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Abstract

The global society is increasingly facing the challenges that reduce mobility,
quality of life, and independence. Gait disorders are often both a result of, and
predictor of further issues, tied to the 15 million stroke patients annually world-
wide. These individuals face a number of gait abnormalities including drop foot
that is a pathological condition, limiting patients’ ability to lift the foot from
the ground during the swing phase of walking. In this research work, we intro-
duce a novel smart textile system, MagicSox that is woven with multiple sensors
distributed over the surface of the foot. The overarching goal of MagicSox is
to quantify the gait abnormalities in remote settings such as patients’ homes so
that clinicians and physical therapists can assess their patients on daily basis.
The paper provides a detailed architecture of MagicSox that leverages the com-
puting and communication capabilities of a modern Internet of Things (IoT)
processor, the Intel Curie. We have developed an Android smart phone app
that uses Bluetooth low energy (BLE) and automates the multi-sensor data col-
lection from MagicSox. In terms of signal processing of wearable sensor data, we
adopted multiplication of backward differences (MOBD) to analyze the multi-

modal time series data to distinguish drop foot events from normal walking
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cycles. We pursued a usability study on 12 healthy participants who were asked
to walk normally and also to simulate drop foot cycles. We developed sup-
port vector machine (SVM) classifiers to analyze the data. The classification
resulted in the accuracy of drop foot detection varying from 73.38% — 99.02%.
The promising results now encourage us to evaluate MagicSox on stroke patients

in future studies.
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1. Introduction

The global medical community is now attentive of Gait since the society
witnesses the increasing population with decreased mobility due to medical
conditions such as stroke, Parkinson’s, arthritis, and other age-related condi-
tions [1, 2, 3]. The cyclic motion of gait biomechanics involves the entire body,
providing an insight into a patient’s functional capabilities. A corpus of studies
provide evidence that fluctuations in gait from one step to the other could reflect
disruptions in intrinsic motor or postural control from age- or disease-related
decline in the central and peripheral nervous systems [4, 5]. For example, the
gait abnormality known as drop foot is described as an inability to lift the foot
from the ground during the swing phase of the walking [6]. Drop foot could be
a symptom of underlying disease or an effect of neurological conditions. With
strokes affecting 15 million people globally each year and drop foot being a
potential side-effect, it is a rising concern[7].

In this paper, we examine the use of smart textiles to measure the gait move-
ments and differentiate between a healthy movement and a drop foot movement.
People who have suffered from stroke pose as a great target group because of
the shear amount in society and their need for a cheaper and more efficient
method of getting back on their feet. We have developed a smart textile called
“MagicSox” to collect data on various attributes of motion on an individual’s
lower extremities, designed to monitor patients with neurological diseases dur-

ing their time of rehabilitation. MagicSox is embedded with a number of sensors
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in various key locomotive points on the foot and ankle, strategically placed to
measure movement, angle change, and forces exerted upon each step.

This research article provides an overall architecture of MagicSox (see Figure
1). The overarching goal of MagicSox is to automate the remote assessment of
stroke patients, especially for gait rehabilitation. In addition to the on-board
module consisting of multiple sensors and an Intel Curie microcontroller (with
Bluetooth Low Energy(BLE)), MagicSox is embedded with algorithms such as
multiplication of backward differences (MOBD) to accurately differentiate be-
tween a standard walking step and a drop-foot step. We have pursued a usability
study on 12 healthy participants who simulate drop foot gait during the data

collection trial. The contribution of the paper is as following:

e Design and development of a smart textile system for remote drop foot

monitoring

e Selection and location of multiple motion sensors including flex sensor,

pressure sensor, accelerometer and gyroscope

e Integration of the multiple sensors onto a textile material for quantifying

foot locomotion

e Establishment of a signal processing algorithm (MOBD) to detect drop

foot event

e Design of an Android app for patient-friendly data collection in remote

settings

e Machine learning experimental analysis to measure the performance and

usability of MagicSox

The rest of the paper is organized as follows. In Section II, background and
related works in gait abnormalities, drop foot and rehabilitation, and wearable
biosensors for rehabilitation is discussed. In Section III, the design of MagicSox

and the experiment setup are explained. In Section IV, we explain the methods
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Figure 1: An overall system architecture of MagicSox.

we have used, in Section V we review and discuss our results, and in Section VI

we conclude the paper.

2. Background and Related Works

2.1. Gait Abnormalities

Walking abnormalities, also referred to as gait abnormalities, are any abnor-
mal or uncontrollable walking pattern. Factors causing gait abnormalities may
include genetics, injuries or diseases afflicting the leg nerves, muscles or bones.
The most common reasons that will lead to a gait abnormality include arthri-
tis leg injuries, bone fractures, infections that damage tissues in the legs, shin
splints (an injury common to athletes that causes pain in the shins), nervous
system disorders such as cerebral palsy or stroke [8]. Therefore diagnosis of gait
abnormality from observation can provide useful information regarding different
neurological or musculoskeletal conditions.

In our research work, we focus on “drop foot” (also known as foot drop) that
is not a disease but a type of gait abnormality that indicates someone’s inability
to lift the front part of the foot [9]. This happens due to the weakness in the
related muscles of lower limb. Drop foot is characterized by steppage gait [10].
In this phase, the foot hangs down with the toes touching the ground. This
causes the toes to scrape the ground while walking. Therefore, patients with
drop foot usually lift their knees higher than usual or swing their leg in order

to avoid dragging the toes on the ground.



75

80

85

90

95

100

Recently novel tools and technologies have been developed to improve the
rehabilitation of patients with stroke [11], but they have not significantly im-
pacted clinical practice. For this reason, some have suggested that home-based
programs may be the answer [12].

Using wearable sensors and obtaining objective measures of gait and balance,
will provide unique information of how and why the functional performance of
gait and balance are impaired. Therefore, therapists can focus on the specific
physiological reasons for difficulty in walking or balancing during specific tasks

[13].

2.2. Wearable Technologies in Gait Rehabilitation

Smart wearable systems have great potential to be the future of healthcare
tracking and can be used in a home based program. For example, Wang et
al. [14] proposes a smart garment designed to monitor posture to support
prevention and treatment of spinal pain during the neurological rehabilitation
of upper extremities. The garment combines various inertial measurement units
that is controlled by an Arduino processor. The user will be notified that their
posture is inadequate via internal vibration units along with alarms and visual
instruction that is transmitted though Bluetooth to a smart phone.

S. Ryan Edgar et al. [15] and his research team developed a wearable shoe-
based rehabilitation monitoring device, designed specifically for stroke patients.
The shoe is designed with an insole that has five pressure sensors integrated,
in the heal part lies an insole connector that allows the microcontroller to read
the shoes data. The actual shoe board is vertically placed along the backing
of their shoe. The information is relayed to a phone from a Bluetooth mod-
ule. As well, the microcontroller contains a 3 — awxis accelerometer to monitor
directional motion. The smart phone application depicts the pressure exerted
in each location on the soul of the foot as well as each axis reading from the
accelerometer.

In another report by Mazzoldi et al. [16] wearable devices which are able

to read and record the posture and movements of a subject wearing the system
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is discussed. The sensory function of the garments is achieved by fabric strain
sensors, based on threads coated with polypyrrole or carbonloaded rubbers. The
presence of conductive elements gives these materials piezoresistive properties,
enabling the detection of local strain on the fabric.

In this research, we introduce MagicSox, a smart textile wearable device
which can be used to quantify different aspects of gait abnormalities. Utilizing
different types of sensors, will provide unique information regarding the orien-
tation and angular velocity to understand the swing of the foot, pressure on
the heel to better understand the heel strike and the angular displacement for
movement of the ankle for dorsiflexion. In addition to aiding the stroke rehabil-
itation process, MagicSox is also a healthcare tool for everyday life. It can be

used to provide insights for athletes or to aid in posture.

3. Design

3.1. MagicSox

MagicSox is a smart textile system with Internet-of-Things (IoT) function-
alities to sense, compute and communicate the gait abnormalities such as drop
foot. Our design utilizes four different types of sensors, measuring force, resis-
tance, orientation, and angular velocity. With a total of five sensors, two of
which built in to our microcontroller, they provide the data that allow us to

differentiate normal walking from gait abnormalities.
e Arduino 101 board with the Intel Curie processor module
e Gyroscope and Accelerometer integrated in the Intel Curie

e Pressure Sensor on the heel

2 Flex Sensors, one along the heel and the other one on the anterior side

of the ankle

Smart Phone to collect the data via Bluetooth in the application
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8.1.1. Inertia Measurement Units

The Arduino 101 has an on-board 6-axis accelerometer/gyroscope. The mi-
crocontroller measures orientation with its accelerometer and angular velocity
with its gyroscope. In unison, they form an inertial monitoring unit (IMU) that
allow us to read the kinematics behind the foot. Once data collection begins on
the Arduino, the gyroscope raw values are converted into an angular velocity
for each of the three axes (gz, gy, g-). Similarly, the accelerometer measures
the acceleration for each axis (as, ay, a.), returning a raw value in need of
conversion. The gyroscope is useful because of its ability to measure rotational
movement around the axes. The accelerometer does not have this function if
the movement remains continuous. These sensors can show how much a person
takes their foot up in order to complete the gait cycle. Also, they can show
if the person swings their foot while walking which is a normal symptom in
the drop foot phenomena. As an example, Figure 2 shows the data from the
gyroscope, and the zoomed-in picture to observe the difference between normal
walk and drop foot walk, respectively. As shown in Figure 2, accelerometer and

gyroscope are located on top of the foot.

8.1.2. Pressure Sensor

The Arduino IMU reads kinematic data for our sock. Additionally we use a
pressure sensor to detect when the individual wearing the sock has a definitive
heel strike vs. a standard step. Heel striking is of critical concern to athletes
and is well documented in athletic literature [17, 18, 19]. However, we hypoth-
esize that heel striking could be an important feature to consider in drop foot
analysis. We used the FlexiForce A201 [Tekscan, 9.7mm in diameter] that is a
piezoresisitive sensor, made of a semiconductor material. The pressure sensor
acts as a pressure sensing resistor in an electrical circuit. Beneath the sensors
film and adhesives lies a silver strip and pressure sensitive ink. The active sens-
ing area is only where the silver is in contact with the ink. When force is applied
to the sensor, the resistance decreases. When the force is removed, the resis-

tance is very high. The FlexiForce sensor is thin enough to allow non-intrusive
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Figure 2: Gyroscope data for Normal and Drop Foot walking. 5 minutes data in top 3 panels

and 20 seconds zoomed in data in bottom 3 panels.

measurement, fitting for our smart textile design. In our experiment, the sensor

is located on the heel portion of the sock as shown in Figure 1.

8.1.3. Flex Sensor

The flex sensor is aimed at measuring angular displacement at the ankle
joint. Flex sensors are analog resistors that act as variable analog voltage di-
viders. Under the flexible substrate of the sensor lies carbon resistive elements.
As the substrate is bent, the sensor creates resistance output that is similar to
the radius of the bend. In our design, we use the Spectra Symbol flex sensor
that has a thickness of 6.35mm, with 84.86% of the part length designated as
active length. While lying flat, it has a resistance of 7K to 13K ohms. Its

bent resistance is minimally two times greater than the flat resistance at a 180
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degrees pitch bend. The sensor takes use of an impedance buffer and voltage
divider, contributing to a reduced error.

We have used two flex sensors, one located on the heel along with the pressure
sensor, and the other one is located in the anterior side of the foot on the ankle.
These locations have been chosen in order to estimate that how normally the
person can complete a gait cycle. In the area of stroke rehabilitation, these
sensors will provide information regarding the ankle dorsiflexion. Since one of
the exercises in the stroke rehabilitation is ankle dorsiflexion, these sensors can
show the strength and duration of this exercise. They also can provide the
difference between the normal gait and the drop foot gait, because the ankle
flexion is reduced in the drop foot gait compared to the normal gait. Figure 3
shows the data from flex sensor located on the heel and the zoomed in picture
of it. Each of the peaks is a step and the difference between normal and drop
foot walk is clearly visible in both amplitude and duration. The location of the

flex sensor in determined on the foot on top of the figure.

3.1.4. Intel Curie Microcontroller with BLE

All the sensors are connected to the microprocessor board Arduino 101,
which collects the data from the pressure and flex sensors, utilizing its built-in
accelerometer and gyroscope as well. All the data from the Arduino board is
sent to MagicSox application on the smart phone. MagicSox application was
designed to run on any Bluetooth Smart or Bluetooth Smart Ready enabled
device running Android 4.4 or higher. This Android device utilizes the BLE
technology available on both the Arduino 101 and the device itself to receive
updates every 100 milliseconds from MagicSox. This update comes in the form
of a byte array which contains all the essential information from MagicSox,
including raw sensor data from the two Flex Sensors, the Pressure Sensor, the
Accelerometer and the Gyroscope. The Android device then parses this data
and saves all of it into a Comma Separated Values (CSV) file which can be used

for further processing later. Figure 4 shows how MagicSox application works on



200

205

210

Flex Sensor Flex Sensor
15 % 10* Normal Walking Drop Foot Walking
8 T
=1
8
R~
%10 ‘
(-4 | l
-
=]
w
55
w2
>
L)
£ 9 0 L
inutes /inutes
4
o 1210 :
Q
=
8
.z
%10
-4
b
2
5 8
wn
>
2
=6

20 Seconds 20 Seconds

Figure 3: The data from the flex sensor located on the heel. 5 minutes data in top panels and
zoomed in 20 seconds data in bottom panels. The visual observation of the flex sensor data
provides an understanding of how drop foot differs from normal walking. In each walking

cycle, the ankle dorsiflexion in drop foot is weak.

the smart phone.

8.1.5. E-Textile Design Configurations

The first batch of socks attached the microcontroller directly to the sock,
stitching at the grounding screw-holes. Due to the Printed Circuit Board (PCB)
layout of the Arduino 101, the attachments were not equidistant and there
was a slight overhang of the board from the attachment locations which was
inconsistent across among the four points. This lopsided method was sufficient
for early experimentation, but did not provide an ideal long-term solution.

The second batch of socks produced for the experiment were modified slightly
to take advantage of insight gained in the initial round. None of the electronic or

sensor layout was changed among the versions, merely the attachment methods.

10
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Figure 4: An operational flow chart of the Android smart phone app.

These improvements enabled more stable experiments with rough users. Instead
of directly attaching the microcontroller’s PCB onto the socks at the point of
attachment being the ground in screws, a 3D printed base was developed to act
as an interface between the microcontroller and the fabric. The plastic acted
as a minimalistic anti-static shield. The 3D printed Bates with stitched onto a
Velcro attachment which allowed the joining of the curved and flat surface more
easily.

Sensor sleeves were constructed using a stretchy mesh netting material. The
textile pattern was tailored to the various sensors dimensions, using a 0.25 of
an inch seam allowance. The pattern was based on a modified standard large
men’s sock. Due to the difficulty in sewing such pliable fabric, we pinned the cut

mesh sleeve onto tear away paper in order to prevent gathering or from moving

11
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around as it was sewed onto the sleeve. Each sensor was placed into the sleeve
and hand stitched on top to enclose and lock the sensor into the sleeve. During
attachment to the sock, the side seam was reopened to enable flat sewing, with
chock contours guides determined first on a model. Slits were cut in the material
and the sensors were channeled through them at each location, including the
dorsum of the foot, heel and ankle. Pressure and flex sensors were attached
using a 2mm stitch length. The pressure sensor was placed on the heal. Flex
sensors were placed on top of the foot at the arch. We then hand stitched Velcro
to a 3D printed PCB mount using Velcro and stitched a Velcro strap to the sock
in order to attach the PCB to the sock itself. After sewing all the sensors and
Velcro to the sock, the raw cut edges of the sock were reattached with a double
stitch using the least amount of seam allowance possible with the fabric inside

out. Figure 5 shows the design iterations and improvements of the MagicSox.

Figure 5: Design iterations of the MagicSox. The sensors and the microcontroller were stitched
directly to the sock in the Design 1, but sensor sleeves were used in the Design 2. Also, the

microcontroller is attached to the socks via velcro and a 3D printed shield.

3.2. FExperimental Setup

The main goal of this paper is to distinguish between the normal gait and the
drop foot which, as mentioned earlier, is a gait abnormality caused by stroke
that happens because of the damage to the fibular nerve, sciatic nerve and

muscles in the anterior side of the lower leg.

12
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In order to collect the data, we recruited 12 healthy subjects to walk in two
different situations, one is the normal gait and the other one is to simulate the
drop foot walking. The first 4 participants were asked to do the experiment
with the first batch of socks and the remaining 8 participants performed the
experiment with the newer version of the socks in order to compare the different
versions of the sock and observe how design developments can change the results.
Both groups preformed the same two walking tests. Each participant was asked
to walk for 5 minutes in their normal gait and afterwards, they were asked to
simulate the drop foot walking for 5 minutes. Therefore, we have an overall of
10 minutes of data from each participant which is separated equally into normal
gait and drop foot walking.

The data has been recorded from the accelerometer, gyroscope, pressure
sensor and two flex sensors. As mentioned previously, the flex sensors and the
pressure sensors are variable resistances. Static state for relativity is required
to measure this physical state. We accomplish this static state by introducing a
standard resistor. To measure the relative change in state between the standard
resistor and flex or pressure sensors, we designed a voltage divider that allows
us to extrapolate the desired information using Ohm’s Law. One last challenge
on this setup is maximizing the voltage range to increase the signal to noise
ratio. We chose to use a standard 10k€) resistor, which provides a potential
voltage swing of approximately lv. Therefore, the data that is recorded from
the pressure sensor and two flex sensors are the voltage across these sensors.
Since the accelerometer and gyroscope each have 3 different dimensions, we
have an overall of 9 attributes in the data. The data is recorded continuously
via Bluetooth to a smart phone by the sampling frequency of 10Hz for each

data channel.

13
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4. Methods

4.1. Support Vector Machine (SVM)

After collecting the data, in order to distinguish between the normal gait
and drop foot walking, we used a Support Vector Machine (SVM). The SVM
uses a nonlinear mapping to transform the original training data into a higher
dimension. It searches for the linear optimal separating hyperplane in this new
dimension (that is, a “decision boundary” separating the tuples of one class
from another). With an appropriate nonlinear mapping to a sufficiently high
dimension, data from two classes can always be separated by a hyperplane [20].
SVMs are supervised learning models.

The general concept of the SVM is that the system trains itself based on a
training dataset which can be a part of the original dataset that is labeled into
two different categories. Then, after the system is trained, it will be tested on
the other part of the original dataset to predict the labels of the data, and by
comparing the predicted labels and the original labels, we can find the accu-
racy of the system. In this study, we used several learning algorithms to be
implemented in the SVMs. It is possible to classify the datasets which are not
linearly separable by applying the Lagrangian optimization theory to a linear
support using the Kernel. While the nonlinear support vector machines retain
the efficiency of finding linear decision surfaces, they allow us to apply them to
not linearly separable datasets. It is also possible to change the margins of the
classifiers and change the complexity and accuracy of the systems. In general,
large margins make the system less complex, but on the other hand, will let the
system generate more errors, resulting to lower accuracy. This can be achieved
by changing a variable called Cost constant in the classifier models.

Figure 6 shows a concept of the SVM and its supporting hyperplanes that di-
vide two different classes and introduces the margin. When we make the margin
large, we allow some data points between the decision surface and the support-
ing hyperplanes, which at the end will result in false classification and reduce

the accuracy.

14
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Different types of SVM classifiers are applied on the data in order to compare
their performance. We have used 4 different types of Kernel functions all of them
with 3 different Cost constants of 1, 10 and 100. Table 1 shows different learning
algorithms that have been used in this study with their complexity index which

we will refer to them later in the results section.
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Table 1: Different methods of classification used in this study.

‘ Index H Kernel Name H Kernel Function H Degree H Cost Constant
1 Linear Kernel k(@ y) =2y - 1
2 Linear Kernel k(Z,y)=2-7 - 10
3 Linear Kernel k(@ y) =2y - 100
4 Polynomial Kernel k(7,9 = (T -7+ c) d=2 1
5 Polynomial Kernel k(& §) = (Z-§+c)? d=2 10
6 Polynomial Kernel k(&,9) = (Z-§+c)? d=2 100
7 Polynomial kernel k(Z,9) = (Z- 7+ c)? d=3 1
8 Polynomial Kernel k(7,9 = (T -7+ c) d=3 10
9 Polynomial kernel k(& §) = (Z-§+c)? d=3 100
10 Radial kernel k(Z,9) = e~ (|17 — §]*/20?) - 1
11 Radial kernel k(Z,79) = e~ (|Tx — 72 /20?) 10
12 Radial Kernel kZ,9) = e (|12 — §]%/202) - 100

Regarding the evaluation of the methods, we used 2 different evaluation
methods of 10-Fold Cross-Validation and Hold-Out method with the portion of
2/3 and 1/3 for training and evaluating respectively.

In this paper, we provided the raw data recorded from all the sensors to
the classifier and compared the performance with the case where we used the
Multiplication of Backward Differences (MOBD) algorithm for the data recorded
from the pressure sensor which is a useful tool to determine the heel strike.
Determining the heel strike is useful here because in the drop foot walking, the

heel strike happens less or with a lower pressure compared to the normal gait.

4.2. Multiplication of Backward Differences (MOBD)

The MOBD algorithm was developed in the efforts to create a better method
for detection of the large spikes in heart wave signal [21, 22]. Using the MOBD
algorithm for heel strike detection seemed applicable due to the fact that the
spike in heart wave and the impact transient of heel strike share that similar

sharp waveform.

16
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The algorithm computes a backward derivative which in discrete time, a
derivative is well approximated by a difference. Those differences are then mul-
tiplied together, which in turn provides a robust peak detector.

Assuming p[n] be the pressure sensor data in time sample n, the first-order

backward difference at time n , z[n], is:
a[n] = p[n] — p[n = 1] (1)

Therefore, the N — th order MOBD nonlinear transform is as follow:

yln) = T laln — ] (2)

Also, y[n] is forced to be zero if the backward differences are not in agreement

with respect to sign.
y[n] =0, if sgn(xz[n — k]) # sgn(zln — (k+1)]) k=0,1,...,N — 2

where the sgn(z) is the signum function.

At a given time, a sample from the pressure sensor is stored in the micro-
controller. At the next sample time, another sample from the sensor is stored.
Those two samples are then subtracted and stored in its own variable. This is
then repeated two more times so that 3 differences have been collected. The
algorithm then checks for 3 consecutive positive or negative differences. When
climbing up a steep waveform, a peak, the algorithm will result in consecutive
differences in comparison to a waveform that has a more rounded shape to it. If
3 consecutive differences are found, they are multiplied together and that value
is compared to a predefined threshold value. If the calculate value is greater
than the threshold value, the algorithm recognizes the detection of a heel strike.

The impact values of a heel strike are much larger than that of a non-heel
strike impact due to the distributions of forces along the foot for each strike. A
threshold value was determined that allowed for the heel strike impact transient

to be detected while avoiding possible false peaks that could stem from various

17
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types of noise. Figure 7 shows the data from the pressure sensor along with the
MOBD results. The MOBD algorithm output would be 1 if it detects a heel
strike and 0 if there is no heel strike. As it can be seen from Figure 7, we have

heel strike for normal walking, but no heel strike for drop foot walking.
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Figure 7: The raw data from the pressure sensor (top panel) and the MOBD algorithm results
showing the heel strike (bottom panel).

4.3. Fvaluation

Recalling from the explanation of the support vector machine, it needs to
divide the original dataset into two parts; one for training itself and one for
testing and providing the accuracy, which is called evaluation. On the evaluation
aspect of the classification, we used two different methods of training and testing
the system which are Hold-Out and k-Fold Cross-Validation. The Hold-Out
method simply takes one portion of the dataset for the training and holds the
other portion for testing the accuracy. The ratio of these portions can be defined
by the user and we defined the portions to be 2/3 and 1/3 for training and
testing, respectively. In k-Fold Cross-Validation, the system divides the dataset

18
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into k different folds which the length of each fold is the same as the others
and no folds have overlap with each other. The concept is that the system uses
each of these folds for testing while getting trained from the other folds, and
at the end, provides the accuracy of the system which is the average of all the
accuracies on different folds. In this paper we used the Hold-Out method with
the portions to be 2/3 and 1/3, and k-Fold Cross-Validation with the number
of folds k equal to 10.

5. Results and Discussion

In this section, we report the results of the classification of the normal walk-
ing and the drop foot walking and compare the performance of the classifier for

the two cases mentioned earlier.

1. Classifying the raw dataset
In this case, we labeled the data to 0 and 1 for the normal and drop foot
walk respectively and without any processing, sent the raw data to the
classifier. Table 2 shows the performance of different SVM and evaluation
methods applied on the raw data.

2. Classifying the feature extracted dataset
In this case, we first applied the MOBD algorithm as explained in the
previous section in order to apply different types of SVM classifiers. The
new dataset contains all the previous information, except the pressure
sensor data which is replaced by the results of MOBD algorithm.
After applying the MOBD algorithm and labeling the data to 0 and 1
for the normal walking and drop foot walking respectively, we applied
the dataset to the classifier in order to observe the performance. Table 3
shows the accuracy of different SVM and evaluation methods applied on

the feature extracted dataset.

As it can be seen from Tables 2 and 3, the performance of the system im-

proves as we use more complex Kernel functions such as the Radial kernel or
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Table 2: The performance of different methods on the raw data from each of the participants.

Indes | Evaluation MagicSox Design 1 MagicSox Design 2

TN ps | pe [ pr [ ps [ po [P0 [ pu [ pi2
n Hold-Out 63.16% || 94.02% || 53.93% || 56.29% || 82.91% || 72.31% || 76.53% || 68.74% || 72.36% || 78.14% || 80.09% || 59.47%
10 Fold 63.46% || 93.56% || 51.39% || 55.92% || 82.49% || 71.01% || 76.17% || 68.85% || 72.41% || 77.93% || 80.03% || 59.64%
N Hold-Out 63.16% || 95.03% || 53.93% || 56.29% || 82.85% || 72.36% || 77.03% || 69.92% || 73.14% || 79.26% || 80.77% || 59.47%
10 Fold 63.47% || 94.69% || 51.41% || 55.62% || 82.28% || 71.24% || 76.90% || 69.75% || 73.10% || 78.83% || 80.26% || 59.66%
Hold-Out 62.80% || 94.93% || 54.08% || 56.29% || 82.85% || 72.31% || 77.19% || 70.28% || 73.84% || 79.93% || 81.14% || 60.03%
s 10 Fold 56.00% || 94.68% || 50.83% || 56.02% || 82.33% | 71.14% || 77.09% || 70.14% || 73.56% || 79.22% || 80.94% || 60.14%
) Hold-Out 70.07% || 87.58% || 56.64% || 57.19% || 93.36% || 84.16% || 83.52% || 79.24% || 80.73% || 88.47% || 89.06% || 73.13%
! 10 Fold 68.96% || 86.83% || 57.01% || 58.08% || 93.10% | 84.18% || 83.57% || 79.02% || 80.12% || 87.98% || 88.53% || 73.24%
. Hold-Out 68.50% || 87.78% || 56.34% || 57.75% || 94.25% || 85.58% || 83.47% || 79.58% || 80.82% || 88.33% || 88.92% || 74.05%
? 10 Fold 68.93% || 86.94% || 57.59% || 58.05% || 94.91% || 85.43% || 83.52% || 79.46% || 80.34% || 88.09% || 88.51% || 73.91%
X Hold-Out 68.34% || 87.88% || 56.34% || 57.70% || 95.19% || 86.83% || 85.14% || 81.39% || 81.97% || 89.46% || 91.15% || 76.32%
6 10 Fold 68.78% || 86.94% || 57.46% || 58.02% || 95.48% || 85.99% || 85.73% || 81.65% || 82.19% || 89.07% || 90.74% || 77.20%
_ Hold-Out 72.36% || 88.19% || 65.36% || 60.01% || 92.78% || 87.09% || 83.96% | 81.06% || 81.44% || 88.47% | 91.07% | 78.51%
! 10 Fold 72.52% || 87.61% || 64.73% || 61.34% || 96.75% || 87.96% || 84.01% || 80.97% || 81.73% || 88.39% || 90.83% || 79.04%
Hold-Out 72.00% || 92.60% || 81.20% || 61.62% || 97.28% || 90.22% || 86.72% || 83.71% || 83.16% || 90.07% || 92.12% || 80.02%
s 10 Fold 73.03% || 92.22% || 69.04% || 62.93% || 97.78% || 91.37% || 86.54% || 83.48% || 82.97% || 89.73% || 91.89% || 79.97%
] Hold-Out 71.59% || 94.17% || 82.91% || 61.42% || 97.69% || 93.67% || 87.19% || 84.42% || 84.41% || 91.23% || 92.84% || 80.84%
’ 10 Fold 73.22% || 94.94% || 73.26% || 63.33% || 98.24% || 94.11% || 87.33% || 85.01% || 84.29% || 91.19% || 92.47% || 80.47%
Hold-Out 75.30% || 95.79% || 74.23% || 65.69% || 98.48% || 93.68% || 87.42% || 85.72% || 86.10% || 91.96% || 92.60% || 79.19%
10 10 Fold 76.30% || 95.71% || 76.95% || 67.41% || 98.65% || 94.25% || 87.47% || 85.87% || 85.97% || 92.01% || 91.94% || 78.93%
Hold-Out 75.35% || 98.63% || 88.67% || 71.43% || 98.90% | 95.35% || 89.19% || 86.43% || 87.49% || 92.65% || 93.69% || 80.92%
" 10 Fold 76.38% || 98.19% || 89.42% || 73.25% || 98.86% || 95.94% || 88.97% | 86.37% || 87.21% || 92.84% | 92.19% | 79.48%
12 Hold-Out 76.12% || 98.68% || 89.07% || 73.44% || 98.79% || 96.34% || 92.06% || 89.74% || 89.94% || 94.15% || 95.02% || 82.06%
10 Fold 76.45% || 98.38% || 89.69% || 74.37% || 98.98% || 96.36% || 91.88% || 89.91% || 89.87% || 94.71% || 94.55% || 81.93%

Polynomial Kernel with degree 3, and results in the accuracy of almost more
than 80% for all the participants with the Radial Kernel function and the Cost
constant of 100. Figure 8 shows a comparison of the performance of the best
model which is the SVM with Radial Kernel and Cost constant of 100 evaluated
with the Hold-Out and 10-Fold Cross-Validation methods for all participants ap-
plied to both raw dataset and feature extracted dataset. It can be seen from
the results that using the raw dataset and the feature extracted dataset will
lead to almost same performance of the classifier. It was also noticed that the
2 different evaluation methods of Hold-Out and 10-Fold Cross-Validation have
similar performance on the data, therefore, choosing either one will result in
mostly the same result. It is apparent from the results that the design improve-
ments for the socks will result in better performances. It can be seen that the

results for participants 5 to 8 are more consistent and provide higher accuracies
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Table 3: The performance of different methods on the features extracted data from each of

the participants.

X MagicSox Design 1 MagicSox Design 2

fdex || Exaluation P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Hold-Out || 63.31% || 93.30% || 52.48% || 54.32% 72.04% || 76.37% || 68.59% || 72.19% || 77.95% || 79.84% || 60.14%
! 10 Fold 63.46% || 93.54% || 51.93% || 55.55% || 82.33% || 71.83% || 76.04% || 68.63% || 72.28% || 77.43% | 79.80% || 59.86%
Hold-Out || 63.41% || 94.77% || 52.48% || 54.38% || 82.85% || 72.05% || 76.91% || 68.59% | 73.10% || 79.10% || 80.23% || 60.14%
: 10 Fold 63.41% || 94.18% || 51.48% || 55.94% || 82.37% || 71.82% || 76.83% || 68.84% || 73.19% || 78.77% | 80.09% || 60.03%
. Hold-Out || 64.32% || 94.72% || 52.48% || 54.38% || 82.90% || 71.99% || 77.01% || 70.12% || 73.77% | 79.84% || 80.97% || 60.74%
3 10 Fold 65.90% || 94.17% || 51.86% || 55.94% || 82.31% || 71.57% || 76.902% || 70.01% || 73.43% || 79.09% || 80.71% || 60.62%
1 Hold-Out || 72.30% || 86.36% || 54.98% || 54.17% || 90.38% || 81.03% || 83.40% || 79.32% | 80.71% || 88.31% || 88.12% || 72.85%
10 Fold 72.82% || 86.59% || 53.31% || 55.65% || 92.05% || 82.06% || 83.52% || 79.24% || 80.01% || 87.90% || 87.74% || 72.64%
_ Hold-Out || 70.32% || 86.06% || 54.33% || 55.13% || 95.66% || 86.52% | 83.59% | 79.63% || 80.89% || 88.30% | 88.63% || 73.84%
’ 10 Fold 71.34% || 86.29% || 53.90% || 55.80% || 95.71% || 87.33% || 83.61% || 79.56% || 80.33% || 88.01% || 88.19% || 73.69%
X Hold-Out || 69.97% || 85.90% || 55.04% || 55.53% || 97.64% || 91.58% || 85.22% || 81.33% || 82.01% || 89.29% || 90.92% || 75.15%
o 10 Fold 70.88% || 86.05% || 54.28% || 56.05% || 96.86% || 90.17% || 85.91% || 81.58% || 81.94% || 88.82% || 89.48% || 75.94%
Hold-Out 70.22% || 87.38% || 55.59% || 59.15% 85.47% 83.91% 81.12% || 81.25% || 88.71% || 90.46% || 77.14%
T 10 Fold T1.20% || 87.46% || 58.63% || 61.65% 85.59% 83.97% 81.09% || 81.70% || 88.25% || 89.73% || 78.01%
Hold-Out || 73.32% || 91.48% || 65.26% || 60.96% || 97.07% || 92.42% || 85.92% || 83.46% | 83.19% || 89.93% || 91.83% || 79.27%
s 10 Fold 73.86% || 91.73% || 68.51% || 62.56% || 97.12% || 91.46% | 86.47% || 83.31% || 83.02% || 89.55% || 91.71% || 79.19%
] Hold-Out || 75.86% || 91.58% || 69.52% || 62.37% || 97.33% || 93.67% || 87.10% || 84.20% || 84.39% || 91.15% || 92.35% || 80.20%
! 10 Fold 76.09% || 92.66% || 71.47% || 64.36% || 97.63% || 93.01% || 87.24% || 84.89% || 84.21% || 90.97% || 91.99% || 79.97%
Hold-Out || 76.01% || 91.94% || 72.33% || 63.53% || 98.41% || 95.14% || 87.29% || 85.69% | 85.98% || 91.59% || 92.47% || 80.05%
10 10 Fold 76.42% || 93.25% || 75.48% || 67.57% || 98.57% || 94.28% | 87.33% || 85.85% || 85.91% || 91.64% || 92.04% || 79.12%
1 Hold-Out 77.03% || 94.78% || 87.67% || 73.04% || 98.64% || 96.55% 89.27% 86.41% || 87.33% || 92.49% || 93.48% || 80.74%
10 Fold 76.66% || 95.60% || 88.98% || 73.19% || 99.02% || 95.97% 89.05% 86.39% || 87.15% || 92.63% || 92.23% || 79.57%
1o Hold-Out || 75.81% || 95.64% || 87.97% || 73.39% || 98.95% || 96.76% || 91.94% || 89.88% | 89.75% || 94.06% || 94.76% || 81.97%
10 Fold 76.88% || 95.89% || 88.65% || 73.38% || 98.90% || 96.24% || 91.90% || 89.73% || 89.81% || 94.58% || 94.51% || 81.89%

compared to the first 4 participants. The first version of the socks provided the
average accuracy of 83.98% among all four participants, compared to the newer
version of the socks with the average accuracy of 92.24% among the rest of the
participants.

As an example of the performance of the classifier, we show the actual labels
and predicted labels of the classifier applied to the whole length dataset of one
of the participants in Table 4. The table shows that we have 838 False Positives
and 146 False Negatives. Figure 9 shows a visual representation of the table
for the first 600 samples and the zoomed-in picture of 50 samples. The white
color represent label 0 as normal walking, the blue color represents label 1 as
drop foot walking and the red color shows the error of the system in prediction,

which means that the actual labels are 0, but the classifier predicts them as 1
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Figure 8: Performance of the best model with Radial Kernel and Cost constant of 100 with
both evaluation methods applied to Case 1. Raw dataset and Case 2. Feature extracted

dataset, for all of the participants.

wo (False Positive).

Table 4: The actual and predicted labels applied on the whole length dataset. We have 838

False Positives and 146 False Negatives.

Predicted 0 | Predicted 1

Actual 0 2162 838 (FP)

Actual 1 || 146 (FN) 2854

6. Conclusion and Future Works

In this research article we introduced a novel wearable health monitoring
system, MagicSox, that fuses the capabilities of smart textiles with Internet-
of-things to detect and communicate gait abnormalities such as drop foot. We

ws provided a detailed technological architecture of MagicSox that can be divided
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Figure 9: Actual labels and predicted labels of a 600 samples data and the zoomed in picture
of 50 samples. White color shows label 0 for normal walking, blue color shows label 1 for drop
foot walking and the red color shows the error while the actual label is 0 but the classifier

predicts as 1.

into three hardware layers: 1) multi-modal sensors including pressure sensor, 2
flex sensors, and an IMU, 2) an Intel Curie microcontroller with BLE, and 3)
an Android smart phone app to collect the data. We pursued experiments on
healthy individuals to evaluate the usability and performance of MagicSox. The
results showcase that MagicSox is a valuable and reliable tool in quantifying
gait abnormalities such as drop foot. Although other studies on the wearable
devices for stroke rehabilitation provide 99% accuracy in posture and activity
detection [15], the combination of IMU, flex sensors and pressure sensor dis-
tinguishes the MagicSox from other devices. The MagicSox can provide more
detailed information about the gait cycle, ankle flexion and foot posture. The
accelerometer and gyroscope can provide detailed spatial information such as
the orientation of the foot, how much swing has been in a gait cycle, how fast
or slow the person is walking, and how much they take the foot up in order
to complete a gait cycle. The pressure sensor on the heel reveals that if there
was a heel strike or not. As discussed earlier, heel strike is necessary for normal

walking, and it is not happening in drop foot walking. The flex sensors provide
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information about the flexion of the ankle. During a gait cycle, the ankle flexes
and stretches and having these flexion and stretches reveals informations about
the gait cycle that can be used in rehabilitation to improve the gait cycle of
drop foot.

Although our focus in this research was on the quantification of drop foot,
MagicSox can also be used for athletes to alert them whenever they have heel
strike which can cause serious injuries or pain. It also can be used as an activity
tracker to show how many steps a person has taken during the day, or how
much distance they have walked. As an immediate next step, we will pursue a
pilot study on stroke patients who will wear MagicSox and help us evaluate the

system under a clinical setting.
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