thresholds across protected groups. Still,

when the post-processing consists of a single global threshold across

all groups, natural fairness properties, such as equalizing PPV in a

nontrivial way, do not hold even for "nice" classifiers.

Second, when the post-processing stage is allowed to defer on
some decisions (that is, to avoid making a decision by handing off

some examples to a separate process), then for the non-deferred

decisions, the resulting classifier can be made to equalize PPV,

NPV, false positive rate (FPR) and false negative rate (FNR) across

the protected groups. This suggests a way to partially evade the

impossibility results of Chouldechova and Kleinberg et al., which

preclude equalizing all of these measures simultaneously. We also
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present different deferring strategies and show how they affect the

fairness properties of the overall system.

We evaluate our post-processing techniques using the COMPAS

data set from 2016.
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1 INTRODUCTION
The concept of fairness is deeply ingrained in our psyche as a

fundamental, essential ingredient of Human existence. Indeed the

perception of fairness, broadly construed as accepting each others’

equal right for well being, is arguably one of the most basic tenets

of cooperative societies of individuals in general.

However, as fundamental as this concept may be, it is also elusive:

different cultures have developed very different notions of fairness

and equality among individuals, subject to religious, ethical, and

social beliefs; in particular, the intricate interplay between fairness

and justice is often left to subjective interpretation.

In the context of decision processes, fairness is further compli-

cated by the fact that decisions are often made with incomplete
information and limited resources. These two factors have become

increasingly prominent as society grows and decision processes

become more complex and algorithmic.

One way that researchers are responding to these growing con-

cerns is by attempting to formulate precise notions for fairness
of decisions processes, e.g. [5, 7, 12]. While these notions do not

intend to capture the complexities of the ethical, socio-economic, or

religious aspects of fairness, they do consider the fairness aspects of

statistical decision-making processes with incomplete information.

Essentially, these notions accept the fact that a decision process

with incomplete information will inevitably make errors relative

to the desired full-information notion (which is treated as a given),

and provide guidelines on how to “balance the errors fairly” across
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individuals or groups of individuals. These definitions have proven

to be meaningful and eye opening; in particular, it has been demon-

strated that some very naturalmeasures of “fair distribution of error”

are mutually inconsistent: No decision mechanism with incomplete

information can satisfy all, except in trivial cases [4, 12].

Faced with this basic impossibility, we aim to better understand

the process of decision making with incomplete information, and

propose ways to relax the known measures so as to regain feasibil-

ity.

Specifically, we concentrate on the task of post-processing a

calibrated soft classifier to obtain a binary decision, under group

fairness constraints, for the case of several disjoint protected groups.
That is, we consider the following two-stage mechanism. The

first stage consists of constructing a classifier Ŝ that outputs for

each individual x a score s ∈ [0, 1] that is related to the chance that

x has property B. The only requirement we make of Ŝ is group-wise

calibration: For each group д and for each s ∈ [0, 1], the fraction

of individuals in д that get score s and have the property, out of

all individuals in д that get score s , is s . The second stage takes as

input the output s = Ŝ(x) of the first stage and the group to which

x belongs, and outputs a binary decision, interpreted as its guess at

whether x has property B.
The first stage is aimed at gathering information and providing

the best accuracy possible, with only minimal regard to fairness (i.e

only group-wise calibration). The second stage extracts a decision

from the information collected in the first stage, while making sure

that the errors are distributed “fairly.”

To further focus our study, we take the first stage as a given

and concentrate on the second. That is, we consider the problem of

post-processing the scores given by the calibrated soft classifier Ŝ
into binary predictions. A representative example is a judge making

a bail decision based on a score provided by a software package.

Following [4, 9], we consider the following four performance mea-

sures for the resulting binary classifier: the positive predictive value
(PPV), namely the fraction of individuals that have the property

among all individuals that the classifier predicted to have the prop-

erty; The false positive rate (FPR), namely the fraction of individuals

that were predicted to have the property among all individuals that

don’t have the property; The negative predictive value (NPV) and
false negative rate (FNR), which are defined analogously. Ideally,

we would like to equalize each one of the four measures across the

groups, i.e. the measure will have the same value when restricted

to samples from each group. Unfortunately, however, we know

that this is impossible in general [4, 12]. This leads us to a broad

question that motivates our work:

Under what conditions can we post-process a cali-

brated soft classifier’s outputs so that the resulting

hard classifier equates a subset of {PPV,NPV, FNR, FPR}
across a set of protected groups? How can we balance

these conflicting goals?

Results: Post-Processing With Thesholds. In a first set of results we

consider the properties obtained by post-processing via a “thresh-

old” mechanism. Naively, a threshold post-processing mechanism

would return 1 for individual x whenever the calibrated score s(x) is
above some fixed threshold, and return 0 otherwise. We somewhat

extend this mechanism by allowing the post-processor “fine-tune”

its decision by choosing the output probabilistically whenever the

result of the soft classifier is exactly the threshold.

We first observe that the popular and natural pos-t-procesing

method of using a single threshold across all groups has some

inherent deficiency: No such mechanism can in general guarantee

equality of either PPV or NPV across the protected groups.

We then show that, when using different thresholds for the

different groups, one can equalize either PPV or NPV (but not both)

across the two groups, assuming the profile of Ŝ has some non-

degeneracy property.

The combination of the impossibility of single threshold and the

possibility of per-group threshold also stands in contrast to the be-

lief that a soft classifier that is calibrated across both groups allows

“ignoring” group-membership information in any post-processing

decision [14]. Indeed, the conversion to a binary decision “loses

information” in different ways for the two groups, and so group

membership becomes relevant again after post-processing.

Results: Adding deferrals. For the second set of results we con-

sider post-processing strategies that do not always output a decision.

Rather, with some probability the output is ⊥, or “I dont know",

which means that the decision is deferred to another (hopefully

higher quality, even if more expensive) process. Let us first present

our technical results and then discuss potential interpretations and

context.

The first strategy is a natural extension of the per-group thresh-

old: we use two thresholds per group, returning 1 above the right
threshold, 0 below the left threshold, and ⊥ between the thresholds.

We show that there always exists a way to choose the thresholds

such that, conditioned on the decision not being ⊥, both the PPV

and NPV are equal across groups.

Next we show a family of post-processing strategies where, con-

ditioned on the decision not being ⊥, all four quantities (PPV, NPV,
FPR, FNR) are equal across groups.

All strategies in this family have the following structure: Given

an individual x , the strategy first makes a randomized decision

whether to defer on x , where the probability depends on Ŝ(x) and
the group membership of x . If not deferred, then the decision is

made via another post-processing technique.

One method for determining the probabilities of deferral is to

make sure that the profiles of scores returned by the calibrated soft

classifier, conditioned on not deferring, is equal for the two groups

(That is, let ps ,д denote the probability, restricted to group д, that an
element gets score s conditioned on not deferring. Then for any s ,
we choose deferral probabilities so that ps ,д1 = ps ,д2 .) The resulting
classifier can then be post-processed in any group-blind way (say,

via a single threshold mechanism as described above).

Of course, the fact that all four quantities are equalized con-

ditioned on not deferring does not, in and of itself, provide any

guarantees regarding the fairness properties of the overall decision

process —which includes also the downstream decision mechanism.

For one, it would be naive to simply assume that fairness “composes”

[8]. Furthermore, the impossibility of [4, 12] says that the overall

decision-making process cannot possibly equalize all four measures.

However, in some cases one can provide alternative (non-statistical)

justification for the fairness of the overall process: For instance, if

the downstream decision process never errs, the overall process
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might be considered “procedurally fair.” We present more detailed

reflections on our deferral-based approach in Section 6.

We note that deferring was considered in machine learning in a

number of contexts, including the context of fairness-preservation

[13]. In these works, the classifier typically defers only when its

confidence regarding some decision is low. By contrast, we use

deferrals in order to “equalize” the probability mass functions of

the soft classifier over the two groups, which may involve deferring

on individuals for whom there is higher confidence. Furthermore,

our framework allows for a wide range of deferral strategies which

might be used to promote additional goals. Pursuing alternate strate-

gies for deferral is an interesting direction for future work.

Experimental results. We demonstrate the validity of our method-

ology on the Broward county dataset with COMPAS scores made

public by ProPublica [1]. Indeed, it has been shown that the COM-

PAS scoring mechanism is an approximately calibrated soft clas-

sifier. We first ran our two-threshold post-processing mechanism

and obtained a binary decision algorithm which equalizes both PPV

and NPV across Caucasians and African-Americans.

We then ran our post-processing mechanism with deferrals to

equalize all four of PPV, NPV, FPR, FNR across the two groups,

with three different methods for deciding how to defer: In the first

method, decisions are deferred only for Caucasians; in the second,

decisions are deferred only for African Americans; in the third

method, decisions are deferred for an equal fraction of Caucasians

and of African Americans. This fraction is precisely equal to the

statistical (total variation) distance between the profiles of scores

produced by the soft classifier on the two groups. More details

about the results are given in Section 5.

1.1 Related work
We briefly describe the works most closely related to ours, though

both the list of works and their summaries are inevitably too short.

Our work fits in a research program on group fairness notions

following the work of Chouldechova [4] and Kleinberg et al. [12].

Our work considers the notions of calibration as formalized in [16]

and those of PPV, NPV, FPR, and FNR from [4] and [12].

The power of post-processing calibrated scores into decisions

using threshold classifiers in the context of fairness has been pre-

viously studied by Corbett-Davies, Pierson, Feller, Goel, and Huq

[6]. As in our work, they show that it is feasible to equalize certain

statistical fairness notions across groups using (possibly different)

thresholds. They additionally show that these thresholds are in

some sense optimal. Whereas [6] focuses on statistical parity, condi-

tional statistical parity, and false positive rate, our most comparable

results consider PPV. In our work, we further show that in some

cases thresholds fail to equalize both PPV and NPV (called predictive
parity by [4]), unless we also allow our post-processor to defer on

some inputs. Our work also studies methods of post-processing

that are much more powerful than thresholding, especially when

allowing deferrals.

Using deferrals to promote fairnesswas also considered by Zemel,

Madras, and Pitassi [13]. Specifically they consider how deferring on

some inputs may promote a combination of accuracy and fairness,

especially when taking explicit account of the downstream decision

maker. They make use of two-threshold deferring post-processors

like those discussed in Section 4. [13] takes a more experimental

approach and focuses on minimizing the “disparate impact,” a mea-

sure of total difference in classification error between groups, while

maximizing accuracy. One important difference between our works

is that Madras et al. distinguish between “rejecting” and “deferring.”

Rejecting is oblivious as to properties of the downstream decision

maker, while deferring tries to counteract the biases of the decision

maker. Our work considers only the former notion, but uses the

term "defer" instead of "reject."

Our work inherits both the strengths and weakness of the group

fairness research program. The clear definitions and goals of group

fairness have have catalyzed the field and caused rapid progress:

early infeasibility results [4, 12], positive results for complex and

intersecting collections of groups [10, 11], and extensions to the

basic model—including [13, 14] and this work. The formalization

of group fairness has fostered precise discussion and greater un-

derstanding, including of its shortcomings. Group fairness notions

have been criticized for not fully capturing the complex social goals

that motivate our community’s interest in fairness: failure to com-

pose [8], failure to adequately capture people’s wellbeing [5], and

failure to prevent against certain social evils [7]. However, we are

optimistic that improving our understanding of group fairness will

contribute to the successful study of algorithmic fairness generally.

2 PRELIMINARIES
We study the problem of binary classification. An instance is an
element, usually denoted x , of a universe X. We restrict our at-

tention to instances sampled uniformly at random from the uni-

verse, denoted X ∼ X. Our theory extends directly to any other

distribution on X; that distribution does not need to be known

to the classifiers. Each instance x is associated with a true type
Y (x) ∈ {0, 1}. Each instance x is also associated with a group
G(x) ∈ G, where G is the set of groups. We restrict our atten-

tion to sets G that form a partition of the universe X. We denote by

Xд the set of instances x in group д, and by Xд the random variable

distributed uniformly over Xд . Note that for any events E1 and E2,
PrX∼Xд [E1 | E2] = PrX∼X[E1 | E2,G(X ) = д].

Definition 2.1 (Base rate (BR)). The base rate of a group д ∈ G, is

BRд = Pr[Y (Xд) = 1] = E[Y (Xд)].

When X is finite, BRд is simply the fraction of individuals x in the

group д for whom Y (x) = 1.

A classifier is a randomized function with domain X ×G. A hard
classifier, denoted Ŷ , outputs a prediction in {0, 1}, interpreted as a

guess of the true type Y (x). A soft classifier, denoted Ŝ , outputs a
score s ∈ [0, 1], interpreted as a measure of confidence thatY (x) = 1.

We restrict our attention to soft classifiers with finite image. We

call a classifier group blind if its output is independent of the input

group д. For all groups д ∈ G, we call a hard classifier Ŷ non-trivial
on д if Pr[Ŷ (Xд) = 1] > 0 and Pr[Ŷ (Xд) = 0] > 0. Hard classifiers

are trivial on д if they are not non-trivial on д.
A post-processor is a randomized function with domain [0, 1]×G.

As with classifiers, a post-processor can be hard or soft. A hard

post-processor, denoted D̂, outputs a prediction in {0, 1}. A soft

post-processor, denoted D̂soft
, outputs a score s ∈ [0, 1]. Observe

that for a soft classifier Ŝ , D̂ ◦ Ŝ is a hard classifier, and D̂soft ◦ Ŝ is
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x ∈ X s ∈ [0, 1] ŷ ∈ {0, 1}

D̂soft

“soft post-processor”

“hard”

Ŷ

“soft”

Ŝ

“hard post-processor”

D̂

“hard post-processor”

D̂

Figure 1: We call a classifier that returns results in [0, 1] a soft classifier to
differentiate it from those which return results in {0, 1}, which we call hard
classifiers. We refer to classifiers that take as input the output of a soft classi-
fier as post-processors.

a soft classifier. As with classifiers, we call a post-processor group

blind if its output is independent of the group д, and we restrict

our attention to post-processors with finite image. The restriction

to finite image is for mathematical convenience and also because

digital memory leads to discrete universes; our results generalize

to infinite images as well.

In Section 4, we expand the definitions of both classifier and

post-processors to allow an additional input or output: the special

symbol ⊥, indicating a deferral.

2.1 Calibration
Several works concerning algorithmic fairness focus on various

notions of calibration. The following calibration notions are defined

only over soft classifiers:

Definition 2.2 (Calibration (Soft)). We say a soft classifier Ŝ is

calibrated if ∀s ∈ [0, 1] for which PrX∼X[Ŝ(X ) = s] > 0,

Pr

X∼X
[Y (X ) = 1 | Ŝ(X ) = s] = E

X∼X
[Y (X ) | Ŝ(X ) = s] = s .

The probability above is taken over the sampling of X , as well as
random choices made by Ŝ at classification time.

Definition 2.3 (Groupwise Calibration (Soft)). We say that a soft

classifier Ŝ is groupwise calibrated if it is calibrated within all groups.
That is, ∀д ∈ G and ∀s ∈ [0, 1] for which Pr[Ŝ(Xд) = s] > 0, we

have that

Pr[Y (Xд) = 1 | Ŝ(Xд) = s] = s .

Groupwise calibration is essentially the same notion as multical-
ibration [10] with the difference that in their case the true types are

values in [0, 1]. We use a different term to emphasize that we restrict

our attention to collections of groups G that form a partition of the

universe X.

The two definitions above are stated for soft classifiers whose

output distribution is discrete, since we must be able to condition

on the event Ŝ(X ) = s or Ŝ(Xд) = s . That said, it extends naturally
to classifiers with continuously-distributed outputs provided that

the conditional probabilities are well defined.

2.2 Accuracy Profiles
Throughout this work, we make repeated reference to the probabil-

ity mass function of the random variable Ŝ(Xд) for a calibrated soft

classifier Ŝ acting on a randomly distributed input Xд . We call this

distribution on calibrated scores an accuracy profile (AP).

Definition 2.4 (Accuracy Profile (AP)). The accuracy profile (AP)
of a calibrated soft classifier Ŝ for a group д, denoted by

ˆPд , is the

PMF of Ŝ(Xд). That is, for s ∈ [0, 1], ˆPд(s) = Pr[Ŝ(Xд) = s].

Abusing notation, we denote by
ˆP the collection { ˆPд}д∈G , and

call it the AP of Ŝ . We denote by Supp( ˆPд) the support of the AP ˆPд ,

namely the set Supp( ˆP) = {s : ∃x ∈ Xд, ∃r s.t. Ŝ(x, r ) = s} ⊆ [0, 1].

An accuracy profile is a distribution of scores for a calibrated

classifier Ŝ . Because Ŝ is calibrated, the AP conveys information

about the performance of Ŝ , and is constrained by properties of the

underlying distribution on X . For example, the AP’s expectation is

exactly the base rate for the population:

Proposition 2.1 (Proof in [3]). For any groupwise calibrated
soft classifier Ŝ , for all groups д ∈ G: BRд = E[Ŝ(Xд)].

Accuracy profiles also provide useful geometric intuition for

reasoning about the effects of post-processing calibrated scores. We

elaborate on this in Section 3.1 (see Figure 2).

2.3 Group Fairness Measures
Several well-studied measures of statistical “fairness” (e.g., [4, 9–

12, 16]) look at how the following key performance measures of a

classifier differ across groups. We define these statistics formally:

Definition 2.5. For a hard classifier Ŷ and group д, we define the
false positive rate of Ŷ for д:

FPRŶ ,д = Pr[Ŷ (Xд) = 1 | Y (Xд) = 0];

false negative rate of Ŷ for д:
FNRŶ ,д = Pr[Ŷ (Xд) = 0 | Y (Xд) = 1];

positive predictive value of Ŷ for д:
PPVŶ ,д = Pr[Y (Xд) = 1 | Ŷ (Xд) = 1];

negative predictive value of Ŷ for д:
NPVŶ ,д = Pr[Y (Xд) = 0 | Ŷ (Xд) = 0].

The probability statements in the definitions above reflect two

sources of randomness: the sampling of Xд from the group д and

any random choices made by the classifier Ŷ .
Among previous works, some [9, 12, 15] focus on equalizing only

one or both of the false positive rates and false negative rates across

groups, called balance for the negative and positive classes, re-

spectively. Equalizing positive and negative predictive value across

groups is often combined into one condition called predictive parity
[4]. We split the value out to be a separate condition for the positive

and negative predictive classes. Predictive parity appears to be a

hard-classifier analogue of calibration: both can be interpreted as

saying that the output of the classifier (hard or soft) contains all the

information contained in group membership. Our results highlight

that the relationship between these notions is more subtle than it

first appears; see Section 3 for further discussion.

3 THE LIMITS OF POST-PROCESSING
Suppose throughout this section that Ŝ is a groupwise calibrated

soft classifier. Our goal in this section is to make binary predictions

based on Ŝ(x)— and possibly the groupG(x)— subject to equalizing

PPV among groups. That is, we wish to make a prediction using a

hard post-processor D̂ such that Ŷ = D̂ ◦ Ŝ equalizes PPV among

groups. We chose to concentrate first on (the limitations of) equal-

izing PPV rather than FPR and FNR due to the conceptual similarity

of PPV to calibration, and we address NPV in [3]. Also, the case of

equalizing false positive rates with thresholds is addressed in [6].
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Figure 2: Accuracy profiles (APs, definition 2.4) yield useful geometric intu-
itions, which come from the calibration property (definition 2.2). The dashed
line is the AP multiplied by the y = x line; the region below this line shows the
expected positives and above shows the expected negatives. With a threshold,
the expected PPV, NPV, FPR, and FNR can be seen visually.

3.1 Fairness Conditions for Post-Processors
We begin by making a simple observation about post-processing

that provides some geometric intuition for the rest of this section.

Just as in Proposition 2.1, we can express PPVŶ ,д succinctly in

terms of conditional expectations over the AP
ˆPд . We state this

formally in Proposition 3.1.

Proposition 3.1 (Proof in [3]). Let Ŷ = D̂ ◦ Ŝ be a hard classifier
that is non-trivial for all д ∈ G where Ŝ is groupwise calibrated with
respect to G. For any д ∈ G we have:

PPVŶ ,д = E[Ŝ(Xд) | Ŷ (Xд) = 1]

This characterization of PPV and NPV in terms of conditional

expectations lets us geometrically see how certain post-processing

decision rules will interact with the AP for a group д. For example,

Figure 2 shows the expected true positives, true negatives, false

positive, and false negatives when using a threshold.

3.2 General impossibility of equalizing PPV
It is not always possible to directly post-process a soft groupwise

calibrated classifier into a hard one with equalized PPV (or NPV) for

all groups, as we demonstrate by counterexample in Proposition 3.2.

Before proceeding, we note that our counterexample is somewhat

contrived—in particular, the AP induced by the soft classifier Ŝ in

the proof of Proposition 3.2 takes only one value on each group.

When the AP of Ŝ is more nicely structured on each group, we will

see that there are general methods to equalize PPV (or NPV).

Proposition 3.2. Fix two disjoint groups д1 and д2 with respective
base rates BR1 and BR2 such that BR1 , BR2. Then there exists a
soft classifier Ŝ that is groupwise calibrated, but for which there is no
post-processor D̂ : [0, 1] × G → {0, 1} such that D̂ ◦ Ŝ equalizes PPV,
unless Pr[D̂(BRi ,дi ) = 1] = 0 for i = 1 or 2.

Proof of Proposition 3.2. Consider the classifier Ŝ such that

Ŝ(x) = BR1 if x ∈ д1 and Ŝ(x) = BR2 if x ∈ д2. This classifier is
trivially groupwise calibrated. Since Pr[D̂(BRi ,дi ) = 1] > 0 for

i = 1 and 2, we conclude that PPVŶ ,дi is well-defined for д1 and д2.
The proof now follows from the characterization of PPV in Propo-

sition 3.1. This is because PPVŶ ,дi is equal to the expectation of

Ŝ(X ) where X is drawn from a distribution with support contained

in дi , and hence it is equal to BRi , and BR1 , BR2. □

3.2.1 A Niceness Condition for APs. Motivated by the above proof,

we define a non-degeneracy condition on APs.

Definition 3.1 (Niceness of APs). Let G be a set of groups. An

accuracy profile
ˆP is nice if Supp( ˆPд) is the same for all д ∈ G.

Note that this condition rules out the counterexample given by

Proposition 3.2, since the AP in the counterexample had different

(in fact, disjoint) supports for different groups.

3.3 Equalizing PPV or NPV by Thresholding
We pay special attention to thresholds because they are simple

to understand and therefore very widely used. We use one slight

modification to deterministic thresholds that adds an element of

randomness: if a score is at the threshold, we randomly determine

which side of the threshold it falls on, according to a distribution

defined below.

Definition 3.2 (Threshold Post-Processor). A threshold post-processor

D̂(τ ,R) : [0, 1] × G → {0, 1} is a function from a score s ∈ [0, 1]

and a group д ∈ G, parameterized by τ and R. The threshold pa-

rameter τ : G → [0, 1] specifies the threshold for the group д, and
R : G → [0, 1] is the probability of returning 1 when the input

score s is on the threshold τ (д). It returns the following outputs:

D̂(τ ,R)(s,д) =


1 s > τ (д)

0 s < τ (д)

1 w.p. R(д) else 0 s = τ (д)

In the setting of an infinite number of scores and a continuous

domain (i.e. scores are represented by a probability density function

instead of a probability mass function), we can use purely determin-

istic threshold functions in which R ≡ 1, and achieve very similar

results for the rest of this section.

We now study the effectiveness of thresholds for post-processing

soft classifiers with nice APs. The main takeaways are:

(1) If the AP is nice, threshold post-processors can equalize PPV.

(2) However, group blind threshold post-processors are rather

limited in their ability to equalize PPV.

(3) Furthermore, equalizing PPV with thresholds (group blind or

otherwise) may have undesirable social consequences (see

Figure 3).

(4) Thresholds cannot always equalize PPV and NPV simultane-

ously, even for nice APs (Proposition 3.3).

Results 1-3 also apply to NPV. We delegate formal statements and

proofs for Results 1-3 to the full version [3]. Result 4 shows that

threshold post-processors are inherently limited, even when they

factor in groups.

Proposition 3.3 (Proof in [3]). Fix groups д1 and д2. There
exists a soft classifier Ŝ with a nice AP ˆP such that no threshold post-
processor can simultaneously equalize PPV and NPV between groups
д1 and д2.

3.4 Equalizing Accuracy Profiles
While thresholding is a conceptually simple approach to post-

processing a soft classifier, its power is limited. We now consider a

very different approach using soft post-processors to equalize the

APs across groups of a soft classifier. The intuition is that if the APs

313



FAT* ’19, January 29–31, 2019, Atlanta, GA, USA R. Canetti, A. Cohen, N. Dikkala, G. Ramnarayan, S. Scheffler, and A. Smith

Figure 3: The PPV for both groups is 0.77. However, the threshold for д1 (dark
blue) is higher than the threshold for д2 (orange), even though д2 has a higher
base rate.

are equal across groups, then any hard post-processor that is group
blind should result in equal PPV, NPV, FPR, and FNR. We formalize

this intuition in Claim 3.1.

Let Ŝ be a soft classifier and for each group д ∈ G, let
ˆPд be the

AP of Ŝ for group д. For a soft post-processor D̂soft
, let Ŝ ′ = D̂soft ◦ Ŝ

and let
ˆP ′
д be the corresponding AP for group д.

Our goal is to find a soft post-processor D̂soft
such that Ŝ ′ is

groupwise calibrated, and
ˆP ′
д =

ˆP ′
д′ for all д,д

′ ∈ G. In this section,

we describe only one approach to constructing D̂soft
which we call

mass averaging.
The approach of equalizing APs has a fundamental weakness: if

ˆP ′
д =

ˆP ′
д′ and both are calibrated, then BRд = BRд′ . This severely

limits applicability of this approach. However, this limitation will

removed in Section 4.2 by allowing deferrals.

Claim 3.1 (Proof in [3]). If the APs are equal for two groups, then
PPV, NPV, FPR, and FNR are equalized by any hard post-processor D̂
satisfying group blindness.

The group-blindness requirement in the claim is necessary: con-

sider the (not group blind) post-processor that outputs 0 on one

group and 1 on the other; PPV will not be equalized.

3.4.1 Mass Averaging. The mass-averaging technique is best illus-

trated with an example. Suppose that
ˆPд1 is uniform over {0, 0.5, 1},

and
ˆPд2 is uniform over {0, 1}. It is easy to define a soft post-

processor D̂soft
which equalizes these two APs. On д1, we leave the

score unchanged: D̂soft(s,д1) = s . On д2, we compute the output as

D̂soft(s,д2) =

{
s w.p. 2/3

0.5 w.p. 1/3
.

The APs for groups д1 and д2 of the resulting soft classifier Ŝ ′ =

D̂soft ◦ Ŝ are equal, and are equal to
ˆPд1 .

In the example, the probability mass is being redistributed by

averaging the scores. This can be equivalently viewed as adding

noise to the scores and then recalibrating the scores, something

discussed in [6].

More generally, a mass-averaging post processor D̂soft
assigns

to each possible pair (s,д) a distribution over possible output scores

s ′. Such a D̂soft
is fully specified by k · k ′ · |G| parameters, where

k is the number of possible values of s and k ′ is the number of

possible values of s ′. Given a soft classifier Ŝ and a mass-averaging

post processor D̂soft
, the constraint that the resulting APs are equal-

ized across groups is linear in these parameters. Such classifiers,

therefore, may be found by a linear program. We do not explore

the choice of mass-averaging post-processors further.

4 POST-PROCESSING CALIBRATED
CLASSIFIERS WITH DEFERRALS

In the first part of the paper, we considered the problem of post-

processing calibrated soft classifiers, which output a score s ∈

[0, 1], into fair hard classifiers, which output a decision in ŷ ∈

{0, 1}, subject to a number of group fairness conditions. In the

remainder of this work, we reconsider this problem, but with one

important change: we allow classifiers to “refuse to decide” by

outputting the special symbol ⊥. We call such classifiers deferring
classifiers, borrowing the nomenclature from [13]. The output ⊥

is the deferring classifier’s way of refusing to make a decision and

deferring to a downstream decision maker. For example, a risk

assessment tool might aid a parole board to make a decision by

categorizing an individual as high risk or low risk, or it might output

⊥—providing no advice and deferring to the judgment of the board.

We now modify our notation appropriately. Instances x are still

associated with a true type Y (x) ∈ {0, 1} and a group G(x) ∈ G.

A deferring hard classifier Ŷ is a randomized function Ŷ : X →

{0, 1,⊥}. A deferring soft classifier is a randomized function Ŝ :

X → [0, 1] ∪ {⊥}. A deferring hard (resp. soft) post-processor is a

randomized function D̂ : [0, 1] ∪ {⊥} × G → {0, 1,⊥} (resp. D̂soft
:

[0, 1] ∪ {⊥} × G → [0, 1] ∪ {⊥}) that takes as input the output of a

deferring soft and post-processes it into a deferring hard (resp. soft)

classifier. We also introduce new versions of the FPR and FNR,

conditioned on not deferring.

Definition 4.1. The conditional false positive rate and conditional
false negative rate of a deferring hard classifier Ŷ for a group д are,

respectively:

cFPRŶ ,д = Pr[Ŷ (Xд) = 1 | Y (Xд) = 0, Ŷ (Xд) , ⊥]

cFNRŶ ,д = Pr[Ŷ (Xд) = 0 | Y (Xд) = 1, Ŷ (Xд) , ⊥].

We additionally consider a version of the accuracy profile con-

ditioned on not deferring, which we call the conditional AP. For
non-deferring soft classifiers, Definitions 4.2 and 2.4 coincide.

Definition 4.2. The conditional AP ˆPд of a classifier Ŝ for a group

д is the PMF of Ŝ(Xд), conditioned on not outputting ⊥. That is,

for s ∈ [0, 1], ˆPд(s) = Pr[Ŝ(Xд) = s | Ŝ(Xд) , ⊥]. Note that the

conditional AP is undefined if Pr[Ŝ(Xд) , ⊥] = 0.

Abusing notation, we denote by
ˆP the collection { ˆPд}д∈G , and

call it the conditional AP of Ŝ .

The conditional error rates are applicable generally, but they can

be difficult to interpret. The consequences of using the conditional

FPR and FNR are discussed further in Section 6 along with a dis-

cussion of different deferral models. They are also amenable to the

consideration of additional goals which we will briefly address. For

example, one could seek to minimize the total deferral rate, equal-

ize the deferral rate among groups, or prefer deferrals on positive

instances.
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Figure 4: Threshold post-processors with deferrals defer between the thresholds.

4.1 Thresholding with deferrals
We return now to the problem of post-processing of calibrated

soft classifiers, but now with the extra power of deferring on some

inputs. We revisit the two approaches discussed in Section 3: thresh-

olding and equalizing accuracy profiles.

Proposition 3.2 stated PPV and NPV cannot both be equalized

across groups in general when using only a single threshold per

group. By using two thresholds per groups and deferring on some

inputs, PPV and NPV can always be equalized across groups.

We post-process using two thresholds per group as follows: re-

turn 0 when s is lower than the first threshold, return ⊥ between

the thresholds, and return 1 above the second threshold, as shown

in Figure 4. This buys us more degrees of freedom when equalizing

binary constraints, and it has the useful property that we say ⊥ on

the instances where we are the least confident about the predicted

type. We adapt our notation as follows:

Definition 4.3 (Deferring Threshold Post-Processor). A defer-

ring threshold post-processor D̂(τ0,τ1,R0,R1) assigns to each group

д two thresholds τ0(д), τ1(д) ∈ Supp( ˆPд), and two probabilities

R0(д),R1(д) ∈ [0, 1], with the following requirements:

(1) for all д ∈ G, τ0(д) ≤ τ1(д)
(2) for all д ∈ G for which τ0(д) = τ1(д), R1(д) + R0(д) ≤ 1.

This corresponds to the case where the two thresholds are

the same, and therefore individuals with that score must be

mapped to 1with probability R1(д), and to 0with probability
R0(д), with the remainder mapped to ⊥.

The corresponding threshold post-processor is defined as follows:

D̂(τ0,τ1,R0,R1)(s,д) =



1 s > τ1(д)

0 s < τ0(д)

⊥ τ0(д) < s < τ1(д)

1 w.p. R1(д), else ⊥ s = τ1(д)

0 w.p. R0(д), else ⊥ s = τ0(д)

1 w.p. R1(д), 0 w.p. R0(д), else ⊥ s = τ0(д) = τ1(д)

⊥ s = ⊥

Using two thresholds allows the equalization of both PPV and

NPV across groups in general, whereas without deferrals we could

only equalize one or the other. In our full paper [3], we first demon-

strate the existence of near-trivial classifiers that equalize PPV and

NPV by deferring on all but the highest and lowest scores. We now

claim the existence of meaningful non-trivial threshold deferring

post-processors that equalize PPV and NPV across groups.

Proposition 4.1 (Proof in [3]). Let Ŝ be a soft classifier with
nice AP that is groupwise calibrated for a set of groups G. Suppose

that |Supp( ˆPд)| ≥ 2 for all д ∈ G. Then there exists a non-trivial
threshold post-processor D̂(τ0,τ1,R0,R1) such that the hard classifier
Ŷ = D̂(τ0,τ1,R0,R1) ◦ Ŝ equalizes PPVд and NPVд for all д ∈ G.

The following example demonstrates that it is sometimes possi-

ble to equalize PPV, NPV, FPR, and FNR using deferrals, but without

equalizing the APs themselves:

Example 4.1 (Eqalizing PPV, NPV, cFPR, and cFNR with

Thresholds). This example is presented with continuous support
[0, 1] for simplicity. Consider two APs, one for group д1 and one
for д2. Let the AP for д1 be uniform (with density give by the line
ˆP(s) = 1), and let the AP for group д2 have density given by the
parabola ˆP(s) = 6s(1 − s), as shown in Figure 5.

Consider the post-processor D̂soft
(τ0,τ1)

. Let τ0(д1) = τ0(д1) = 0.5, let

τ0(д2) =
1

6
(5−

√
7) and let τ1(д2) = 1− 1

6
(5−

√
7) as shown in Figure

5.
The PPV and NPV of both groups is 3

4
, and the cFPR and cFNR of

both is 1

4
, thus equalizing all four values.

This example is somewhat unsatisfactory because the base rates are
equal in the two groups. We did not find a similar example without
equal base rates.

Figure 5: This threshold post-processor equalizes PPV, NPV, cFPR, and cFNR as
described in Example 4.1.

4.2 Equalizing APs with deferrals
As with Claim 3.1, equalizing the conditional APs between groups

renders trivial the task of downstream decision-making subject

to equality of PPV, NPV, cFPR, and cFNR. Importantly, unlike in

Section 3.4, equalizing the conditional APs between groups does

not require the groups to have equal base rates, greatly increasing

the applicability of this approach.

Claim 4.1. If the conditional APs are equal for two groups, then
PPV, NPV, cFPR, and cFNR are equalized (or simultaneously undefined)
by any hard deferring post-processor D̂ satisfying (1) group blindness
and (2) D̂(⊥,д) = ⊥ (∀д).

The additional condition—that D̂ defers on input⊥—is necessary:

if D̂ output 1 on all inputs (even on ⊥), then PPV would remain

unequal as long as the base rates differed. The proof is similar to

the proof of Claim 3.1 and is included in the full version [3].

Deferrals are a powerful tool formanipulating, and thereby equal-

izing, conditional APs. Consider a function Q : (s,д) 7→ [0, 1]

D̂soft
Q (s,д) =

{
⊥ if s = ⊥

⊥ w.p. Q(s,д), else s otherwise
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If Ŝ is a calibrated classifier, the soft deferring classifier Ŝ ′ := D̂soft
Q ◦Ŝ

is still calibrated. For a group д, let ˆPд be the AP of Ŝ and
ˆP ′
д be

the AP of Ŝ ′. There is a simple graphical intuition for the shape of

ˆP ′
д , as shown in Figure 6.

The following theorem, proved in the full version [3], states

that any conditional AP can be transformed into almost any other

conditional AP by appropriate choice of Q .

Theorem 4.1. Let ˆPд be a conditional AP of a soft classifier Ŝ
on group д, and let ˆP∗ be any probability mass function such that
Supp( ˆP∗) ⊆ Supp( ˆPд). Then there exists Q for which the calibrated
AP ˆP ′

д of D̂soft
Q ◦ Ŝ is equal to ˆP∗.

Together, Theorem 4.1 and Claim 4.1 suggest a general frame-

work for using deferrals to post-process a soft, possibly deferring

classifier Ŝ which is groupwise calibrated into a hard deferring clas-

sifier which simultaneously equalizes PPV, NPV, cFPR, and cFNR

across groups, as follows.

For each д ∈ G, let
ˆPд be the conditional AP of Ŝ for group д. Let

ˆP∗
be any conditional AP such that Supp( ˆP∗) ⊆ ∩д∈GSupp( ˆPд).

Use Theorem 4.1 to equalize the conditional AP for all groupsд ∈ G.

Then use any hard post-processor D̂ satisfying the requirements

of Claim 4.1 to make the ultimate deferring hard classifier. This

method is shown in Figure 6.

This framework allows for enormous flexibility in the choice of

both
ˆP∗

and D̂, even when considering just two groupsд1 andд2. In
Figure 9, we illustrate the first step of the framework on a COMPAS

dataset using min{ ˆPд1 ,
ˆPд2 } as

ˆP∗
, where д1 is African-Americans

and д2 is Caucasians. In Figure 8 in Section 5, we also use
ˆPд1 and

ˆPд2 as
ˆP∗
.

Figure 6: Choosing deferrals appropriately allows transforming one AP into
another (conditional) AP. In this example, the solid orange line is the original
AP ˆPд = Pr[Ŝ (Xд ) = s]. By deferring at the rates indicated by the shaded region,
the resulting conditional AP ˆP′

д = Pr[Ŝ (Xд ) = s | Ŝ (Xд ) , ⊥] is represented
by the dark blue line. The area of the shaded region is ∆.

One can design
ˆP∗

to achieve additional goals. For example, the

choice
ˆP∗ = min{ ˆPд1 ,

ˆPд2 } results in equal deferral rate across
each group (equal to the total variation distance between the two

initial conditional APs). The framework can be further expanded

by combining deferrals with other methods for manipulating con-

ditional APs, including the mass-averaging discussed in Section 3.4.

A better understanding of these techniques is left for future work.

5 EXPERIMENTS ON COMPAS DATA
We demonstrate the validity of our methodology on the Broward

County data containing the recidivism risk decile scores of the COM-

PAS tool [1]. We restrict our attention to the subset of defendants

whose race is recorded as either African-American or Caucasian.

Our code can be found at: https://github.com/nishanthdikkala/

postprocessing-deferrals

It has been shown that the COMPAS scoring mechanism is an

approximately calibrated soft classifier with 10 possible outcomes

across the two race groups of African-Americans and Caucasians.

We note here that the distribution of the COMPAS scores differs

significantly across the two groups. In particular, the scores for

African-Americans are more evenly distributed as opposed to the

skewed distribution seen with Caucasians.

Thresholding with Deferrals. We first ran our two-threshold post-

processing mechanism (Section 4.1) and obtained a binary decision

algorithm with deferrals which equalizes both PPV and NPV across

Caucasians and African-Americans (See Figure 7). We observe that

the percent of deferrals in total is smaller than 20% of the decisions

to be made which shows that a fairly large number of the defen-

dants can be classified in this manner without having to defer to a

downstream decision maker.
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Figure 7: Two thresholds are applied to each AP for the COMPAS data from
2016, (approximately) equalizing PPV and NPV. In the left (right) plot we show
the thresholds for the African American (Caucasian) group.

Next we look at our post-processing mechanisms to equalize all

four quantities PPV, NPR, FPR, and NPR using deferrals (Section 4.2).

As was noted earlier in the paper, equalizing the APs of the two

groups post-deferral achieves the goal of equalizing all four of the

above quantities. We implement two methods for doing so.

Converting one AP into Another. In the first method, decisions

are deferred only on one group so as to convert its AP into that

of the other group. First, we consider deferring only on African-

Americans to convert their AP into that of Caucasians (left side of

Figure 8); next, decisions are deferred only for Caucasians (right

side of Figure 8).

Equalizing APs. Alternately we have a second method where

decisions are deferred for an equal fraction of Caucasians and of

African Americans (Figure 9). This fraction is precisely the total
variation distance between the two APs.
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Figure 8: Two instances of our conditional AP equalization method applied to
COMPAS data from 2016. On the left (right) plot, we use deferrals to create a
conditional AP for African-Americans (Caucasians) that matches the AP for
Caucasians (African-Americans).
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Equalizing AP using the minimum method.
 Total deferral rate in each group = 24.5%
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Figure 9: A version of our conditional AP equalizationmethod. The conditional
AP has the same distribution as the pointwise minimum of the two APs. The
total deferral rate is equalized across the two groups (equals the TV distance
between the two APs), but the distribution of deferrals across scores is not.

Observations. We observe several interesting phenomena on the

COMPAS data set. First, using the method of deferring only on

African-Americans we defer on roughly 36% of the total decisions.

This number goes down to roughly 25% when we defer only on

Caucasians. This seems to suggest as a general heuristic to try and

use deferrals on the group with smaller size. The total deferral

fraction is also roughly 25% when we defer on an equal fraction of

Caucasians and African-Americans.

Second, for all three methods that equalize the accuracy profiles,

for this particular dataset, deferrals happen more on the “extremes”,

namely on individuals with respect to which the classifier had

relatively high confidence (either close to 0 or close to 1). This

stands in sharp contrast to how the two-threshold method (Figure 7)

distributes its deferrals—they occur in the middle of the distribution

(examples on which the classifier is “unsure”). While it may seem

somewhat counter-productive to defer on these individuals, any

method that seeks to first equalize the accuracy profiles will have

to defer most on the scores which appear in different probabilities

across the two groups (which, for the COMPAS predictor, is at the

extremes). Furthermore, deferring on such scores may make sense

from a social point of view: When a score appears at drastically

different rates for different groups, perhaps deferring to another

decision mechanism can be used to check for systemic bias in the

present one.

Alternatively, one can view the above observation as proposing

a design criterion for calibrated soft classifiers. That is, if one wants

to have a classifier that defers only on individuals for which the

classifier has less confidence, and still guarantee that the APs for the

protected groups are equal, conditioned on not deferring, then one

should design the soft classifier so that the APs for the protected

groups are the same (or almost the same) close to 0 and close to

1. Indeed, if the COMPAS classifier had these properties, then our

post-processing algorithm would have deferred only (or, mainly) on

individuals with low certainty (namely "medium risk" individuals).

6 MODELS OF DEFERRING
Whether or not a classifier is thought of as promoting fairness

depends on the context; this is true for both deferring and non-

deferring classifiers. In addition to themyriad considerations present

for non-deferring classifiers, deferring classifiers and downstream

decision makers introduce some additional axes for consideration.

Cost to the individual: Even though it is not intended to be a

final decision, a deferral may impose burdensome costs to an in-

dividual being classified. It may mean that a defendant remains

in jail while additional hearings are scheduled, that invasive and

expensive medical tests are ordered, or that continued investigation

engenders social stigma. These costs may not be borne equally by

all individuals, and may depend on their group membership, their

true type, or other factors. For example, a delay in granting a loan

to a applicant may overly burden poorer applicants, even those

very likely to repay.

Cost to the decider: Allowing deferrals might make the decision

process more cost-effective: Given that in most cases making a

determination is cheap, one may now invest more in the deferred

cases. For instance, a team of trained moderators might be hired

to manually review content on which an automated content filter

defers, or an expensive investigationmight be required to adjudicate

insurance claims that are not cut-and-dry.

Accuracy of downstream decision. One reason to defer is to intro-

duce a delay that will allow for a more accurate decision. Thus the

usefulness of allowing a classifier to defer depends on the accuracy

of the downstream decision maker. Additional medical tests might

allow for highly accurate diagnoses. But a judge deciding bail will

be prone to a variety of errors and biases.

“Fairness” of downstream decision (and of composed classifier).
Similar to the above, the fairness of the downstream decision maker

(however one wants to interpret that) will impact our interpreta-

tion of the deferring classifier. Here one should take into account

also the "procedural" aspect of the two-step evaluation; here it is

important that the downstream classifier will be deemed as "more

fair" and "more knowledgeable" than the first stage. Exploring fair-

ness criteria for systems of deferring classifiers and downstream

decision-makers, e.g. as done in [2] did for non-deferring classifiers,

is an interesting direction for future work.

Frequency of decisions. In many settings, the deferring classifier

is a fast, automated test (e.g., automated risk assessment) while the

downstream decision maker is a slow, manual process (e.g., parole

board). However, we anticipate situations in which there may be
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repeated deferring classifiers chained together which comprise the

complete decision making pipeline. For example, a doctor might

have a sequence of diagnostic tests at her disposal as needed, or

a bank might allow many rounds of appeal for loan applications,

but with lengthy delays. Some applications might even permit hun-

dreds or thousands of near-continuous deferring classifiers. As an

example, consider a live video streaming platform that passively

monitors streams for inappropriate content in real time. The auto-

mated passive monitor might decide the content is inappropriate,

and shut it down; appropriate, and continue passive monitoring; or

suspicious (by deferring), and begin active monitoring by devoting

more computing resources or bringing in a human moderator.

6.1 Technical implications of deferral model
The contextual considerations discussed above directly impact the

appropriate application of a deferring classifier and its goals. An

obvious goal is to minimize the overall rate of deferrals while main-

taining the best possible FPR, FNR, PPV, and NPV for the classifier

conditioned on not deferring, and without considering the dis-

tribution of deferrals. However, one might desire very different

properties from the distribution of deferrals in different contexts.

The deferrals may be distributed differently among individuals

with different true type, group membership, or soft-classifier scores,

while the burden imposed by deferrals and errors may differ greatly

between different populations.

In a medical diagnosis scenario, a false negative (i.e., failing to

diagnose a disease) may have serious consequences, and deferring

to run additional non-invasive and inexpensive additional tests may

be generally acceptable. On the other hand, an insurance provider

may prefer to minimize expensive investigations by paying out

more false claims.

The context may also affect the way one defines the deferral

analogues of FPR and FNR. While calibration, PPV, and NPV apply

directly to deferring classifiers, it is not clear how best to generalize

the definitions of error rates. For example, consider false positive

rate: by Definition 2.5, the false positive rate of a non-deferring hard

classifier Ŷ for a group д is FPRŶ ,д = Pr[Ŷ (Xд) = 1 | Y (Xд) = 0].

The approachwe take in Section 4 is to condition on not deferring

(Definition 4.1). A deferring classifier Ŷ that output 1 on half of

true negative instances (within a д) would have conditional false

positive rate as low as 0.5 (if it never output ⊥ on true negatives) or

as high as 1 (if it never output 0 on true negatives). The conditional

false positive rate is agnostic towards the downstream decision

maker. It codifies no value judgements as to whether a deferral

is desirable or undesirable as an individual nor whether deferrals

ultimately result in accurate or inaccurate decisions. This is, itself,

a value judgement.

A second approach is to leave the original definition unchanged.

The same deferring hard classifier as above would have uncon-

ditional false positive rate 0.5. This would be true regardless of

whether Ŷ output 0 or⊥ on the other half of true negative instances.

We call this the unconditional false positive rate. The unconditional
false positive rate effectively categorizes deferrals as correct out-

puts. This may be appropriate if the downstream decision maker

has very high accuracy. If, for example, a doctor orders an addi-

tional, more accurate diagnostic test in response to a deferral, the

unconditional false positive rate might be appropriate.

Finally, a third approach is to base our measure of inaccuracy on

true negatives instead of false positives, a reverse of the above.

Just as in the case of non-deferring classifiers, the relationships

among these contrasting group statistics, their meaningfulness in

different settings, and their application in different settings are not

well understood and deserve further study.
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