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'is work introduces Wearable deep learning (WearableDL) that is a unifying conceptual architecture inspired by the human
nervous system, offering the convergence of deep learning (DL), Internet-of-things (IoT), and wearable technologies (WT) as
follows: (1) the brain, the core of the central nervous system, represents deep learning for cloud computing and big data
processing. (2) 'e spinal cord (a part of CNS connected to the brain) represents Internet-of-things for fog computing and big
data flow/transfer. (3) Peripheral sensory and motor nerves (components of the peripheral nervous system (PNS)) represent
wearable technologies as edge devices for big data collection. In recent times, wearable IoTdevices have enabled the streaming of
big data from smart wearables (e.g., smartphones, smartwatches, smart clothings, and personalized gadgets) to the cloud servers.
Now, the ultimate challenges are (1) how to analyze the collected wearable big data without any background information and also
without any labels representing the underlying activity; and (2) how to recognize the spatial/temporal patterns in this unstructured
big data for helping end-users in decision making process, e.g., medical diagnosis, rehabilitation efficiency, and/or sports
performance. Deep learning (DL) has recently gained popularity due to its ability to (1) scale to the big data size (scalability); (2)
learn the feature engineering by itself (no manual feature extraction or hand-crafted features) in an end-to-end fashion; and (3)
offer accuracy or precision in learning raw unlabeled/labeled (unsupervised/supervised) data. In order to understand the current
state-of-the-art, we systematically reviewed over 100 similar and recently published scientific works on the development of DL
approaches for wearable and person-centered technologies. 'e review supports and strengthens the proposed bioinspired
architecture of WearableDL. 'is article eventually develops an outlook and provides insightful suggestions for WearableDL and
its application in the field of big data analytics.

1. WearableDL: Conceptual Architecture

Wearable DL is a concept derived from a holistic com-
parison between the evolving big data system and the human
nervous system (NS) in terms of architecture and func-
tionalities. Although the human NS is a biological mecha-
nism, it essentially inspires the convergence, collaboration,
and coordination of three key elements such as wearable tech
(WT), Internet of things (IoT), and deep learning (DL) in the
development of big data system for actionable outcomes and
informed decision making.

'e article views the big data system with respect to its
close resemblance with the human nervous system (NS).'e
NS is responsible for coordinating the actions such as the
transmissions of signals to and from the human body,
identification, perception, decisionmaking, and information
storage [1]. Similarly, the big data system (or model) is
evolving and conversing various domains such as wearable
sensors, edge computing, fog computing, cloud computing,
and deep learning (DL) to achieve equivalent functions such
as signal communication, perception, decision making,
analytics, and storage. As the complexity of the big data

Hindawi
Mobile Information Systems
Volume 2018, Article ID 8125126, 20 pages
https://doi.org/10.1155/2018/8125126

mailto:arasdar@uri.edu
http://orcid.org/0000-0002-7268-0434
http://orcid.org/0000-0003-1241-5732
http://orcid.org/0000-0001-6423-0823
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/8125126


system rises, it becomes important to understand the ar-
chitectural and functional components of the NS.'is could
guide us to develop more improved and sophisticated
version of a big data system.

1.1. A Brief Overview of the HumanNervous System. 'e NS
is composed of two subsystems:

(1) Central nervous system (CNS) consists of the brain
and spinal cord

(2) Peripheral nervous system (PNS) consists of nerves
with sensory and motor fibers

1.1.1. PNS. 'e end elements of PNS are sensory and motor
fibers which are connected to the parts and organs of the
body. 'e sensory fibers sense various sensations including
pressure, temperature, and pain on the body and sends
them to the nerves leading to the spinal cord (a part of
CNS). 'e motor fibers receive the commands from the
CNS to actuate and activate the muscles and organs. 'e
bundle of fibers which collectively forms nerves connected
to the spinal cord relay the information back and forth
between CNS and PNS.

1.1.2. CNS. 'e spinal cord is a part of CNS which serves
two purposes:

(1) It acts as a bidirectional relay for the signals to flow
between the body and the brain. 'is function
supports the NS to make centralized decisions.

(2) 'e spinal cord also coordinates the reflexes in which
the decisions are made in real-time to avoid delays in
critical conditions. A simple example of the reflex is
removing the hands from a hot object.

'e ultimate top layer of CNS is the human brain made
of approximately 100 billion neurons [1]. Each neuron
connects to one or more other neurons. 'e brain receives
the signals from the spinal cord and other sensor organs such
as eyes, nose, tongue, and ears. 'e brain processes the
incoming signals and makes decisions. It generates com-
mands that pass through the spinal cord to the PNS. 'e
commands activate the muscles or organs of the body. Apart
from the processing and decision making, the brain also
stores the information that is used in a short or long-term
decision making process.

1.2.PNSvsWearableTech/WearableEdgeDevices forBigData
Collection and Application (Actions). WT is comparable to
the sensory and motor fibers of PNS because of the
following:

(i) Fibers are the carriers of the information similar to
WiFi backbone in WT

(ii) WT is located onto the periphery of IoTarchitecture,
interacting with the environment for sensing and
actuation

For example, modern smartwatches come with built-in
sensors such as heart rate, motion, ambient light, and also
actuators including touch screen, audio speakers, and tactile
(or haptic) feedback. Edge devices, such as smartphones, act
similar to the nerves (as part of PNS). 'e smartphone
receives the data from the connected smartwatch sensors
and also commands the smartwatches to alert the wearers
through the actuations on haptic, visual, or audio feedback.
'is helps us collect the sensor data and send them to the
upper layer such as edge devices.

1.3. CNS-SpinalCord vs IoTandFogGateways for theBigData
Flow and Local Intelligence. IoT and fog gateways are
equivalent to the spinal cord in CNS (Figure 1) as follows:

(1) Big data transfer (flow) between PNS (sensory and
motory nerves) and the brain (the central processing
and intelligence unit)

(2) Local intelligence for locally responding to some
stimuli such as extreme heat and pain

As described earlier, the spinal cord plays an im-
portant role in reacting and responding to some specific
stimuli such as feeling pain and reacting to the pain,
e.g., caused by extreme heat. It is also responsible to
deliver the motor response and reactions from our brain
to the PNS (our motor actuators and muscles) for any
dynamic (kinematic) movement (motion) internally and
externally, i.e., inside our body or outside. IoT in-
telligence, as a local intelligence, is functioning similar to
the spinal cord. For example, the smartwatch sensor data
can be processed onto fog gateways which are located in
homes or hospitals away from the centralized cloud
servers. In this case, the sensor data are processed on the
gateway for the local decision support in time-critical
applications, e.g., the sensor data streams could help
the detection of a fall event in an elderly person living
alone at home. In this way, the fog or IoTgateway provides
reflex-type services to alert appropriate individuals such
as medical personnel or caretakers to respond to the event
immediately. 'is reduces the potential delays in time-
sensitive events.

1.4. CNS-Brain vs DL and Cloud Computing for Big Data
Analytics. 'e cloud computing servers are equivalent to
the physical architecture of the brain, and the DL-based big
data analytics resembles the function of the brain. 'e
human brain is a centralized processor to receive the in-
coming stimulus from the spinal cord (connected to PNS) or
other sensor organs. Upon receiving, it perceives and makes
decisions on how and when to respond to the stimuli. It also
stores the information. Similarly, the cloud computing
servers receive the big data from WT via fog computing.
Upon receiving, it uses high-performance computers to
apply DL methods (explained in the next section) that help
in decision making. Very similar to the brain, the cloud
computers derive when and how to respond to the incoming
queries. It often stores the sensor data to learn the patterns
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and create historical database to enable informed decision
making in the future.

1.5. Outline and Contributions. In this article, we endeavor
to describe the benefits and challenges associated with the
use of DL in the wearable big data. We have conducted
a thorough survey of more than 100 literatures related to DL
and its applications in wearable IoT. 'e survey allowed us
to create a holistic picture combining wearable sensors, IoT,
DL, and big data. 'is work’s key contributions are struc-
tured as follows:

(i) Section 2 provides an overview of wearable IoT
including the concept, its different categories of
wearable IoT devices, and its future direction in
a nutshell.

(ii) Section 3 provides a research roadmap for DL
thorough understanding of its past, its present, and
its future. Here, we focus on how understanding the
human brain, specifically neocortex, links to the
development of the artificial intelligence (AI) and
how that is mainly divided into three areas: ML, DL,
and Cortical Learning (CL) which are covered in
this section.

(iii) Section 4 emphasizes on the recent similar work
applications of WearableDL in big data analytics.

Over 100 recently published literatures were
reviewed and included in this section to correlate
with the paradigms of WearableDL and its
applications.

(iv) Section 5 projects WearableDL future research and
application direction in association with the wear-
able big data.

2. Wearable Internet-of-Things

In 1965, an observation, later regarded as Moore’s law, esti-
mated that the number of transistors on integrated circuits (IC)
doubles every two years [2]. Moore’s law prediction played an
important role in the semiconductor industry and motivated
the evolution of miniaturized yet high performance computing
(HPC) chips which revolutionized the modern world. 'is
evolution caused an explosion in the production of electronic
devices and therefore brought a limitless expansion in the use
and applicability of the computing chips that today drive smart
wearable devices, smartphones, personal computers, smart
homes, and smart cities along with WiFi, Internet, and other
communication devices. As a result of the aforementioned
evolution, explosion, and expansion, the wearable devices are
booming in the market, and therefore, we witness the growth
of personalized big data that hold a significant value to the
end-users including citizens, communities, hospitals, and
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Figure 1: 'e WearableDL conceptual architecture: the human nervous system as the main biological model and inspiration (right) vs the
human-made computing model as the actual architecture (left).
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governments to improve health or performance, reduce
medical cost, and increase efficiency [3].

2.1. Wearable Devices Categories. Overall, the wearable de-
vices can be categorized into three main classes (Figure 2):

(1) Implantable devices: these devices are implanted
inside the body for a long period of time, e.g., cardiac
pacemaker and deep brain stimulator are implanted
for 5–10 years to provide current to specific organs.

(2) Wearable contact devices: this is the largest category
among the three types. 'ese devices are targeted to
stay on the body unobtrusively to collect various
parameters including heart rate, physical activity,
body temperature, muscular activity, blood/tissue
oxygenation, and other physiological parameters.
'e most common devices in this category are
smartwatches, smart clothing, smart footwear, fit-
ness trackers, HR chest belts, and ECG Holter
monitors.

(3) Wearable ambient monitors: these devices are made
to sense outside environment instead of the body’s
physiological state. Google glasses (smart glasses) are
a simple example of this category, in which, a wearable
camera allows to record the surrounding scenes [4].

2.2. Wearable IoT: Convergence of Wearable Devices and
Internet-of-6ings (IoT). 'e convergence and deployment
of wearable devices, Internet-of-things (IoT), and cloud
computing together allow us to record, monitor, and store
a wide range of the big data from individuals such as per-
sonalized health and wellness data, body vital parameters,
physical activity, and behaviors, which are all critical data
indicating the quality and the trend of daily life [5]. In the
past, wearable devices were a stand-alone system. However,
bringing wearable devices into the framework of IoTmakes
it possible to stream the data from an individual to a cen-
tralized location such as cloud servers. 'e continuous
accumulation of the wearable data becomes a massive big
data [6] that, in general, are a set of sequential time-series
signals and logs containing biometrical, behavioral, physi-
ological, and biological information depending on the na-
ture of wearable devices categorized above. One of the key
objectives of collecting the wearable big data is to support
remote or on-site decision making by detecting symptoms,
events, and anomalies, or by producing contextual aware-
ness [7].

2.3.Wearable Data Categories. Wearable biosensing devices
can collect a large variety of physiological data continuously,
all-day long and in any-place health, mental, and activity
status monitoring. 'ese multiparameter physiological
sensing systems provide us with reliable and crucial mea-
surements for supporting online decision making by
detecting the symptoms and producing contextual aware-
ness [8]. A wide range of wearable data in biomedical and
health is provided by this overview [9].

2.4. Emerging Unobtrusive Wearable Devices. Wearable
sensors can be either woven or integrated into clothing, ac-
cessories, and the living environment, such that individuals’
or patients’ data can be collected in their daily life. According
to an overview [10], four emerging unobtrusive wearable
technologies (WT) which are essential for collecting the in-
dividuals’ health data are the following:

(1) Unobtrusive sensing methods
(2) Smart textile technology
(3) Flexible-stretchable-printable electronics
(4) Sensor fusion

2.5.DataReliability. Data reliability strongly depends on the
type of collected data and specifically on the category of the
collected wearable data in general. In the wearable DL
scenario, it is not the role of the wearable devices to assess
data reliability. A presifting of the data, particularly in case of
structured data, can be implemented directly on the device
by embedding data sifting policies dictated by a prior in-
teraction with medical specialist, physicians, and studies.
However, data reliability should be assessed at IoT and DL
level as discussed later.

3. Artificial Intelligence

Artificial Intelligence (AI) is ultimately the ability to re-
construct the human biological intelligence for modern
machines. AI domain is currently divided into three active
learning-based areas of research: machine learning (ML)
[11, 12], deep learning (DL) [13], and cortical learning (CL)
[14] (Figure 3).

3.1. Cortical Learning. Cortical learning (CL) is inspired
from our cortical structure (i.e., based on studying the
neocortex) and coined by Hawkins et al. [14, 15] from
https://numenta.com/Numenta. 'e cortical area is the
largest part of the brain in humans and monkeys compared
to other species and the main source of our intelligence
[14, 16].'e CL algorithm/approach (CLA), inspired by the
architecture of the human cortex [14, 17], is applied to an
approach called hierarchical temporal memory (HTM)
[16, 18–20]. Cortex learns the spatial and temporal patterns
in the sequential data, e.g., for visual perception, spoken
language comprehension, manipulating objects, and nav-
igation in a complex 3D world [17].

3.2. Machine Learning. Machine learning is the mother
subject for deep learning and many other statistical or
probabilistic analysis approaches but not necessarily related
to CL which is neuroscience-based endeavor for AI (com-
putational neuroscience or systematic neuroscience). ML is
mostly referring to shallow ML approaches which are not
scalable to the data size. 'is set of shallow artificial learning
algorithms [11, 12] helps machine directly learn from the
data, model the data, and generate machine intelligence.
ML is highly founded on mathematics, e.g., linear algebra,

4 Mobile Information Systems

https://numenta.com/Numenta


calculus, statistics, probability, and stochastic optimization
approaches such as evolutionary algorithms (EA) andMonte
Carlo search. Some of the ML limitations are as follows:

(1) It is very broad and often mathematically proved but
not biologically inspired. 'is is a problem since
biologically inspired algorithms often are proved to
be extremely powerful and robust such as genetic
algorithms. On top of that, AI is targeting biological
intelligence at the first place and ultimately aims to
replicate/reconstruct our biological intelligence,
human intelligence.

(2) It is often shallow and not scalable to the data size,
i.e., as the data size or dimensionality grows expo-
nentially (big data problem), the traditional ML
approaches (e.g., SVM) can not scale up the data size.
'is causes a problem so-called under-fitting which
means there are not enough parameters in the
learning approach for approximating the best fitting
function.

(3) It is also hard to apply it to high-dimensional data
directly. 'at is why we have to apply dimension
reduction to the data first by either manually do the
feature extraction or engineering (hand-crafted
features) and then apply the ML approach to the
data features with the reduce dimensionality.

(4) ML approach accuracy and robustness for noisy data
is almost not comparable to DL approaches sinceML
approaches are learning from few examples or small
training data compared to DL approaches which are
capable of learning from massive dataset (big data).

3.3. Deep Learning. DL approaches differ from shallow ML
algorithms in terms of scalability, i.e., depth (number of
hidden layers) and width (number of cells or units or
neurons in each layer). DL (or deep ML) is a scalable ML
approach capable of scaling to the data size in terms of high
number of data samples or data dimensionality. DL is ap-
plied to artificial neural networks (ANN or NN) and that is
why it is also known as deep neural networks (DNN)
[13, 21]. DL is the ability to learn the deep architectures of
NN using backpropagation (BP) [22, 23]. Error back-
propagation [24] is the dominant training approach for NN
which was proposed in 1986 for training multilayer per-
ceptrons (MLP) which is backpropagation of the resulting
error between the predicted output and the given labels into
the network for fine-tuning the weighs in order to minimize
the loss/cost function in a nonconvex surface. DL is loosely
inspired by the visual cortex [25–27]. It is mimicking our
brain [27] in terms of learning and recognizing the spatial
and temporal patterns (or spatiotemporal) in the data. DNN
are basically deep hierarchical layers of perceptrons [28], as
artificial neurons, for representation and regression learning
[29, 30].

4. Deep Learning

'e research question of ”How can the massive wearable big
data be analyzed to produce actionable outcomes?” is dif-
ficult to answer when the wearable big data is heterogeneous,
unlabeled, and unstructured. 'is means the wearable big
data seeks unsupervised learning methods that can not only
analyze the data but also identify helpful patterns leading to
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informed decision making. In recent years, deep learning
(DL) has been established as a new area of machine learning
research which aims to advance arti�cial intelligence [13]. A
plethora of studies provide evidence that DL has achieved
state-of-the-art results in various �elds related to compu-
tational intelligence and big data including computer vision
and image processing [31], speech processing [32], natural
language processing (NLP), and machine translation
[33, 34]. Similarly, these DL advancements bring a new
promise to analyze the unsupervised wearable big data in
order to recognize the spatial and temporal patterns related
to health, wellness, medical condition, sports performance,
and safety (Table 1).

Deep learning (DL) is exponentially gaining interest in
research and development (R&D) community at academia
and industry as they are also being heavily invested on by
giant software and hardware companies such as Google,
Nvidia, and Intel [35–37].

4.1. Deep Learning History: Receptive Fields of Neurons In-
spired from Cat’s Visual Cortex. Simple-cells and complex-
cells [38] were found in the receptive �elds of single neurons
in the cat’s visual cortex. �e discovery of receptive �elds of
neurons in the cat’s visual cortex [38] contributed enor-
mously to NN, AI, computer vision, and neuroscience
community (demonstrated visually with timeline in
Figure 4).

4.2. Deep Learning History: �e First Conceptual
Architecture—Cognitron and Neocognitron. �e discovery
of simple and complex cells was followed by the introduction
of cognitron and neocognitron (by Fukushima et al. in 1975
[39, 42–44]). Neocognitron (as the �rst proposed deep NN
architecture) was the inspiration behind the introduction of
the convolutional neural networks (CNNs) by LeCun in
1989 [45] (as shown in the past part of the timeline in
Figure 4). Cognitron and neocognitron (Fukushima et al.
[39, 42, 43]) were introduced as self-organizing multilayered
neural networks. �e proposed cognitron and neocognitron
architectures, by Fukushima [42, 43], is composed of the
simple-cells and complex-cells inside the CNN architecture.

4.3. Deep Learning History: Neural Networks.
Schmidhuber’s survey [46] thoroughly reviews the history of
DL in NN since the birth of ANN along with di�erent types
of learning approaches applied to DNN architectures such as
unsupervised learning (UL), supervised learning (SL), and
reinforcement learning (RL). It also discusses evolutionary
algorithms (EA) and optimization approaches (e.g., genetic
algorithms) along with the learning algorithms for mini-
mizing mean squared error (MSE) and sum of squared error
(SSE).

4.4. Deep Learning Math Foundation: Arti�cial Neural Net-
works Universal Approximation�eorem. ANN is a univer-
sal function approximator based on the universal
approximation theorem [23, 47–49]. �is theorem proves
that ANN, even with a single hidden layer of �nite size, can
approximate any continuous functions [47]. �is approxi-
mation theorem [47] is applicable to high-dimensional as
well as low-dimensional function approximations [23]. For
example, 2-dimensional-CNN (2D-CNN) or 3-dimensional-
CNN (3D-CNN) for image and point-cloud classi�cation
(high-dimensional 2D or 3D data) was compared to feed-
forward neural network (FFNN) for a low-dimensional
time-series signal classi�cation. In this case, CNN con-
tains much more parameters for high-dimensional function
approximation compared to FFNN which is a low-
dimensional function and containing much less parameters.

4.5. Deep Learning Applications: Recent Breakthroughs and
State-of-the-ArtResults. DL has achieved the state-of-the-art
results in many �elds such as computer vision, speech
processing, and machine translation as the following:

(1) A breakthrough in 2012 for computer vision using
DL: deep convolutional neural nets (CNN), LeNet by
LeCun in 1989 [45], proved to be enormously e�-
cient in an end-to-end image classi�cation and
analysis [31].

(2) A breakthrough in 2012 for speech processing us-
ing DL: another important breakthrough, almost in
the same year as Krizhevsky [31], was applying DL
to TIMIT, massive dataset for speech recognition
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[32]. Microsoft immediately started adopting and
applying this approach to its own AI assistant,
Cortana for Windows 10 [32].

(3) Google brain project—�e �rst large-scale DL
project in 2012: this project, as a large scale dis-
tributed deep networks led by Dean et al. [50], ap-
plied deep belief network (DBN) to massive data
from Youtube (videos of cats) using 16,000 com-
puters in distributed parallel con�guration. �is

large-scale implementation of DBN, on distributed
parallel computing platforms, successfully recog-
nized cats in videos after watching millions of cat
videos on Youtube without any supervision or
teaching signals (unsupervised setting).

(4) Bridging the gap between human-level translation
and machine translation in NLP by Google neural
machine translation: Google neural machine trans-
lation (GNMT) [33, 34] is as an end-to-end DLmodel

Table 1: �e AI domain and DL review table.

Learning-based AI
approach

Data-based learning approach

Unsupervised learning (UL) for
unlabeled data

Supervised learning (SL) for labeled
data

Reinforcement learning (RL) for
rewarded labeled data (labeled data

with cost function)
Cortical learning
(CL):
neuroscience of
brain cortex
(cortical areas)

Sequence learning: hierarchical
temporal memory (HTM) and

cortical learning algorithm (CLA)
— —

Machine learning
(ML):
shallow ML

Dimension reduction: principle
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independent component analysis
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maximization (EM), K-means, K-
nearest neighbors (KNN),

approximate nearest neighbor
(ANN), and fast library for

approximate nearest neighbor
(FLANN)

Linear discriminant analysis (LDA),
random forest, search trees (Monte

Carlo search), arti�cial neural
network (ANN) or multilayer
perceptron (MLP), and support

vector machine (SVM)

Q-learning, policy-learning, and
inverse RL (IRL)

Deep learning (DL):
deep ML

Deep unsupervised learning (DUL):
restricted Boltzmann machine

(RBM), deep belief network (DBN),
deep Boltzmann machine (DBM),
autoencoder (AE), variational
autoencoder (VAE), generative
adversarial network (GAN), and
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Deep supervised learning (DSL):
Feed-forward neural network
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(DNN), spike neural network (SNN),
sequence-to-sequence learning,
recurrent neural network (vanilla
RNN), long short-term memory
(LSTM), convolutional LSTM

(ConvLSTM), and gated recurrent
unit (GRU)

Deep reinforcement learning (DRL):
Deep Q-Network (DQN), AlphaGo,
and inverse DRL (inverse RL &

GAN)

Big data analytics: big 
datasets (cloud/servers) 

and GPUs (HPC)

Application domain: WIoT 
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Figure 4:�e simpli�ed research roadmap for DL: (past) how it was inspired by visual cortex research, (present) how it is related to wearable
IoTand big data analytics, and (future) how it is connected to cortical learning. �e related works mentioned/included in this �gure are the
following: visual cortex by Hubel and Wiesel [38]; neocognitron by Fukushima and Miyake [39]; Backprop by Rumelhart et al. [24]; CNN
(deep learning) by LeCun et al. [13]; Capsule networks by Sabour et al. [40]; STDP-backprop by Bartunov et al. [41]; HTM (cortical learning)
by Hawkins et al. [16].

Mobile Information Systems 7



for automated translation which has outperformed
the conventional phrase-based translation systems by
far. 'e proposed GNMT [33, 34] system requires big
computational power (big compute) and massive
datasets (big data) for both training and translation
inference for building big model (big net).

4.6.DeepLearningArchitectures. Some of the important and
famous DNN architectures are the following:

(1) Feed-forward neural network (FFNN): this is the
simplest NN, also known as multilayer perceptron
(MLP), with feed-forward connections. FFNN is also
referred to as fully connected network (FCN) inside
CNN architectures.

(2) Convolutional neural network (CNN): CNN is
loosely inspired by the cat’s visual cortex [38]. It was
initially proposed as Cognitron [42] and Neo-
cognitron [39]. CNN architecture was initially ap-
plied to digit recognition and trained using BP by
LeCun in 1989 [45]. 'is CNN architecture is also
referred to LeNet [45].

(3) Deep belief network (DBN), Deep Boltzmann Ma-
chines, and Restricted Boltzmann Machines (RBM):
DBN was initially proposed and trained using
backpropagation by Hinton et al. [51, 52] as a deep
unsupervised learning (DUL) approach using greedy
pre-trained stacked up layers of RBM.

(4) Autoencoder (AE): AE is another DUL approach for
dimensionality reduction [53] and data compression.
Variational AE (VAE) [54] is another recent version
of AE which improved the AE precision in gener-
ating images and data as a generative model using
Bayesian distribution.

(5) Spike neural network (SNN): 'is type of NN is
mimicking the Spike stimulation of brain inside the
ANN, i.e., loosely inspired from how Spikes are
activating neurons in our biological NN (brain).

(6) Deep Q-networks (DQN): DQN [55, 56] is the first
deep reinforcement learning (DRL) approach pro-
posed by Google DeepMind. 'is DL approach
achieved human-level control in playing variety of
Atari games.

4.7. Deep Learning Dominant Training Approach:
Backpropagation. DL is mainly related to the algorithms for
learning big and deep NN architectures. BP is dominantly
the learning algorithm used in DL [29, 57] which is the main
power behind the scalability of DL architectures such as
CNN and DBN. DL is coined mainly by LeCun et al. in 2015
[13]. Goodfellow et al. [21] published a book providing
a thorough explanation of DL theory and approaches.

4.8. Deep Learning Categories and Subdomains. 'e DL
approaches, regardless of their application domains, are
mainly categorized into three dominant groups (the same as

ML): deep unsupervised learning (DUL), deep supervised
learning (DSL), and deep reinforcement learning (DRL).
'ere are also some subcategories (subdomains) which are
currently the active area of research in DL as well such as
transfer learning (TL), semisupervised learning, learning-
by-demonstration, and imitation learning.

4.9. Deep Learning Biological and Neurological Inspiration
Related to Backpropagation. BP (proposed by Rumelhart
et al. [24, 29, 57]) in DL is supported neurologically by
random synaptic in Lillicrap et al. [26]. Lillicrap et al. [26]
argues that BP is functioning similar to an error feedback
neuron for error optimization (minimization). Yasmin and
DiCarlo [25] also provide another strong biological foun-
dation for BP and CNN architecture in DL. 'ey demon-
strate visually how the goal-oriented convolutional
hierarchical layers are inspired from sensory cortex.

4.10. Deep Supervised Learning. DSL is divided into three
categories [46]: FFNN & CNN, recurrent neural network
(RNN), and the hybrid one (combination of both: con-
volutional long short-term memory (LSTM) and convolu-
tional RNN).

4.10.1. Feed-Forward Neural Network and Convolutional
Neural Network. FFNN was also traditionally known as
MLP. FFNN, so-called FCN, is often the last two years inside
CNN architecture in DSL. CNNwas at first applied to optical
character recognition (OCR), specifically for digit recogni-
tion, and trained using BP by LeCun et al. in 1989 [45]. 'is
CNN, named LeNet after LeCun et al. [45], was brought back
to the attention in 2012 after reducing the classification-error
rate almost in half in Imagenet contest by Alexnet, named
after Krizhevsky et al. [31].

4.10.2. Recurrent Neural Network and Long Short-Term
Memory. LSTM was proposed by Hochreiter and
Schmidhuber in 1997 [58]. LSTM was successfully trained
using BP through time (BPTT) unlike vanilla RNN which
was heavily suffering from the problem of vanishing gradient
and exploding gradients [59]. LSTM-based RNN is often
applied to sequential learning for temporal pattern
recognition.

4.10.3. Hybrid DL: Convolutional LSTM (ConvLSTM).
Xingjian et al. [60] proposed convolutional LSTM
(ConvLSTM) as a hybrid approach which is a combination
or an integrated version of CNN [13] and RNN (LSTM [58]).
In this regard, Zhang et al. [61] show reliable results using
hybrid approach for speech recognition. Residual bi-
directional ConvLSTM [61] is a very deep network including
bidirectional LSTM and CNN with residual connections for
an end-to-end speech recognition which is an efficient and
powerful deep hybrid model for acoustic speech recognition.
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4.11. Deep Unsupervised Learning. DUL focuses on un-
labeled big data which are abundantly available nowadays on
the web. Bengio et al. [62] review DUL approaches and
provide new perspectives on them. Yeung et al. [63] propose
an approach for learning the big unlabeled data existing on
web (i.e., also referred to as wild). Rupprecht et al. in 2016
[64] also propose a DUL framework for the unlabeled big
data as new methodology of learning multiple hypothesis.
Mirza et al. [65] provide a DUL architecture for the gen-
eralization of the aligned features, specifically to perform TL
across multiple task domains.

4.11.1. Deep Belief Network, Restricted Boltzmann Machine,
and Google Brain Project. DBN is, in fact, the stacked up
layers of pretrained restricted Boltzmann machine (RBM).
In 2012, Google brain project (as a ”large scale distributed
deep networks”) led by Dean et al. [50], was applying DBN
using massive data from Youtube videos on cats and
16,000 computers in distributed parallel configuration.
'is large-scale implementation of DBN, on distributed
parallel computing platforms, successfully recognized cats
in videos after watching millions of cat videos on Youtube
without any supervision or teaching signals, i.e., entirely
accomplished in unsupervised setting (DUL). When DBN
is trained on a massive dataset (big data) as DUL, it can
learn how to probabilistically reconstruct its inputs. DBN
layers (layers of representation) can act as feature de-
tectors (extractors) on inputs [32, 50, 51, 66]. After this
learning step, a DBN can be further trained in a supervised
way to perform classification [32, 51] for TL.

4.11.2. Generative Adversarial Networks (GANs).
Goodfellow et al. [67] proposed GAN as two networks which
are competing against each other. One of these networks is
generator and another one is discriminator. 'e generator
tries to produce fake input data similar to the real one to fool
the discriminator. 'is adversarial training performed on
GANs is entirely based on game theory.

4.11.3. Autoencoders. AE is an unsupervised DL architecture
for DUL applied to denoising, dimensionality reduction
[53], data compression, and image or data generation
(generative models). VAE [54] is an improved AE as
a generative model using Bayesian distribution. It can also be
trained and transferred to a DSL architecture (TL) for
classification and regression purposes [68].

4.12. Deep Learning (DL) and Reinforcement Learning (RL)
Started Getting Published in Nature: Quick Review of the
Recent Years Progress. 'is part briefly walks you through
how DL and RL were combined/accomplished with an in-
credible speed since 2015 only and only from Nature
publication perspective:

(1) In 2015, deep learning (DL) models found their way
into Nature publications by producing incredible
results in AI [13].

(2) At the same year, neuroscientists found a very in-
teresting relationship between goal-driven DL
models and our sensory cortex in the brain [25]. 'is
was a huge leap toward biological inspiration of deep
reinforcement learning models.

(3) In that year, one DL-based AI agent created
super-human-level performance in many Atari
games [55]. 'is approach, so-called Deep
Q-Networks (DQN), demonstrated least human-
level control (performance) in playing many Atari
games [56]. 'is was the birth of deep re-
inforcement learning (DRL) because of the
combination of RL (initially proposed by Sutton
in 1984 [69]) and DL [13].

(4) In 2016 (one year later), another DL-based AI agent,
AlphaGo, dominated the Go game by only watching
the previously human-played Go games [70].
AlphaGo (Silver et al. from Google DeepMind in
2016 [70]) made a considerable impact on DRL
community by dominating the game of Go (a Chi-
nese ancient chess-like game) using two deep co-
operative networks [70]: deep policy network and
deep value network (DQN [55]). 'e policy network
was basically recommending the next possible moves
(actions) and the value network (i.e., Q-network)
evaluate the moves intuitively based on the previous
experiences. Eventually Q-network (value-network)
picks the most valuable move based on the selected
move with maximum rewarded value. 'e co-
operative networks in AlphaGo [70] are cooperating
with each other on contrary with GAN.

(5) Recently, AlphaGo Zero [71] started learning the Go
game from scratch only-and-only by playing in a try-
and-error fashion and even beats the previous
AlphaGo eventually.

(6) Finally, an important implementation of grid-like
cells in mice [72] can loosely demonstrate how the
navigation is performed using these grid-like cells
and how they are represented in artificial agents.
'ese Grid cells were discovered in 2005 by Wills
et al. [73] and a team of scientists in Norway [74].
'ey were awarded the 2014 Nobel Prize for their
discoveries of cells that constitute a local/global
positioning system in the brain.

DRL has opened a new frontier in AI so-called artificial
general intelligence (AGI) which is exponentially growing
and succeeding in demonstrating human-level and even
super-human level performance not even in playing Atari
games but in robotics [75] and other domains performing
complex task such as imitation learning or learning by
demonstration:

(1) Combining inverse RL and GANs: since GAN is
a generative model to maximize the reward function
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to fool a discriminator network, it is related to RL in
terms of learning how to maximize the reward
function. In RL, learning the reward function for an
observed action is coined as inverse reinforcement
learning (IRL). Finn et al. [76] show that IRL [77–79]
is equivalent to GAN [67] by highlighting the
mathematical connection between them.

(2) Generative adversarial imitation learning (GAIL): it
is the combination of GANs and imitation learning
[80].'is model is also introduced earlier in 2016 by
Baram et al. [81] as model-based adversarial imi-
tation learning. 'ese models generally aim to
model human behaviors and motives using IRL [82]
which is dominantly targeting lack of reward of
function for variety of complex task or the difficulty
of defining a reward function for these tasks rather
than learning a reward function for them.

Another recent development in DRL is applying RNNs,
specifically LSTM [58], for learning the temporal de-
pendencies since the RL tasks are all sequential, known as
generative RNNs. In this regard, Schmidhuber team is one
for the main fore-frontiers by introducing the world
models [83]. A beautiful combination of GAIL and gen-
erative RNNs are proposed very recently in Zhu et al. [84]
in order to apply these RNN-based GAIL models for di-
verse visuomotor skills, specifically in robotics manipula-
tion across both simulation and real domains. In this
direction, generative query networks (GQN) [85] have
shown very promising results in terms of an agent pre-
dicting how the environment would look like taken
a specific action. GQN is another great combination of
RNN, GAN, and imitation learning.

5. WearableDL: Literature Review

Feature extraction is the key in understanding and modeling
the repetitive patterns of the collected physiological and
behavioral data. Traditionally hand-crafted features were
extracted based on the expert knowledge, which were labor-
intensive and time-consuming, for classification or re-
gression purposes. Moreover, the manual feature extraction
process does not scale well when the wearable data is
growing rapidly in size temporally (number of samples in
time) or spatially (number of dimensions). 'at is why our
article aims to explore DL approaches since they are capable
of scaling to the data size. In this section, we review the
literature related to DL approaches for analyzing different
types of wearable data as demonstrated and mapped briefly
in this Table 2.

5.1. Embedding DL in Mobile, Wearable, and IoT Devices.
Lane et al. [86] presents a study on embedded DL in
wearables, smartphones, and IoT devices in order to build
the knowledge of the performance characteristics, resource
requirements, and the execution bottlenecks for DL models.
Regarding DL for mobile, wearable, and embedded sensory
applications, DL requires a significant amount of device (and

processor) resources. 'e limited availability of memory,
computation, and energy on mobile and embedded plat-
forms is a serious problem for powerful DL approaches.

5.1.1. SparseSep: Large-Scale-Embedded DL in Smartphones.
SparseSep [87] leverages the sparsification of fully connected
layers and separation of convolutional kernels to reduce the
resource requirements of DL algorithms. SparseSep [87]
allows large-scale DNN (with fully connected layers and with
convolutional layers) to run and execute efficiently on
mobile and embedded hardware with minimal impact on
inference accuracy.

5.1.2. DeepX and Demo: Embedded DL Execution
Accelerator. DeepX [89] is a software accelerator for effi-
cient embedded DL execution. DeepX significantly lowers
the wearable resources (e.g., memory, computation, and
energy) required by DL which is a severe bottleneck to
mobile (smartphone) adoption. DeepX [89] is an embedded
efficiently executable large-scale DL model on mobile
(smartphone) processors versus the existing cloud-based
offloading. Demo [92] and DeepX [89–91] are good case
studies for adapted and embedded low-powered DL software
for mobile devices and smartphones, specialized for wear-
able and behavioral big data analytics.

5.1.3. Embedded DL for Wearable Multimodal Sensor Data
Fusion and Integration. Radu et al. [6] used smartphone and
smartwatch for human or user activity recognition (HAR).
Data integration and fusion, using DL from smartphone and
smartwatch, is the focus of this work [6]. DL, specifically
RBM, is proposed in [6] for integration (or fusion) of sensor
data from multiple sensors (different modalities). Bhatta-
charya and Lane [7] performed a smartwatch-centric HAR
using DL, specifically RBM. Behavior and context recog-
nition tasks related to smartwatches (such as transportation
mode, physical activities, and indoor/outdoor detection)
using DL (RBM) is performed and focused in [7]. Although
DL-based (RBM) human activity recognition outperforms
other alternatives, DL resource consumption is unacceptably
high for constrained WT devices like smartwatches.
'erefore, a complementary study is conducted in Bhatta-
charya and Lane [7] related to the overhead of DL (RBM
models) on smartwatches.

5.1.4. DeepEye: Embedded DL in Wearables with Built-in
Camera for Wearable Image Analytics. Wearables with
built-in camera provide us with the opportunities to record
our daily activities from different perspectives and angles.
'is is potentially useful in terms of a low vision over our
daily lives. DeepEye [93] is a match-box sized wearable
camera capable of running multiple cloud-scale-embedded
DL models in the device for almost real-time image analysis
without offloading them to the cloud. DeepEye [93] is
powered by a commodity wearable processor to address the
bottleneck of executing multiple DL models (CNN) on
wearable limited resources with specifically limited runtime
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memory. Chen et al. [95] propose an embedded deep CNN
into iOS smartphones by maximizing data reusability for
approaching the high bandwidth burden in DL, specifically
the convolution layers of CNN. 'e effective data reuse
makes it possible to parallelize all the computing threads
without data loading latency. Chen et al. [95] enhance the
capability of DL on local iOS mobile (smartphone) devices.

5.1.5. DeepEar: Embedded DL in Smartphones for Audio
Signal Analytics. Regarding mobile audio sensing and
analysis, DL has radically changed related audio modeling
domains like speech recognition [146]. DeepEar [94] is

a framework for mobile audio sensing using DL, which is
trained in an unsupervised setting using a large-scale un-
labeled dataset (big audio data) from 168 place visits. With
2.3M parameters, DeepEar [94] is more robust to back-
ground noise compared to conventional approaches in the
wearables, specifically in smartphones (mobile devices).

5.2. Embedded DL in Mobile Sensing Framework. Lane et al.
[97] is a survey on mobile sensing architecture composed of
sensing, learning, and distribution. 'is survey [97] reviews
the existing mobile phone sensing algorithms, applications,
and systems related to the architectural framework for

Table 2: 'e reviewed literature table.

Wearable data

DL approach

DSL: FFNN, MLP, DNN, CNN
DUL: DBN, RBM, AE, VAE,
GAN, sequence learning, DRL:
DQN, AlphaGo, Deep IRL

DSL: RNN, LSTM, GRU,
ConvLSTM, sequence-to-

sequence learning

Embedding DL in mobile,
wearable, and IoT devices

Lane et al. [86], SparseSep
[87, 88], DeepX [89–91], Demo

[92], DeepEye [93]
DeepEar [94] —

Embedded DL for wearable
multimodal sensor data fusion
and integration

— Radu et al. [6], Bhattaharya and
Lane [7] —

Embedded DL in wearables with
built-in cameras for wearable
image analysis

Chen et al. [95], DeepEye [93] — —

Embedding DL in iOS mobile
devices Chen et al. [95] — —

Embedded DL in smartphones
for audio signal analytics — DeepEar [94] —

Embedded DL in mobile sensing
framework Harari et al. [96] Survey [97], Lane and Georgiev

[7, 98], Radu et al. [6] DeepSense [99], DeepSpy [100]

Mobile crowdsensing framework Harari et al. [96] Survey [97], Lane and Georgiev
[7, 98], Radu et al. [6] DeepSense [99], DeepSpy [100]

Time-series data — Survey [101] Gamboa [102]
Mobile big data (MBD) DeepSpace [103] Alsheikh et al. [104, 105] —
Mobile wireless sensor network
(WSN) data — Marjovi et al. [106] —

EEG data Stober et al. [107–110] Wulsin et al. [111], Narejo et al.
[112], Stober et al. [107, 113] Ma et al. [114]

Physiological data — Wang and Shang [115] —
Big data Najafabadi et al. [116, 117] — —
Image and signal data Xie et al. [118] Xie et al. [118] —
Multimodal sequential data VINet [119, 120] — VINet [119, 120]
Mobile gait analytics Hannink et al. [121–123] — —
Embedded DL for inertial data
analytics

Survey [124], Ravi et al.
[125–127] Survey [124] Survey [124]

Embedding DL in low-power
devices for health care

Survey [124], Ravi et al.
[125–127] Survey [124] Survey [124]

Electronic health-care records
data Survey [128] DeepPatient [129], Miotto et al.

[130, 131], Survey [128]

Gram [132], Choi et al.
[133–135], DoctorAI [136],

Survey [128]
Electronic medical records data Deepr [137] Nemati [138] DeepCare [139]
ECG data Shashikumar [140] — —
Cybersecurity data — — DeepSpy [100]
Smartglass and smartglove data Advani [4] — —

Wearable 3D point cloud data Poggi et al. [141, 142], Ji et al.
[143] — —

Multimodal physiological data — Du et al. [144] Alhanai and Ghassemi [145]
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mobile phone sensing research. Harari et al. [96] discusses
the potentials and limits of smartphones in collecting
wearable biometric and physiological data for behavioral
science since smartphones help us enormously collect
continuous behavioral data in our daily lives without
attracting any attention. 'e collected continuous be-
havioral data includes social interactions, daily activities
(physical activity), and mobility patterns. Harari et al. [96]
look at the practical guidelines for facilitating the use of
smartphones as a behavioral observation tool in psycho-
logical science. Lane and Georgiev [98] provide a low-
power embedded DL using a smartphone System-on-Chip
(SoC). 'is work highlights the critical need for further
exploration of DL in mobile sensing towards robust and
efficient wearable sensor data inference. DeepSense [99]
is a DL framework to address the noisy mobile sensor data
and feature engineering problems in mobile sensing.
DeepSense [99] integrates CNN and RNN to extract
temporal and spatial patterns in the mobile sensor data
dynamics for car tracking, HAR, and user identification.

5.3. DL for Time-Series Data Analytics. In many real-world
applications (e.g., speech recognition or sleep stage classi-
fication), data are collected over the course of time. 'is
time-series data contains temporal patterns related to dif-
ferent classes of behaviors (behavior prediction). Hand-
crafted features are expensive to extract since they require
the expert knowledge of the field. 'at is why DUL offers
powerful feature learning for time-series data analysis and
forecast (prediction). Since wearable data are often collected
as time-series signal data, DL plays an important role for
learning and recognizing (inference) the temporal pattern
in this data. In this aspect, LSTM [58] is dominating other
DL approaches. A review of the recent developments, in
DUL for time-series data, is given by Längkvist et al. [101]
and Gombao [102]. Although DL has shown promising
performance in modeling the static data (e.g. computer
vision and image classification [31]), applying them to
time-series data has not yet been well-studied and ex-
plored (understudied). Längkvist et al. [101] and Gombao
[102] provide current challenges, projects, and works that
either applied DL to time-series data analysis or modified
the DL to account for the current challenges in time-series
data.

5.4. DL for Mobile Big Data Analytics. 'e availability
smartphones and IoT gadgets led to the recent mobile big
data (MBD) era. Collecting MBD is profitable if there is
learning methods for analytics to recognize the hidden
spatial and temporal patterns from the collected MBD.
Alsheikh et al. [104] propose DL in MBD analytics as
a scalable learning framework over Apache Spark. Mobile
crowdsensing is an efficient MBD collection approach
combining the crowd intelligence, smartphones, wearables,
and IoT devices (gadgets). Regarding MBD analytics,
Alsheikh et al. [105] focuses on the accuracy and privacy
aspects of mobile and people-centric crowdsensing as a true
MBD collection approach by service providers. DeepSpace,

Ouyang et al. [103], is a DL approach for MBD analytics
applied to predicting human trajectory by understanding
their mobility patterns. DeepSpace [103] is composed of two
models: course and fine prediction models.

5.5. DL for Mobile Wireless Sensor Network Data Analytics.
Marjovi et al. [106] explains how to collect data using mobile
wireless sensor network (WSN) on public transportation
vehicles and analyzing them using DL (AE) for temporal
pattern recognition.

5.6. DL for EEG Data Analytics. Stober et al. [107–110, 113]
are applying DL approaches for classifying and recognition
of EEG recordings for rhythm perception. It specifically
applied stacked AE and CNN on the collected EEG data to
distinguish the rhythms on a group and individual partic-
ipants. Given the EEG data, Stober et al. [107–110, 113] use
DL for detection and classification of EEG signal in terms
types and genres. Wulsin et al. [111] also model EEG
waveform data (brain time-series signal) for anomaly
measurement, detection, and recognition (classification)
using DL approaches, specifically DBN. Narejo et al. [112]
classify EEG data (brain time-series signal) for eye states
using DUL, specifically DBN and AE. DL for compressed
sensing, in brain-computer interface (BCI), is demonstrated
in Ma et al. [114] for extracting the motion-onset visual
evoked potential (mVEP) BCI features. Ma et al. [114]
combine DL with compressed sensing to analyze discrim-
inative mVEP features to improve the mVEP BCI perfor-
mance. Ma et al. [114] demonstrate DL effectiveness for
extracting the mVEP feature for compressed sensing in BCI
systems.

5.7. DL for Physiological Data Analytics. Wang and Shang
[115] modeled physiological data (time-series biometric
signals) using DL, specifically DBN. DBN, as a DUL ap-
proach, can automatically extract features from raw phys-
iological data of multiple channels. Using the pretrained
DBN, Wang and Shang [115] built multiple classifiers to
predict the levels of arousal, valance, and liking based on the
learned features. Based on the experimental results, DBN is
applied to raw physiological data effectively learns relevant
features, emotional patterns, and predict emotions.

5.8. DL for Big Data Analytics. Big data analytics and DL are
two highly focused areas in the data science. Big data is the
result of collecting massive amounts of data with useful
information in different domains such as national in-
telligence, cybersecurity, fraud detection, marketing, and
medical informatics [147]. DL can extract high-level ab-
stractions as data representation layers through a hierar-
chical learning process. A key benefit of DL is the analysis
through learning the massive amounts of unsupervised data.
'is key benefit makes DL an extremely valuable tool for big
data analytics since the available raw data are largely un-
labeled, unannotated, and uncategorized. Najafabadi et al.
[116, 117] explore howDL is utilized for big data analytics by
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extracting complex patterns from massive volumes of data,
semantic indexing, data tagging, fast information retrieval,
and simplifying discriminative tasks. Najafabadi et al.
[116, 117] also investigate DL in terms of analyzing the
streaming data, high-dimensional data, scalability of models,
and distributed computing.

5.9. DL for Mobile Gait Analytics. Hannink et al. [121–123]
estimate mobile stride length in human gait using DL,
specifically deep CNN. Spatial gait pattern recognition and
mobile gait analysis are performed in [121–123] to address
motor impairment in neurological disease. Deep CNN is
used for stride length estimation to map stride-specific in-
ertial sensor data to the resulting stride length.

5.10. EmbeddedDL for InertialDataAnalytics. In Ravi et al.’s
studies [124–127], DL is applied to inertial sensor data
analysis for real-time human activity recognition &
classification.

5.11. DL for Electronic Healthcare Records Data Analytics.
dos Santos et al. [128] discuss DL applications in health-care
management and diagnostics as most of the studies suggest
DL for clinical diagnosis due to its accurate pattern rec-
ognition of disease in electronic medical records (EMR).
Based on Dos Santos and Carvalho [128], DL assists in
medical decisions, the accuracy of the diagnosis, andmedical
treatment recommendations. DL for clinical data analysis is
discussed in Miotto et al. [129–131]. DeepPatient [129] is an
application of DL for massive patient electronic health-care
records (EHR) data analytics and prediction. Miotto et al.
[129, 131] clearly demonstrate the transition from ML ap-
proaches [130] to DL due to the fact that DL overperformed
ML on patients’ massive EHR datasets. Choi et al.
[132–134, 136] review DL approaches and applications for
EHR for population health research.

5.12. DL for Electronic Medical Records Data Analytics.
An electronic medical record (EMR) is a digital paper chart
containing the patient’s medical history. Personalized pre-
dictive medicine requires modeling of patient illness and
care processes long-term temporal patterns.

5.12.1. DeepCare: Personalized Medicine Recommender
System. DeepCare [139] analyze and recognize the patients’
EMRs long-term temporal patterns. Health-care observa-
tions, recorded in EMRs, are episodic and irregular in time.
EMRs are collected via health-care observations, patient’s
disease, and personal care history. DeepCare [139] reads
EMRs, predicts future medical outcomes, and recommends
proper medications. DeepCare models patient health state
trajectories with explicit memory of illness. Built on LSTM
[58], DeepCare introduces time parameterizations to handle
irregular timing by moderating the forgetting and consol-
idation of illness memory.

5.12.2. Deepr: Deep Record for EMR Data Analytics.
Nguyen et al. [137] propose DeepR (deep record) for ana-
lyzing the massive EMRs in medicine. DeepR [137] is
a predictive system for analyzing EMRs and detecting
predictive regular clinical motifs from irregular episodic
records. DeepR is an end-to-end DL system to extract
features from EMRs and predicts automatically any future
risk and transforms a record into a sequence of discrete
elements separated by coded time gaps and hospital
transfers.

5.12.3. Deep Reinforcement Learning for Clinical EMR Data
Analysis in Medication Dosing. Nemati et al. [138] optimizes
medication dosing from suboptimal clinical examples using
the DRL approach. A clinician-in-the-loop sequential
decision-making framework [138] is proposed for an in-
dividualized dosing policy of each patient’s evolving clinical
phenotype using the publicly available MIMIC II intensive
care unit database with a DRL that learns an optimal heparin
dosing policy from sample dosing trails and their associated
outcomes in large EMRs. 'e proposed DRL system [138]
demonstrates that a sequential modeling approach, learned
from retrospective data, could potentially be used at the
bedside to derive individualized patient dosing policies.

5.13. DL for ECGData Analytics. Wearables have enormous
potential to provide low-risk and low-cost long-term
monitoring of electrocardiography (ECG), but these sig-
nals highly suffer from significant movement-related noise.
Shashikumar et al. [140] present DL-based atrial fibrillation
(AF) detection in a sequence of short windows with sig-
nificant movement artifact. Pulsatile photoplethysmo-
graphic (PPG) data and triaxial accelerometry were captured
using a multichannel wrist-worn device. A single-channel
electrocardiogram (ECG) was recorded (for rhythm verifi-
cation only) simultaneously. A DL approach was developed
on these data to classify AF from wrist-worn PPG signals. A
continuous wavelet transform was applied to the PPG data,
and CNN was trained on the derived spectrograms to detect
AF.

5.14. DL for Cybersecurity Data Analytics. DeepSpying [100]
is a mobile-sensing framework for data collection andDL for
data analytics in information security (i.e., cybersecurity)
domain to protect individual privacy. DeepSpying [100]
pioneers WT-based data collection and DL-based data
analysis for patient’s information security and privacy
protection.

5.15. DL for Smartglass and Smartglove Data Analytics.
Advani et al. [4] build a multitask AI visual-assistance
system for assisting visually impaired people in grocery
shopping using smart glass, smart glove, and shopping carts
for providing auditory and tactile feedback. 'is AI system
[4] is part of the visual cortex on Silicon project aimed at
developing interfaces, algorithms, and hardware platforms
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to assist the visually impaired with a focus on grocery
shopping.

5.16. DL for Wearable 3D Point Cloud Data Processing and
Analytics. Poggi et al. [141, 142] recognize the crosswalk
(i.e., crosswalk recognition) on the route using DL for point
cloud processing (i.e., 3D data learning) with a suitable
wearable mobility aid for the visually impaired people. Poggi
and Mattoccia [142] present a wearable mobility aid for the
visually impaired individuals using embedded 3D vision and
DL-based approach. Poggi et al. [141] relies on an RGBD
camera and FPGA embedded in a wearable eyeglass for
effective point cloud data processing with a compact and
lightweight embedded computer. 'e computer also pro-
vides feedback to the user using a haptic interface as well as
audio messages. Poggi et al. [141] does crosswalk recognition
for several visually impaired users as a crucial requirement in
an effective design of a mobility aid. Poggi et al. [141]
propose a system to detect and categorize crosswalks by
leveraging on point-cloud processing and DL techniques. Ji
et al. [143] processes 3D data using CNN for HAR. 'ey
develop a novel 3D CNN model for action recognition of
both the spatial and the temporal patterns using 3D con-
volutions for capturing the motion information encoded in
multiple adjacent frames. 'ey also apply the developed
models to HAR in the real-world environment of airport
surveillance videos.

5.17. DL for Multimodal Physiological Data Analytics. Du
et al. [144, 145] discuss the effects of DL in mortality pre-
diction. In these works [144, 145], a combination of audi-
tory, text, and physiological signals are utilized to predict the
mood (happy or sad) of 31 narrations from subjects engaged
in personal story-telling. 'ey extracted 386 audio and 222
physiological features (using the Samsung wearable sim-
band) from the data. A subset of 4 audio, 1 text, and 5
physiologic features was identified using sequential forward
selection (SFS) for inclusion in DNN. 'ese features in-
cluded subject movement, cardiovascular activity, energy in
speech, probability of voicing, and linguistic sentiment
(i.e., negative or positive).

6. WearableDL: Future Insights

We have presented a biologically inspired architecture
”WearableDL” for the wearable big data analytics that re-
sembles the human NS. We also reviewed briefly the current
frontiers in AI, specifically DL approaches and architecture.
We carefully selected more than 100 recently published
research articles related to WearableDL architecture with
focus on DL, IoT, and WT (Section 4). Although Weara-
bleDL meets with obstacles and challenges, we believe that it
could be practically and potentially useful especially when
the wearable data are massive (volume), heterogeneous
(variety), and sampled at different frequency (velocity). In
this section, we intend to provide our future view of
“WearableDL” challenges and its potential application to
wearable big data analytics.

6.1. Health Insurance Decision Making. DL brings a great
promise and could increase the value of the wearable big data
by making them actionable, e.g., health insurance companies
thrive on the data to minimize the cost. 'erefore, it be-
comes extremely important that they learn more about their
customers and their lifestyles. 'ey are also interested in
knowing the information such as how often their customers
perform physical activity such as walking, jogging, or other
exercises. 'e health insurance industry wants to track if
their customers have smoking or drinking habits. Due to the
promise of accuracy, precision, and efficiency, the applica-
tion of DL on personalized wearable data can play a major
role to estimate the insurance policy cost and also to give
rebates if their customers cultivate healthy habits [148]. 'e
trend of a data-driven health insurance policy has already
been considered in many countries including North
America, Europe, and Asia.

6.2. High Performance in Sports and Athletics. Another area
that will be impacted by DL is the billion-dollar sports in-
dustry. 'e performance of athletes is not only a moment of
pride for their country or state team but also an economical
model and therefore the athletes strive to outperform. Today,
they use WT in their training to improve their performance
inch by inch [149]. Such precision in their performance also
demands WT to offer fine-grain quality in the measurement
of body’s kinematic motion such as agility and balance and
physiological parameters such as heart rate, oxygenation, and
muscular strength. Various DL methods can be applied to
analyze highly sampled wearable big data and extract the
actionable information to improve sports performance. DL
could also help detect sports injuries during the game or in the
training, so effective decisions are made in time.

6.3. Supporting Elderly Population. Aging population across
the globe is a well-known phenomenon. By 2030, 20% or
more population will be 65+ years of age [150].'is indicates
that we will need to seek technological solutions to support
senior citizens who are more prone to disorders, severe
health conditions, and injuries due to decaying physical and
mental capabilities. In the last decade, WT have specifically
been targeted to provide health-care services and com-
fortable assisted living. However, it is not enough to just
collect the data fromWT. It is equally important to make the
WTpersonalized to the specific condition experienced by an
elderly individual. DL could fill this gap by learning the daily
patterns in the wearable big data and by offering the decision
makers the relation between the historic and current data. In
this way, DL could lead the prediction of underlying health
conditions which are often not detected by WT alone.

6.4. Challenges. Although DL comes with several promises
for the wearable big data, it also needs to overcome a number
of barriers and obstacles for its wide spread adoption.

6.4.1. Unlabeled Wearable Big Data. 'is is a very common
important problem when it comes to analyzing the wearable
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big data since this data are often collected in a complete
unlabeled or unannotated fashion. 'at is why UL is be-
coming an important scope for applying DL to the collected
big data. As reviewed and talked about, this scope is often
known as DUL and it is still an active area of research,
specifically when it comes to wearable big data which are
time-series and sequential. Sequence learning is one of the
attractive ways approaching this problem using LSTM,
RNN, and ConvLSTM.

6.4.2. Computational Bottlenecks, Demand, and Complexity.
Currently, deep models face the burden of computational
demand to achieve exceptional performance on large-size
datasets. 'ese models are currently aimed to run on cloud
servers. However, fog computers which require lightweight
algorithms will demand new type of DL models that learn
from small datasets. As also mentioned in Section 4 and
Table 2, embedding DL into mobile, wearable, and IoT
devices has two important bottlenecks: memory bandwidth
for matrices and computational power for matrix multi-
plication operation in parallel or distributed setting.

6.4.3. Data Reliability. In many situations, data collected by
wearable devices can be affected by noise and error due to
nonideal collection setting, particularly for structured and
complex data. In this regard, the wearable devices can be
designed to perform a presifting and prefiltering of the data.
'erefore, DL can be applied to identify and isolate the cor-
rupted data in the decision-making process. DL can generalize
the data in an extraordinary way and that is how it can isolate
the corrupted/noisy data and identify the distinctive, repetitive,
and robust spatiotemporal pattern in such data.

Abbreviations

AGI: Artificial general intelligence
AI: Artificial intelligence
ANN: Artificial neural net
Backprop: Backpropagation
BCI: Brain-computer interface
BP: Backpropagation
BPTT: Backpropagation through time
CL: Cortical learning
CLA: Cortical learning algorithm
ConvLSTM: Convolutional LSTM
CNN: Convolutional neural net or ConvNet
CNS: Central nervous system
DBN: Deep Boltzmann machine
DBS: Deep brain stimulation
DL: Deep learning
DRL: Deep reinforcement learning
DSL: Deep supervised learning
DNN: Deep neural network
DQN: Deep Q-network
DUL: Deep unsupervised learning
EA: Evolutionary algorithm
ECG: Electrocardiography
EEG: Electroencephalography

EM: Expectation maximization
EMG: Electromyography
EMR: Electronic medical record
FCN: Fully connected network
FFNN: Feed-forward neural network
FLANN: Fast library for approximate nearest neighbor
FPGA: Field programmable gate arrays
GAN: Generative adversarial nets
GNMT: Google neural machine translation
GPU: Graphical processing unit
GQN: Generative query network
GRU: Gated recurrent units
HR: Heart rate
HPC: High-performance computing
HTM: Hierarchical temporal memory
HAR: Human activity recognition
IoT: Internet-of-'ings
IRL: Inverse reinforcement learning
IC: Integrated circuits
ICA: Independent component analysis
KNN: K-nearest neighbors
LDA: Linear discriminant analysis
LSTM: Long short-term memory
ML: Machine learning
MLP: Multilayer perceptron
MBD: Mobile big data
MSE: Mean-squared error
NS: Nervous system
NN: Neural net
NLP: Natural language processing
PNS: Peripheral nervous system
PCA: Principle component analysis
RBM: Restricted Boltzmann machine
RL: Reinforcement learning
RNN: Recurrent neural nets
STDP: Spike-time-dependent plasticity
SNN: Spike neural net
SL: Supervised learning
SSE: Sum of squared error
SVM: Support vector machine
TL: Transfer learning
UL: Unsupervised learning
VAE: Variational autoencoder
WIoT: Wearable Internet-of-things
WT: Wearable tech.
WearableDL: Wearable deep learning.
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