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ABSTRACT

We address the problem of identifying structural brain networks
from signals measured by resting-state functional magnetic res-
onance imaging (fMRI). To this end, we model functional brain
activity as graph signals generated through a linear diffusion process
on the unknown structural network. While this is admittedly an
oversimplification of the complex mechanisms at work in the brain,
recent studies have shown it is an accurate generative model for the
second-order statistics of functional signals. We show the diffusion
model implies that the signal covariance matrix (a.k.a. functional
connectivity) is an unknown polynomial function of the structural
network’s adjacency matrix. Accordingly, we advocate a network
deconvolution approach whereby we: (i) use the fMRI signals to
estimate the eigenvectors of the structural network from those of the
empirical covariance; and (ii) solve a convex, sparsity-regularized
inverse problem to recover the eigenvalues that were obscured by
diffusion. The inferred structural networks capture some key pat-
terns that match known pathology in attention deficit/hyper activity
disorder. We also offer preliminary evidence supporting their role as
potential biomarkers for subject diagnosis and classification.

Index Terms— Brain network inference, functional signals,
graph signal processing, diffusion process, network deconvolution.

1. INTRODUCTION

Understanding brain function represents one of the most fundamen-
tal and pressing scientific challenges of the 21st century. Driven
by advances in neuroimaging technology, brain data have increased
in volume and complexity, and accordingly graph-centric tools and
methods of network science have become indispensable for mapping
and modeling brain structure [1, 2], as well as function [3].

Brain connectivity broadly consists of networks of brain regions
connected by functional associations (functional connectivity) [4] or
anatomical tracts (structural connectivity) [5]. Structural connectiv-
ity can be extracted from tractography algorithms applied to diffu-
sion magnetic resonance imaging (MRI) or diffusion tensor imaging
(DTI). Functional networks representing pairwise correlation struc-
ture between activation signals in various brain regions are measured
by functional MRI (fMRI) or positron emission tomography (PET).
The study of brain activity patterns expressed on brain networks is
a timely application domain [6], where it is possible but costly to
measure structural and functional networks separately due to differ-
ent spatio-temporal resolutions, running time, and acquisition meth-
ods [7]. Consequently, the relationship between structural and func-
tional connectivity of brain networks is of great importance and a
very active area of research [8–12].

In this paper, a network deconvolution framework is put forth for
identifying the topology of the structural brain network from func-
tional brain signals measured by resting-state fMRI. The basic as-
sumption of our model (Section 2) is that communications among
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brain regions depend crucially on the neuronal pathways [13], and
the observed brain signals are generated through a network diffu-
sion process on the said structural brain graph [12–15]. Fundamental
to the method proposed here, recent studies have shown that linear
diffusion dynamics can accurately model the relationship between
structural and functional brain connectivity networks [14]. While
this is admittedly an oversimplification of the complex mechanisms
at work in the brain, results in [14] suggest it can be an accurate
generative model for the second-order statistics of functional sig-
nals (i.e., the functional connectivity graph). In Section 3 we show
the diffusion model implies that the blood-oxygen-level dependent
(BOLD) signal covariance matrix is an unknown polynomial func-
tion of the structural network’s adjacency matrix, and hence both
matrices have the same eigenvectors [16]. Using the graph signal
processing (GSP) parlance, this means that functional signals are ap-
proximately stationary on the structural connectivity network [17].
Accordingly, in Section 3.1 we advocate a network deconvolution
approach [16] whereby we: (i) use the fMRI signals to estimate the
eigenvectors of the structural network from those of the empirical co-
variance matrix; and (ii) solve a convex, sparsity-regularized inverse
problem to recover the eigenvalues that were obscured by diffusion.
Different from the linear model inversion approach in [14], here we
exploit sparsity that is a cardinal property of structural connectiv-
ity [7], and do not require prior knowledge on the sought graph’s
degree distribution. Our algorithm is also computationally more ef-
ficient than traditional approaches which rely on large-scale simula-
tions of nonlinear cortical activity models, and then extrapolate the
results to the entire brain following inter-region couplings dictated
by the structural connectivity [11].

In Section 4 we corroborate the effectiveness of the proposed
approach in recovering structural connectivity using both simu-
lated brain signals (on real structural graphs) and real fMRI data.
Moreover, networks inferred from the attention deficit/hyper activity
disorder (ADHD)-preprocessed dataset [18] are used for group-wise
and subject-wise analysis to identify significant differences between
patients and controls. ADHD is the most commonly diagnosed
neurodevelopmental disorder in children [19], and previous works
have used actual structural networks to detect brain anomalies due to
ADHD [20,21]. Our approach identifies some significant differences
consistent with known pathology, and leverages the inferred struc-
tural networks to competitively classify subjects from each group.
It has the distinctive advantage of directly using functional signals
for structural analysis, circumventing structural network acquisition
methods such as DTI. Concluding remarks are given in Section 5.

2. PRELIMINARIES AND PROBLEM STATEMENT

We first formalize the notion of functional brain signals supported
on the structural brain network. Then we introduce the overarching
diffusion model for the BOLD signals, which relates the structural
and functional connectivities and makes topology inference feasible.
We close by stating the problem of inferring structural connectivity
from fMRI signals.
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2.1. Structural brain networks and functional signals

Structural brain networks represent anatomical connectivity patterns
between brain regions [6, 7]. They are often mathematically mod-
eled via a weighted, undirected graph G := (V,A), where V is a set
of N nodes corresponding to brain regions (according to standard
parcellations [6]), and A is the symmetric adjacency matrix with
Aij ≥ 0 representing the strength of axonal connections between
regions i and j. Structural brain networks are typically sparse, mean-
ing that the number of non-zero weights Aij is significantly smaller

than
(

N

2

)

. With Λ := diag(λ1, . . . , λN ) denoting the diagonal ma-

trix of eigenvalues and V := [v1, . . . ,vN ] the orthonormal matrix
of eigenvectors, one can decompose the symmetric adjacency matrix

as A = VΛV
>.

Besides structural connectivity, it is also possible to acquire

brain activity signals x = [x1, . . . , xN ]> ∈ R
N , where the value

of the ith component xi quantifies the level of neuronal activity in
brain region i ∈ V . Here we focus on resting-state fMRI readings
collected over t = 1, . . . , T time points. Accordingly, we arrange
the BOLD signals acquired for all the N studied brain regions over
T successive time points in the matrix X = [x1, ...,xT ] ∈ R

N×T ,

where the column vector xt ∈ R
N represents the (centered) func-

tional brain signal at time t. Likewise, the row vector x
>
i ∈ R

T

represents the BOLD time series at brain region i ∈ V . The
functional connectivity network is given by the correlation matrix

Σ = E
[

xx
>
]

∈ R
N×N [7], which can be estimated from the

signals in X via sample averaging, namely, Σ̂ = 1

T

∑T

t=1
xtx

>
t .

Recently there has been growing interest in adopting GSP tools
and models [22] to carry out principled analyses of brain activity
from neuroimaging data; see [6] for a recent tutorial treatment. In
fact, GSP offers a natural framework to exploit the underlying pat-
tern of structural connectivity that couples the signal values at dif-
ferent brain regions [15, 23, 24]. In this direction, next we introduce
a generative model for the brain activity signals x supported on G.

2.2. Diffusion process model of functional brain signals

Here we postulate a simple network diffusion model for the func-
tional signal x, that establishes a useful link between functional con-
nectivity Σ and the structural network A. Consider a zero-mean

white input signal w with covariance matrix E
[

ww
>
]

= I. We say
that G represents the structure of the BOLD signal x if there exists a
diffusion process in A that generates the signal x from w [16], i.e.,

x = α0

∏

∞

l=1
(I− αlA)w =

∑

∞

l=0
βlA

l
w. (1)

While the adjacency matrix A only encodes one-hop interactions
among brain regions, each successive application of A (when
viewed as an operator acting on brain signals) in (1) percolates
w over the entire G [25]. The justification for (1) is that we can
think of the edges of G, i.e. the non-zero entries in A, as direct
(one-hop, anatomical) relations between brain regions. The diffu-
sion process modifies the original correlation by inducing multi-hop
relations, thus capturing the indirect interactions and shaping up
the functional connectivity structure [26]. In the next section we
show how (1) induces a simple polynomial (convolutive) relation-
ship between Σ and A. Thus our goal is to derive a so-termed
network deconvolution estimator of the structural connectivity A, as
described in the following formal problem statement.

Problem: Given resting-state fMRI readings X = [x1, ...,xT ] ∈
R

N×T generated by diffusion (1) in the network G, estimate the
structural connectivity encoded in the sparse adjacency matrix A.

With regards to the scope and validity of the model, linear dif-
fusion has been validated as a tenable mechanism to describe the

structural-functional connectivity relationship [12–14]. While ad-
mittedly simplistic (it is known that complex non-linear neural pro-
cesses are prevalent in the brain), a linear model like (1) can be accu-
rate to describe the functional structure in Σ [14]. Moreover, there is
evidence that functional links tend to form where there is no or little
structural connection [26], a characteristic naturally captured by (1).

3. NETWORK DECONVOLUTION

The diffusion expressions in (1) are polynomials on A of possibly
infinite degree, yet the Cayley-Hamilton theorem asserts they are
equivalent to polynomials of degree smaller than N . By defining a

coefficient vector h := [h0, . . . , hL−1]
> ∈ R

L and the graph filter

H :=
∑L−1

l=0
hlA

l ∈ R
N×N [22, 27], (1) can be rewritten as

x =
(
∑L−1

l=0
hlA

l
)

w = Hw, (2)

for some particular h and L ≤ N . Since the graph filter H is a
polynomial on A, it is a linear graph-signal operator that has the
same eigenvectors V as the adjacency matrix. More important for
the approach adopted here, the convolutive signal model x = Hw

can be used to show that the eigenvectors of A are also eigenvectors
of the functional connectivity matrix Σ. To that end, recall that A =
VΛV

> to decompose the filter as H =
∑L−1

l=0
hl(VΛV

>)l =

V(
∑L−1

l=0
hlΛ

l)V>. Also using that E
[

ww
>
]

= I one can write

Σ = E

[

Hw(Hw)>
]

= HH
> = V(

∑L−1

l=0
hlΛ

l)2V>. (3)

The eigenvectors of the structural graph A and the functional con-
nectivity matrix Σ are the same. Equivalently, (3) implies Σ =
φ(A) = Vφ(Λ)V> for some analytic (i.e., polynomial) matrix
function φ that depends on h and L. The only difference between Σ,
which includes indirect relationships between signal components,
and A, which contains only direct anatomical connections, is on
their eigenvalues. These observations motivate a general two-step
network topology inference approach [16] whereby we: (i) use the

fMRI signals in X to estimate the eigenvectors V̂ of A from the

empirical covariance Σ̂; and (ii) rely on these spectral templates to
recover A by estimating its eigenvalues – the subject dealt with next.

3.1. Recovering structural graphs from functional connectivity

Identity (3) also shows that the deconvolution problem of identify-
ing the structural brain network from functional connectivity is un-
derdetermined. As long as the matrices Σ and A have the same
eigenvectors, there exist filter coefficients h that generate x through
a diffusion process on G [cf. (1)]. To sort out this ambiguity, which
amounts to selecting the eigenvalues of A in step (ii), we assume
that the adjacency matrix of interest is optimal in some sense. At
the same time, it is prudent to account for the (finite sample, noise-

induced) discrepancies between V̂ and the actual eigenvectors of A.
Accordingly, we build on [16] and seek to estimate the graph topol-
ogy A that: (a) is optimal with respect to convex criteria f(A,Λ);
(b) belongs to a convex set S that specifies admissible adjacency ma-

trices; and (c) is close to V̂ΛV̂
T as measured by a convex matrix

distance d(·, ·). Formally, our idea is to solve the inverse problem

Â := argmin
Λ,A∈S

f(A,Λ), s. to d(A, V̂ΛV̂
T ) ≤ ε, (4)

where ε is chosen based on a priori information on the noise level.
Within the scope of the model (1), the formulation (4) entails

a general class of network topology inference problems [16]. For
instance, the selection of f(A,Λ) allows to seamlessly incorporate
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(a) (b)

Fig. 1: (a) Ground-truth structural network with N = 68. (b) Recovered

topology after solving (5). The rows and columns (indexing brain regions) of

A have been rearranged so that the 34 regions in the left brain hemisphere are

shown first. The sparser pattern of inter-hemisphere connections is apparent.

physical characteristics of the desired graph. Structural brain net-
works are sparse and there are fewer inter-hemisphere connections
in the brain; see [7] and Fig. 1a. Accordingly, here we choose a
sparsity-promoting criterion f(A,Λ) = ‖W◦A‖1, where ◦ stands

for (entry-wise) Hadamard product and W ∈ R
N×N is a weight ma-

trix to impose non-uniform sparsity priors across candidate edges. In
the numerical tests of Section 4, we set Wij = 1 for edges joining
regions i and j in different hemispheres, and Wij = 0.5 otherwise.

Adopting a Frobenius-norm distance in (4), we estimate

Â := argmin
Λ,A∈S

‖W ◦A‖1, s. to ‖A− V̂ΛV̂
T ‖2F ≤ ε, (5)

where S := {A |Aij = Aji ≥ 0, Aii = 0,
∑

j
Aj1 = 1} since

we aim to recover the adjacency matrix of an undirected graph, with
no self-loops and non-negative weights representing the strength of
axonal connections. The last condition in S fixes the scale of the
admissible graphs by setting the weighted degree of the first node to
1 (without loss of generality), ruling out the trivial solution A=0.

There are two major tasks to consider when it comes to quan-
tifying the computational complexity of the proposed network de-

convolution approach. First, computing the eigenvectors of Σ̂ in-
curs O(N3) complexity. Second, solving iteratively the convex op-

timization problem (5) costs O(N3) per iteration using e.g., off-the-
shelf sparse minimization solvers. The overall procedure scales well
to standard brain parcellations or atlases that comprise (at most) a
few hundred brain regions, and is more efficient than traditional ap-
proaches based on non-linear simulations [11]. The numerical tests
in Section 4 were carried out using the CVX package for Matlab.

4. NUMERICAL TEST CASES

In this section, we test the structural network inference framework on
both simulated and real fMRI signals from public ADHD datasets.
Throughout, we set ε in (5) via a binary search in [0.5, 1.5] to find

the smallest value that gives a feasible solution Â ∈ S .

4.1. Simulated fMRI signals on real structural brain network

We first validate our approach on simulated signals, using a ground-
truth preprocessed structural network with N = 68 brain regions
estimated via DTI [28]; see Fig. 1a. We synthetically generate
fMRI signals xt adhering to the diffusion model in (1), with stan-
dard Gaussian inputs wt, for t = 1, . . . , 104. We form the sample

covariance matrix Σ̂ and find its eigenvectors. By solving (5) we
estimate the structural connectivity network shown in Fig. 1b.

(a) (b)

Fig. 2: Study of ADHD-200 data. Recovered structural network for the (a)

control group; and (b) ADHD patient group. Blocks along the diagonal cor-

respond to the Frontal, Occipital, Parietal, Temporal and Cerebellum region

on the left and right brain hemispheres, respectively.

A clear correspondence between the recovered structural net-
work and the ground truth is apparent. To improve visualization,
edge weights in both networks have been normalized and thresh-
olded with the largest value yielding a connected graph. Besides
recovering connections between brain regions (the support of A),
our model can also provide an accurate estimate of the connection
strengths (i.e. edge weights). Specifically, we obtained a relative
recovery error of 11.1%, averaged over 10 Monte Carlo realizations
of the experiment.

4.2. Real ADHD data

To validate our approach with real data, we first consider the ADHD-
200 dataset [18]. This public repository was put together through
a collaboration of 8 international imaging sites that aggregate and
openly share neuroimaging data. In our experiment, we obtain the
preprocessed BOLD timeseries from fMRI scans of 182 healthy sub-
jects (92 male, 90 female, age = 12.18 ± 3.35) and 107 ADHD type-
1 patients (82 male, 25 female, age = 11.65 ± 3.33) from KKI, NYU
and NeuroImaging datasets acquired from 3 different imaging sites.

Brain fMRI signals are aggregated and registered on the stan-
dard AAL-116 brain atlas, hence N = 116. As a result, for
each region we have available a BOLD timeseries of duration
T = {120, 257, 172}, respectively the 3 aforementioned imaging
sites. We concatenate the brain signals of all subjects in each group
and form a matrix Xc ∈ R

116×182T collecting the brain signals of
the control group, and likewise Xp ∈ R

116×107T for the patient
group. After running the network deconvolution pipeline proposed
in Section 3 for both groups, Fig. 2 depicts the recovered structural
networks. To avoid hindering visualization, both graphs have been
thresholded to keep only edges with the top 10% weights. In both
cases, notice the denser pattern of connections within hemispheres.

For the patient group network shown in Fig. 2b, edges are more
clustered and concentrated within the 10 blocks along the main di-
agonal corresponding to the Frontal, Occipital, Parietal, Temporal
and Cerebellum regions of the left and right brain hemispheres. In
the control group however, connections are visibly less structured
and no brain region has a significant enhanced activity. This dif-
ference indicates higher inter-connectivity in the 10 aforementioned
regions, consistent with the findings in [29]. Accordingly, the group
representative connectivity matrices provide a visual representation
of some important qualitative differences between the control and
ADHD patient group.

Graph theory has been proven useful for brain network anal-
ysis [30]. To quantitatively analyze and compare the representa-
tive structural network for each group, we evaluate several graph-
based measures and identify significant differences between groups
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(a) (b)

(c) (d)

Fig. 3: Regions with statistically significant (positive) differences in ADHD

patients based on: (a) clustering coefficient; (b) degree; (c) local efficiency;

and (d) closeness centrality. Most brain regions identified are in the Frontal,

Occipital, Parietal and Temporal areas, suggesting increased connectivity for

the ADHD group. This is consistent with the findings in [19, 29].

(p = 0.01). Some noteworthy findings follow, while details on the
statistical tests are omitted due to lack of space.

Loss of long-range connection. We compute the physical distance
between brain regions connected by edges in the networks in Fig. 2.
A significant decrease in connection length is found for the ADHD
group. This matches well the findings in [29], citing a decrease in
global, long-range anatomical connections for ADHD patients.

Increased local connection. The clustering coefficient and local
efficiency measures quantify the density of sub-networks centered
at each region (a.k.a. egonets). The significantly larger clustering
coefficient and local efficiency in Fig. 2b shows that ADHD brain
regions are more locally connected with neighboring regions [29].

Highly inter-connected subnetwork. A sub-network of stronger
connectivity encompassing the Frontostriatal, Occipital, Temporal
and Parietal regions is found in ADHD subjects [29]. To corroborate
this finding, we extract such sub-network for both groups and calcu-
late node-level subgraph centrality (a weighted sum of closed walks
of different lengths in the sub-network). We also find the ADHD
group has significantly higher subgraph centrality than control.

Regions with most difference in graph measures. We calculate
node-level graph measures (degree, clustering coefficient, closeness
centrality, local efficiency; see [5, Table A1]) and single out the brain
regions where the values of the aforementioned graph measures are
significantly larger for subjects in the ADHD group. The results
are summarized in Fig. 3. Most brain regions identified are in the
Frontal, Occipital, Parietal and Temporal areas, once more suggest-
ing that the connectivity in these areas is stronger for ADHD pa-
tients than controls. Moreover, brain areas such as Hippocampus,
Basal Ganglia (caudate, putamen, pallidum), Thalamus, Amygdala
are also detected. The results are consistent with known ADHD
pathology [19,29], and serve to identify brain regions with high dis-
crimination power between groups.

4.3. Network-based subject-level classification

Here we use the recovered structural networks for control-patient
classification. Data are preprocessed BOLD timeseries from 30 con-
trols (all male, age = 11.367 ± 1.91) and 29 patients (1 female,

age = 11.81 ± 1.75) from the Peking dataset. We adopt a different
(now single imaging site) dataset to test the generality and flexibility
of the topology inference approach. For each subject, we recover
a structural network from the given fMRI signals and compute the
graph measures (degree, clustering coefficient, closeness centrality,
local efficiency) of each of the 116 nodes. We concatenate all these
graph measure values, thus each subject has a 464×1 feature vector.

In our previous study, we identified 23, 14, 34, 34 brain regions
that are significantly different between groups based on degree, lo-
cal efficiency, clustering coefficient and closeness centrality, respec-
tively; see Fig. 3. We only focus on these important regions to re-
duce the dimensionality of the per subject features to 105. We then
apply the sequential forward feature selection method to further re-
duce the number of features to 6. The retained features correspond to
the degree of left paracentral lobule, right inferior frontal gyrus and
right fusiform, local efficiency of right paracentral lobule, closeness
of right fusiform and right caudate.

To assess the discrimination power of the 105 regions identified
in our subject-level analysis, we also use the original 464 × 1 fea-
ture vector (with sequential forward feature selection) to classify the
subjects. We compare with the approach in [31], that can as well
be used to infer structural brain graphs from functional connectivity.
However, [31] adopts a very specific diffusion model to infer direct
relations (structural network) from indirect ones (functional connec-
tivity). Table 1 summarizes the best classification performance of
each framework, across different methods such as KNN and SVM.

ACC AUC TPR TNR

105 features with selection 0.774 0.836 0.767 0.782
464 features with selection 0.678 0.737 0.733 0.621

Method in [31] 0.492 0.493 0.522 0.459

Table 1: Subject classification performance. ACC: accuracy; AUC:
area under curve; TPR: true positive rate; TNR: true negative
rate. All experiments were carried out using Matlab’s Classification
Learner with 10-fold cross-validation.

The results show that those 105 regions identified previously can
improve classification performance, which implicitly corroborates
the ability of our framework to accurately infer structural networks
and capture key brain patterns. In addition, our approach outper-
forms [31] by modeling brain activity via a more general diffusion
process and promoting edge sparsity. Our results are superior to pre-
vious tests on ADHD-200 data [21,32], and are also competitive with
the best results of the ADHD-200 global competition1. Subject-level
network inference and disease diagnosis are generally more chal-
lenging than identifying significant group differences, so our future
research agenda will be steered towards this exciting direction.

5. CONCLUSIONS

This paper puts forth a network deconvolution framework to identify
structural brain networks from fMRI signals. Based on a simplify-
ing diffusion model assumption, we estimated both group-level and
subject-level structural networks and identified patterns that match
known pathology. ADHD patient classification was also carried out
to (indirectly) validate the discriminative power of the brain regions
identified, which could serve as potential biomarkers for patient di-
agnosis. To the best of our knowledge, this is the first time that struc-
tural connectivity is estimated from functional signals for disease-
related analysis. Future research will focus on GSP-based brain sig-
nal analysis in the graph frequency domain, for improved denoising
and unveiling of additional discriminative (spectral) features.

1To view the competition results, see: http://fcon_1000.

projects.nitrc.org/indi/adhd200/results.html
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