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ABSTRACT

A popular methodology for building binary decision-making classi-
fiers in the presence of imperfect information is to first construct a
calibrated non-binary “scoring" classifier, and then to post-process
this score to obtain a binary decision. We study various fairness (or,
error-balance) properties of this methodology, when the non-binary
scores are calibrated over all protected groups, and with a variety
of post-processing algorithms. Specifically, we show:

First, there does not exist a general way to post-process a cal-
ibrated classifier to equalize protected groups’ positive or nega-
tive predictive value (PPV or NPV). For certain "nice" calibrated
classifiers, either PPV or NPV can be equalized when the post-
processor uses different thresholds across protected groups. Still,
when the post-processing consists of a single global threshold across
all groups, natural fairness properties, such as equalizing PPV in a
nontrivial way, do not hold even for "nice" classifiers.

Second, when the post-processing stage is allowed to defer on
some decisions (that is, to avoid making a decision by handing off
some examples to a separate process), then for the non-deferred
decisions, the resulting classifier can be made to equalize PPV,
NPV, false positive rate (FPR) and false negative rate (FNR) across
the protected groups. This suggests a way to partially evade the
impossibility results of Chouldechova and Kleinberg et al., which
preclude equalizing all of these measures simultaneously. We also

“The order of authors is alphabetical and does not convey any information on the
authors’ relative contributions. The authors are thankful for the helpful feedback of
the anonymous reviewers. The full version of this paper can be found at [3].
 Member of CPIIS. Supported by NSF awards 1413920 & 1801564, ISF award 1523/14.
iSupparted by NSF award CNS-1413920, the 2018 Facebook Fellowship, and MIT’s
RSA Professorship and Fintech Initiative.

SSupported by NSF award CCF-1617730, CCF-1650733, and ONR N00014-12-1-0999.
ISupported by NSF award CCF-1665252 and NSF award DMS-1737944.

'Supported by the Clare Boothe Luce Graduate Research Fellowship and NSF award
1414119.

“*Supported in part by NSF awards IIS-1447700 and AF-1763786 and a Sloan Foundation
Research Award.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FAT* °19, January 29-31, 2019, Atlanta, GA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6125-5/19/01...$15.00
https://doi.org/10.1145/3287560.3287561

309

present different deferring strategies and show how they affect the
fairness properties of the overall system.

We evaluate our post-processing techniques using the COMPAS
data set from 2016.
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1 INTRODUCTION

The concept of fairness is deeply ingrained in our psyche as a
fundamental, essential ingredient of Human existence. Indeed the
perception of fairness, broadly construed as accepting each others’
equal right for well being, is arguably one of the most basic tenets
of cooperative societies of individuals in general.

However, as fundamental as this concept may be, it is also elusive:
different cultures have developed very different notions of fairness
and equality among individuals, subject to religious, ethical, and
social beliefs; in particular, the intricate interplay between fairness
and justice is often left to subjective interpretation.

In the context of decision processes, fairness is further compli-
cated by the fact that decisions are often made with incomplete
information and limited resources. These two factors have become
increasingly prominent as society grows and decision processes
become more complex and algorithmic.

One way that researchers are responding to these growing con-
cerns is by attempting to formulate precise notions for fairness
of decisions processes, e.g. [5, 7, 12]. While these notions do not
intend to capture the complexities of the ethical, socio-economic, or
religious aspects of fairness, they do consider the fairness aspects of
statistical decision-making processes with incomplete information.
Essentially, these notions accept the fact that a decision process
with incomplete information will inevitably make errors relative
to the desired full-information notion (which is treated as a given),
and provide guidelines on how to “balance the errors fairly” across


https://doi.org/10.1145/3287560.3287561
https://doi.org/10.1145/3287560.3287561

FAT™ ’19, January 29-31, 2019, Atlanta, GA, USA

individuals or groups of individuals. These definitions have proven
to be meaningful and eye opening; in particular, it has been demon-
strated that some very natural measures of “fair distribution of error”
are mutually inconsistent: No decision mechanism with incomplete
information can satisfy all, except in trivial cases [4, 12].

Faced with this basic impossibility, we aim to better understand
the process of decision making with incomplete information, and
propose ways to relax the known measures so as to regain feasibil-
ity.

Specifically, we concentrate on the task of post-processing a
calibrated soft classifier to obtain a binary decision, under group
fairness constraints, for the case of several disjoint protected groups.

That is, we consider the following two-stage mechanism. The
first stage consists of constructing a classifier S that outputs for
each individual x a score s € [0, 1] that is related to the chance that
x has property B. The only requirement we make of $ is group-wise
calibration: For each group g and for each s € [0, 1], the fraction
of individuals in g that get score s and have the property, out of
all individuals in g that get score s, is s. The second stage takes as
input the output s = S(x) of the first stage and the group to which
x belongs, and outputs a binary decision, interpreted as its guess at
whether x has property B.

The first stage is aimed at gathering information and providing
the best accuracy possible, with only minimal regard to fairness (i.e
only group-wise calibration). The second stage extracts a decision
from the information collected in the first stage, while making sure
that the errors are distributed “fairly”

To further focus our study, we take the first stage as a given
and concentrate on the second. That is, we consider the problem of
post-processing the scores given by the calibrated soft classifier §
into binary predictions. A representative example is a judge making
a bail decision based on a score provided by a software package.
Following [4, 9], we consider the following four performance mea-
sures for the resulting binary classifier: the positive predictive value
(PPV), namely the fraction of individuals that have the property
among all individuals that the classifier predicted to have the prop-
erty; The false positive rate (FPR), namely the fraction of individuals
that were predicted to have the property among all individuals that
don’t have the property; The negative predictive value (NPV) and
false negative rate (FNR), which are defined analogously. Ideally,
we would like to equalize each one of the four measures across the
groups, i.e. the measure will have the same value when restricted
to samples from each group. Unfortunately, however, we know
that this is impossible in general [4, 12]. This leads us to a broad
question that motivates our work:

Under what conditions can we post-process a cali-
brated soft classifier’s outputs so that the resulting
hard classifier equates a subset of {PPV, NPV, FNR, FPR}
across a set of protected groups? How can we balance
these conflicting goals?

Results: Post-Processing With Thesholds. In a first set of results we
consider the properties obtained by post-processing via a “thresh-
old” mechanism. Naively, a threshold post-processing mechanism
would return 1 for individual x whenever the calibrated score s(x) is
above some fixed threshold, and return 0 otherwise. We somewhat
extend this mechanism by allowing the post-processor “fine-tune”

310

R. Canetti, A. Cohen, N. Dikkala, G. Ramnarayan, S. Scheffler, and A. Smith

its decision by choosing the output probabilistically whenever the
result of the soft classifier is exactly the threshold.

We first observe that the popular and natural pos-t-procesing
method of using a single threshold across all groups has some
inherent deficiency: No such mechanism can in general guarantee
equality of either PPV or NPV across the protected groups.

We then show that, when using different thresholds for the
different groups, one can equalize either PPV or NPV (but not both)
across the two groups, assuming the profile of $ has some non-
degeneracy property.

The combination of the impossibility of single threshold and the
possibility of per-group threshold also stands in contrast to the be-
lief that a soft classifier that is calibrated across both groups allows
“ignoring” group-membership information in any post-processing
decision [14]. Indeed, the conversion to a binary decision “loses
information” in different ways for the two groups, and so group
membership becomes relevant again after post-processing.

Results: Adding deferrals. For the second set of results we con-
sider post-processing strategies that do not always output a decision.
Rather, with some probability the output is L, or “I dont know",
which means that the decision is deferred to another (hopefully
higher quality, even if more expensive) process. Let us first present
our technical results and then discuss potential interpretations and
context.

The first strategy is a natural extension of the per-group thresh-
old: we use two thresholds per group, returning 1 above the right
threshold, 0 below the left threshold, and L between the thresholds.
We show that there always exists a way to choose the thresholds
such that, conditioned on the decision not being L, both the PPV
and NPV are equal across groups.

Next we show a family of post-processing strategies where, con-
ditioned on the decision not being L, all four quantities (PPV, NPV,
FPR, FNR) are equal across groups.

All strategies in this family have the following structure: Given
an individual x, the strategy first makes a randomized decision
whether to defer on x, where the probability depends on S(x) and
the group membership of x. If not deferred, then the decision is
made via another post-processing technique.

One method for determining the probabilities of deferral is to
make sure that the profiles of scores returned by the calibrated soft
classifier, conditioned on not deferring, is equal for the two groups
(That is, let ps, g denote the probability, restricted to group g, that an
element gets score s conditioned on not deferring. Then for any s,
we choose deferral probabilities so that ps g, = ps, g,.) The resulting
classifier can then be post-processed in any group-blind way (say,
via a single threshold mechanism as described above).

Of course, the fact that all four quantities are equalized con-
ditioned on not deferring does not, in and of itself, provide any
guarantees regarding the fairness properties of the overall decision
process — which includes also the downstream decision mechanism.
For one, it would be naive to simply assume that fairness “composes”
[8]. Furthermore, the impossibility of [4, 12] says that the overall
decision-making process cannot possibly equalize all four measures.
However, in some cases one can provide alternative (non-statistical)
justification for the fairness of the overall process: For instance, if
the downstream decision process never errs, the overall process
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might be considered “procedurally fair” We present more detailed
reflections on our deferral-based approach in Section 6.

We note that deferring was considered in machine learning in a
number of contexts, including the context of fairness-preservation
[13]. In these works, the classifier typically defers only when its
confidence regarding some decision is low. By contrast, we use
deferrals in order to “equalize” the probability mass functions of
the soft classifier over the two groups, which may involve deferring
on individuals for whom there is higher confidence. Furthermore,
our framework allows for a wide range of deferral strategies which
might be used to promote additional goals. Pursuing alternate strate-
gies for deferral is an interesting direction for future work.

Experimental results. We demonstrate the validity of our method-
ology on the Broward county dataset with COMPAS scores made
public by ProPublica [1]. Indeed, it has been shown that the COM-
PAS scoring mechanism is an approximately calibrated soft clas-
sifier. We first ran our two-threshold post-processing mechanism
and obtained a binary decision algorithm which equalizes both PPV
and NPV across Caucasians and African-Americans.

We then ran our post-processing mechanism with deferrals to
equalize all four of PPV, NPV, FPR, FNR across the two groups,
with three different methods for deciding how to defer: In the first
method, decisions are deferred only for Caucasians; in the second,
decisions are deferred only for African Americans; in the third
method, decisions are deferred for an equal fraction of Caucasians
and of African Americans. This fraction is precisely equal to the
statistical (total variation) distance between the profiles of scores
produced by the soft classifier on the two groups. More details
about the results are given in Section 5.

1.1 Related work

We briefly describe the works most closely related to ours, though
both the list of works and their summaries are inevitably too short.
Our work fits in a research program on group fairness notions
following the work of Chouldechova [4] and Kleinberg et al. [12].
Our work considers the notions of calibration as formalized in [16]
and those of PPV, NPV, FPR, and FNR from [4] and [12].

The power of post-processing calibrated scores into decisions
using threshold classifiers in the context of fairness has been pre-
viously studied by Corbett-Davies, Pierson, Feller, Goel, and Huq
[6]. As in our work, they show that it is feasible to equalize certain
statistical fairness notions across groups using (possibly different)
thresholds. They additionally show that these thresholds are in
some sense optimal. Whereas [6] focuses on statistical parity, condi-
tional statistical parity, and false positive rate, our most comparable
results consider PPV. In our work, we further show that in some
cases thresholds fail to equalize both PPV and NPV (called predictive
parity by [4]), unless we also allow our post-processor to defer on
some inputs. Our work also studies methods of post-processing
that are much more powerful than thresholding, especially when
allowing deferrals.

Using deferrals to promote fairness was also considered by Zemel,
Madras, and Pitassi [13]. Specifically they consider how deferring on
some inputs may promote a combination of accuracy and fairness,
especially when taking explicit account of the downstream decision
maker. They make use of two-threshold deferring post-processors
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like those discussed in Section 4. [13] takes a more experimental
approach and focuses on minimizing the “disparate impact,” a mea-
sure of total difference in classification error between groups, while
maximizing accuracy. One important difference between our works
is that Madras et al. distinguish between “rejecting” and “deferring”
Rejecting is oblivious as to properties of the downstream decision
maker, while deferring tries to counteract the biases of the decision
maker. Our work considers only the former notion, but uses the
term "defer" instead of "reject.”

Our work inherits both the strengths and weakness of the group
fairness research program. The clear definitions and goals of group
fairness have have catalyzed the field and caused rapid progress:
early infeasibility results [4, 12], positive results for complex and
intersecting collections of groups [10, 11], and extensions to the
basic model—including [13, 14] and this work. The formalization
of group fairness has fostered precise discussion and greater un-
derstanding, including of its shortcomings. Group fairness notions
have been criticized for not fully capturing the complex social goals
that motivate our community’s interest in fairness: failure to com-
pose [8], failure to adequately capture people’s wellbeing [5], and
failure to prevent against certain social evils [7]. However, we are
optimistic that improving our understanding of group fairness will
contribute to the successful study of algorithmic fairness generally.

2 PRELIMINARIES

We study the problem of binary classification. An instance is an
element, usually denoted x, of a universe X. We restrict our at-
tention to instances sampled uniformly at random from the uni-
verse, denoted X ~ X. Our theory extends directly to any other
distribution on X; that distribution does not need to be known
to the classifiers. Each instance x is associated with a true type
Y(x) € {0,1}. Each instance x is also associated with a group
G(x) € G, where G is the set of groups. We restrict our atten-
tion to sets G that form a partition of the universe X. We denote by
Xy the set of instances x in group g, and by X, the random variable
distributed uniformly over X;. Note that for any events E; and Ea,
Prx.x,[E1 | E2] = Prx.x[E1 | E2,G(X) = g].

Definition 2.1 (Base rate (BR)). The base rate of a group g € G, is
BR, = Pr[Y(X,) = 1] = E[Y(X,)].

When X is finite, BRy is simply the fraction of individuals x in the
group g for whom Y(x) = 1.

A classifier is a randomized function with domain X X G. A hard
classifier, denoted 1?, outputs a prediction in {0, 1}, interpreted as a
guess of the true type Y(x). A soft classifier, denoted S, outputs a
score s € [0, 1], interpreted as a measure of confidence that Y(x) = 1.
We restrict our attention to soft classifiers with finite image. We
call a classifier group blind if its output is independent of the input
group g. For all groups g € G, we call a hard classifier Y non-trivial
ong ifPr[f/(Xg) =1] > 0and Pr[f/(Xg) = 0] > 0. Hard classifiers
are trivial on g if they are not non-trivial on g.

A post-processor is a randomized function with domain [0, 1] X G.
As with classifiers, a post-processor can be hard or soft. A hard
post-processor, denoted D, outputs a prediction in {0, 1}. A soft
post-processor, denoted Dsoft, outputs a score s € [0, 1]. Observe
that for a soft classifier § Do Sisahard classifier, and Dsoft 5 § is
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Figure 1: We call a classifier that returns results in [0, 1] a soft classifier to
differentiate it from those which return results in {0, 1}, which we call hard
classifiers. We refer to classifiers that take as input the output of a soft classi-
fier as post-processors.

a soft classifier. As with classifiers, we call a post-processor group
blind if its output is independent of the group g, and we restrict
our attention to post-processors with finite image. The restriction
to finite image is for mathematical convenience and also because
digital memory leads to discrete universes; our results generalize
to infinite images as well.

In Section 4, we expand the definitions of both classifier and
post-processors to allow an additional input or output: the special
symbol 1, indicating a deferral.

2.1 Calibration

Several works concerning algorithmic fairness focus on various
notions of calibration. The following calibration notions are defined
only over soft classifiers:

Definition 2.2 (Calibration (Soft)). We say a soft classifier Sis
calibrated if Vs € [0, 1] for which Pry.x[S(X) = s] > 0,
Pr[Y(X)=1|8X)=s]= E [Y(X)|S(X)=s]=s.
X~X X~X
The probability above is taken over the sampling of X, as well as
random choices made by $ at classification time.

Definition 2.3 (Groupwise Calibration (Soft)). We say that a soft
classifier S is groupwise calibrated if it is calibrated within all groups.
That is, Vg € G and Vs € [0, 1] for which Pr[§(Xg) =s] > 0, we
have that

PrY(Xy) = 1| $(Xy) =s] =s.

Groupwise calibration is essentially the same notion as multical-
ibration [10] with the difference that in their case the true types are
values in [0, 1]. We use a different term to emphasize that we restrict
our attention to collections of groups G that form a partition of the
universe X.

The two definitions above are stated for soft classifiers whose
output distribution is discrete, since we must be able to condition
on the event $(X) = s or §(Xg) = 5. That said, it extends naturally
to classifiers with continuously-distributed outputs provided that
the conditional probabilities are well defined.

2.2 Accuracy Profiles
Throughout this work, we make repeated reference to the probabil-
ity mass function of the random variable S (Xg) for a calibrated soft

classifier $ acting on a randomly distributed input Xgy. We call this
distribution on calibrated scores an accuracy profile (AP).

Definition 2.4 (Accuracy Profile (AP)). The accuracy profile (AP)
of a calibrated soft classifier S for a group g, denoted by f*‘g, is the
PMF of $(Xg). That is, for s € [0, 1], P(s) = Pr[S(Xy) = s].
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Abusing notation, we denote by P the collection {Ség }geg, and
call it the AP of S. We denote by Supp(ﬁg) the support of the AP ¢’g,
namely the set Supp(fé) ={s:3x € Xy, Irst. S(x,r) = s} [0, 1].

An accuracy profile is a distribution of scores for a calibrated
classifier $. Because S is calibrated, the AP conveys information
about the performance of $, and is constrained by properties of the
underlying distribution on X. For example, the AP’s expectation is
exactly the base rate for the population:

PRrROPOSITION 2.1 (PROOF 1IN [3]). For any groupwise calibrated
soft classifier S, for all groups g € G: BRy = E[S(Xg)].

Accuracy profiles also provide useful geometric intuition for
reasoning about the effects of post-processing calibrated scores. We
elaborate on this in Section 3.1 (see Figure 2).

2.3 Group Fairness Measures

Several well-studied measures of statistical “fairness” (e.g., [4, 9-
12, 16]) look at how the following key performance measures of a
classifier differ across groups. We define these statistics formally:

Definition 2.5. For a hard classifier ¥ and group g, we define the
false positive rate of ¥ for g:
FPRy , = PrY(Xg) = 1] Y(Xg) = 0];
false negative rate of Y for g:
FNR?’g =Pr[Y(Xy) = 0] Y(Xg) = 1];
positive predictive value of Y for g:
PPVY’g =Pr[Y(Xg) = 1| Y(Xy) = 1];
negative predictive value of Y for g:
NPVy = Pr{Y(Xg) = 0| Y(Xg) = 0].

The probability statements in the definitions above reflect two
sources of randomness: the sampling of XgAfrom the group g and
any random choices made by the classifier Y.

Among previous works, some [9, 12, 15] focus on equalizing only
one or both of the false positive rates and false negative rates across
groups, called balance for the negative and positive classes, re-
spectively. Equalizing positive and negative predictive value across
groups is often combined into one condition called predictive parity
[4]. We split the value out to be a separate condition for the positive
and negative predictive classes. Predictive parity appears to be a
hard-classifier analogue of calibration: both can be interpreted as
saying that the output of the classifier (hard or soft) contains all the
information contained in group membership. Our results highlight
that the relationship between these notions is more subtle than it
first appears; see Section 3 for further discussion.

3 THE LIMITS OF POST-PROCESSING

Suppose throughout this section that $ is a groupwise calibrated
soft classifier. Our goal in this section is to make binary predictions
based on S(x) — and possibly the group G(x) — subject to equalizing
PPV among groups. That is, we wish to make a prediction using a
hard post-processor D such that ¥ = D o § equalizes PPV among
groups. We chose to concentrate first on (the limitations of) equal-
izing PPV rather than FPR and FNR due to the conceptual similarity
of PPV to calibration, and we address NPV in [3]. Also, the case of
equalizing false positive rates with thresholds is addressed in [6].



From Soft Classifiers to Hard Decisions: How fair can we be?

expected FP

s]

expected FN |

PrIS(Xg)

expected TN expected TP

0.0 02 04 0.6 0.8 1.0

s
Figure 2: Accuracy profiles (APs, definition 2.4) yield useful geometric intu-
itions, which come from the calibration property (definition 2.2). The dashed
line is the AP multiplied by the y = x line; the region below this line shows the
expected positives and above shows the expected negatives. With a threshold,
the expected PPV, NPV, FPR, and FNR can be seen visually.

3.1 Fairness Conditions for Post-Processors

We begin by making a simple observation about post-processing
that provides some geometric intuition for the rest of this section.
Just as in Proposition 2.1, we can express PPVy g succinctly in

terms of conditional expectations over the AP ?A)g. We state this
formally in Proposition 3.1.

PROPOSITION 3.1 (PROOF IN [3]). LetY = Do be a hard classifier
that is non-trivial for all g € G where S is groupwise calibrated with
respect to G. For any g € G we have:

PPVy 4 = E[S(Xy) | Y(Xg) = 1]

This characterization of PPV and NPV in terms of conditional
expectations lets us geometrically see how certain post-processing
decision rules will interact with the AP for a group g. For example,
Figure 2 shows the expected true positives, true negatives, false
positive, and false negatives when using a threshold.

3.2 General impossibility of equalizing PPV

It is not always possible to directly post-process a soft groupwise
calibrated classifier into a hard one with equalized PPV (or NPV) for
all groups, as we demonstrate by counterexample in Proposition 3.2.
Before proceeding, we note that our counterexample is somewhat
contrived—in particular, the AP induced by the soft classifier S in
the proof of Proposition 3.2 takes only one value on each group.
When the AP of $ is more nicely structured on each group, we will
see that there are general methods to equalize PPV (or NPV).

ProposITION 3.2. Fix two disjoint groups g1 and gz with respective
base rates BR1 and BRy such that BRy # BRy. Then there exists a
soft classifier S that is groupwise calibrated, butfor which there is no
post- processorD [0,1] x G — {0, 1} such that Do S equalizes PPV,
unless Pr[ﬁ(BRi,gl) =1]=0fori=1or2

PROOF OF PROPOSITION 3.2. Consider the classifier $ such that
S(x) = BR; if x € g1 and S(x) = BRy if x € g2. This classifier is
trivially groupwise calibrated. Since Pr[lf)(BRi,gi) = 1] > 0 for
i = 1and 2, we conclude that PPV V.: is well-defined for g; and gs.
The proof now follows from the characterization of PPV in Propo-
sition 3.1. This is because PPVY,g,- is equal to the expectation of

S(X) where X is drawn from a distribution with support contained
in g;, and hence it is equal to BR;, and BR; # BRa. m}
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3.2.1 A Niceness Condition for APs. Motivated by the above proof,
we define a non-degeneracy condition on APs.

Definition 3.1 (Niceness of APs). Let G be a set of groups. An
accuracy profile # is nice if Supp(Py) is the same for allg € G.

Note that this condition rules out the counterexample given by
Proposition 3.2, since the AP in the counterexample had different
(in fact, disjoint) supports for different groups.

3.3 Equalizing PPV or NPV by Thresholding

We pay special attention to thresholds because they are simple
to understand and therefore very widely used. We use one slight
modification to deterministic thresholds that adds an element of
randomness: if a score is at the threshold, we randomly determine
which side of the threshold it falls on, according to a distribution
defined below.

Definition 3.2 (Threshold Post-Processor). A threshold post-processor

IA)(T,R) : [0,1] x G — {0, 1} is a function from a score s € [0, 1]
and a group g € G, parameterized by r and R. The threshold pa-
rameter 7 : G — [0, 1] specifies the threshold for the group g, and
R : G — [0,1] is the probability of returning 1 when the input
score s is on the threshold 7(g). It returns the following outputs:

1 s > 1(g)
De.m)(s.9) = {0 s < (g)
1wp.R(g)else0 s =1(g)

In the setting of an infinite number of scores and a continuous
domain (i.e. scores are represented by a probability density function
instead of a probability mass function), we can use purely determin-
istic threshold functions in which R = 1, and achieve very similar
results for the rest of this section.

We now study the effectiveness of thresholds for post-processing
soft classifiers with nice APs. The main takeaways are:

(1) If the AP is nice, threshold post-processors can equalize PPV.

(2) However, group blind threshold post-processors are rather
limited in their ability to equalize PPV.

(3) Furthermore, equalizing PPV with thresholds (group blind or
otherwise) may have undesirable social consequences (see
Figure 3).

(4) Thresholds cannot always equalize PPV and NPV simultane-
ously, even for nice APs (Proposition 3.3).

Results 1-3 also apply to NPV. We delegate formal statements and
proofs for Results 1-3 to the full version [3]. Result 4 shows that
threshold post-processors are inherently limited, even when they
factor in groups.

PROPOSITION 3.3 (PROOF IN [3]). Fix groups g1 and ga. There
exists a soft classifier S with a nice AP P such that no threshold post-
processor can simultaneously equalize PPV and NPV between groups
g1 and go.

3.4 Equalizing Accuracy Profiles

While thresholding is a conceptually simple approach to post-
processing a soft classifier, its power is limited. We now consider a
very different approach using soft post-processors to equalize the
APs across groups of a soft classifier. The intuition is that if the APs
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Figure 3: The PPV for both groups is 0.77. However, the threshold for g, (dark
blue) is higher than the threshold for g, (orange), even though g, has a higher
base rate.

are equal across groups, then any hard post-processor that is group
blind should result in equal PPV, NPV, FPR, and FNR. We formalize
this intuition in Claim 3.1.

Let S be a soft classifier and for each group g € G, let 739 be the
AP of § for group g. For a soft post-processor Ds°ft let §” = Dsofto §
and let Ségf be the corresponding AP for group g.

Our goal is to find a soft post-processor D such that §’ is
groupwise calibrated, and f’é = ﬁg’, forallg, g’ € G. In this section,

we describe only one approach to constructing D*°ft which we call
mass averaging.

The approach of equalizing APs has a fundamental weakness: if
Sf’g’ = Sf’gf, and both are calibrated, then BRy = BRy. This severely
limits applicability of this approach. However, this limitation will
removed in Section 4.2 by allowing deferrals.

Cram 3.1 (ProOF IN [3]). Ifthe APs are equal for two groups, then
PPV, NPV, FPR, and FNR are equalized by any hard post-processor D
satisfying group blindness.

The group-blindness requirement in the claim is necessary: con-
sider the (not group blind) post-processor that outputs 0 on one
group and 1 on the other; PPV will not be equalized.

3.4.1 Mass Averaging. The mass-averaging technique is best illus-
trated with an example. Suppose that g, is uniform over {0, 0.5, 1},
and 7392 is uniform over {0, 1}. It is easy to define a soft post-
processor DOt
score unchanged: D%°ft(s, g1) = 5. On gy, we compute the output as

which equalizes these two APs. On g1, we leave the

s wp.2/3

l”)soft s, — )
(5.92) {0.5 w.p.1/3

The APs for groups ¢; and g, of the resulting soft classifier $" =
Ds°ft o § are equal, and are equal to 7591.

In the example, the probability mass is being redistributed by
averaging the scores. This can be equivalently viewed as adding
noise to the scores and then recalibrating the scores, something
discussed in [6].

More generally, a mass-averaging post processor Dsoft assigns
to each possible pair (s, g) a distribution over possible output scores
s’. Such a D°ft is fully specified by k - k’ - |G| parameters, where
k is the number of possible values of s and k’ is the number of
possible values of s’. Given a soft classifier § and a mass-averaging
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post processor D%, the constraint that the resulting APs are equal-
ized across groups is linear in these parameters. Such classifiers,
therefore, may be found by a linear program. We do not explore

the choice of mass-averaging post-processors further.

4 POST-PROCESSING CALIBRATED
CLASSIFIERS WITH DEFERRALS

In the first part of the paper, we considered the problem of post-
processing calibrated soft classifiers, which output a score s €
[0, 1], into fair hard classifiers, which output a decision in § €
{0, 1}, subject to a number of group fairness conditions. In the
remainder of this work, we reconsider this problem, but with one
important change: we allow classifiers to “refuse to decide” by
outputting the special symbol L. We call such classifiers deferring
classifiers, borrowing the nomenclature from [13]. The output L
is the deferring classifier’s way of refusing to make a decision and
deferring to a downstream decision maker. For example, a risk
assessment tool might aid a parole board to make a decision by
categorizing an individual as high risk or low risk, or it might output
L —providing no advice and deferring to the judgment of the board.

We now modify our notation appropriately. Instances x are still
associated with a true type Y(x) € {0,1} and a group G(x) € G.
A deferring hard classifier Y is a randomized function ¥ : X —
{0,1, L}. A deferring soft classifier is a randomized function S
X — [0,1] U {L}. A deferring hard (resp. soft) post-processor is a
randomized function D : [0,1] U {1} x G — {0, 1, L} (resp. Dsoft .
[0,1]U{L} x G — [0,1] U {L}) that takes as input the output of a
deferring soft and post-processes it into a deferring hard (resp. soft)
classifier. We also introduce new versions of the FPR and FNR,
conditioned on not deferring.

Definition 4.1. The conditional false positive rate and conditional
false negative rate of a deferring hard classifier Y for a group g are,
respectively:

cFPRy = PrY(Xg) = 1] Y(Xy) = 0,Y(Xy) # L]
cFNR; = Pr{Y(Xy) = 0] Y(Xg) = 1, Y(Xy) # L].

We additionally consider a version of the accuracy profile con-
ditioned on not deferring, which we call the conditional AP. For
non-deferring soft classifiers, Definitions 4.2 and 2.4 coincide.

Definition 4.2. The conditional AP ?39 of a classifier § for a group
g is the PMF of §(Xg), conditioned on not outputting L. That is,
for s € [0,1], ﬁg(s) = Pr[ﬁ(Xg) =5 | §(Xg) # L]. Note that the
conditional AP is undefined if Pr[S(Xy) # L] = 0.

Abusing notation, we denote by P the collection {Ség }geg, and
call it the conditional AP of S.

The conditional error rates are applicable generally, but they can
be difficult to interpret. The consequences of using the conditional
FPR and FNR are discussed further in Section 6 along with a dis-
cussion of different deferral models. They are also amenable to the
consideration of additional goals which we will briefly address. For
example, one could seek to minimize the total deferral rate, equal-
ize the deferral rate among groups, or prefer deferrals on positive
instances.
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Figure 4: Threshold post-processors with deferrals defer between the thresholds.

4.1 Thresholding with deferrals

We return now to the problem of post-processing of calibrated
soft classifiers, but now with the extra power of deferring on some
inputs. We revisit the two approaches discussed in Section 3: thresh-
olding and equalizing accuracy profiles.

Proposition 3.2 stated PPV and NPV cannot both be equalized
across groups in general when using only a single threshold per
group. By using two thresholds per groups and deferring on some
inputs, PPV and NPV can always be equalized across groups.

We post-process using two thresholds per group as follows: re-
turn 0 when s is lower than the first threshold, return L between
the thresholds, and return 1 above the second threshold, as shown
in Figure 4. This buys us more degrees of freedom when equalizing
binary constraints, and it has the useful property that we say L on
the instances where we are the least confident about the predicted
type. We adapt our notation as follows:

Definition 4.3 (Deferring Threshold Post-Processor). A defer-
ring threshold post-processor b(fo,ﬁ,‘Ro,Rl) assigns to each group
g two thresholds 79(g), 71(g9) € Supp(ﬁg), and two probabilities
Ro(g), Ri(g) € [0, 1], with the following requirements:

(1) forallg € G, 0(9) < 71(9)

(2) for all g € G for which 7yp(9) = 71(9), R1(9) + Ro(g) < 1.
This corresponds to the case where the two thresholds are
the same, and therefore individuals with that score must be
mapped to 1 with probability R1(g), and to 0 with probability
Ro(g), with the remainder mapped to L.

The corresponding threshold post-processor is defined as follows:

1 s> 11(9)

0 s < 19(g)

L 10(g9) < s < 71(g)
IA)(TO’TI,:RD,%)(S, g) = 41 w.p. R1(g), else L s =11(g)

0 w.p. Ro(g), else L s =19(g)

1 w.p. R1(9), 0 w.p. Ro(g), else L s =19(g9) = 71(9)

1 s=1

Using two thresholds allows the equalization of both PPV and
NPV across groups in general, whereas without deferrals we could
only equalize one or the other. In our full paper [3], we first demon-
strate the existence of near-trivial classifiers that equalize PPV and
NPV by deferring on all but the highest and lowest scores. We now
claim the existence of meaningful non-trivial threshold deferring
post-processors that equalize PPV and NPV across groups.

PROPOSITION 4.1 (PROOF IN [3]). Let S be a soft classifier with
nice AP that is groupwise calibrated for a set of groups G. Suppose
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that |Supp(¢g)| > 2 for all g € G. Then there exists a non-trivial
threshold post-processor D(TO»TI’RO»'Rl) such that the hard classifier
Y= ﬁ(TO,Tl,rRo’an) o S equalizes PPVy and NPV, forallg € G.

The following example demonstrates that it is sometimes possi-
ble to equalize PPV, NPV, FPR, and FNR using deferrals, but without
equalizing the APs themselves:

ExampLE 4.1 (EQuaLizING PPV, NPV, cFPR, AND cCFNR WITH
THRESHOLDS). This example is presented with continuous support
[0, 1] for simplicity. Consider two APs, one for group g1 and one
for ga. Let the AP for g1 be uniform (with density give by the line
P(s) = 1), and let the AP for group go have density given by the
parabola P(s) = 6s(1 - s), as shown in Figure 5.

Consider the post-processor ngoﬁrl)' Let 19(g1) = 10(g91) = 0.5, let

10(g2) = %(5 —V7) and let 11(g2) = 1 — %(5 —/7) as shown in Figure
5

The PPV and NPV of both groups is %, and the cFPR and cFNR of
both is ;11, thus equalizing all four values.

This example is somewhat unsatisfactory because the base rates are
equal in the two groups. We did not find a similar example without
equal base rates.

Tolg1) = 0.5: Tulg1) = 0.5

5] and Pri(X,,) =s]

PriS(Xg,)

1

0.6 08

Figure 5: This threshold post-processor equalizes PPV, NPV, cFPR, and cFNR as
described in Example 4.1.

0.0 0.2 0.4 1.0

4.2 Equalizing APs with deferrals

As with Claim 3.1, equalizing the conditional APs between groups
renders trivial the task of downstream decision-making subject
to equality of PPV, NPV, cFPR, and cFNR. Importantly, unlike in
Section 3.4, equalizing the conditional APs between groups does
not require the groups to have equal base rates, greatly increasing
the applicability of this approach.

Cramm 4.1. If the conditional APs are equal for two groups, then
PPV, NPV, cFPR, and cFNR are equalized (or simultaneously undefined)
by any hard deferring post-processor D satisfying (1) group blindness
and (2) D(L, g) = L (¥g).

The additional condition—that D defers on input L —is necessary:
if D output 1 on all inputs (even on L), then PPV would remain
unequal as long as the base rates differed. The proof is similar to
the proof of Claim 3.1 and is included in the full version [3].

Deferrals are a powerful tool for manipulating, and thereby equal-
izing, conditional APs. Consider a function Q : (s, g) — [0, 1]
ifs=_1

A 1
D3"(s.9) = {

L w.p. Q(s,g), else s otherwise
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If S is a calibrated classifier, the soft deferring classifier S = DSQOﬁ oS
is still calibrated. For a group g, let 739 be the AP of $ and 73!; be

the AP of §”. There is a simple graphical intuition for the shape of
5% as shown in Figure 6.

The following theorem, proved in the full version [3], states
that any conditional AP can be transformed into almost any other
conditional AP by appropriate choice of Q.

THEOREM 4.1. Let 739 be a conditional AP of a soft classifier S
on group g, and let P* be any probability mass function such that
Supp(P*) C Supp(?sg). Then there exists Q for which the calibrated
AP735; ofIA)SQoft o S is equal to P*.

Together, Theorem 4.1 and Claim 4.1 suggest a general frame-
work for using deferrals to post-process a soft, possibly deferring
classifier S which is groupwise calibrated into a hard deferring clas-
sifier which simultaneously equalizes PPV, NPV, cFPR, and cFNR
across groups, as follows.

Foreachg € G, let 559 be the conditional AP of S for group g. Let
#* be any conditional AP such that Supp($*) € ﬂgggSupp(ﬁg).
Use Theorem 4.1 to equalize the conditional AP for all groups g € G.
Then use any hard post-processor D satisfying the requirements
of Claim 4.1 to make the ultimate deferring hard classifier. This
method is shown in Figure 6.

This framework allows for enormous flexibility in the choice of
both #* and D, even when considering just two groups g1 and g2. In
Figure 9, we illustrate the first step of the framework on a COMPAS
dataset using min{?sgl, 7392} as 73* where g; is African-Americans
and go is Caucasians. In Figure 8 in Section 5, we also use 7391 and

7:392 as P*.

S|S0¢g)= 1]

5] and PriS(xg)

PriSixg)

0.8

0.0 0.2 0.4 0.6 1.0

s

Figure 6: Choosing deferrals appropriately allows transforming one AP into
another (conditional) AP. In this example, the solid orange line is the original

AP 739 = Pr[g(Xg) = s]. Bydeferring at therates indicated by the shaded region,
the resulting conditional AP ?3; = Pr[ﬁ(Xg) =5 | S(Xg) # L] is represented
by the dark blue line. The area of the shaded region is A.

One can design $* to achieve additional goals. For example, the
choice P* = min{ﬁgl, 7392} results in equal deferral rate across
each group (equal to the total variation distance between the two
initial conditional APs). The framework can be further expanded
by combining deferrals with other methods for manipulating con-
ditional APs, including the mass-averaging discussed in Section 3.4.
A better understanding of these techniques is left for future work.
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5 EXPERIMENTS ON COMPAS DATA

We demonstrate the validity of our methodology on the Broward
County data containing the recidivism risk decile scores of the COM-
PAS tool [1]. We restrict our attention to the subset of defendants
whose race is recorded as either African-American or Caucasian.
Our code can be found at: https://github.com/nishanthdikkala/
postprocessing-deferrals

It has been shown that the COMPAS scoring mechanism is an
approximately calibrated soft classifier with 10 possible outcomes
across the two race groups of African-Americans and Caucasians.
We note here that the distribution of the COMPAS scores differs
significantly across the two groups. In particular, the scores for
African-Americans are more evenly distributed as opposed to the
skewed distribution seen with Caucasians.

Thresholding with Deferrals. We first ran our two-threshold post-
processing mechanism (Section 4.1) and obtained a binary decision
algorithm with deferrals which equalizes both PPV and NPV across
Caucasians and African-Americans (See Figure 7). We observe that
the percent of deferrals in total is smaller than 20% of the decisions
to be made which shows that a fairly large number of the defen-
dants can be classified in this manner without having to defer to a
downstream decision maker.

Thresholds for African-American scores Thresholds for Caucasian scores

PPV =0.682, NPV = 0.699, Deferrals = 20% =] PPV = 0.677, NPV = 0.684, Deferrals = 9%
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Figure 7: Two thresholds are applied to each AP for the COMPAS data from
2016, (approximately) equalizing PPV and NPV. In the left (right) plot we show
the thresholds for the African American (Caucasian) group.

Next we look at our post-processing mechanisms to equalize all
four quantities PPV, NPR, FPR, and NPR using deferrals (Section 4.2).
As was noted earlier in the paper, equalizing the APs of the two
groups post-deferral achieves the goal of equalizing all four of the
above quantities. We implement two methods for doing so.

Converting one AP into Another. In the first method, decisions
are deferred only on one group so as to convert its AP into that
of the other group. First, we consider deferring only on African-
Americans to convert their AP into that of Caucasians (left side of
Figure 8); next, decisions are deferred only for Caucasians (right
side of Figure 8).

Equalizing APs. Alternately we have a second method where
decisions are deferred for an equal fraction of Caucasians and of
African Americans (Figure 9). This fraction is precisely the total
variation distance between the two APs.
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Figure 8: Two instances of our conditional AP equalization method applied to
COMPAS data from 2016. On the left (right) plot, we use deferrals to create a
conditional AP for African-Americans (Caucasians) that matches the AP for
Caucasians (African-Americans).

Equalizing AP using the minimum method.
Total deferral rate in each group = 24.5%
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Figure 9: A version of our conditional AP equalization method. The conditional
AP has the same distribution as the pointwise minimum of the two APs. The
total deferral rate is equalized across the two groups (equals the TV distance
between the two APs), but the distribution of deferrals across scores is not.

Observations. We observe several interesting phenomena on the

COMPAS data set. First, using the method of deferring only on
African-Americans we defer on roughly 36% of the total decisions.
This number goes down to roughly 25% when we defer only on
Caucasians. This seems to suggest as a general heuristic to try and
use deferrals on the group with smaller size. The total deferral
fraction is also roughly 25% when we defer on an equal fraction of
Caucasians and African-Americans.
Second, for all three methods that equalize the accuracy profiles,
for this particular dataset, deferrals happen more on the “extremes”,
namely on individuals with respect to which the classifier had
relatively high confidence (either close to 0 or close to 1). This
stands in sharp contrast to how the two-threshold method (Figure 7)
distributes its deferrals—they occur in the middle of the distribution
(examples on which the classifier is “unsure”). While it may seem
somewhat counter-productive to defer on these individuals, any
method that seeks to first equalize the accuracy profiles will have
to defer most on the scores which appear in different probabilities
across the two groups (which, for the COMPAS predictor, is at the
extremes). Furthermore, deferring on such scores may make sense
from a social point of view: When a score appears at drastically
different rates for different groups, perhaps deferring to another
decision mechanism can be used to check for systemic bias in the
present one.
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Alternatively, one can view the above observation as proposing
a design criterion for calibrated soft classifiers. That is, if one wants
to have a classifier that defers only on individuals for which the
classifier has less confidence, and still guarantee that the APs for the
protected groups are equal, conditioned on not deferring, then one
should design the soft classifier so that the APs for the protected
groups are the same (or almost the same) close to 0 and close to
1. Indeed, if the COMPAS classifier had these properties, then our
post-processing algorithm would have deferred only (or, mainly) on
individuals with low certainty (namely "medium risk" individuals).

6 MODELS OF DEFERRING

Whether or not a classifier is thought of as promoting fairness
depends on the context; this is true for both deferring and non-
deferring classifiers. In addition to the myriad considerations present
for non-deferring classifiers, deferring classifiers and downstream
decision makers introduce some additional axes for consideration.

Cost to the individual: Even though it is not intended to be a
final decision, a deferral may impose burdensome costs to an in-
dividual being classified. It may mean that a defendant remains
in jail while additional hearings are scheduled, that invasive and
expensive medical tests are ordered, or that continued investigation
engenders social stigma. These costs may not be borne equally by
all individuals, and may depend on their group membership, their
true type, or other factors. For example, a delay in granting a loan
to a applicant may overly burden poorer applicants, even those
very likely to repay.

Cost to the decider: Allowing deferrals might make the decision
process more cost-effective: Given that in most cases making a
determination is cheap, one may now invest more in the deferred
cases. For instance, a team of trained moderators might be hired
to manually review content on which an automated content filter
defers, or an expensive investigation might be required to adjudicate
insurance claims that are not cut-and-dry.

Accuracy of downstream decision. One reason to defer is to intro-
duce a delay that will allow for a more accurate decision. Thus the
usefulness of allowing a classifier to defer depends on the accuracy
of the downstream decision maker. Additional medical tests might
allow for highly accurate diagnoses. But a judge deciding bail will
be prone to a variety of errors and biases.

“Fairness” of downstream decision (and of composed classifier).
Similar to the above, the fairness of the downstream decision maker
(however one wants to interpret that) will impact our interpreta-
tion of the deferring classifier. Here one should take into account
also the "procedural” aspect of the two-step evaluation; here it is
important that the downstream classifier will be deemed as "more
fair" and "more knowledgeable" than the first stage. Exploring fair-
ness criteria for systems of deferring classifiers and downstream
decision-makers, e.g. as done in [2] did for non-deferring classifiers,
is an interesting direction for future work.

Frequency of decisions. In many settings, the deferring classifier
is a fast, automated test (e.g., automated risk assessment) while the
downstream decision maker is a slow, manual process (e.g., parole
board). However, we anticipate situations in which there may be
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repeated deferring classifiers chained together which comprise the
complete decision making pipeline. For example, a doctor might
have a sequence of diagnostic tests at her disposal as needed, or
a bank might allow many rounds of appeal for loan applications,
but with lengthy delays. Some applications might even permit hun-
dreds or thousands of near-continuous deferring classifiers. As an
example, consider a live video streaming platform that passively
monitors streams for inappropriate content in real time. The auto-
mated passive monitor might decide the content is inappropriate,
and shut it down; appropriate, and continue passive monitoring; or
suspicious (by deferring), and begin active monitoring by devoting
more computing resources or bringing in a human moderator.

6.1 Technical implications of deferral model

The contextual considerations discussed above directly impact the
appropriate application of a deferring classifier and its goals. An
obvious goal is to minimize the overall rate of deferrals while main-
taining the best possible FPR, FNR, PPV, and NPV for the classifier
conditioned on not deferring, and without considering the dis-
tribution of deferrals. However, one might desire very different
properties from the distribution of deferrals in different contexts.
The deferrals may be distributed differently among individuals
with different true type, group membership, or soft-classifier scores,
while the burden imposed by deferrals and errors may differ greatly
between different populations.

In a medical diagnosis scenario, a false negative (i.e., failing to
diagnose a disease) may have serious consequences, and deferring
to run additional non-invasive and inexpensive additional tests may
be generally acceptable. On the other hand, an insurance provider
may prefer to minimize expensive investigations by paying out
more false claims.

The context may also affect the way one defines the deferral
analogues of FPR and FNR. While calibration, PPV, and NPV apply
directly to deferring classifiers, it is not clear how best to generalize
the definitions of error rates. For example, consider false positive
rate: by Definition 2.5, the false positive rate of a non-deferring hard
classifier Y for a group ¢ is FPR?’g = Pr[f’(Xy) =1]Y(Xg) =0].

The approach we take in Section 4 is to condition on not deferring
(Definition 4.1). A deferring classifier ¥ that output 1 on half of
true negative instances (within a g) would have conditional false
positive rate as low as 0.5 (if it never output L on true negatives) or
as high as 1 (if it never output 0 on true negatives). The conditional
false positive rate is agnostic towards the downstream decision
maker. It codifies no value judgements as to whether a deferral
is desirable or undesirable as an individual nor whether deferrals
ultimately result in accurate or inaccurate decisions. This is, itself,
a value judgement.

A second approach is to leave the original definition unchanged.
The same deferring hard classifier as above would have uncon-
ditional false positive rate 0.5. This would be true regardless of
whether Y output 0 or L on the other half of true negative instances.
We call this the unconditional false positive rate. The unconditional
false positive rate effectively categorizes deferrals as correct out-
puts. This may be appropriate if the downstream decision maker
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has very high accuracy. If, for example, a doctor orders an addi-
tional, more accurate diagnostic test in response to a deferral, the
unconditional false positive rate might be appropriate.

Finally, a third approach is to base our measure of inaccuracy on
true negatives instead of false positives, a reverse of the above.

Just as in the case of non-deferring classifiers, the relationships
among these contrasting group statistics, their meaningfulness in
different settings, and their application in different settings are not
well understood and deserve further study.
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