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Abstract—Motivated by growing concerns over ensuring
privacy on social networks, we develop new algorithms and
impossibility results for fitting complex statistical models
to network data subject to rigorous privacy guarantees.
We consider the so-called node-differentially private al-
gorithms, which compute information about a graph or
network while provably revealing almost no information
about the presence or absence of a particular node in the
graph.

We provide new algorithms for node-differentially pri-
vate estimation for a popular and expressive family of
network models: stochastic block models and their gener-
alization, graphons. Our algorithms improve on prior work
[15], reducing their error quadratically and matching,
in many regimes, the optimal nonprivate algorithm [37].
We also show that for the simplest random graph mod-
els (G(n,p) and G(n,m)), node-private algorithms can
be qualitatively more accurate than for more complex
models—converging at a rate of — instead of .
This result uses a new extension lemma for differentially
private algorithms that we hope will be broadly useful.

Keywords-Differential privacy, stochastic block models,
graphons, private data analysis.

I. INTRODUCTION

Network data play an increasingly important role
in many scientific fields. Data from social networks,
in which the nodes represent individuals and edges
represent relationships among them, are transforming
sociology, marketing, and political science, among oth-
ers. However, what makes these data so valuable also
makes them highly sensitive—consider, for example,
the public sentiment surrounding the recent Cambridge
Analytica scandal.

What kinds of information can we release about
social networks while preserving the privacy of their
users? Straightforward approaches, such as removing
obvious identifiers or releasing summaries that concern
at least a certain number of nodes, can be easily
broken [46, 38].

In this paper, we develop new algorithms and im-
possibility results for fitting complex statistical models

to network data subject to rigorous privacy guarantees.
We consider differentially private algorithms [23]. There
are two main variants of differential privacy for graphs:
edge and node differential privacy [50]. Intuitively, edge
differential privacy ensures that an algorithm’s output
does not reveal the inclusion or removal of a particular
edge in the graph, while node differential privacy hides
the inclusion or removal of a node together with all its
adjacent edges. Edge privacy is weaker (hence easier
to achieve) and has been studied more extensively
[47, 50, 34, 45, 43, 35, 28, 29, 33, 40, 32, 27, 7, 45,
35, 43, 32, 54].

We study node-differentially private algorithms.
These ensure that, no matter what an analyst observing
the output knows ahead of time, she learns the same
things about an individual Alice regardless of whether
Alice’s data are used or not. Node privacy’s strin-
gency makes the design of accurate, private algorithms
challenging; only a small number of techniques for
designing such algorithms are known [36, 8, 18, 49, 21].

We provide new algorithms for node-differentially
private estimation for a popular and expressive family
of network models: stochastic block models and their
generalization, graphons. Our algorithms improve on
prior work (by a subset of us [15]), roughly reducing
their error quadratically and matching, in many regimes,
the optimal nonprivate algorithm [37, 44]. We also show
that for the simplest random graph models (G(n,p)
and G(n,m)), node-private algorithms can be qualita-
tively more accurate than for more complex models—
converging at a rate of —— instead of . This result
uses a new extension lemma for differentially private
algorithms that we hope will be broadly useful.

Modeling Large Graphs via Graphons: Tradition-
ally, large graphs have been modeled using various
parametric models, one of the most popular being the
stochastic block model [30]. Here one postulates that an
observed graph was generated by first assigning vertices
at random to one of k groups, and then connecting two
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vertices with a probability that depends on the groups
the two vertices are members of.

As the number of vertices of the graph in question
grows, we do not expect the graph to be well described
by a stochastic block model with a fixed number of
blocks. We therefore consider nonparametric models
described by a graphon. A graphon is a measurable,
bounded function W : [0,1]> — [0,00) such that
W(z,y) = W(y,z), which for convenience we take
to be normalized: f w 1. Given a graphon, we
generate a graph on n vertices by first assigning i.i.d.
uniform labels x; € [0,1],7 = 1,2, ..., n to the vertices,
and then connecting vertices ¢,j with labels z;,x;
with probability H,,(i,j) = p,W (z;, x;), where p, is
a parameter determining the density of the generated
graph G, with p,||[W||eo < 1. We call G,, = G,,(pW)
a W-random graph with target density p,, (or simply a
pnW-random graph).

This model captures stochastic block models as well
as more complex models, e.g. random geometric graphs,
where each vertex corresponds to a point in a metric
space (selected randomly according to a particular dis-
tribution) and vertices share an edge if their points are
sufficiently close [26, 20, 48, 24].

For both the “dense” setting (where the target density
pn, does not depend on the number of vertices) and the
“sparse” setting (where p, — 0 as n — o0), graphons
play a key role in the convergence theory for graph
sequences [31, 4, 42, 9, 10, 12, 13, 14], providing limit
objects in several natural topologies.

Metrics for Estimation: Given a single graph G,
generated as pWW/-random for unknown p and W, how
well can we estimate p and W? This task has now been
studied extensively [5, 51, 19, 6, 41, 52, 39, 53, 16, 3,
55, 25, 2, 17, 1, 37, 44]. One issue faced by all these
works is identifiability: multiple graphons can lead to
the same distribution on G,,. Specifically, two graphons
W and W lead to the same distribution on ¥ -random
graphs if and only if there are measure preserving maps
@, ¢ : [0,1] — [0, 1] such that W¥ = W®, where W is
defined by W (z,y) = W(e(x), ¢(y)) [22, 11]. Hence,
there is no “canonical graphon” that an estimation pro-
cedure can output. Some of the literature circumvents
identifiability by making strong additional assumptions
that imply the existence of canonical equivalence class
representatives. We make no such assumptions, but
instead define consistency in terms of a metric on
equivalence classes. We use a variant of the Ly metric,

(1.1)

inf

5o (W, W) =
:[0,1]—1[0,1]

W =Wz,

where ( ranges over measure-preserving bijections.
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In this work, we set aside questions of computational
efficiency and focus on establishing what rates are
possible in principle (our algorithms, like the nonprivate
state of the art, run in time roughly exponential in n).

For our purposes, the most relevant work is that of
Klopp, Tzybakov and Verzalen [37], who establish tight
upper and (in parallel to [44]) lower bounds on the error
rate of nonprivate algorithms, given a single n-vertex
pW-random graph and a target number of blocks, k.
Our algorithms match their rate for large enough values
of the privacy parameter.

Private Algorithms for Graph Data and the
Rewiring Metric: Let A be a randomized algorithm
that takes values from some input metric space (M, d)
(called the space of data sets) and ouputs probability
distributions on some measurable space (2, F).

Definition 1.1. The algorithm A is e-differential private
(e-DP) with respect to the metric d if, for all subsets
S e Fand Di,Dy € M,

P(A(D1) € 5) < exp [ed(Dy, Do) P (A(D2) € 5).

The metric d is typically defined by specifying pairs
of data sets that are adjacent (i.e., at distance 1 from
each other), and then letting d be the induced path
metric.

There are two natural variants of differential privacy
suited for graph datasets, edge differential privacy and
node differential privacy. Intuitively, edge differentially
private algorithms hide the presence or absence of a
particular relationship between individuals in a social
network, while node differentially private algorithms
protect each individual together with all his/her rela-
tionsips. In both cases, the data set is an undirected
graph with no self-loops; we let G,, denote the set of
such graphs on n vertices. Formally, edge differential
privacy is obtained by taking d to count the number
of edges that differ between two graphs (the Hamming
metric on adjacency matrices). In contrast, node differ-
ential privacy is defined with respect to the rewiring
metric, or node distance, between graphs: we say that
two distinct graphs G, G’ are at node-distance 1 (or
adjacent) if one can be obtained from the other by
inserting or removing arbitrary sets of edges adjacent
to a singe vertex, a process we call rewiring the vertex.
For arbitrary G'1, Gy € G, define the node-distance
between them, d, (G1, G2), to be the minimum number
of vertices of (G; that need to be rewired to obtain Gs.
A randomized algorithm A defined on G, is e-node
differentially private (¢-node DP) if it is e-differentially
private with respect to the node-distance d,,.



Edge differential privacy is a weaker notion and has
been extensively studied over the past decade. Algo-
rithms have been developed for various tasks such as
the release of subgraph counts, the degree distribution
and the parameters of generative graph models [28],
[35], [45], [33], [34], [47]. On the other hand, the node-
differential privacy is a much stronger privacy guaran-
tee. The first nontrivial node-differentially algorithms
were designed (concurrently) in [8, 18, 36], with a focus
on algorithms that release one-dimensional summaries
of a network such as subgraph counts. Later work [49,
15, 21] introduced higher-dimensional techniques. Most
relevant here, a subset of us gave the first algorithms for
node-private graphon estimation [15]. A common thread
to all these works is the use of Lipschitz extensions in
the rewiring metric to control the sensitivity of summary
statistics for sparse graphs. A key piece of this paper is
a novel use of such extensions.

The previous results for graphon estimation achieved
estimation error going to O for a large parameter range,
but fell short in several respects: first, even when ¢
is arbitrarily large, the algorithm does not match the
best nonprivate bounds. Secondly, there was no evidence
that the extra terms due to privacy (involving ¢) in the
accuracy guarantee were necessary.

A. Contributions

New Upper Bounds for Estimating k-Block
Graphons: Our main focus is the problem of esti-
mating a bounded normalized graphon W via a node-
differentially private algorithm. The estimation algo-
rithm observes one sample of a pW-random graph,
and outputs the description of a graphon W that it
hopes is close to W. We consider algorithms that output
a graphon with a succinct description—namely, we
assume the estimate W is a k-block graphon with equal-
weight blocks (such a graphon can be described by a
k x k symmetric matrix). The parameter k offers a reg-
ularization of sorts, trading off the model’s expressivity
for complexity. We measure the algorithm’s error by the
expected squared &5 distance (see (I.1)) between W and
W. Borgs et al. [15] studied this problem, developing an
inefficient estimation procedure (henceforth the “BCS”
algorithm [15, Algorithm 1]) and establishing an upper
bound on its error.

Our first contribution is a new analysis of the BCS
algorithm that significantly improves the error bound,
matching the (tight) nonprivate bounds for a large
range of parameters. The new and old results can be
summarized as the following upper bound on the mean

squared error {62(17[/, W)Q} of the following form.

Theorem 1 (Informal). Fix some k > 1 and let A be
the BCS algorithm. Then for all bounded graphons W,

[62(A(G), W)?] =

“agnostic and k%logn 1
sampling errors” ne n2p2e?
as in Borgs et al. [15]

k—1 logk  k?
+O< +<Og +2>>
n pn pn

improving quadratically Borgs et al. [15]

E

Here, the phrase “agnostic and sampling errors” cov-
ers two terms that are present in both bounds. The “ag-
nostic error” corresponds to the distance from the true
graphon W to the nearest k-block graphon—a model
misspecification error. It is unavoidable for algorithms
that output k-block graphons. The “sampling” term
corresponds to the expected distance between the true
graphon W and the probability matrix (W (x;, ;))7;_,
defining the pW-random graph. This distance is a
random variable that can be bounded in different ways
depending on what is known about W. If W is itself a
k-block graphon, then the the agnostic error is 0, and
the sampling error (about +/k/n with high probability)
is subsumed by the other error terms.

Notice that our improvement to the accuracy bound
lies in the “non-private” (that is, independent of ¢) part
of the error.

This nonprivate part of our new bound is in fact
optimal, as it matches the lower bounds for nonprivate
algorithms. Specifically, consider the case that the true
graphon W is in fact a k-block graphon and define the
rate

Ri(p,e,n) =

min max E
A Wk—block G~G., (pW)
e—node-DP

Klopp et al. [37, Prop. 3.4] (and McMillan and Smith
[44, Theorem 3]) establish the best rate if we allow any
estimation algorithm A—private or not—to be

k logk  k?
@(min{\/7—|—<0g +2>,1}> for k > 2.
n pn pn
In particular, focusing on e-node-DP algorithms we
conclude that for any k£ > 2,

ko (logk k2
Rul(p,e,n) = O <min{\/;+ ( (;gn + W) ,1})

.2)

[62(A(G), W)?].




Notice that our upper bound as established in Theorem 1
matches exactly this lower bound when the true graphon
has exactly k& blocks and ¢ is sufficiently large (since
then the agnostic error is 0, the sampling error is know
to be O(1/k/n), and the e-dependent terms go to 0).
In particular, using Theorem 1 we conclude a tight
characterization of the e-independent part of the rate
Ry, (p =) n) >

Collorary 1 (Informal). Fix some k > 2. Then there
exists an algorithm such that for all bounded graphons

W)
k?logn 1
Rk(pvgan):O( ne n2p252>
k-1 logk  k?
o/ (1t 22)
on pn

tight nonprivate part based on (1.2)

Additional Error Due to Privacy (k > 2): To
understand whether we have found the true minimax
rate, it remains to understand whether the terms based
on ¢ are optimal. We show that the second of these
cannot be improved, on the slightly less restrictive case
where the blocks of the k-block graphon can have
different sizes, a set we denote by W[k].

< 1

n2€2) ’
where Ry (p,e,n) is defined to be

. 2
A P e /247G Bo~enom 2l AL W 03

Theorem 2 (Informal). For k > 2,

Ri(p,e,n) =Q

This lower bound applies even to algorithms that
simply estimate the unknown density parameter p. The
proof of this lower bound is fairly simple, relying on the
fact that even if the connection probabilities of a 2-block
graphon are known, estimating the graphon requires one
to accurately estimate the probability mass of the two
blocks. We reduce to this latter problem from the well-
studied problem of estimating the bias of a sequence of
n coin flips differentially privately.

We leave open the question of whether the term
kzil%"" is necessary.

The Case of Erdds-Renyi Graphs (1-Block
Graphons): The upper bounds above all apply for k& =
1, in particular, but the lower bounds generally do not
yield anything interesting in that case. The case of kK = 1
corresponds to graphs generated according to the well-
studied Erd6s-Renyi model, where each possible edge
appears independently with an unknown probability p.
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To phrase this as an estimation problem, consider the
scale parameter p to be known, and the algorithm’s
goal is to estimate a constant graphon W (z,y) = p
subject to p < p. (Unlike in the case of larger k,
estimating the normalized graphon W is trivial since,
after normalization, W (z,y) = 1.)

Nonprivately, the optimal estimator is the edge den-
sity of the observed graph, (#edges)/(5).

What about private algorithms? First, observe that
the algorithm Ay that adds Laplace noise of order
n% to the edge density is e-node differentially private.
Furthermore, for p € [0, pl,

Eg~a,, [[A0(G) —p[’] =0 <

Potentially surprisingly, we establish that the rate
obtained this way is not optimal. As we explain in
section 3, the main reason for the suboptimality of this
method is that it is based on calculating the worst-case
sensitivity of the edge density over the space of all
undirected graphs. In particular, this estimator ignores
the rich structure of the Erdos-Renyi graphs. Using this
structure, we establish a series of results relating the
node-distance and the Erdos-Renyi graphs along-side
with a general extension result (Proposition V.1) which
combined allows to prove the following improved upper
bound

1
n2e?

r
n2

Theorem 3 (Informal). There exists an e-node-DP
algorithm A such that for any p € (0, 1],

( p
(1.4)

n?

Using the same techniques we are able to establish
the corresponding result for the uniform G(n,m) model
which obtains an error

)

°f

avoiding the edge-density variance term which appears
in the Erdos-Renyi case, 5. We end this section with
a novel lower bound for G(n, m) model.

logn

max EGNGn,p[(A(G) - p)Q} =0

P€([0,p] n3e?

logn

n3e?

n?-

Theorem 4 (Informal). Suppose € is a constant. Then,

Eccimm [(A(G) — )2
(g)} G~G(n, )[( ( ) ())]

2

This Theorem establishes that the upper bound for
the G(n, m) model is optimal up-to-logarithmic terms
in the e-constant regime and suggests the same for the
Erdos-Renyi case.

max

min
Ae—node-DP me[% (2)7%

1
n3e?



A General Extension Result: In Section 4, we
present in detail the general extension result we used
in Section 3 as it could be of independent interest. The
extension result works for an arbitrary e-differentially
private algorithm which receives input from a metric
space (M,d) and outputs distributions of an arbitrary
output measurable space (€2, F). We establish that if
there exists such an e-differentially private algorithm
A defined only on a subset of the input space H, the
algorithm can be extended to an 2¢-differentially private
algorithm A defined on the whole input space M such
that if the input G € H, the distributions of the output
of A(G) coincides with the distribution of A(G).

II. NOTATION AND PRELIMINARIES

k-block Graphons: For every k € N, we embed
the set of £ x k symmetric matrices into the space of
graphons as following: let P, = (Iy,...,1I;) be the
partition of [0, 1] into adjacent intervals of lengths %
For A € RYX" define W[A] to be the step function
which equals A;; on I; x I;, for every i,j € [k]. We
say a graphon W is a k-block graphon if W = W[A]
for some A € RE%* and denote by W[k| the space of
k-block graphon.

Distances between Graphons: For A, B symmetric
n X n matrices and a graphon W we set for con-
venience do(A, W) = §(W[A],W) and (A4, B) =
92 (W[A], W[B]), where 02 is defined for two graphons
in I.1. Furthermore we focus also on the, in general
larger than 5, distance

02(A, W) = inf [WIAT] = W],

where 7 ranges over all permurations of {1,2,.
and for all i,jAe [n], AT, = Ax(i),x(j
smaller than & as it minimizes the ¢ distance over
all measure-preserving transformations, while the latter
distance minimizes only on such transformation that can
be expressed as permutations of the rows and columns
of the underlying matrix A.

We consider two fundamental types of errors of
approximation of W.

The agnostic error, or oracle error, of approximating
W by a k-block graphon with respect to d, and b,

..,n}

)- 02 is in principle

W) = min by (B, W)

and
E7(W) = min (B, W),

where B ranges over all matrices in R***_ The agnostic
errors corresponds to the model mispecification errors
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of the statistical problem of estimating W using a k-
block graphon. We consider them as benchmarks for
our approach, and the errors an “oracle” could obtain
(hence the superscript O).

Scale of agnostic error: For any bounded W, both
séo)(W) and é,go)(W) tend to zero as k — +oo (see
[15, Sec. 2] for details).

The sampling error of approximating W from G =
G (pW) with respect to 85,

en(W) = 6o(H, (W), W).

Recall that the only information for W in the observed
graph G comes from the edge probabilities H,,(i,j) =
pW (z;, ;) where z; are the iid uniform in [0, 1] labels
of the vertices. Intuitively, a large discrepancy between
the edge probability matrix H, (W) and W results in
bad estimation of W given G. Unlike the agnostic error,
the sampling error is a random variable (depending on
the assignment of nodes to “types” in [0, 1].)

Scale of sampling error: For any bounded W,
en(W) 5 0 as n — +oo [15, Lemma 1]. Further-
more, if additionally W is a k-block graphon it can

be established that e, (W) = O({‘/%) with probability

tending to one as n — 400 [15, Appendix D].

III. PRIVATE GRAPHON ESTIMATION

Model: Let kkn € N with k¥ < n, A > 1
and € > 0. Suppose W is an unknown normalised
graphon with ||W||o. < A. For some unknown “sparsity
level” p = p, € (0,1) with pA < 1, the analyst
observes a graph G sampled from the pW-random
graph, G, (pW). The analyst’s goal is to use an e-
node-DP algorithm A on G to output a k-block model
approximation of W, say W[B] for B € RF*¥_ which
minimizes the mean squared error,

Eqc, (pw), Bra(cy02(B, W)?).
A. Main Algorithm

We use the same algorithm as Borgs et al. [15],
described in Algorithm 1.
Notation for Algorithm 1: For k,n € N with k£ <
n, we say that 7 : [n] — [k] is a k-equipartition of [n],
if it partitions [n] into k classes such that is for every
i € [n], ||7~1(i)] — %| < 1. For a matrix @ € R*** and
a matrix A € R™", we set Score(Q, 7, A) = ||A]|3 —
| A — Qx||3, where 7 ranges over all k-equipartitions of

[n),(Qr)i; = Qﬂ'gi),ﬂ(j) for all 4,5 € [n] and || Al =

( = i1 A%) ? Finally, we denote by G,, the space
of undirected graphs on n vertices and G,, 4 the subset



of graphs in G,, where the maximum degree is bounded
by d.

We now describe the steps of the algorithm. The
algorithm takes as input the privacy parameter e, the
graph G, a number k of blocks, and a constant A > 1
that will have to be chosen large enough to guarantee
consistency of the algorithm.

Algorithm 1: Private Estimation Algorithm

Input: € > 0, A > 1, an integer k£ and graph G

on n vertices.

Output: k-block graphon (represented as a

k x k matrix B) estimating pW

Compute an (£/2)-node-private density
approximation p = p(G) + Lap(4/ne) ;

d = A\pn (the target maximum degree) ;

= Ap (the target L., norm for B);

For each B and m, let S/C(E(B,ﬂ; -) denote a
nondecreasing Lipschitz extension (from [36])
of Score(B, ;) from G, 4 to G,, such that for
all matrices A,

Score(B, m; A) < score(B,m; A), and define
go?e(B; A) = max@(B,ﬂ; A)

T

return B3, sampled from the distribution

~ £ —
Pr(B = B) x exp (EScore(B, A)) )
252
where A = 4(172;1 = Al and B ranges over
n

matrices in

B, ={B € [0,u]"** :all B;; are multiples of >};

Main  Result:  Algorithm 1 is  e-node-
DP [15, Lemma 3]. Borgs et al gave upper
bound on its worst-case mean squared error,

EGa, (W) BoAc [62(B, W)2]. We state the improved
bound here:

Theorem III.1. Suppose

o Blomn o< LISA <A</, and
o pne/logn — +o0, e = O(k?logn/\)

Then the e-node-DP Algorithm 1 from [15], A, with

input €, \,k and G outputs a pair (p,B) € [0,1] x

[0, 1%%% with B, ;. (ywy ag[02(5 B, W)?] of the
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order

k—1

)

n2p2e2

0 (IEJ [a,ﬁo)(WF] +E [en(W)?] + N2
log k N kiQ

ro(r( )+ )

The bound from Theorem 1 in [15] states that,
under slightly different parameter assumptions, the
mean squared error ]EGNGn(pW),BNAG [52(%B7 W)?] is
at most

E2logn
& +

ne

) (]E [e,g@(wﬂ VE [En(W)2]>

logk k2
+0 <\//\2 <Og + 2>>
pn - pn
k?logn A2
2
0 (A ne TL2,0262> ’

The improvement therefore of our result lies on the
e-independent part of the bound. For convenience, we
call this part of the bound the non-private part of the
bound and the e-dependent part, the private part of the
bound. As we establish in the following subsection, the
improvement of Theorem III.1 on the non-private part
is the optimal possible.

The k-block Estimation Rate: In this subsection
we focus on the case W is a k-block graphon and
establish that the improvement of Theorem 1 on the
non-private part of the bound is optimal in the following
sense. For some k > 1, assume that W € WI[k]
with [|[W]l < A, that is W WB] for some
B € [0,A]F*k. Restricting ourselves to the specified
subset of graphons we consider the minimax rate,

Eg~q, (pw)[02(Ag, W)?].

min max
A e—node-DP W eW[k],||W || 0o <A

which we denote by Ry (p,e, A, n).

If £ > 2, Theorem 3 from [44] and (up-to-logk
factors) Proposition 3.4 of [37], establishes that this
rate, under no differential-privacy constraint (a case
corresponding to € “equal to” +oo for our purposes),

behaves like
) ,A2}> -

S (min{AQ\/E—O— A <

This result does not directly apply to our setting as
we consider only finite ¢ > 0. Note, though, that e-
node-DP is an increasing property, as if an algorithm
is e-node-DP, it is also &-node-DP for any ¢ > e¢.
Therefore Ry(p,e,A,n) is a non-increasing function
of ¢, as increasing € only can shrink the feasible
sets of estimators. Hence, the result from provides a

]{JQ
_._W

log k
pn




lower bound for the rate Ry (p, e, A, n). Combined with
Theorem III.1 we obtain a tight characterization of the
non-private part of the rate Ry (p,e, A, n), and establish
that Algorithm 1 from [15] obtains the optimal non-
private part of the rate.

Corollary IIL.2. Suppose k > 2. Under the assumptions
of Theorem III.1 and the additional assumption pn >
k—2,

Rk(P,E,A,n)
2
-0 <min{A2\/%+ A <logk + k2> ,A2}>
n on on
and
Rk‘(p7€7Aan)

k log k k2
—0 (AZ\fJFA(Og +2>>
n on pn
k%logn A2
ne n2p2e? )’

+0 <A2

where the upper bound is achieved by Algorithm 1 from
[15].

A Lower Bound on the Private Part: In this subsec-
tion we establish for £ > 2 a lower bound on the private
part of the rate. We establish that the term of order
#262 appearing in the upper bound of Theorem 1 is
necessary, up to the dependence on p, A. For the lower
bound we focus on k-block graphons W = W[B] with
potentially slightly-unequal sizes, we do not require
them to be normalized, and we set p = A = 1.
Specifically, let W[k] be the set of all graphons W
for which ||[W|l < 1 and for some A € R%S" and
some Py = (I1,...,I) partition of [0, 1] into adjacent
intervals of (potentially different) lengths in [, %], w
is the step function which equals A;; on I; x I;, for
every i,j € [k]. Let also

Rk (8, n)

= i E A B 2 .
A < node DP ey GG ()8 Ac 025 W)

Theorem IIL.3. Suppose k > 2. Then
Ry(g,n) = Q <212> :
n2e
IV. PRIVATE ESTIMATION OF ERDOS RENYI
GRAPHS (1-BLOCK GRAPHONS)

This section is devoted to the study of the privately
estimating k-block graphons in the special case k = 1.
Since for k = 1 the graphon corresponds to a constant
function, we deal with the fundamental question of

estimating privately the parameter of an Erdos-Renyi
random graph model. Note that since the graphon is
constant, to make the estimation task non-trivial we do
not adopt the assumption that the graphon is normalized.
Furthermore, using the notation of the previous section
for reasons of simplicity we focus on the case p is
known to the analyst and A = 1.

Using such a graphon W, we conclude that for some
po € [0,1] W(z,y) = po for every z,y € [0,1] and
the analyst’s observes simply a sample from an Erdos
Renyi random graph with n vertices and parameter
p = p-po < p. Multiplying the rate by the known p,
the goal becomes to estimate p using an e-differentially
private algorithm. In agreement with the non-private
behavior where the estimation rate is provably much
smaller when & = 1 compared to k£ > 1 (see Sec. 3.2 in
[37] for details), we reveal a similar behavior in the case
of private estimation. In particular, based on Theorem
I3 for k > 1 and A = 1 the rate of interest is

1
@ <n2£2> '

Here we establish that the e-dependent part of the rate
for k =1 drops to

logn
0 (W) |

A. A New Algorithm for Density Estimation in Erdos
Renyi Random Graphs

The rate we want to find is for p € [0, 1],

: 2
R(p,e,n) = i max Eg~a,  [(A(G) —p)7].

A standard e-node-DP algorithm for this task is
the addition of appropriate Laplace noise to the edge
density of the graph G (Lemma 10 of [15]). The global
sensitivity (Definition 2 in [15]) of the edge density with
respect to the node-distance can be easily proven to be
of the order @(%) In particular it is upper bounded by

%, as if G,G’" € G,
(@) ~ e(G)| < ~du(G, ).

Therefore, using Lemma 10 of [15], the addition of
Lap(%) noise to the edge density provides an e-node-
DP estimator. This estimator allows us to conclude the
following Lemma.

Lemma IV.1. For any p,e > 0,
P 1
R =0|=5+—=5]).
e =0 ( L+ )
As we establish in Theorem IV.3 the upper bound
of Lemma IV.1 is, potentially surprisingly, not tight. A



weakness of the proposed algorithm is that it computes
an estimator based on the global sensitivity of the edge
density over all pairs of undirected graphs of n vertices
and on the other hand applies it only to graphs coming
from Erdos-Renyi models. To reveal more the potential
weakness of the estimator, let us consider a pair of
node-neighbors G, G’, that is d,(G,G’) 1, where
the difference ¢(G) — e(G’) is of the order 1. It is
easy to check that the difference can become of this
order only if the degree of the rewired vertex had o(n)
degree in G and ©(n) degree in G’ or vice versa.
Since the degree of every other vertex changes by
at most 1, the rewired vertex in G or G’ has either
very high degree or very low degree compared to the
average degree in G or G’. Such a non-homogenuous
property of the degree distribution appears, though, only
with a negligible probability under any Erdos-Renyi
model. This line of thought suggests that there could
possibly be some “homogeneity” set, H, for which any
graph sampled from Erdos Renyi model belongs to with
probability 1 — o(1) and the sensitivity of the edge
density on pairs of graphs from #H is much lower than
1

"’ Unfortunately the existence of such a set can be
proven to be non-true for the following reason. The
empty graph G (which appears almost surely for the
Erdos Renyi graph with p = 0) and the complete graph
G (which appears almost surely for the Erdos Renyi
random graph with p = 1) should be included in such
“homogeneity” set and furthermore

e(G1) —e(Go) 1
dU(GO,Gl)O =n-1 06

We establish, though, that this is essentially the
only “extreme” case and such an “homogeneity” set
‘H exists, in the following sense. There exist a set ‘H
which contains any Erdos Renyi graph with probability
1 —0(1), that is

min Pg.g, , (G €H)=1-o0(1),
pe[0,1] ’

and furthermore from any G, G’ € H either

dy(G,G') > n/4

> @) — @) logn
d,(G,G") = O n3/2 )

This y/n-improvement on the edge density sensitivity
on H allows us to establish the existence of an e/2-
node-DP algorithm which is defined on graphs in H and

has mean squared error of the order O( fi’z’ ).Notice that
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the order is much lower than the performance of the ad-
dition of Laplace noise (Lemma IV.1). Next we establish
a general extension result (Theorem V.1) which allows
us to extend the €/2-node-DP algorithm defined on H to
an e-node-DP on the whole space of undirected graphs
with n nodes. The extension has the crucial property
that it outputs the same probability distributions with
the original algorithm when the input belongs in 7. The
extension result applies generally to any e-differentially
private algorithm which takes values in an arbitrary
metric space and outputs probability distributions of
any measurable space. Since such a result could be of
independent interest we devote Section V solely for its
presentation.

Using the extented algorithm we establish the follow-
ing results for graphs sampled from the Erdos Renyi
random graph G, , and the uniform graph G(n,m).
Notice that for the G, ;, model there exists an additional
non-private term % This appears only in the Erdos-
Renyi case and not in the uniform model as it comes
from the vanishing but non-zero variance term of the
edge density in the Erdos Renyi model.

Proposition IV.2 (The G(n, m) case). Let €,p € (0,1)

be functions of n such that en/logn — +oo. There is

an g-node-DP algorithm A such that, for all m < p(g)
m

| =0 (max {n. 222} 5 ).

Theorem IV.3 (The Erdos-Renyi case). If ¢ € (0,1)
with en/logn — +oo, then
B. Lower bounds for G(n, m)

In this subsection we dicuss the complementary ques-
tion of lower bounds for the edge density estimation
question in random graphs. We establish that when ¢
in constant and the graph is generated by the uniform
model G(n,m), the bound implied by Proposition IV.2
is tight.

We establish this by first proving the following propo-

sition on coupling of G(n, m) models with varying m
which could be of independent interest.

logn )| 1087

n

‘A(G)—

E
G~G(n,m) n3e2

logn

logn

p
R(p,e,n) =0 (nQ + max{p, }

n3e2

Proposition IV.4. Let n be sufficiently large, and k an

arbitrary function of n which is o(\/n). Let m = % () —
b Let P = G(n,m) and Q = G(n,m + k). There
exists a coupling of (G, H) of P and @) such that, with
probability tending to one, one can obtain G from H

by rewiring one vertex.



Using the proposition we establish the following
lower bound.

Theorem IV.5. Let € > 0 be a constant positive number,

neN m= %(g) — % and k an arbitrary function of
n which is o(/n) . Then there exists a = [3(g) €
(0,1) such that no e-node DP private algorithm can
distinguish G(n, m) from G(n,m + k) with probability
bigger than ((¢) > 0. In particular, the upper bound
of Proposition 1V.2 is tight up-to-logarithmic terms for

constant € and p.

V. A GENERAL EXTENSION TECHNIQUE

In this section we describe the general extension
technique which allowed us to conclude the upper
bound in Theorem IV.3. Since the technique applies
generally to the extension of any e-differentially private
algorithm from any input metric space to any output
measurable space, we present it here for the following
general model.

The Model: Letn € N and € > 0. We assume that
the analyst’s objective is to estimate a certain quantity
which takes values in some measurable space (€2, F)
from input data which take values in a metric space
(M, d). The analyst is assumed to use for this task a
randomized algorithm .4 which should be
(1) as highly accurate as possible for input data be-

longing in some hypothesis set H C M;

(2) e-differentially private on the whole metric space

of input data (M, d).

In this section we state the following result. Consider
an arbitrary e-differentially private algorithm defined
on input belonging in some set H C M. We show
that it can be always extended to a 2e-differentially
private algorithm defined for arbitrary input data from
M with the property that if the input data belongs in
‘H, the distribution of output values is the same with the
original algorithm. We state formally the result.

Proposition V.1 (“Extending Private Algorithms at
e-cost”). Let A be an e-differentially private algorithm
designed for input from H C M. Then there exists
a randomized algorithm A defined on the whole input
space M which is 2e-differentially private and satisfies

that for every D € H, A(D) < A(D).
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