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Abstract—Motivated by growing concerns over ensuring
privacy on social networks, we develop new algorithms and
impossibility results for fitting complex statistical models
to network data subject to rigorous privacy guarantees.
We consider the so-called node-differentially private al-
gorithms, which compute information about a graph or
network while provably revealing almost no information
about the presence or absence of a particular node in the
graph.

We provide new algorithms for node-differentially pri-
vate estimation for a popular and expressive family of
network models: stochastic block models and their gener-
alization, graphons. Our algorithms improve on prior work
[15], reducing their error quadratically and matching,
in many regimes, the optimal nonprivate algorithm [37].
We also show that for the simplest random graph mod-
els (G(n, p) and G(n,m)), node-private algorithms can
be qualitatively more accurate than for more complex
models—converging at a rate of 1

ε2n3 instead of 1
ε2n2 .

This result uses a new extension lemma for differentially
private algorithms that we hope will be broadly useful.

Keywords-Differential privacy, stochastic block models,
graphons, private data analysis.

I. INTRODUCTION

Network data play an increasingly important role

in many scientific fields. Data from social networks,

in which the nodes represent individuals and edges

represent relationships among them, are transforming

sociology, marketing, and political science, among oth-

ers. However, what makes these data so valuable also

makes them highly sensitive—consider, for example,

the public sentiment surrounding the recent Cambridge

Analytica scandal.

What kinds of information can we release about

social networks while preserving the privacy of their

users? Straightforward approaches, such as removing

obvious identifiers or releasing summaries that concern

at least a certain number of nodes, can be easily

broken [46, 38].

In this paper, we develop new algorithms and im-

possibility results for fitting complex statistical models

to network data subject to rigorous privacy guarantees.

We consider differentially private algorithms [23]. There

are two main variants of differential privacy for graphs:

edge and node differential privacy [50]. Intuitively, edge

differential privacy ensures that an algorithm’s output

does not reveal the inclusion or removal of a particular

edge in the graph, while node differential privacy hides

the inclusion or removal of a node together with all its

adjacent edges. Edge privacy is weaker (hence easier

to achieve) and has been studied more extensively

[47, 50, 34, 45, 43, 35, 28, 29, 33, 40, 32, 27, 7, 45,

35, 43, 32, 54].

We study node-differentially private algorithms.

These ensure that, no matter what an analyst observing

the output knows ahead of time, she learns the same

things about an individual Alice regardless of whether

Alice’s data are used or not. Node privacy’s strin-

gency makes the design of accurate, private algorithms

challenging; only a small number of techniques for

designing such algorithms are known [36, 8, 18, 49, 21].

We provide new algorithms for node-differentially

private estimation for a popular and expressive family

of network models: stochastic block models and their

generalization, graphons. Our algorithms improve on

prior work (by a subset of us [15]), roughly reducing

their error quadratically and matching, in many regimes,

the optimal nonprivate algorithm [37, 44]. We also show

that for the simplest random graph models (G(n, p)
and G(n,m)), node-private algorithms can be qualita-

tively more accurate than for more complex models—

converging at a rate of 1
ε2n3 instead of 1

ε2n2 . This result

uses a new extension lemma for differentially private

algorithms that we hope will be broadly useful.

Modeling Large Graphs via Graphons: Tradition-

ally, large graphs have been modeled using various

parametric models, one of the most popular being the

stochastic block model [30]. Here one postulates that an

observed graph was generated by first assigning vertices

at random to one of k groups, and then connecting two

533

2018 IEEE 59th Annual Symposium on Foundations of Computer Science

2575-8454/18/$31.00 ©2018 IEEE
DOI 10.1109/FOCS.2018.00057



vertices with a probability that depends on the groups

the two vertices are members of.

As the number of vertices of the graph in question

grows, we do not expect the graph to be well described

by a stochastic block model with a fixed number of

blocks. We therefore consider nonparametric models

described by a graphon. A graphon is a measurable,

bounded function W : [0, 1]2 → [0,∞) such that

W (x, y) = W (y, x), which for convenience we take

to be normalized:
∫
W = 1. Given a graphon, we

generate a graph on n vertices by first assigning i.i.d.

uniform labels xi ∈ [0, 1], i = 1, 2, . . . , n to the vertices,

and then connecting vertices i, j with labels xi, xj

with probability Hn(i, j) = ρnW (xi, xj), where ρn is

a parameter determining the density of the generated

graph Gn with ρn‖W‖∞ ≤ 1. We call Gn = Gn(ρW )
a W -random graph with target density ρn (or simply a

ρnW -random graph).

This model captures stochastic block models as well

as more complex models, e.g. random geometric graphs,

where each vertex corresponds to a point in a metric

space (selected randomly according to a particular dis-

tribution) and vertices share an edge if their points are

sufficiently close [26, 20, 48, 24].

For both the “dense” setting (where the target density

ρn does not depend on the number of vertices) and the

“sparse” setting (where ρn → 0 as n → ∞), graphons

play a key role in the convergence theory for graph

sequences [31, 4, 42, 9, 10, 12, 13, 14], providing limit

objects in several natural topologies.

Metrics for Estimation: Given a single graph Gn

generated as ρW -random for unknown ρ and W , how

well can we estimate ρ and W ? This task has now been

studied extensively [5, 51, 19, 6, 41, 52, 39, 53, 16, 3,

55, 25, 2, 17, 1, 37, 44]. One issue faced by all these

works is identifiability: multiple graphons can lead to

the same distribution on Gn. Specifically, two graphons

W and W̃ lead to the same distribution on W -random

graphs if and only if there are measure preserving maps

ϕ, ϕ̃ : [0, 1] → [0, 1] such that Wϕ = W̃ ϕ̃, where Wϕ is

defined by W (x, y) = W (ϕ(x), ϕ(y)) [22, 11]. Hence,

there is no “canonical graphon” that an estimation pro-

cedure can output. Some of the literature circumvents

identifiability by making strong additional assumptions

that imply the existence of canonical equivalence class

representatives. We make no such assumptions, but

instead define consistency in terms of a metric on

equivalence classes. We use a variant of the L2 metric,

δ2(W,W ′) = inf
ϕ:[0,1]→[0,1]

‖Wϕ −W ′‖2 , (I.1)

where ϕ ranges over measure-preserving bijections.

In this work, we set aside questions of computational

efficiency and focus on establishing what rates are

possible in principle (our algorithms, like the nonprivate

state of the art, run in time roughly exponential in n).

For our purposes, the most relevant work is that of

Klopp, Tzybakov and Verzalen [37], who establish tight

upper and (in parallel to [44]) lower bounds on the error

rate of nonprivate algorithms, given a single n-vertex

ρW -random graph and a target number of blocks, k.

Our algorithms match their rate for large enough values

of the privacy parameter.

Private Algorithms for Graph Data and the
Rewiring Metric: Let A be a randomized algorithm

that takes values from some input metric space (M, d)
(called the space of data sets) and ouputs probability

distributions on some measurable space (Ω,F).

Definition I.1. The algorithm A is ε-differential private
(ε-DP) with respect to the metric d if, for all subsets
S ∈ F and D1, D2 ∈ M,

P (A(D1) ∈ S) ≤ exp [εd(D1, D2)]P (A(D2) ∈ S) .

The metric d is typically defined by specifying pairs

of data sets that are adjacent (i.e., at distance 1 from

each other), and then letting d be the induced path

metric.

There are two natural variants of differential privacy

suited for graph datasets, edge differential privacy and

node differential privacy. Intuitively, edge differentially

private algorithms hide the presence or absence of a

particular relationship between individuals in a social

network, while node differentially private algorithms

protect each individual together with all his/her rela-

tionsips. In both cases, the data set is an undirected

graph with no self-loops; we let Gn denote the set of

such graphs on n vertices. Formally, edge differential

privacy is obtained by taking d to count the number

of edges that differ between two graphs (the Hamming

metric on adjacency matrices). In contrast, node differ-

ential privacy is defined with respect to the rewiring
metric, or node distance, between graphs: we say that

two distinct graphs G,G′ are at node-distance 1 (or

adjacent) if one can be obtained from the other by

inserting or removing arbitrary sets of edges adjacent

to a singe vertex, a process we call rewiring the vertex.

For arbitrary G1, G2 ∈ Gn, define the node-distance
between them, dv(G1, G2), to be the minimum number

of vertices of G1 that need to be rewired to obtain G2.

A randomized algorithm A defined on Gn is ε-node

differentially private (ε-node DP) if it is ε-differentially

private with respect to the node-distance dv .
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Edge differential privacy is a weaker notion and has

been extensively studied over the past decade. Algo-

rithms have been developed for various tasks such as

the release of subgraph counts, the degree distribution

and the parameters of generative graph models [28],

[35], [45], [33], [34], [47]. On the other hand, the node-

differential privacy is a much stronger privacy guaran-

tee. The first nontrivial node-differentially algorithms

were designed (concurrently) in [8, 18, 36], with a focus

on algorithms that release one-dimensional summaries

of a network such as subgraph counts. Later work [49,

15, 21] introduced higher-dimensional techniques. Most

relevant here, a subset of us gave the first algorithms for

node-private graphon estimation [15]. A common thread

to all these works is the use of Lipschitz extensions in

the rewiring metric to control the sensitivity of summary

statistics for sparse graphs. A key piece of this paper is

a novel use of such extensions.

The previous results for graphon estimation achieved

estimation error going to 0 for a large parameter range,

but fell short in several respects: first, even when ε
is arbitrarily large, the algorithm does not match the

best nonprivate bounds. Secondly, there was no evidence

that the extra terms due to privacy (involving ε) in the

accuracy guarantee were necessary.

A. Contributions

New Upper Bounds for Estimating k-Block
Graphons: Our main focus is the problem of esti-

mating a bounded normalized graphon W via a node-

differentially private algorithm. The estimation algo-

rithm observes one sample of a ρW -random graph,

and outputs the description of a graphon Ŵ that it

hopes is close to W . We consider algorithms that output

a graphon with a succinct description—namely, we

assume the estimate Ŵ is a k-block graphon with equal-

weight blocks (such a graphon can be described by a

k× k symmetric matrix). The parameter k offers a reg-

ularization of sorts, trading off the model’s expressivity

for complexity. We measure the algorithm’s error by the

expected squared δ2 distance (see (I.1)) between Ŵ and

W . Borgs et al. [15] studied this problem, developing an

inefficient estimation procedure (henceforth the “BCS”

algorithm [15, Algorithm 1]) and establishing an upper

bound on its error.

Our first contribution is a new analysis of the BCS

algorithm that significantly improves the error bound,

matching the (tight) nonprivate bounds for a large

range of parameters. The new and old results can be

summarized as the following upper bound on the mean

squared error E
[
δ2(Ŵ ,W )2

]
of the following form.

Theorem 1 (Informal). Fix some k ≥ 1 and let A be
the BCS algorithm. Then for all bounded graphons W ,

E
G∼Gn(ρW )

[δ2(A(G),W )2] =

O

(
“agnostic and

sampling errors” +
k2 log n

nε
+

1

n2ρ2ε2

)
︸ ︷︷ ︸

as in Borgs et al. [15]

+O

(√
k − 1

n
+

(
log k

ρn
+

k2

ρn2

))
︸ ︷︷ ︸

improving quadratically Borgs et al. [15]

Here, the phrase “agnostic and sampling errors” cov-

ers two terms that are present in both bounds. The “ag-

nostic error” corresponds to the distance from the true

graphon W to the nearest k-block graphon—a model

misspecification error. It is unavoidable for algorithms

that output k-block graphons. The “sampling” term

corresponds to the expected distance between the true

graphon W and the probability matrix (W (xi, xj))
n
i,j=1

defining the ρW -random graph. This distance is a

random variable that can be bounded in different ways

depending on what is known about W . If W is itself a

k-block graphon, then the the agnostic error is 0, and

the sampling error (about
√
k/n with high probability)

is subsumed by the other error terms.

Notice that our improvement to the accuracy bound

lies in the “non-private” (that is, independent of ε) part

of the error.

This nonprivate part of our new bound is in fact

optimal, as it matches the lower bounds for nonprivate
algorithms. Specifically, consider the case that the true

graphon W is in fact a k-block graphon and define the

rate

Rk(ρ, ε, n) =

min
A

ε−node-DP

max
Wk−block

E
G∼Gn(ρW )

[δ2(A(G),W )2].

Klopp et al. [37, Prop. 3.4] (and McMillan and Smith

[44, Theorem 3]) establish the best rate if we allow any

estimation algorithm A—private or not—to be

Θ

(
min{

√
k

n
+

(
log k

ρn
+

k2

ρn2

)
, 1}

)
for k ≥ 2.

In particular, focusing on ε-node-DP algorithms we

conclude that for any k ≥ 2,

Rk(ρ, ε, n) = Ω

(
min{

√
k

n
+

(
log k

ρn
+

k2

ρn2

)
, 1}

)
(I.2)
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Notice that our upper bound as established in Theorem 1

matches exactly this lower bound when the true graphon

has exactly k blocks and ε is sufficiently large (since

then the agnostic error is 0, the sampling error is know

to be O(
√
k/n), and the ε-dependent terms go to 0).

In particular, using Theorem 1 we conclude a tight

characterization of the ε-independent part of the rate

Rk(ρ, ε, n),

Collorary 1 (Informal). Fix some k ≥ 2. Then there
exists an algorithm such that for all bounded graphons
W ,

Rk(ρ, ε, n) = O

(
k2 log n

nε
+

1

n2ρ2ε2

)
+O

(√
k − 1

n
+

(
log k

ρn
+

k2

ρn2

))
︸ ︷︷ ︸

tight nonprivate part based on (I.2)

Additional Error Due to Privacy (k ≥ 2): To

understand whether we have found the true minimax

rate, it remains to understand whether the terms based

on ε are optimal. We show that the second of these

cannot be improved, on the slightly less restrictive case

where the blocks of the k-block graphon can have

different sizes, a set we denote by W̃ [k].

Theorem 2 (Informal). For k ≥ 2,

R̃k(ρ, ε, n) = Ω

(
1

n2ε2

)
,

where R̃k(ρ, ε, n) is defined to be

min
A ε−node-DP

max
W∈W̃ [k]

EG∼Gn(ρW )[δ2(A(G),W )2]. (I.3)

This lower bound applies even to algorithms that

simply estimate the unknown density parameter ρ. The

proof of this lower bound is fairly simple, relying on the

fact that even if the connection probabilities of a 2-block

graphon are known, estimating the graphon requires one

to accurately estimate the probability mass of the two

blocks. We reduce to this latter problem from the well-

studied problem of estimating the bias of a sequence of

n coin flips differentially privately.

We leave open the question of whether the term
k2 logn

nε is necessary.

The Case of Erdős-Renyi Graphs (1-Block
Graphons): The upper bounds above all apply for k =
1, in particular, but the lower bounds generally do not

yield anything interesting in that case. The case of k = 1
corresponds to graphs generated according to the well-

studied Erdős-Renyi model, where each possible edge

appears independently with an unknown probability p.

To phrase this as an estimation problem, consider the

scale parameter ρ to be known, and the algorithm’s

goal is to estimate a constant graphon W (x, y) = p
subject to p ≤ ρ. (Unlike in the case of larger k,

estimating the normalized graphon W is trivial since,

after normalization, W (x, y) = 1.)
Nonprivately, the optimal estimator is the edge den-

sity of the observed graph, (#edges)/
(
n
2

)
.

What about private algorithms? First, observe that

the algorithm A0 that adds Laplace noise of order
1
nε to the edge density is ε-node differentially private.

Furthermore, for p ∈ [0, ρ],

EG∼Gn,p

[|A0(G)− p|2] = O

(
ρ

n2
+

1

n2ε2

)
.

Potentially surprisingly, we establish that the rate

obtained this way is not optimal. As we explain in

section 3, the main reason for the suboptimality of this

method is that it is based on calculating the worst-case

sensitivity of the edge density over the space of all

undirected graphs. In particular, this estimator ignores

the rich structure of the Erdos-Renyi graphs. Using this

structure, we establish a series of results relating the

node-distance and the Erdos-Renyi graphs along-side

with a general extension result (Proposition V.1) which

combined allows to prove the following improved upper

bound

Theorem 3 (Informal). There exists an ε-node-DP
algorithm A such that for any ρ ∈ (0, 1],

max
p∈[0,ρ]

EG∼Gn,p [(A(G)− p)2] = O

(
ρ

n2
+

log n

n3ε2

)
.

(I.4)

Using the same techniques we are able to establish

the corresponding result for the uniform G(n,m) model

which obtains an error

O

(
log n

n3ε2

)
,

avoiding the edge-density variance term which appears

in the Erdos-Renyi case, ρ
n2 . We end this section with

a novel lower bound for G(n,m) model.

Theorem 4 (Informal). Suppose ε is a constant. Then,

min
Aε−node-DP

max
m∈[ 13 (

n
2),

2
3 (

n
2)]

EG∼G(n,m)[(A(G)− m(
n
2

) )2]
= Ω

(
1

n3ε2

)
.

This Theorem establishes that the upper bound for

the G(n,m) model is optimal up-to-logarithmic terms

in the ε-constant regime and suggests the same for the

Erdos-Renyi case.
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A General Extension Result: In Section 4, we

present in detail the general extension result we used

in Section 3 as it could be of independent interest. The

extension result works for an arbitrary ε-differentially

private algorithm which receives input from a metric

space (M,d) and outputs distributions of an arbitrary

output measurable space (Ω,F). We establish that if

there exists such an ε-differentially private algorithm

Â defined only on a subset of the input space H, the

algorithm can be extended to an 2ε-differentially private

algorithm A defined on the whole input space M such

that if the input G ∈ H, the distributions of the output

of Â(G) coincides with the distribution of A(G).

II. NOTATION AND PRELIMINARIES

k-block Graphons: For every k ∈ N, we embed

the set of k × k symmetric matrices into the space of

graphons as following: let Pk = (I1, . . . , Ik) be the

partition of [0, 1] into adjacent intervals of lengths 1
k .

For A ∈ Rk×k
≥0 define W [A] to be the step function

which equals Aij on Ii × Ij , for every i, j ∈ [k]. We

say a graphon W is a k-block graphon if W = W [A]
for some A ∈ Rk×k

≥0 and denote by W[k] the space of

k-block graphon.

Distances between Graphons: For A,B symmetric

n × n matrices and a graphon W we set for con-

venience δ2(A,W ) = δ2(W [A],W ) and δ2(A,B) =
δ2(W [A],W [B]), where δ2 is defined for two graphons

in I.1. Furthermore we focus also on the, in general

larger than δ2, distance

δ̂2(A,W ) = inf
π∈Sn

‖W [Aπ]−W‖2,

where π ranges over all permurations of {1, 2, . . . , n}
and for all i, j ∈ [n], Aπ

ij = Aπ(i),π(j). δ2 is in principle

smaller than δ̂2 as it minimizes the �2 distance over

all measure-preserving transformations, while the latter

distance minimizes only on such transformation that can

be expressed as permutations of the rows and columns

of the underlying matrix A.

We consider two fundamental types of errors of

approximation of W .

The agnostic error, or oracle error, of approximating

W by a k-block graphon with respect to δ2 and δ̂2,

ε
(O)
k (W ) = min

B
δ2(B,W )

and

ε̂
(O)
k (W ) = min

B
δ̂2(B,W ),

where B ranges over all matrices in Rk×k. The agnostic

errors corresponds to the model mispecification errors

of the statistical problem of estimating W using a k-

block graphon. We consider them as benchmarks for

our approach, and the errors an “oracle” could obtain

(hence the superscript O).

Scale of agnostic error: For any bounded W , both

ε
(O)
k (W ) and ε̂

(O)
k (W ) tend to zero as k → +∞ (see

[15, Sec. 2] for details).

The sampling error of approximating W from G =
Gn(ρW ) with respect to δ̂2,

εn(W ) = δ̂2(Hn(W ),W ).

Recall that the only information for W in the observed

graph G comes from the edge probabilities Hn(i, j) =
ρW (xi, xj) where xi are the iid uniform in [0, 1] labels

of the vertices. Intuitively, a large discrepancy between

the edge probability matrix Hn(W ) and W results in

bad estimation of W given G. Unlike the agnostic error,

the sampling error is a random variable (depending on

the assignment of nodes to “types” in [0, 1].)
Scale of sampling error: For any bounded W ,

εn(W )
P−→ 0 as n → +∞ [15, Lemma 1]. Further-

more, if additionally W is a k-block graphon it can

be established that εn(W ) = O( 4

√
k
n ) with probability

tending to one as n → +∞ [15, Appendix D].

III. PRIVATE GRAPHON ESTIMATION

Model: Let k, n ∈ N with k ≤ n, Λ ≥ 1
and ε > 0. Suppose W is an unknown normalised

graphon with ‖W‖∞ ≤ Λ. For some unknown “sparsity

level” ρ = ρn ∈ (0, 1) with ρΛ ≤ 1, the analyst

observes a graph G sampled from the ρW -random

graph, Gn(ρW ). The analyst’s goal is to use an ε-

node-DP algorithm A on G to output a k-block model

approximation of W , say W [B̂] for B̂ ∈ Rk×k, which

minimizes the mean squared error,

EG∼Gn(ρW ),B̂∼A(G)[δ2(B̂,W )2].

A. Main Algorithm

We use the same algorithm as Borgs et al. [15],

described in Algorithm 1.

Notation for Algorithm 1: For k, n ∈ N with k ≤
n, we say that π : [n] → [k] is a k-equipartition of [n],
if it partitions [n] into k classes such that is for every

i ∈ [n], ||π−1(i)|− n
k | < 1. For a matrix Q ∈ Rk×k and

a matrix A ∈ Rn×n, we set Score(Q, π,A) = ‖A‖22 −
‖A−Qπ‖22, where π ranges over all k-equipartitions of

[n],(Qπ)i,j = Qπ(i),π(j) for all i, j ∈ [n] and ‖A‖2 =(
1
n2

∑n
i,j=1 A

2
ij

) 1
2

. Finally, we denote by Gn the space

of undirected graphs on n vertices and Gn,d the subset
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of graphs in Gn where the maximum degree is bounded

by d.

We now describe the steps of the algorithm. The

algorithm takes as input the privacy parameter ε, the

graph G, a number k of blocks, and a constant λ ≥ 1
that will have to be chosen large enough to guarantee

consistency of the algorithm.

Algorithm 1: Private Estimation Algorithm

Input: ε > 0, λ ≥ 1, an integer k and graph G
on n vertices.

Output: k-block graphon (represented as a

k × k matrix B̂) estimating ρW
Compute an (ε/2)-node-private density

approximation ρ̂ = ρ(G) + Lap(4/nε) ;

d = λρ̂n (the target maximum degree) ;

μ = λρ̂ (the target L∞ norm for B̂) ;

For each B and π, let Ŝcore(B, π; ·) denote a

nondecreasing Lipschitz extension (from [36])

of Score(B, π; ·) from Gn,d to Gn such that for

all matrices A,

Ŝcore(B, π;A) ≤ score(B, π;A), and define

Ŝcore(B;A) = max
π

Ŝcore(B, π;A)

return B̂, sampled from the distribution

Pr(B̂ = B) ∝ exp
( ε

4Δ
Ŝcore(B;A)

)
,

where Δ =
4dμ

n2
=

4λ2ρ̂2

n
and B ranges over

matrices in

Bμ = {B ∈ [0, μ]k×k : all Bi,j are multiples of 1
n};

Main Result: Algorithm 1 is ε-node-

DP [15, Lemma 3]. Borgs et al gave upper

bound on its worst-case mean squared error,

EG∼Gn(ρW ),B̂∼AG
[δ2(B̂,W )2]. We state the improved

bound here:

Theorem III.1. Suppose

• 6 logn
n < ρ ≤ 1

Λ , 8Λ ≤ λ ≤ √
n, and

• ρnε/ log n → +∞, ε = O(k2 log n/λ)

Then the ε-node-DP Algorithm 1 from [15], A, with
input ε, λ, k and G outputs a pair (ρ̂, B̂) ∈ [0, 1] ×
[0, 1]k×k with EG∼Gn(ρW ),B̂∼AG

[δ2(
1
ρ̂ B̂,W )2] of the

order

O

(
E

[
ε
(O)
k (W )2

]
+ E

[
εn(W )2

]
+ λ2

√
k − 1

n

)

+O

(
λ

(
log k

ρn
+

k2

ρn2

)
+ λ2 k

2 log n

nε
+

λ2

n2ρ2ε2

)
.

The bound from Theorem 1 in [15] states that,

under slightly different parameter assumptions, the

mean squared error EG∼Gn(ρW ),B̂∼AG
[δ2(

1
ρ̂ B̂,W )2] is

at most

O
(
E

[
ε
(O)
k (W )2

]
+ E

[
εn(W )2

])
+O

(√
λ2

(
log k

ρn
+

k2

ρn2

))

+O

(
λ2 k

2 log n

nε
+

λ2

n2ρ2ε2

)
.

The improvement therefore of our result lies on the

ε-independent part of the bound. For convenience, we

call this part of the bound the non-private part of the

bound and the ε-dependent part, the private part of the

bound. As we establish in the following subsection, the

improvement of Theorem III.1 on the non-private part

is the optimal possible.

The k-block Estimation Rate: In this subsection

we focus on the case W is a k-block graphon and

establish that the improvement of Theorem 1 on the

non-private part of the bound is optimal in the following

sense. For some k ≥ 1, assume that W ∈ W [k]
with ‖W‖∞ ≤ Λ, that is W = W [B] for some

B ∈ [0,Λ]k×k. Restricting ourselves to the specified

subset of graphons we consider the minimax rate,

min
A ε−node-DP

max
W∈W[k],‖W‖∞≤Λ

EG∼Gn(ρW )[δ2(AG,W )2].

which we denote by Rk(ρ, ε,Λ, n).
If k ≥ 2, Theorem 3 from [44] and (up-to-log k

factors) Proposition 3.4 of [37], establishes that this

rate, under no differential-privacy constraint (a case

corresponding to ε “equal to” +∞ for our purposes),

behaves like

Θ

(
min{Λ2

√
k

n
+ Λ

(
log k

ρn
+

k2

ρn2

)
,Λ2}

)
.

This result does not directly apply to our setting as

we consider only finite ε > 0. Note, though, that ε-

node-DP is an increasing property, as if an algorithm

is ε-node-DP, it is also ε′-node-DP for any ε′ > ε.
Therefore Rk(ρ, ε,Λ, n) is a non-increasing function

of ε, as increasing ε only can shrink the feasible

sets of estimators. Hence, the result from provides a
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lower bound for the rate Rk(ρ, ε,Λ, n). Combined with

Theorem III.1 we obtain a tight characterization of the

non-private part of the rate Rk(ρ, ε,Λ, n), and establish

that Algorithm 1 from [15] obtains the optimal non-

private part of the rate.

Corollary III.2. Suppose k ≥ 2. Under the assumptions
of Theorem III.1 and the additional assumption ρn ≥
k − 2,

Rk(ρ, ε,Λ, n)

= Ω

(
min{Λ2

√
k

n
+ Λ

(
log k

ρn
+

k2

ρn2

)
,Λ2}

)
and

Rk(ρ, ε,Λ, n)

= O

(
Λ2

√
k

n
+ Λ

(
log k

ρn
+

k2

ρn2

))

+O

(
Λ2 k

2 log n

nε
+

Λ2

n2ρ2ε2

)
,

where the upper bound is achieved by Algorithm 1 from
[15].

A Lower Bound on the Private Part: In this subsec-

tion we establish for k ≥ 2 a lower bound on the private

part of the rate. We establish that the term of order
Λ2

n2ρ2ε2 appearing in the upper bound of Theorem 1 is

necessary, up to the dependence on ρ,Λ. For the lower

bound we focus on k-block graphons W = W [B] with

potentially slightly-unequal sizes, we do not require

them to be normalized, and we set ρ = Λ = 1.

Specifically, let W̃[k] be the set of all graphons W
for which ‖W‖∞ ≤ 1 and for some A ∈ Rk×k

≥0 and

some Pk = (I1, . . . , Ik) partition of [0, 1] into adjacent

intervals of (potentially different) lengths in [ 1
4k ,

4
k ], W

is the step function which equals Aij on Ii × Ij , for

every i, j ∈ [k]. Let also

R̃k(ε, n)

= min
A ε−node-DP

max
W∈W̃[k]

EG∼Gn(W ),B̂∼AG
[δ2(B̂,W )2].

Theorem III.3. Suppose k ≥ 2. Then

R̃k(ε, n) = Ω

(
1

n2ε2

)
.

IV. PRIVATE ESTIMATION OF ERDOS RENYI

GRAPHS (1-BLOCK GRAPHONS)

This section is devoted to the study of the privately

estimating k-block graphons in the special case k = 1.

Since for k = 1 the graphon corresponds to a constant

function, we deal with the fundamental question of

estimating privately the parameter of an Erdos-Renyi

random graph model. Note that since the graphon is

constant, to make the estimation task non-trivial we do

not adopt the assumption that the graphon is normalized.

Furthermore, using the notation of the previous section

for reasons of simplicity we focus on the case ρ is

known to the analyst and Λ = 1.

Using such a graphon W , we conclude that for some

p0 ∈ [0, 1] W (x, y) = p0 for every x, y ∈ [0, 1] and

the analyst’s observes simply a sample from an Erdos

Renyi random graph with n vertices and parameter

p := ρ · p0 ≤ ρ. Multiplying the rate by the known ρ,

the goal becomes to estimate p using an ε-differentially

private algorithm. In agreement with the non-private

behavior where the estimation rate is provably much

smaller when k = 1 compared to k > 1 (see Sec. 3.2 in

[37] for details), we reveal a similar behavior in the case

of private estimation. In particular, based on Theorem

III.3 for k > 1 and Λ = 1 the rate of interest is

Ω

(
1

n2ε2

)
.

Here we establish that the ε-dependent part of the rate

for k = 1 drops to

O

(
log n

n3ε2

)
.

A. A New Algorithm for Density Estimation in Erdos
Renyi Random Graphs

The rate we want to find is for ρ ∈ [0, 1],

R(ρ, ε, n) = min
A ε−node-DP

max
p∈[0,ρ]

EG∼Gn,p [(A(G)− p)2].

A standard ε-node-DP algorithm for this task is

the addition of appropriate Laplace noise to the edge

density of the graph G (Lemma 10 of [15]). The global

sensitivity (Definition 2 in [15]) of the edge density with

respect to the node-distance can be easily proven to be

of the order Θ( 1n ). In particular it is upper bounded by
4
n , as if G,G′ ∈ Gn,

|e(G)− e(G′)| ≤ 4

n
dv(G,G′).

Therefore, using Lemma 10 of [15], the addition of

Lap( 4
nε ) noise to the edge density provides an ε-node-

DP estimator. This estimator allows us to conclude the

following Lemma.

Lemma IV.1. For any ρ, ε > 0,

R(ρ, ε, n) = O

(
ρ

n2
+

1

n2ε2

)
.

As we establish in Theorem IV.3 the upper bound

of Lemma IV.1 is, potentially surprisingly, not tight. A
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weakness of the proposed algorithm is that it computes

an estimator based on the global sensitivity of the edge

density over all pairs of undirected graphs of n vertices

and on the other hand applies it only to graphs coming

from Erdos-Renyi models. To reveal more the potential

weakness of the estimator, let us consider a pair of

node-neighbors G,G′, that is dv(G,G′) = 1, where

the difference e(G) − e(G′) is of the order 1
n . It is

easy to check that the difference can become of this

order only if the degree of the rewired vertex had o(n)
degree in G and Θ(n) degree in G′ or vice versa.

Since the degree of every other vertex changes by

at most 1, the rewired vertex in G or G′ has either

very high degree or very low degree compared to the

average degree in G or G′. Such a non-homogenuous

property of the degree distribution appears, though, only

with a negligible probability under any Erdos-Renyi

model. This line of thought suggests that there could

possibly be some “homogeneity” set, H, for which any

graph sampled from Erdos Renyi model belongs to with

probability 1 − o(1) and the sensitivity of the edge

density on pairs of graphs from H is much lower than
1
n .

Unfortunately the existence of such a set can be

proven to be non-true for the following reason. The

empty graph G0 (which appears almost surely for the

Erdos Renyi graph with p = 0) and the complete graph

G1 (which appears almost surely for the Erdos Renyi

random graph with p = 1) should be included in such

“homogeneity” set and furthermore

e(G1)− e(G0)

dv(G0, G1)
=

1

n− 1
= Θ(

1

n
).

We establish, though, that this is essentially the

only “extreme” case and such an “homogeneity” set

H exists, in the following sense. There exist a set H
which contains any Erdos Renyi graph with probability

1− o(1), that is

min
p∈[0,1]

PG∼Gn,p
(G ∈ H) = 1− o(1),

and furthermore from any G,G′ ∈ H either

dv(G,G′) > n/4

or
|e(G)− e(G′)|

dv(G,G′)
= O(

√
log n

n3/2
).

This
√
n-improvement on the edge density sensitivity

on H allows us to establish the existence of an ε/2-

node-DP algorithm which is defined on graphs in H and

has mean squared error of the order O( logn
n3ε2 ).Notice that

the order is much lower than the performance of the ad-

dition of Laplace noise (Lemma IV.1). Next we establish

a general extension result (Theorem V.1) which allows

us to extend the ε/2-node-DP algorithm defined on H to

an ε-node-DP on the whole space of undirected graphs

with n nodes. The extension has the crucial property

that it outputs the same probability distributions with

the original algorithm when the input belongs in H. The

extension result applies generally to any ε-differentially

private algorithm which takes values in an arbitrary

metric space and outputs probability distributions of

any measurable space. Since such a result could be of

independent interest we devote Section V solely for its

presentation.

Using the extented algorithm we establish the follow-

ing results for graphs sampled from the Erdos Renyi

random graph Gn,p and the uniform graph G(n,m).
Notice that for the Gn,p model there exists an additional

non-private term ρ
n2 . This appears only in the Erdos-

Renyi case and not in the uniform model as it comes

from the vanishing but non-zero variance term of the

edge density in the Erdos Renyi model.

Proposition IV.2 (The G(n,m) case). Let ε, ρ ∈ (0, 1)
be functions of n such that εn/ log n → +∞. There is
an ε-node-DP algorithm A such that, for all m < ρ

(
n
2

)
,

E
G∼G(n,m)

∣∣∣A(G)− m(
n
2

) ∣∣∣2 = O

(
max

{
ρ, logn

n

}
· log n
n3ε2

)
.

Theorem IV.3 (The Erdos-Renyi case). If ε ∈ (0, 1)
with εn/ log n → +∞, then

R(ρ, ε, n) = O

(
ρ

n2
+max{ρ, log n

n
} log n
n3ε2

)
.

B. Lower bounds for G(n,m)

In this subsection we dicuss the complementary ques-

tion of lower bounds for the edge density estimation

question in random graphs. We establish that when ε
in constant and the graph is generated by the uniform

model G(n,m), the bound implied by Proposition IV.2

is tight.

We establish this by first proving the following propo-

sition on coupling of G(n,m) models with varying m
which could be of independent interest.

Proposition IV.4. Let n be sufficiently large, and k an
arbitrary function of n which is o(

√
n). Let m = 1

2

(
n
2

)−
k
2 Let P = G(n,m) and Q = G(n,m + k). There
exists a coupling of (G,H) of P and Q such that, with
probability tending to one, one can obtain G from H
by rewiring one vertex.
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Using the proposition we establish the following

lower bound.

Theorem IV.5. Let ε > 0 be a constant positive number,
n ∈ N, m = 1

2

(
n
2

) − k
2 and k an arbitrary function of

n which is o(
√
n) . Then there exists a β = β(ε) ∈

(0, 1) such that no ε-node DP private algorithm can
distinguish G(n,m) from G(n,m+ k) with probability
bigger than β(ε) > 0. In particular, the upper bound
of Proposition IV.2 is tight up-to-logarithmic terms for
constant ε and ρ.

V. A GENERAL EXTENSION TECHNIQUE

In this section we describe the general extension

technique which allowed us to conclude the upper

bound in Theorem IV.3. Since the technique applies

generally to the extension of any ε-differentially private

algorithm from any input metric space to any output

measurable space, we present it here for the following

general model.
The Model: Let n ∈ N and ε > 0. We assume that

the analyst’s objective is to estimate a certain quantity

which takes values in some measurable space (Ω,F)
from input data which take values in a metric space

(M, d). The analyst is assumed to use for this task a

randomized algorithm A which should be

(1) as highly accurate as possible for input data be-

longing in some hypothesis set H ⊆ M;

(2) ε-differentially private on the whole metric space

of input data (M,d).

In this section we state the following result. Consider

an arbitrary ε-differentially private algorithm defined

on input belonging in some set H ⊂ M. We show

that it can be always extended to a 2ε-differentially

private algorithm defined for arbitrary input data from

M with the property that if the input data belongs in

H, the distribution of output values is the same with the

original algorithm. We state formally the result.

Proposition V.1 (“Extending Private Algorithms at

ε-cost”). Let Â be an ε-differentially private algorithm
designed for input from H ⊆ M. Then there exists
a randomized algorithm A defined on the whole input
space M which is 2ε-differentially private and satisfies
that for every D ∈ H, A(D)

d
= Â(D).
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