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ABSTRACT

We propose a methodology to carry out vertex-frequency analyses
of graph signals, with the goal of unveiling the signal’s frequency
occupancy over a localized region in the network. To this end, we
first introduce localized graph signals in the vertex domain, by defin-
ing windows that are localized around each node by construction.
Recent directed graph Fourier transform (DGFT) advances facili-
tate the frequency analysis of said localized signals, to reveal the
signal’s energy distribution in a way akin to a spectrogram in the
vertex-frequency plane. We then learn a set of windows by apply-
ing gradient descent method to an optimization problem governed by
penalty parameters in the spectral domain. We also argue about the
tradeoff between the resolution in the vertex and frequency domains
based on the said parameters. We evaluate the performance of the
proposed windowed GFT approach through numerical experiments
on synthetic and real-world graphs.

Index Terms— Graph signal processing, windowed graph
Fourier transform, vertex-frequency analysis, directed graphs.

1. INTRODUCTION

Network data indexed by the nodes of a graph are becoming increas-
ingly ubiquitous, with examples ranging from measurements of neu-
ral activities at different regions of the brain [1,2], to economic activ-
ity observed over a network of production flows between industrial
sectors [3]. Predicated on the assumption that the properties of a
network process relate to the underlying graph, the goal of graph
signal processing (GSP) is to broaden the scope of traditional sig-
nal processing tasks and develop algorithms that fruitfully exploit
this relational structure; see [4, 5] for tutorial treatments. From this
vantage point, signal processing tasks such as filtering [2,5-8], sam-
pling and reconstruction [3,9-11], spectrum estimation [12], (blind)
filter identification [13,14], as well as signal representations [15,16],
have been reexamined under the purview of GSP.

An instrumental GSP tool is the graph Fourier transform (GFT),
which decomposes a graph signal into orthonormal components
describing different modes of variation with respect to the graph
topology [4,17]. Similar to the classical Fourier-related transforms
which could not capture the time-varying properties, GFT obscures
the dependency on the vertices. However, short-time (aka win-
dowed) Fourier transforms (STFT) with broad applications (e.g.,
speech analysis) have well-documented merits in extracting time-
frequency contents from signals with localized oscillations in time
or space. To enable vertex-frequency analysis, here we aim to gen-
eralize windowed Fourier analysis to both undirected and directed
graphs (digraphs); see also [18, 19]. We build on a novel digraph
(D)GFT which provides an orthonormal basis, where each basis
vector captures a different (directed) variation and the resulting
frequencies (i.e., the directed variation of the sought orthonormal
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basis vectors) distribute as evenly as possible across the viable spec-
trum. We generalize the localization operator in the vertex domain
by learning (smooth) windows which highlight the signal values
in prescribed neighborhoods. Then we introduce the windowed
(W)GFT as a function of frequency and spatial location of window
by taking the DGFT of the localized signals. The proposed WGFT
can facilitate more interpretable vertex-frequency analyses.

To position our contributions in the context of related work, we
first introduce some basic GSP notions and terminology. We con-
sider a weighted digraph G = (V, A), where V is the set of nodes
(i.e., vertices) with cardinality [V| = N, and A € RY*¥ is the
graph adjacency matrix with entry A;; denoting the edge weight
from node j to node ¢. We assume that the graph is connected
and has no self loops; i.e. A;; = 0, and the edge weights are non-
negative (A;; > 0). For an undirected graph A is symmetric, and
the positive semi-definite combinatorial Laplacian matrix is L =
D — A, where D is the diagonal degree matrix with D;; = > y Ajs.

A graph signal x : V — R” can be represented as a vector of size
N, where component x; denotes the signal value at node ¢ € V.

Related work. For undirected graphs, the GFT of signal x is often
defined as x = V7x, where V = [vi,...,vx] comprises the
eigenvectors of the Laplacian [4, 8]. Defining the total variation of
the signal x with respect to the Laplacian L as

N
TVE) =x"Lx= Y Az — ;) M

4,J=1,j>1

then it follows that the total variation of eigenvector vy, is TV(vy) =
Ak, the ™ Laplacian eigenvalue. Hence, eigenvalues 0 = \; <
A2 < ... < Ay can be viewed as graph frequencies, indicating how
the GFT bases vary over the graph.

A generalization of STFT to graph domain is through the defini-
tion of translation and modulation operators [18]. While modulation
can be interpreted by multiplication with a Laplacian eigenvector,
translation (shifting to a certain node) is not well defined in the graph
domain. In [18], the windowed GFT is defined as the inner product
of a signal with the translated and modulated window, where trans-
lation is interpreted as a generalized convolution with delta function.
While the £th modulation operator ensures that a localized signal
around Ag in the graph spectral domain will be localized around the
eigenvalue Ay in the same domain, in general the translation opera-
tor fails to localize the signal in the vertex domain. Also, the method
in [18] does not inherently extend to digraphs.

To ensure that the translation operator shares key properties with
the classical time shift, an isometric graph translation operator was
proposed in [20] which is described in the spectral domain as a phase
shifting operator. Although the isometric operator preserves the sig-
nal’s energy and can be seen as linear convolution, it still does not
localize the translated signal around the target node.

It is worth mentioning that the adjacency matrix itself can be
viewed as a graph shift operator which is valid for digraphs as well
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[5]. The graph shift is an analogy to periodic signals in time, on
an unweighted directed cycle. With this consideration, one applica-
tion of the graph shift is the same as shifting the periodic signal by
one unit in time. However, graph shift operator is not localization
invariant as well.

Contributions. Here we design a WGFT with the following desir-
able properties: P1) The windows are localized by construction and
extract the information around a prescribed vertex neighborhood.
P2) Windows are smooth so as not to add undesired frequencies to
the windowed signals. P3) The WGFT mimics the behavior of the
traditional STFT and the vertex-frequency resolution can be tuned by
changing one parameter. To that end, we first review the STFT and
DGEFT as our foundation in Section 2. Then we introduce WGFT in
Section 3 and study the task of parametric window learning and be-
havior of the stationary solutions. Finally, we show the effectiveness
of the proposed approach in vertex-frequency analyses in Section 4.
Concluding remarks are given in Section 5.

2. FOUNDATION AND PRELIMINARIES

In this section, first we briefly review the classical short-time Fourier
transform which later we follow the analogies to construct a win-
dowed DGFT. Then, we elaborate how to find a basis for the general
digraphs to fruitfully represent the graph signals in the spectral do-
main.

2.1. Classical short-time Fourier transform (STFT)

The short-time Fourier transform (STFT) has shown remarkable suc-
cess in classical signal processing in revealing the frequency (and
phase) content of localized versions of the signal around different
times. This is especially important when the spectral content (e.g.,
DFT) of the (non-stationary) signal (e.g., speech) changes over time.
Towards that end, for a signal (), an analysis window w(t) which
is normally low-pass with a certain band 7 ms is considered. Then
the windowed segments of the signal around time ¢, are generated as
@D (t) := z(t)w(t — i), where w(t — i) is the shifted version of the
window by ¢ units. Finally, the STFT of the signal takes the form

X(f,i) = F{=P (1)}, 2)

where F is a Fourier-related transform like DFT or FFT.

It is worth mentioning that the window is commonly smooth
to avoid unnatural discontinuities in the segmented signal x(i)(t).
Also, the window band 7 trades off the spatial and frequency local-
ization. As we increase 7, we are less likely to add unwanted fre-
quency content to @ (t), so we have a better frequency resolution
while we compromise the spatial localization of X (f, 7).

2.2. Digraph Fourier transform

Recently, we have proposed a digraph Fourier transform which cap-
tures low, medium and high frequencies with respect to the digraph
[21]. To that end, we collect the desired basis signals in a matrix
U:=[u, - ,un] € RM*N where up € RY represents the kth
frequency component. This means that the DGFT of a graph signal
x is X = UTx. The inverse DGFT is x = Ux = 22;1 TrUg,
which allows one to synthesize x as a linear combination of orthog-
onal frequency modes uy.

To measure how the basis u varies over the network and define
graph frequencies, we adopt the notion of signal directed variation
(DV) over digraphs

N
DV(u) = Z Aij [ul — uj]i, (3)

4,j=1

where [z]+ = max(0,z) [17]. In the undirected case, DV boils
down to the total variation; i.e., TV in (1). One can then define
the frequency fr := DV(ug) as the directed variation of the ba-
sis ui. To cover the whole spectrum of variations, we set u; =

Umin = ﬁl n~ for capturing the minimum frequency (i.e., DC
component) and Uy = Umax = argmax|u|,=1 DV(u), where
Sfmax = DV(umax) is the maximum attainable directed variation

which can be found via [17, Algorithm 1]. As a criterion for the
design of the remaining basis vectors, we consider the spectral dis-
persion function

5(U) = 3 [DV(ui1) DV () @

that measures how well spread the corresponding frequencies fi, =
DV (ug) are over [0, fmax]. Having fixed the first and last columns of
U, it follows that §(U) is minimized when the free directed variation
values form an arithmetic sequence between f1 = 0 and fx = fmax,
yielding maximally-spread frequency modes as in the DFT.

Consolidating all the criteria, learning the DGFT as the first step
for finding a basis for developing WGFT can be stated as

n}Ji_n 5(0) (%)

subject to UTU =1y, Ui = Unin, UN = Upax.
Problem (5) is feasible (i.e., Umax L Umin) as shown in [17, Propo-
sition 3]. Stationary solutions of (5) can be found by bringing to
bear a feasible method for optimization of differentiable functions
over the Stiefel manifold (see [17, Algorithm 2]).

In the next section, we introduce windowing signals that are
localized by construction and decay around prescribed nodes as a
function of decay rates and evaluated proximity measures. Then the
windowed signal around an arbitrary node is considered as the entry-
wise product of the signal and the window centered around the same
node. Finally, the resulting orthonormal basis U of (5) is used to:
(i) find the WGFT as the Fourier transform of a windowed signal;
and (ii) learn the decay rates with the controllable vertex-frequency
resolution via examining the smoothness of the candidate windows.

3. LEARNING SMOOTH LOCALIZED WINDOWS

Here we show how to find windowed GFT similar to the ones in
classical signal processing.
Windowed GFT. To formally state our problem, let D € [Rf xN
store the nonnegative entries D;; denoting the (directed) proximities
or topological structure of the graph from node ¢ to node j. As a con-
vention, we set the diagonal entries of D to zero. For example, D ;
can be the length of the shortest path from node ¢ to node j. Given
D, we seek a (smooth) window in the vertex domain that is localized
around a prescribed vertex. To that end, we define a window around
node ¢ as a graph signal with value one at node ¢ and value being
inversely proportional with d;; at node 5. Upon defining the vector
of decay rates 7 = |71, ,7n] € [Rﬁ for the nodes of the graph,
the windowing signal ¢»; € RY around node ¢ can have the entries
following e.g., an exponential decay ¢;; = exp(—T7;d;;) or a power
law relationship ¢;; = d;," for j € [N] = {1,---, N}. While the
proposed framework can be applied to any decaying differentiable
window, here we consider the exponential window for simplicity.
Also, let & = [y, ,Pn] = [¢;:] € RV*Y collect the vertices
decay functions.

Then we define the windowed (localized) signal x® around
node 7 as ,

x i =xo0¢; = diag(x) s, 6)
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where o is the element-wise product, and diag(x) is a diagonal ma-
trix with entries of x on the diagonal. To be more specific, the ith
element of x(¥ is the same as x;, while the other elements are atten-
uated based on their distance from node 7. To preserve the energy of
the signal, one can normalize x*) to have the same norm as x.

Similar to traditional STFT (see Section 2.1), we define the win-
dowed (D)GFT as

X = [i(l)y U 7}2(1\7)] ::[UTX(1)7 e 7UTX(N)] (7)

=U"diag(x)®,

where basis U is obtained by solving (5).

The entry X(f,4) in (7) represents the frequency content of

node 7 in the fth frequency component. For example, by examining
the fth row of X one can infer the vertices (or the neighborhoods)
contributing more to the fth frequency through detecting the corre-
sponding entries having the largest magnitude. Likewise, one can
explore column-wise to find out activated frequencies in a neighbor-
hood.
Learning windows. To estimate the parameters embedded in the
decay matrix ®, one can impose desirable spectral characteristics.
We would like to find smooth windows capturing the locality, sim-
ilar to the STFT. To enforce the smoothness, we define a weight
vector w = [wi, - 7wN]T S [Rf that penalizes the window for
having high frequency components. In addition to high frequency
components, we should also prevent the window from picking the
first component (constant signal), as it will not be local. We then
solve the following optimization problem:

N
min 1 [|diag(w)UT @[3 = = 3 |diag(w)UT i[5, (®)
TERY 2 2 i

+ i=1
For the choice of w;’s we can set w; = h(DV(u;)) fori > 2, where
h is a monotone increasing function. We resort to a linear function
h, but one can use convex functions to further penalize the high fre-
quency components. Furthermore for w1, there is a tradeoff between
the resolution in vertex and spectral domains, as we formally prove
in Proposition 2. In the extreme case if we set w; = 0, then the op-
timal 7; will be zero but it yields a constant window of ¢;; = 1 for
all j (see Proposition 1). Despite being smooth, this window does
not capture the desired locality property and we lose the resolution
in vertex domain. On the other hand as we increase w1, the optimal
7; increases. This drives the window towards Dirac delta function,
which has the best locality in the vertex domain, but it creates unde-
sirable frequencies due to its non-smooth character. In other words,
we lose the resolution in frequency domain.

Note that in (8), each 7; only appears in ¢;. Therefore the above
optimization problem breaks into /N independent subproblems. Let
fi(7:) be the #™ term of the summation in (8), then each subproblem
is of the following form:

. 1,
min  fi(7) = 5 |diag(w)U” i3 ©)

TiZ

We use gradient descent method to solve each subproblem. Let

W = diag([wi,--- ,w%]), then the gradient of f; with respect to
7; takes the form
g=dfi = —(di o )" UWU" ¢,. (10)
Then the update rule of gradient descent method boils down to (su-
perscript £ = 1,2, ... denotes iterations)
T =7t —afe(rh), (11

where 7% > 0 is the step size that can be picked properly such that
it guarantees the convergence to a stationary point, which we next
prove its existence in the nonnegative reals through Proposition 1
and Proposition 2.

Proposition 1 If w1 = 0, then the optimal value of (9) is zero and
is achieved by 7; = 0, i.e., f;(0) = 0.

Proof: Note that the norm in (9) can be written as
N
[diag(w)U" @13 = > (win ¢:)°.

i=1

For 7; = 0, the window ¢; turns to all ones vector, hence ¢; =
v/Nuj. This implies that uiT ¢; = 0 for i > 2. The first term of the
summation is also zero because w; = 0. Since f; is non-negative,
this completes the proof.

Proposition 1 implies that wi = 0 results in 7 = 0 which cor-
responds to the constant all ones window. In that case, WGFT boils
down to DGFT and we do not gain any resolution in the vertex do-
main. Next, we prove that as we increase w; and make it further
apart from zero, 7 would also increase which compromises the fre-
quency resolution in WGFT for more resolution in vertex domain.

Proposition 2 Let w1, w} be two parameters for penalizing the DC
component of the window such that w1 < w} (while we keep the
other penalty parameters unchanged). If T is a local minima for
the optimization problem (9) with w1, then the corresponding opti-
mization problem for wi has a local (or asymptotic) minima T’ €
(7, +00) U {400}

Proof: Observe that f;(7;) is lower bounded by zero. Therefore, to
prove that 7 < 7’ it suffices to show that g’(7) < 0, where g’ is the
gradient for the subproblem with w}. We can write the gradient (10)
as

N
g (1) =—(diop)" (Z w;-zujujr> bi (12)
j=1

= g(7) — (di 0 )" (i — wi)wiuf

where g(7) is the gradient in the case of wi. Now notice that g(7) =
0, uyuf = %1 ~nxn and both d; o ¢; and ¢; are nonnegative vec-
tors. This implies ¢'(7) < 0 and completes the proof. [ ]

The above proposition shows the tradeoff between the smooth-
ness and locality, and one can tune the value of w; to achieve the
desired resolution. The proposed method can be generalized to all
differentiable decay functions, but to avoid hindering the clarity of
presentation, we focus on the exponential windows.

4. NUMERICAL RESULTS

In this section we evaluate the performance of our proposed frame-
work in revealing vertex-frequency information, through synthetic
and real-world graphs.

Undirected graph. Inspired by [18], we consider a random graph
composed of three highly connected components (clusters). The
graph in Fig. 2 has N = 60 nodes, where the first 20 nodes are
within the first cluster, the next 20 vertices form the second clus-
ter, and the third cluster comprises the last 20 nodes. We draw an
undirected edge (u, v) with probability p; if u and v are in the same
cluster, and otherwise with probability po << pi. In this example,
p1 = 0.5 and p2 = 0.05.
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Fig. 1: Spectrograms for both undirected and directed examples: (a) our proposed windowed graph Fourier transform for the graph in Fig. 2
and a signal constructed by three different basis vectors using DGFT in Section 2.2. (b) method in [18] for the same graph and a signal
constructed by three different eigenvectors of the Laplacian matrix. (c) our proposed method for the (directed) brain graph.
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Fig. 2: Synthetic random graph with N = 60 nodes containing 3
clusters of size 20 along with a signal constructed by three different
basis signals restricted to these clusters.

We obtain a spread Fourier basis U = [ui,--- ,ugo] as de-
scribed in Section 2.2; see (5). An off-the-shelf algorithm like Dijk-
stra can be used to find the lengths of all pairs shortest paths and form
the proximity matrix D. Then we solve the optimization problem (8)
to learn window parameters 7 via the gradient descent method de-
scribed in Section 3; see update rule (11). As stated before, we can
do so by solving N = 60 independent subproblems. Fig. 3 shows
the objective functions f;(7;) in (9) for a subset of {1,2,--- , N}.
The positive local minimas in Fig. 3 further corroborate the implica-
tions of Proposition 2.

Regarding the signal, we construct the vector x by adding the
following signals: uy5 restricted to the first 20 nodes, uso restricted
to the middle 20 nodes, and ugys restricted to the last 20 nodes.

Upon learning decay rates T and thus windows, we calculate
WGEFT of x, X, in (7). Fig. 1-(a) shows the spectrogram of the sig-
nal x, i.e., the squared magnitude of the elements in X. Not only
do the three bold lines in this figure show the transition points where
the signal changes, but also they determine the dominant frequency
components in each cluster of the graph, namely 15th, 30th, and
45th basis vectors. We compare our result with the method pro-
posed in [18] shown in Fig. 1-(b), where we again construct the sig-
nal by concatenating three basis vectors, but this time from V =
[v1,--,Vn], eigenvectors of the Laplacian matrix. Although our
method significantly outperforms in this case, it is worth mentioning
that the performance of [18] improves as we decrease p2, i.e., for
graphs with more isolated clusters.

Fig. 3: The objective functions f;(7;) in (9) for different vertices
versus the exponent of the decay function 7;. The windows corre-
sponding to 5 nodes are illustrated as examples.

Directed graph. We now consider a real brain graph representing
the anatomical connections of the macaque cortex, which was stud-
ied e.g. in [1,22]. The network consists of N = 47 nodes and 505
edges (among which 121 links are directed). The vertices represent
different hubs in the brain, and the edges capture directed informa-
tion flow among them. We partition the nodes into two highly con-
nected components and similar to the previous experiment, we set
the signal in each component to be a different basis vector restricted
to that component. In particular, we use the 5th and 35th basis vec-
tors obtained from (5). We also use the lengths the (directed) shortest
paths to form matrix D. of Fig. 1-(c) shows the resulting spectro-
gram using our proposed approach which effectively uncovers the
frequency content of each partition, and demonstrates the effective-
ness of the put forth windowed digraph Fourier transform.

5. CONCLUSION

In this paper, we introduced the notion of localized graph signal in
the vertex domain. Inspired by the traditional short-time Fourier
transform, we aimed at finding smooth windows to perform vertex-
frequency analyses and infer spectral content of the signal around
prescribed vertices in the graph. We tested the effectiveness of the
proposed approach through numerical experiments on synthetic and
real-world graphs.

With regards to future directions, analyzing the spectral content
of the windowed signal is an interesting open question. This is not as
easy as in the classical short-time Fourier transform due to the lack
of shift-based convolution. Additionally, generalizing the proposed
framework to a wider class of windows is a valuable extension.
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