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Abstract

The global society is increasingly facing the challenges that reduce mobility,

quality of life, and independence. Gait disorders are often both a result of, and

predictor of further issues, tied to the 15 million stroke patients annually world-

wide. These individuals face a number of gait abnormalities including drop foot

that is a pathological condition, limiting patients’ ability to lift the foot from

the ground during the swing phase of walking. In this research work, we intro-

duce a novel smart textile system, MagicSox that is woven with multiple sensors

distributed over the surface of the foot. The overarching goal of MagicSox is

to quantify the gait abnormalities in remote settings such as patients’ homes so

that clinicians and physical therapists can assess their patients on daily basis.

The paper provides a detailed architecture of MagicSox that leverages the com-

puting and communication capabilities of a modern Internet of Things (IoT)

processor, the Intel Curie. We have developed an Android smart phone app

that uses Bluetooth low energy (BLE) and automates the multi-sensor data col-

lection from MagicSox. In terms of signal processing of wearable sensor data, we

adopted multiplication of backward differences (MOBD) to analyze the multi-

modal time series data to distinguish drop foot events from normal walking
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cycles. We pursued a usability study on 12 healthy participants who were asked

to walk normally and also to simulate drop foot cycles. We developed sup-

port vector machine (SVM) classifiers to analyze the data. The classification

resulted in the accuracy of drop foot detection varying from 73.38%− 99.02%.

The promising results now encourage us to evaluate MagicSox on stroke patients

in future studies.
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1. Introduction

The global medical community is now attentive of Gait since the society

witnesses the increasing population with decreased mobility due to medical

conditions such as stroke, Parkinson’s, arthritis, and other age-related condi-

tions [1, 2, 3]. The cyclic motion of gait biomechanics involves the entire body,5

providing an insight into a patient’s functional capabilities. A corpus of studies

provide evidence that fluctuations in gait from one step to the other could reflect

disruptions in intrinsic motor or postural control from age- or disease-related

decline in the central and peripheral nervous systems [4, 5]. For example, the

gait abnormality known as drop foot is described as an inability to lift the foot10

from the ground during the swing phase of the walking [6]. Drop foot could be

a symptom of underlying disease or an effect of neurological conditions. With

strokes affecting 15 million people globally each year and drop foot being a

potential side-effect, it is a rising concern[7].

In this paper, we examine the use of smart textiles to measure the gait move-15

ments and differentiate between a healthy movement and a drop foot movement.

People who have suffered from stroke pose as a great target group because of

the shear amount in society and their need for a cheaper and more efficient

method of getting back on their feet. We have developed a smart textile called

“MagicSox” to collect data on various attributes of motion on an individual’s20

lower extremities, designed to monitor patients with neurological diseases dur-

ing their time of rehabilitation. MagicSox is embedded with a number of sensors
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in various key locomotive points on the foot and ankle, strategically placed to

measure movement, angle change, and forces exerted upon each step.

This research article provides an overall architecture of MagicSox (see Figure25

1). The overarching goal of MagicSox is to automate the remote assessment of

stroke patients, especially for gait rehabilitation. In addition to the on-board

module consisting of multiple sensors and an Intel Curie microcontroller (with

Bluetooth Low Energy(BLE)), MagicSox is embedded with algorithms such as

multiplication of backward differences (MOBD) to accurately differentiate be-30

tween a standard walking step and a drop-foot step. We have pursued a usability

study on 12 healthy participants who simulate drop foot gait during the data

collection trial. The contribution of the paper is as following:

• Design and development of a smart textile system for remote drop foot

monitoring35

• Selection and location of multiple motion sensors including flex sensor,

pressure sensor, accelerometer and gyroscope

• Integration of the multiple sensors onto a textile material for quantifying

foot locomotion

• Establishment of a signal processing algorithm (MOBD) to detect drop40

foot event

• Design of an Android app for patient-friendly data collection in remote

settings

• Machine learning experimental analysis to measure the performance and

usability of MagicSox45

The rest of the paper is organized as follows. In Section II, background and

related works in gait abnormalities, drop foot and rehabilitation, and wearable

biosensors for rehabilitation is discussed. In Section III, the design of MagicSox

and the experiment setup are explained. In Section IV, we explain the methods
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Recently novel tools and technologies have been developed to improve the

rehabilitation of patients with stroke [11], but they have not significantly im-

pacted clinical practice. For this reason, some have suggested that home-based

programs may be the answer [12].

Using wearable sensors and obtaining objective measures of gait and balance,75

will provide unique information of how and why the functional performance of

gait and balance are impaired. Therefore, therapists can focus on the specific

physiological reasons for difficulty in walking or balancing during specific tasks

[13].

2.2. Wearable Technologies in Gait Rehabilitation80

Smart wearable systems have great potential to be the future of healthcare

tracking and can be used in a home based program. For example, Wang et

al. [14] proposes a smart garment designed to monitor posture to support

prevention and treatment of spinal pain during the neurological rehabilitation

of upper extremities. The garment combines various inertial measurement units85

that is controlled by an Arduino processor. The user will be notified that their

posture is inadequate via internal vibration units along with alarms and visual

instruction that is transmitted though Bluetooth to a smart phone.

S. Ryan Edgar et al. [15] and his research team developed a wearable shoe-

based rehabilitation monitoring device, designed specifically for stroke patients.90

The shoe is designed with an insole that has five pressure sensors integrated,

in the heal part lies an insole connector that allows the microcontroller to read

the shoes data. The actual shoe board is vertically placed along the backing

of their shoe. The information is relayed to a phone from a Bluetooth mod-

ule. As well, the microcontroller contains a 3 − axis accelerometer to monitor95

directional motion. The smart phone application depicts the pressure exerted

in each location on the soul of the foot as well as each axis reading from the

accelerometer.

In another report by Mazzoldi et al. [16] wearable devices which are able

to read and record the posture and movements of a subject wearing the system100
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is discussed. The sensory function of the garments is achieved by fabric strain

sensors, based on threads coated with polypyrrole or carbonloaded rubbers. The

presence of conductive elements gives these materials piezoresistive properties,

enabling the detection of local strain on the fabric.

In this research, we introduce MagicSox, a smart textile wearable device105

which can be used to quantify different aspects of gait abnormalities. Utilizing

different types of sensors, will provide unique information regarding the orien-

tation and angular velocity to understand the swing of the foot, pressure on

the heel to better understand the heel strike and the angular displacement for

movement of the ankle for dorsiflexion. In addition to aiding the stroke rehabil-110

itation process, MagicSox is also a healthcare tool for everyday life. It can be

used to provide insights for athletes or to aid in posture.

3. Design

3.1. MagicSox

MagicSox is a smart textile system with Internet-of-Things (IoT) function-115

alities to sense, compute and communicate the gait abnormalities such as drop

foot. Our design utilizes four different types of sensors, measuring force, resis-

tance, orientation, and angular velocity. With a total of five sensors, two of

which built in to our microcontroller, they provide the data that allow us to

differentiate normal walking from gait abnormalities.120

• Arduino 101 board with the Intel Curie processor module

• Gyroscope and Accelerometer integrated in the Intel Curie

• Pressure Sensor on the heel

• 2 Flex Sensors, one along the heel and the other one on the anterior side

of the ankle125

• Smart Phone to collect the data via Bluetooth in the application
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3.1.1. Inertia Measurement Units

The Arduino 101 has an on-board 6-axis accelerometer/gyroscope. The mi-

crocontroller measures orientation with its accelerometer and angular velocity130

with its gyroscope. In unison, they form an inertial monitoring unit (IMU) that

allow us to read the kinematics behind the foot. Once data collection begins on

the Arduino, the gyroscope raw values are converted into an angular velocity

for each of the three axes (gx, gy, gz). Similarly, the accelerometer measures

the acceleration for each axis (ax, ay, az), returning a raw value in need of135

conversion. The gyroscope is useful because of its ability to measure rotational

movement around the axes. The accelerometer does not have this function if

the movement remains continuous. These sensors can show how much a person

takes their foot up in order to complete the gait cycle. Also, they can show

if the person swings their foot while walking which is a normal symptom in140

the drop foot phenomena. As an example, Figure 2 shows the data from the

gyroscope, and the zoomed-in picture to observe the difference between normal

walk and drop foot walk, respectively. As shown in Figure 2, accelerometer and

gyroscope are located on top of the foot.

3.1.2. Pressure Sensor145

The Arduino IMU reads kinematic data for our sock. Additionally we use a

pressure sensor to detect when the individual wearing the sock has a definitive

heel strike vs. a standard step. Heel striking is of critical concern to athletes

and is well documented in athletic literature [17, 18, 19]. However, we hypoth-

esize that heel striking could be an important feature to consider in drop foot150

analysis. We used the FlexiForce A201 [Tekscan, 9.7mm in diameter] that is a

piezoresisitive sensor, made of a semiconductor material. The pressure sensor

acts as a pressure sensing resistor in an electrical circuit. Beneath the sensors

film and adhesives lies a silver strip and pressure sensitive ink. The active sens-

ing area is only where the silver is in contact with the ink. When force is applied155

to the sensor, the resistance decreases. When the force is removed, the resis-

tance is very high. The FlexiForce sensor is thin enough to allow non-intrusive
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degrees pitch bend. The sensor takes use of an impedance buffer and voltage170

divider, contributing to a reduced error.

We have used two flex sensors, one located on the heel along with the pressure

sensor, and the other one is located in the anterior side of the foot on the ankle.

These locations have been chosen in order to estimate that how normally the

person can complete a gait cycle. In the area of stroke rehabilitation, these175

sensors will provide information regarding the ankle dorsiflexion. Since one of

the exercises in the stroke rehabilitation is ankle dorsiflexion, these sensors can

show the strength and duration of this exercise. They also can provide the

difference between the normal gait and the drop foot gait, because the ankle

flexion is reduced in the drop foot gait compared to the normal gait. Figure 3180

shows the data from flex sensor located on the heel and the zoomed in picture

of it. Each of the peaks is a step and the difference between normal and drop

foot walk is clearly visible in both amplitude and duration. The location of the

flex sensor in determined on the foot on top of the figure.

185

3.1.4. Intel Curie Microcontroller with BLE

All the sensors are connected to the microprocessor board Arduino 101,

which collects the data from the pressure and flex sensors, utilizing its built-in

accelerometer and gyroscope as well. All the data from the Arduino board is

sent to MagicSox application on the smart phone. MagicSox application was190

designed to run on any Bluetooth Smart or Bluetooth Smart Ready enabled

device running Android 4.4 or higher. This Android device utilizes the BLE

technology available on both the Arduino 101 and the device itself to receive

updates every 100 milliseconds from MagicSox. This update comes in the form

of a byte array which contains all the essential information from MagicSox,195

including raw sensor data from the two Flex Sensors, the Pressure Sensor, the

Accelerometer and the Gyroscope. The Android device then parses this data

and saves all of it into a Comma Separated Values (CSV) file which can be used

for further processing later. Figure 4 shows how MagicSox application works on
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In order to collect the data, we recruited 12 healthy subjects to walk in two

different situations, one is the normal gait and the other one is to simulate the

drop foot walking. The first 4 participants were asked to do the experiment

with the first batch of socks and the remaining 8 participants performed the

experiment with the newer version of the socks in order to compare the different245

versions of the sock and observe how design developments can change the results.

Both groups preformed the same two walking tests. Each participant was asked

to walk for 5 minutes in their normal gait and afterwards, they were asked to

simulate the drop foot walking for 5 minutes. Therefore, we have an overall of

10 minutes of data from each participant which is separated equally into normal250

gait and drop foot walking.

The data has been recorded from the accelerometer, gyroscope, pressure

sensor and two flex sensors. As mentioned previously, the flex sensors and the

pressure sensors are variable resistances. Static state for relativity is required

to measure this physical state. We accomplish this static state by introducing a255

standard resistor. To measure the relative change in state between the standard

resistor and flex or pressure sensors, we designed a voltage divider that allows

us to extrapolate the desired information using Ohm’s Law. One last challenge

on this setup is maximizing the voltage range to increase the signal to noise

ratio. We chose to use a standard 10kΩ resistor, which provides a potential260

voltage swing of approximately 1v. Therefore, the data that is recorded from

the pressure sensor and two flex sensors are the voltage across these sensors.

Since the accelerometer and gyroscope each have 3 different dimensions, we

have an overall of 9 attributes in the data. The data is recorded continuously

via Bluetooth to a smart phone by the sampling frequency of 10Hz for each265

data channel.
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4. Methods

4.1. Support Vector Machine (SVM)

After collecting the data, in order to distinguish between the normal gait

and drop foot walking, we used a Support Vector Machine (SVM). The SVM270

uses a nonlinear mapping to transform the original training data into a higher

dimension. It searches for the linear optimal separating hyperplane in this new

dimension (that is, a “decision boundary” separating the tuples of one class

from another). With an appropriate nonlinear mapping to a sufficiently high

dimension, data from two classes can always be separated by a hyperplane [20].275

SVMs are supervised learning models.

The general concept of the SVM is that the system trains itself based on a

training dataset which can be a part of the original dataset that is labeled into

two different categories. Then, after the system is trained, it will be tested on

the other part of the original dataset to predict the labels of the data, and by280

comparing the predicted labels and the original labels, we can find the accu-

racy of the system. In this study, we used several learning algorithms to be

implemented in the SVMs. It is possible to classify the datasets which are not

linearly separable by applying the Lagrangian optimization theory to a linear

support using the Kernel. While the nonlinear support vector machines retain285

the efficiency of finding linear decision surfaces, they allow us to apply them to

not linearly separable datasets. It is also possible to change the margins of the

classifiers and change the complexity and accuracy of the systems. In general,

large margins make the system less complex, but on the other hand, will let the

system generate more errors, resulting to lower accuracy. This can be achieved290

by changing a variable called Cost constant in the classifier models.

Figure 6 shows a concept of the SVM and its supporting hyperplanes that di-

vide two different classes and introduces the margin. When we make the margin

large, we allow some data points between the decision surface and the support-

ing hyperplanes, which at the end will result in false classification and reduce295

the accuracy.
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Table 1: Different methods of classification used in this study.

Index Kernel Name Kernel Function Degree Cost Constant

1 Linear Kernel k(~x, ~y) = ~x · ~y – 1

2 Linear Kernel k(~x, ~y) = ~x · ~y – 10

3 Linear Kernel k(~x, ~y) = ~x · ~y – 100

4 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d d=2 1

5 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d d=2 10

6 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d d=2 100

7 Polynomial kernel k(~x, ~y) = (~x · ~y + c)d d=3 1

8 Polynomial Kernel k(~x, ~y) = (~x · ~y + c)d d=3 10

9 Polynomial kernel k(~x, ~y) = (~x · ~y + c)d d=3 100

10 Radial kernel k(~x, ~y) = e−(|~x− ~y|2/2σ2) – 1

11 Radial kernel k(~x, ~y) = e−(|~xx− ~y|2/2σ2) – 10

12 Radial Kernel k(~x, ~y) = e−(|~x− ~y|2/2σ2) – 100

Regarding the evaluation of the methods, we used 2 different evaluation

methods of 10-Fold Cross-Validation and Hold-Out method with the portion of

2/3 and 1/3 for training and evaluating respectively.

In this paper, we provided the raw data recorded from all the sensors to305

the classifier and compared the performance with the case where we used the

Multiplication of Backward Differences (MOBD) algorithm for the data recorded

from the pressure sensor which is a useful tool to determine the heel strike.

Determining the heel strike is useful here because in the drop foot walking, the

heel strike happens less or with a lower pressure compared to the normal gait.310

4.2. Multiplication of Backward Differences (MOBD)

The MOBD algorithm was developed in the efforts to create a better method

for detection of the large spikes in heart wave signal [21, 22]. Using the MOBD

algorithm for heel strike detection seemed applicable due to the fact that the

spike in heart wave and the impact transient of heel strike share that similar315

sharp waveform.
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The algorithm computes a backward derivative which in discrete time, a

derivative is well approximated by a difference. Those differences are then mul-

tiplied together, which in turn provides a robust peak detector.

Assuming p[n] be the pressure sensor data in time sample n, the first-order

backward difference at time n , x[n], is:

x[n] = p[n]− p[n− 1] (1)

Therefore, the N − th order MOBD nonlinear transform is as follow:

y[n] =

N−1∏

k=0

|x[n− k]| (2)

Also, y[n] is forced to be zero if the backward differences are not in agreement

with respect to sign.

y[n] = 0, if sgn(x[n− k]) 6= sgn(x[n− (k + 1)]) k = 0, 1, ..., N − 2

where the sgn(x) is the signum function.

At a given time, a sample from the pressure sensor is stored in the micro-

controller. At the next sample time, another sample from the sensor is stored.320

Those two samples are then subtracted and stored in its own variable. This is

then repeated two more times so that 3 differences have been collected. The

algorithm then checks for 3 consecutive positive or negative differences. When

climbing up a steep waveform, a peak, the algorithm will result in consecutive

differences in comparison to a waveform that has a more rounded shape to it. If325

3 consecutive differences are found, they are multiplied together and that value

is compared to a predefined threshold value. If the calculate value is greater

than the threshold value, the algorithm recognizes the detection of a heel strike.

The impact values of a heel strike are much larger than that of a non-heel

strike impact due to the distributions of forces along the foot for each strike. A330

threshold value was determined that allowed for the heel strike impact transient

to be detected while avoiding possible false peaks that could stem from various
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into k different folds which the length of each fold is the same as the others

and no folds have overlap with each other. The concept is that the system uses

each of these folds for testing while getting trained from the other folds, and

at the end, provides the accuracy of the system which is the average of all the350

accuracies on different folds. In this paper we used the Hold-Out method with

the portions to be 2/3 and 1/3, and k-Fold Cross-Validation with the number

of folds k equal to 10.

5. Results and Discussion

In this section, we report the results of the classification of the normal walk-355

ing and the drop foot walking and compare the performance of the classifier for

the two cases mentioned earlier.

1. Classifying the raw dataset

In this case, we labeled the data to 0 and 1 for the normal and drop foot

walk respectively and without any processing, sent the raw data to the360

classifier. Table 2 shows the performance of different SVM and evaluation

methods applied on the raw data.

2. Classifying the feature extracted dataset

In this case, we first applied the MOBD algorithm as explained in the

previous section in order to apply different types of SVM classifiers. The365

new dataset contains all the previous information, except the pressure

sensor data which is replaced by the results of MOBD algorithm.

After applying the MOBD algorithm and labeling the data to 0 and 1

for the normal walking and drop foot walking respectively, we applied

the dataset to the classifier in order to observe the performance. Table 3370

shows the accuracy of different SVM and evaluation methods applied on

the feature extracted dataset.

As it can be seen from Tables 2 and 3, the performance of the system im-

proves as we use more complex Kernel functions such as the Radial kernel or
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Table 2: The performance of different methods on the raw data from each of the participants.

Index Evaluation
MagicSox Design 1 MagicSox Design 2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

1
Hold-Out 63.16% 94.02% 53.93% 56.29% 82.91% 72.31% 76.53% 68.74% 72.36% 78.14% 80.09% 59.47%

10 Fold 63.46% 93.56% 51.39% 55.92% 82.49% 71.01% 76.17% 68.85% 72.41% 77.93% 80.03% 59.64%

2
Hold-Out 63.16% 95.03% 53.93% 56.29% 82.85% 72.36% 77.03% 69.92% 73.14% 79.26% 80.77% 59.47%

10 Fold 63.47% 94.69% 51.41% 55.62% 82.28% 71.24% 76.90% 69.75% 73.10% 78.83% 80.26% 59.66%

3
Hold-Out 62.80% 94.93% 54.08% 56.29% 82.85% 72.31% 77.19% 70.28% 73.84% 79.93% 81.14% 60.03%

10 Fold 56.00% 94.68% 50.83% 56.02% 82.33% 71.14% 77.09% 70.14% 73.56% 79.22% 80.94% 60.14%

4
Hold-Out 70.07% 87.58% 56.64% 57.19% 93.36% 84.16% 83.52% 79.24% 80.73% 88.47% 89.06% 73.13%

10 Fold 68.96% 86.83% 57.01% 58.08% 93.10% 84.18% 83.57% 79.02% 80.12% 87.98% 88.53% 73.24%

5
Hold-Out 68.50% 87.78% 56.34% 57.75% 94.25% 85.58% 83.47% 79.58% 80.82% 88.33% 88.92% 74.05%

10 Fold 68.93% 86.94% 57.59% 58.05% 94.91% 85.43% 83.52% 79.46% 80.34% 88.09% 88.51% 73.91%

6
Hold-Out 68.34% 87.88% 56.34% 57.70% 95.19% 86.83% 85.14% 81.39% 81.97% 89.46% 91.15% 76.32%

10 Fold 68.78% 86.94% 57.46% 58.02% 95.48% 85.99% 85.73% 81.65% 82.19% 89.07% 90.74% 77.20%

7
Hold-Out 72.36% 88.19% 65.36% 60.01% 92.78% 87.09% 83.96% 81.06% 81.44% 88.47% 91.07% 78.51%

10 Fold 72.52% 87.61% 64.73% 61.34% 96.75% 87.96% 84.01% 80.97% 81.73% 88.39% 90.83% 79.04%

8
Hold-Out 72.00% 92.60% 81.20% 61.62% 97.28% 90.22% 86.72% 83.71% 83.16% 90.07% 92.12% 80.02%

10 Fold 73.03% 92.22% 69.04% 62.93% 97.78% 91.37% 86.54% 83.48% 82.97% 89.73% 91.89% 79.97%

9
Hold-Out 71.59% 94.17% 82.91% 61.42% 97.69% 93.67% 87.19% 84.42% 84.41% 91.23% 92.84% 80.84%

10 Fold 73.22% 94.94% 73.26% 63.33% 98.24% 94.11% 87.33% 85.01% 84.29% 91.19% 92.47% 80.47%

10
Hold-Out 75.30% 95.79% 74.23% 65.69% 98.48% 93.68% 87.42% 85.72% 86.10% 91.96% 92.60% 79.19%

10 Fold 76.30% 95.71% 76.95% 67.41% 98.65% 94.25% 87.47% 85.87% 85.97% 92.01% 91.94% 78.93%

11
Hold-Out 75.35% 98.63% 88.67% 71.43% 98.90% 95.35% 89.19% 86.43% 87.49% 92.65% 93.69% 80.92%

10 Fold 76.38% 98.19% 89.42% 73.25% 98.86% 95.94% 88.97% 86.37% 87.21% 92.84% 92.19% 79.48%

12
Hold-Out 76.12% 98.68% 89.07% 73.44% 98.79% 96.34% 92.06% 89.74% 89.94% 94.15% 95.02% 82.06%

10 Fold 76.45% 98.38% 89.69% 74.37% 98.98% 96.36% 91.88% 89.91% 89.87% 94.71% 94.55% 81.93%

Polynomial Kernel with degree 3, and results in the accuracy of almost more375

than 80% for all the participants with the Radial Kernel function and the Cost

constant of 100. Figure 8 shows a comparison of the performance of the best

model which is the SVM with Radial Kernel and Cost constant of 100 evaluated

with the Hold-Out and 10-Fold Cross-Validation methods for all participants ap-

plied to both raw dataset and feature extracted dataset. It can be seen from380

the results that using the raw dataset and the feature extracted dataset will

lead to almost same performance of the classifier. It was also noticed that the

2 different evaluation methods of Hold-Out and 10-Fold Cross-Validation have

similar performance on the data, therefore, choosing either one will result in

mostly the same result. It is apparent from the results that the design improve-385

ments for the socks will result in better performances. It can be seen that the

results for participants 5 to 8 are more consistent and provide higher accuracies
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Table 3: The performance of different methods on the features extracted data from each of

the participants.

Index Evaluation
MagicSox Design 1 MagicSox Design 2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

1
Hold-Out 63.31% 93.30% 52.48% 54.32% 82.85% 72.04% 76.37% 68.59% 72.19% 77.95% 79.84% 60.14%

10 Fold 63.46% 93.54% 51.93% 55.55% 82.33% 71.83% 76.04% 68.63% 72.28% 77.43% 79.80% 59.86%

2
Hold-Out 63.41% 94.77% 52.48% 54.38% 82.85% 72.05% 76.91% 68.59% 73.10% 79.10% 80.23% 60.14%

10 Fold 63.41% 94.18% 51.48% 55.94% 82.37% 71.82% 76.83% 68.84% 73.19% 78.77% 80.09% 60.03%

3
Hold-Out 64.32% 94.72% 52.48% 54.38% 82.90% 71.99% 77.01% 70.12% 73.77% 79.84% 80.97% 60.74%

10 Fold 65.90% 94.17% 51.86% 55.94% 82.31% 71.57% 76.902% 70.01% 73.43% 79.09% 80.71% 60.62%

4
Hold-Out 72.30% 86.36% 54.98% 54.17% 90.38% 81.03% 83.40% 79.32% 80.71% 88.31% 88.12% 72.85%

10 Fold 72.82% 86.59% 53.31% 55.65% 92.05% 82.06% 83.52% 79.24% 80.01% 87.90% 87.74% 72.64%

5
Hold-Out 70.32% 86.06% 54.33% 55.13% 95.66% 86.52% 83.59% 79.63% 80.89% 88.30% 88.63% 73.84%

10 Fold 71.34% 86.29% 53.90% 55.80% 95.71% 87.33% 83.61% 79.56% 80.33% 88.01% 88.19% 73.69%

6
Hold-Out 69.97% 85.90% 55.04% 55.53% 97.64% 91.58% 85.22% 81.33% 82.01% 89.29% 90.92% 75.15%

10 Fold 70.88% 86.05% 54.28% 56.05% 96.86% 90.17% 85.91% 81.58% 81.94% 88.82% 89.48% 75.94%

7
Hold-Out 70.22% 87.38% 55.59% 59.15% 93.93% 85.47% 83.91% 81.12% 81.25% 88.71% 90.46% 77.14%

10 Fold 71.20% 87.46% 58.63% 61.65% 96.46% 85.59% 83.97% 81.09% 81.70% 88.25% 89.73% 78.01%

8
Hold-Out 73.32% 91.48% 65.26% 60.96% 97.07% 92.42% 85.92% 83.46% 83.19% 89.93% 91.83% 79.27%

10 Fold 73.86% 91.73% 68.51% 62.56% 97.12% 91.46% 86.47% 83.31% 83.02% 89.55% 91.71% 79.19%

9
Hold-Out 75.86% 91.58% 69.52% 62.37% 97.33% 93.67% 87.10% 84.20% 84.39% 91.15% 92.35% 80.20%

10 Fold 76.09% 92.66% 71.47% 64.36% 97.63% 93.01% 87.24% 84.89% 84.21% 90.97% 91.99% 79.97%

10
Hold-Out 76.01% 91.94% 72.33% 63.53% 98.41% 95.14% 87.29% 85.69% 85.98% 91.59% 92.47% 80.05%

10 Fold 76.42% 93.25% 75.48% 67.57% 98.57% 94.28% 87.33% 85.85% 85.91% 91.64% 92.04% 79.12%

11
Hold-Out 77.03% 94.78% 87.67% 73.04% 98.64% 96.55% 89.27% 86.41% 87.33% 92.49% 93.48% 80.74%

10 Fold 76.66% 95.60% 88.98% 73.19% 99.02% 95.97% 89.05% 86.39% 87.15% 92.63% 92.23% 79.57%

12
Hold-Out 75.81% 95.64% 87.97% 73.39% 98.95% 96.76% 91.94% 89.88% 89.75% 94.06% 94.76% 81.97%

10 Fold 76.88% 95.89% 88.65% 73.38% 98.90% 96.24% 91.90% 89.73% 89.81% 94.58% 94.51% 81.89%

compared to the first 4 participants. The first version of the socks provided the

average accuracy of 83.98% among all four participants, compared to the newer

version of the socks with the average accuracy of 92.24% among the rest of the390

participants.

As an example of the performance of the classifier, we show the actual labels

and predicted labels of the classifier applied to the whole length dataset of one

of the participants in Table 4. The table shows that we have 838 False Positives

and 146 False Negatives. Figure 9 shows a visual representation of the table395

for the first 600 samples and the zoomed-in picture of 50 samples. The white

color represent label 0 as normal walking, the blue color represents label 1 as

drop foot walking and the red color shows the error of the system in prediction,

which means that the actual labels are 0, but the classifier predicts them as 1
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information about the flexion of the ankle. During a gait cycle, the ankle flexes

and stretches and having these flexion and stretches reveals informations about

the gait cycle that can be used in rehabilitation to improve the gait cycle of

drop foot.425

Although our focus in this research was on the quantification of drop foot,

MagicSox can also be used for athletes to alert them whenever they have heel

strike which can cause serious injuries or pain. It also can be used as an activity

tracker to show how many steps a person has taken during the day, or how

much distance they have walked. As an immediate next step, we will pursue a430

pilot study on stroke patients who will wear MagicSox and help us evaluate the

system under a clinical setting.
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