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Abstract—Recent large-scale deployments of differen-
tially private algorithms employ the local model for
privacy (sometimes called PRAM or randomized response),
where data are randomized on each individual’s device
before being sent to a server that computes approximate,
aggregate statistics. The server need not be trusted for
privacy, leaving data control in users’ hands.

For an important class of convex optimization prob-
lems (including logistic regression, support vector ma-
chines, and the Euclidean median), the best known locally
differentially-private algorithms are highly interactive,
requiring as many rounds of back and forth as there are
users in the protocol.

We ask: how much interaction is necessary to optimize
convex functions in the local DP model? Existing lower
bounds either do not apply to convex optimization, or say
nothing about interaction.

We provide new algorithms which are either nonin-
teractive or use relatively few rounds of interaction. We
also show lower bounds on the accuracy of an important
class of noninteractive algorithms, suggesting a separation
between what is possible with and without interaction.

Keywords-Differential privacy, local differential privacy,
convex optimization, oracle complexity.

I. INTRODUCTION

Each of us generates vast quantities of data as we
interact with modern networked devices. Accurate ag-
gregate statistics about those data can generate valuable
benefits to society—higher quality healthcare, more
efficient systems and lower power consumption, among
others. However, those data are highly sensitive, paint-
ing detailed pictures of our lives. Private data analysis,
broadly, seeks to enable the benefits of learning from
these data without exposing individual-level informa-
tion. Differential privacy [17] is a rigorous privacy
criterion for data analysis that provides meaningful
guarantees regardless of what an adversary knows ahead
of time about individuals’ data [25]. Differential privacy
is now widely studied and algorithms satisfying the
criterion are increasingly deployed [1, 2, 19].

There are two well-studied models for implementing
differentially-private algorithms. In the central model,
raw data are collected at a central server where they
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are processed by a differentially-private algorithm. In
the local model [20] (dubbed LDP and illustrated in
Figure 1), each individual applies a differentially-private
algorithm locally to their data and shares only the
output of the algorithm—called a report or response—
with a server that aggregates users’ reports. The local
model allows individuals to retain control of their data
since privacy guarantees are enforced directly by their
devices. However, it entails a different set of algorithmic
techniques from the central model. In principle, one
could also use cryptographic techniques such as secure
function evaluation to simulate central model algo-
rithms in a local model, but such algorithms currently
impose bandwidth and liveness constraints that make
them impractical for large deployments. For example,
Google [19] now collects certain usage statistics from
users’ devices subject to local differential privacy; those
algorithms are run by hundreds of millions of users.

A long line of work studies what is achievable by
LDP algorithms, and tight upper and lower bounds
known on the achievable accuracy for many problems;
see Sec. I-C. For a large class of optimization problems,
however, the algorithms that achieve the upper bound
are highly interactive—the server exhanges messages
back and forth in sequence with each user in the system
(see Figure 1). Implementing interactive protocols for
private data collection is difficult, because network
latency introduces delays and because the server must
be live throughout the protocol. Consequently, existing
large-scale deployments [19] are limited to noninterac-
tive algorithms.

The question naturally arises: how much power is
lost by restricting to noninteractive protocols? Ka-
siviswanathan et al. [26] studied the role of interaction
in locally private algorithms, exhibiting a problem that
can be solved using a linear (in the dimension) amount
of data by a 2-round protocol but for any noninteractive
protocol requires an exponential-sized data set. The
problem they study is somewhat unatural, based on
learning parity functions; their results say little about the
computations commonly carried out in machine learning
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or statistical analysis.

Contributions. This paper initiates the study of inter-
action in local differential privacy (LDP) for important
and natural learning problems. Specifically, we focus on
convex optimization, which encompasses the calculation
of descriptive statistics, such as the median, as well as
more sophisticated computations, such as fitting linear
or logistic regression models, training support vector
machines and sparse regression. Tight upper and lower
bounds are known for the accuracy of LDP convex
optimization [14]. However, the upper bounds are highly
interactive, requiring as many rounds of back and forth
as there are users in the protocol.

We provide new algorithms for noninteractive
LDP optimization of convex Lipschitz functions over
a bounded parameter space. These algorithms im-
prove considerably over naive approaches. For one-
dimensional problems (e.g., median), our algorithms
attain the same optimal error bounds as interactive
solutions. For higher-dimensional problems, our algo-
rithms’ error guarantees are worse than the bounds
for interactive algorithms, since our guarantees decay
exponentially as the dimension increases (instead of
polynomially).

We provide evidence that this exponential dependence
is necessary. We show lower bounds on the error of
a natural class of nonadaptive optimization algorithms,
which includes the noninteractive LDP variants of first-
order methods such as gradient descent. This lower
bound applies even to nonprivate algorithms. It demon-
strates that the adaptivity of first- and second-order
methods is necessary to get a polynomial dependence
on the dimension.

We also consider algorithms that use interaction only
sparingly. We show that carefully tuned LDP variants of
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Figure 1. The local model for differential privacy. Each individual

4 runs a (possibly different) DP algorithm @; to randomize her data.
In the noninteractive variant (without the dashed arrows), the server
sends a single message to all users at the start of the protocol. In the
interactive variant (with the dashed arrows), the server sends several
messages, each to a subset of users. Each such message, together with
responses from users, counts as a round of interaction.
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classical first-order methods can return accurate answers
with relatively few rounds of interaction. Geometric
properties of the loss functions being optimized—
smoothness and strong convexity—play a strong role in
how quickly the error drops with the number of rounds
of interaction.

Finally, we consider a specific problem—Iinear
regression—and show a simple noninteractive protocol
that achieves optimal error.

A. Background

Differential privacy. In an LDP algorithm, there are n
participants, each with a private input d; from a universe
D of possible values. A protocol proceeds in 7" rounds.
In each round, the server sends a message, called a
query, to a subset of the players, requesting that they
run a particular algorithm. Based on the queries, each
player 7 in the subset selects an algorithm @);, runs it,
and sends the output back to the server.

Definition 1 ([20, 17]). An algorithm Q; is e-locally
differentially private (LDP) if for all pairs d,d € D,
and for all events E in the output space of Q, we have

Pr[Q(d) € E] < e Pr[Q(d’) € E].

A multi-player protocol is €-LDP if for all possible
inputs and runs of the protocol, the transcript of player
1’s interactions with the server is e-LDP (for all settings
of the remaining data points). ' In all the protocols we
discuss, each user responds to only a single query over
the course of the protocol.

Convex Optimization. We consider algorithms for con-
vex risk minimization. A particular problem is specified
by a convex, closed and bounded constraint set C in R”
and a function £ : C x D — R which is convex in its
first argument, that is, for all d € D, £(-;d) is convex.
We call p the dimension of the problem. A data set
D =dy,...,d, € D" defines a loss (or empirical risk)
function: L(#;D) = 137" ¢(6;d;). For example,
finding the median of a data set D € [0, 1]" corresponds
to minimizing the loss L(6,D) = ) .|0 — d,|. For
standard linear regression, each data point is a pair
di = (zi,y;) € RP x R and we seek to minimize
L(6,D) =", (y; — (6, x;))?. Support vector machines
correspond to minimizing L(6, D) = Doy (0,24)) 4,
where ()4 denotes max(z,0).

When the inputs are drawn i.i.d. from an underlying
distribution P on D, one can also seek to minimize the

'In Appendix C, we give an algorithm for linear regression that
satisfies an “approximate” variant of this definition, called (g, ¢)-
differential privacy [16]. All our lower bounds apply to both variants.



population risk, or generalization error, defined as the
expected error on a fresh example from the distribution:
Lp(0) = Ep~p[l(0;D)]. We drop the subscript P
when it is clear from the context.

We state the error of our algorithms in terms of their
excess (empirical or population) risk. Given an output
Opriv € C, we define two variants of excess risk.

Empirical: errp (Gpriy) = f(&wi\,; D) - Ieni(ljl E(G; D)
€

Population: errp (Opriv) = Lp (Gpriv) — %nig? Lp(0).
€

The empirical error measures how well our output does
on the data set at hand. The population error assumes
the data is drawn from some distribution, and measures
how well our algorithm does on unseen examples from
the same distribution. The measures are closely related,
but not the same (roughly, algorithms that “overfit” may
have low empirical error but high population error).
We consider additional restrictions on the loss func-
tion /. Ignoring the second argument for a moment,
we say a function ¢ : C — R is L-Lipschitz if for
all 0,0 € C, [£(0) — £(0")] < L||0 — &||2. (Unless
otherwise specified, we work with the ¢ norm on RP.)
We say £ is A-strongly convex if, for every 0,0" € C
and for every subgradient V{(0) € 0/(6), we have
00" > (V)0 —0) + SA2(0" — 0]|3. We say ¢
is S-smooth if it is differentiable and has [-Lipschitz
gradients, that is || V£(0) — VL(0")]|2 < B0 — ¢']|2.
Nonprivate methods for optimizing convex functions
generally use first- or second-order methods, which gain
information about the loss funcion by evaluating the
gradient, and possibly the Hessian (matrix of second
derivatives) at a sequence of points in C. Examples of
such methods include gradient descent, cutting plane
algorithms, Frank-Wolfe, and Newton-Raphson.

“Typical” Setting. In what follows, we assume C C R?
is a convex set (||C|j2 < 1) and £ : CxD — R is convex
and 1-Lipschitz for each setting of its second argument.
For this setting, Duchi et al. [14] gave an n-round
algorithm with expected population risk O (\ / E%n),
where n is the number of users. Their algorithm is a
LDP version of stochastic gradient descent where, at
round i, the server sends the current estimate 6; to player
i, who returns a noisy gradient Q(V{(0;;d;)) (where
(@ adds carefully calibrated noise). They also showed
that error bound is tight, using an information theoretic
argument. The lower bound applies even to linear loss
functions—in particular, the bound shows that assuming
smoothness does not change the achievable error.
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B. Summary of Results

Noninteractive Algorithms for General Convex Op-
timization.

Theorem 2 (Theorem 10, informal). For the typical
setting above, there is an e-LDP algorithm A such
that for all distributions P on D, with high probability,

errp(A(D)) = O ((‘/ﬁ)l/(pﬂ)) , where O(-) hides

e?n

log(n) factors.

For one-dimensional convex optimization, our proto-
col nearly matches the lower bound of Q(1/v/£2n). The
dependence on the dimension is exponential, however.
To achieve a given level of error «, one requires
n > Q(cPe=2a~P*+1)) data points.

Our one-dimensional algorithm is based on a novel
reduction of the general one-dimensional convex op-
timization to the median problem (a special case),
followed by a noninteractive local algorithm for the
median that uses a tree-based technique for simultane-
ously approximating 1D range queries (that arises in
[22, 18, 12]). For higher dimensions, we reduce to the
one-dimensional case by optimizing, in parallel, over
a collection of roughly 1/a”~! random lines passing
through the center of C.

As a comparison point, the most straightforward ap-
proach to noninteractive LDP optimization is to evaluate
the loss function at all points in a suitably defined set
(a “net”) for C, and then output the one with smallest

)1/(P+2) (

loss. This approach incurs error O ((L or

e2n
alternatively, requires a sample of size 4P~ 2a~(P+2)
for error ). Our technique saves a factor of 1/« in the

sample complexity, which is significant for small a.

Bounds on Adaptivity for General Convex Optimiza-
tion. We show that for a natural class of LDP methods,
the exponential dependence on p in our methods is nec-
essary. We start from the observation that methods for
general convex optimization, private or not, generally
access the loss function by approximating the gradient
at a sequence of adaptively chosen points. We model
such algorithms by imagining an oracle to which the
algorithm makes queries. The oracle is neighborhood-
based (usually called local’) if, on query 6 € C, it
returns information about the values of the loss function
in an infinitesimal neighborhood of 6 (a subgradient or
Hessian, for example).

We study, for the first time, the adaptivity of such
algorithms: suppose that the algorithm submits queries

2This use of “local” is completely different from its use in “local
differential privacy”. We use “neighborhood-based” for clarity.



in batches to the oracle, with the choice of points in a
batch depending only on query answers from previous
batches. A nonadaptive algorithm uses only one batch
(and corresponds to a nointeractive LDP protocol). We
show that for every noninteractive neighborhood-based
oracle algorithm requires (1/a)?(®) queries in the worst
case to obtain error « for optimizing Lipschitz convex
functions:

Theorem 3 (Theorem 13, informal). There exists C' > 0
such that for every sufficiently small o > 0 and every
(not necessarily private) neighborhood-based oracle
O.(-), every Clog(1l/a)-round randomized algorithm
for optimization of Lipschitz convex functions requires
29(1) gueries to succeed with high probability. Fur-
thermore, nonadaptive algorithms require (1/a)®)
queries.

This is the first lower bound to demonstrate that the
adaptivity of first-order methods such as gradient de-
scent and the cutting-plane method is in fact necessary
to get a polynomial dependence on the dimension. It
also demonstrates that fundamentally new techniques
would be necessary to get noninteractive LDP algo-
rithms with polynomial dependence on the dimension.
Previous bounds on oracle optimization [3, 34, 33, 37]
used information-theoretic arguments that do not distin-
guish between adaptive and nonadaptive algorithms (in
particular, the instances that arise in those proofs are
easy to solve nonadaptively).

Algorithms with Limited Adaptivity. Although the
design of accurate noninteractive algorithms for high-
dimensional optimization remains challenging, we show
that LDP algorithms with limited interaction can achieve
low error, demonstrating that the n rounds of interaction
of previous algorithms (where n is the number of users)
are not necessary. These algorithms are noisy, “batch
stochastic” versions of two classic first-order methods—
gradient descent and the cutting plane method—where
in each round many users are queried to get high-
accuracy estimates of the gradient at a particular point.
We show:
1) In the “typical” setting (optimizing 1-Lipschitz
functions over a bounded set) then for every
T, there is an e-LDP algorithm .A(-) such
that for every D € D", Elerrp(A(D))]

L (-9 V)
In particular, this algorithm achieves optimal error
O(y/p/e2n) for T = ne?/p (due to the second
term). On the other hand, the first term reaches
the optimal error when 7' = O(plog(e%n/p)).

2) When the function is 1-Lipschitz, S-smooth and

O (min (
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Assumptions Method Additive Error
(big-Oh expression)
s 1 /
1-Lipschitz GD Nia + %
— T 1\T/p
1-Lipschitz CP Py +2 (1 — E)
A-strongly convex GD 1 + _b
gy AT ne2A
8 1 pT?
B-smooth GD 7 -+ v
T2
B-smooth, GD ge_AT//@ + i_;
A-strongly convex

Figure 2. Upper bounds on achievable error for optimization of 1-
Lipschitz convex functions in the local model as a function of the
number 7' of rounds of interaction, the number n of users, and the
dimension p of the parameter vector. Methods: GD = gradient descent,
CP = cutting plane.

A-strongly convex, there is an e-LDP algorithm
A(-) that for every D € D",

Elerrp(AD))] = o<§e*AT/ﬂ+%). Our
algorithm requires both smoothness and strong
convexity to achieve this bound, and our anal-
ysis requires a new analysis of batch stochastic
gradient descent under these conditions. The role
of smoothness is surprising: without restrictions
on interaction, assuming strong convexity helps
with accuracy, but adding smoothness does not.
However, smoothness is known to accelerate the
convergence of gradient descent, and that translates
into a much better dependency on 7' in our con-
text.’

Note. We state all our results in expectation, but they
also extend to high probability guarantee using the idea
of Bassily et al. [7, Appendix D].

Case Study: Linear Regression Our work also raises
the question of what can be achieved for specific
problems. In Appendix C-A, we study the accuracy of
noninteractive LDP protocols for ordinary least squares
regression, where each input d is a pair (x,y) with

30ne can show that if the loss function is 1-Lipschitz and 3-
smooth, then the e-LDP algorithm version of batch stochastic gradient
descent can be tuned (using Lan’s analysis [29]), so that for every
D € D", E[errp (A(D))] = O (# + 2
timal error O(y/p/e2n) for T = (ne? /p)*/4, which is quadratically
faster than the case when the function is 1-Lipschitz. Similarly, one
can also show (using [40]) that if the loss function is 1-Lipschitz
and A-strongly convex, then e-LDP batch SGD satisfies, for every

D € D", Elerrp(A(D))] = O (TIT + e

ne2A
this achieves very low error O(p/e2n) when T = (ne?/p)—the
same number of rounds, but much lower error than, what one gets
from Lipschitz continuity alone.

. This achieves op-

> . For constant A,



X € B,(0,1) (the p-dimensional ball of radius 1)
and y € R, and £(0;(x,y)) = (y — (x,0))? for
0 € B,(0,1). We also show that the lower bound
of /p/e2n applies to this special case (regardless of
interaction) and that a natural noninteractive algorithm
in Appendix C-B, which computes noisy versions of
the Hessian and gradient at 0, achieves this error rate.
There are nonprivate algorithms with population risk
only 1/v/n (e.g., [39])—thus, our bound shows that
privacy imposes a dimension-dependent cost.

The Relation to SQ Learning Kasiviswanathan et
al. [26] showed a general equivalence between local
differential privacy and statistical query learning [27]:
for distributional problems, the two models are equiva-
lent, in terms of both sample and time complexity, up
to polynomial factors in the dimension and the desired
accuracy. The main open problem we aim to solve is
whether there exist noninteractive LDP algorithms for
convex optimization with sample complexity polyno-
mial in p and «. Equivalently, one can ask if there exist
SQ algorithms with similar scaling. Our lower bound
sheds light on this, showing that such algorithms would
have to use the SQ oracle in some other way than to
simulate first- or second-order methods (which is the
current state of the art, e.g., [21]).

C. Related Work

Local differential privacy was defined by Dwork et
al. [17] in the paper that introduced differential privacy.
Local privacy was implicitly studied in previous works
under different names, like y-amplification [4, 20] and
randomized response [46].

Two of the most widely studied problems in local
differential privacy are the problem of finding heavy
hitters [6, 19, 23, 32] and private local learning [26].
The heavy hitters problem represents a very simple
computation (counting elements frequencies), and ex-
isting algorithms are all noninteractive. The closely
related “heavy hitters over sets” problems is more
complex; the state-of-the-art algorithm uses two rounds
of interaction [36], though it’s unclear whether the extra
round is necessary. Algorithms developed for the heavy
hitters problem are not directly relevant here, since it is
unclear how they can be applied to optimization.

Kasiviswanathan et al. [26] initiated the study of
private local learning. They showed that every LDP
learning algorithm can be simulated in the statistical
query model when the data is sampled i.i.d. from a
known distribution (see “SQ Learning” above).

In terms of lower bounds, Beimel et al. [8] studied
the lower bound on the squared error of distributed
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protocols for the sample mean estimation of the data.
This was generalized by Duchi et al. [14], who gave
a general framework for translating lower bounds on
statistical estimation to the local privacy model. While
the lower bounds in Duchi et al. [14, 6] are optimal, they
did not consider the round complexity of the algorithms.

In the optimization literature (independent of work
on privacy), several works establish lower bounds on
the oracle complexity—the number of queries made
by a neighborhood-based algorithm. (In contrast, we
consider the number of rounds of adaptivity in these
queries.) This line of work was started by Nemirovski
et al. [33]. Their analysis was simplified by Nes-
terov [34] under additional restrictions on the aglo-
rithm. Recently, Agarwal et al. [3] and Raginsky and
Rakhlin [37] extended the study of lower bounds to
the stochastic gradient-based methods, and provided a
more structured, information-theoretic approach to these
lower bounds. None of these works distinguish between
adaptive and nonadaptive methods.

Differentially private convex optimization has also
been studied extensively in the central model, starting
with the work of Chaudhuri et al. [13] and later in
[47, 24, 28, 41, 44, 42, 7, 43]. Noisy variants of first-
order methods play an important role in several of those
works, starting with Williams and McSherry [47].

II. NONINTERACTIVE PRIVATE LEARNING

This section is devoted to our noninteractive LDP
algorithms for private learning. In order to better un-
derstand our main result (Theorem 10), we start by an-
alyzing a simple mechanism called the net mechanism,
for which it is easy to establish the following claim.

Claim 4. For every 1-Lipschitz loss function { : C X D
and every distribution P on D, when D ~ P™, the net
mechanism Ape; is e-LDP and satisfies

p

0 <(€2n>1/(p+2))

(1
with high probability. Moreover, this is tight in the worst
case. In particular, to achieve a given error «, the

. . . CP
algorithm requires sample complexity n = () (W)
for a constant C' > 0 (roughly 4).

(errp(Anet(D)))

E bppn
coins of Ap et

The net mechanism, A,,.;, to optimizes a loss func-
tion L on C works in three steps: (i) construct an
appropriately fine net for C; (ii) approximately evaluate
L at all points in the net; and (iii) report the minimizer
of the observed values. We defer the proof of Claim 4
to Appendix B.

Having established what one can achieve by the
basic net mechanism, we now give our noninteractive



algorithm. For the ease of presentation, we describe our
main algorithm through a series of increasing generality.
We start by describing and analyzing an algorithm for
one-dimensional median problem, 1D-MEDIAN (Fig-
ure 3). We then use 1D-MEDIAN to describe an al-
gorithm for one-dimensional convex Lipschitz function,
1D-GENERAL (Figure 4). Finally, we present our main
algorithm, HIGHD-MEDIAN, in Figure 5 that uses 1D-
GENERAL as a black-box.

For the proof of our main result of this section (The-
orem 10), we require our algorithm for 1D-MEDIAN
and 1D-GENERAL to satisfy a stronger property known
as uniform approximation. We first formally define
uniform approximation.

Definition 5. (Uniform approximation). Given real-
valued functions f and g on the same domain C, we
say f uniformly approximates g with error « (denoted
If = 9gllec < ) if |F(0) = g(0)] < a forall 6 C.

Following our plan mentioned at the start of this
section, we first show the following result (Theorem 6)
for 1D-MEDIAN. Using Theorem 6, we give an uni-
form convergence for one-dimensional convex functions
(Theorem 9). Finally, we use Theorem 9 to give our
main result of this section (Theorem 10) for general
convex function in high dimension.

Theorem 6. For every distribution P on [0,1], with
probability 1 — v over D P and f —
1D-MEDIAN(D), where 1D-MEDIAN is the algorithm
presented in Figure 3, we have

202
f—@pr <0 <10g (e n)g\/lgg<52n/7)> ’
2

~

and medp (0) is the expected loss Eqp|0 — d| for the
median problem. In particular, to achieve error o with
probability 1 — v, the algorithm requires sample size
n = O(log(1/v)/e%a?). Moreover, f is e-LDP.

When ||f — Lp|lec < @, the minimizer 6, of f
satisfies errp (fpriv) < «, so this algorithm suffices for
approximate computation of the median.

Our algorithm for one-dimensional median (1D-
MEDIAN) presented in Figure 3, is based on the tree-
based algorithm for simultaneously approximating the
number of points in every subinterval of a range (as in,
e.g., [12, 18, 22]).

Proof: The privacy proof follows from the fact that
‘R is an e-LDP randomizer [6] and that differential pri-
vacy is preserved under arbitrary post-processing [15].
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Input. Let the input dataset be D = (dy,--- ,d,) €
D", where every d; is sampled i.i.d. from the distri-
bution P. Let £ : [0,1] x D — R be the loss function
defined as ¢;(D) := |0 — d;|. Let ¢ = 1/ey/n,
w=1/C, h =logw. Let B := {01,---,0,} be
the set of points in the (-net, and &’ = ¢/h.

User side computation. Every user ¢ constructs
binary trees 7; over w leaves as follows:

1) Label the leaves of the binary tree over w leaves
as integers from [1,w], and the intermediate
nodes n as pairs (a, b) such that a € [1,w] is the
left most leaf and b € [1,w] is the right most
leaf of the subtree rooted at n.

For every leaf node j € [1,w] of T;, its entry,
uj 1 for j min{s: 60, > d;}, else
uj := 0. The entry on intermediate node (a,b)
s D a<j<p U

Let v; be the corresponding vector that stores
the entries of thAe nodes of 7;. Send the server
a binary tree 7; with corresponding vectors
vi(j) = R(v;(j)), where R(:) is the ¢'-basic
randomizer of Bassily and Smith [6] for all
Jj €1, 2w].

Server side computation. On receiving 7A§ from all
user ¢ € [n], it performs the following steps:

2)

3)

1) Constructs a binary tree 7 with nodes labeled
appropriated by vectors v, where v(j)
Sor Vi(y) for all j € [1,2w].

2) For every j € [w], construct a maximal dyadic
partition of the interval [1,---,j] and that of
[f +1,--- ,w]. Call the nodes corresponding
to the intervals in the binary tree as the set
N and N ;'ght, respectively. Compute X(j) =

| e v(R) = S oon v(k)‘.
Define a function g : [0,1] — [0, 1] such that
9(y) = X(0) where 0 = argmin,g|z — y|.
Define f : [0,1] — [0,1] as follows: f(x) =
Jo g(t)dt

Qutput. The server outputs f

3)

Figure 3.
MEDIAN)

1-Dimensional Private Non-interactive Median (1D-

Now we turn our attention to prove equation (2).
Before we analyze the algorithm, let us fix some no-
tations. Let X be the vector that the server would have
computed if there were no R(:) in Step (3) of the user
side computation in Figure 3.

We define a function g : [0,1] — [0,1] using the



vector X similar to the definition of the function g(-),
ie., g(y) =X(0) where § = argmin_ |z — y.
In what follows, we first prove that for all 6 € B,

50) -7 log®(e?n)/log(e%n/7)
166) — §(®)]l < O ( /e )
3)

Our analysis uses the observation that, every level of
the binary tree 7 (i.e., the corresponding entries of the
vector v) can be seen as a noisy histogram (over the data
universe B) of the user’s data and, by the definition of
the vector X, the vector X succinctly stores the estimates
of Vmedp at different net points.

Let v/ = «/h. Since the data universe has size w =
€y/n, we can use Theorem 2.3 of Bassily and Smith [6]
to estimate the /. -error in estimating Vmedp at every
level k € [h]. Bassily and Smith [6, Theorem 2.3] gives
that, with probability 1 —~/, the ¢, error in estimating

Vmedp is at most O ( \/log(“w> for every level

k € [h]. Using union bound over all the levels, we have

)

By substituting &’ = ¢/h, h = logw, and setting w =
€y/n, we get equation (3).

We now return to proving Theorem 6. From the
definition of f and equation (3), we have the following
set of inequalities for all z € [0, 1]:

F(x) — medp (x >|—/ 16(0) — Vimedp(0)| 6

h

. . log(w/7")
max 19(0) —g(0)| = O < —

e’ n

[z/C1=1 L(t41)¢ -
< | 1) - Vmedp ()] a0
t=1 “tC
/¢
< | Y a¢| +¢(Vmed(1) — Vmed(0))

t=1

<a+2(=0 (1og2(52n)\/10g(52n/’y)/ (6\/71)) ,

where « denotes the left-hand side in Equation (3). The
last inequality follows from the fact that the summation
is over at most w = 1/ net points and that med is
1-Lipschitz. This completes the proof of Theorem 6. B

We now proceed to the general one-dimensional
convex function. We first state the following key lemma.

Lemma 7. Let f : [0,1] — [0,1] be a convex 1-
Lipschitz function. Then there exists a distribution Q
such that

V0 € [0.1], F(6) = Eynolld —yl) +c
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Input. A dataset D = (dy,--- ,d,) € D" with every
entry d; sampled i.i.d. from the distribution P and a
loss function ¢ : [0,1] x D — R.

User side computation. Every user ¢ (for £;(0) :
£(0; d;)) performs the following steps:

1) Samples a median function med; as defined
in Corollary 8.

2) Run its end of 1D-MEDIAN algorithm (Figure
3) with med; and d; to send T to the server.

Server side computation. On receiving 7; from all
user ¢ € [n], the server invokes its end of the 1D-
MEDIAN algorithm (Figure 3) and gets f as its output.

Output. The server outputs f

Figure 4.
GENERAL)

1-Dimensional Private Convex Optimization (1D-

Proof: We first define the randomized algorithm 7
whose output is the distribution Q. The algorithm Z
does the following.

1) Uniformly sample a u € [—1,1].

2) Output y € [0, 1] such that u = V f(y).
The above distribution is well defined because f(-) is
1-Lipschitz. Now, let Q be the output distribution of
the algorithm Z. Let g(0) = E o[y — 6|]. Then the
following is easy to see

Vg(@) Ey~9[1y<9] Ey

_(VA0) ~ (-])

Q[ y>9}
(1-

Vi)

= = V50,

where 1( is the indicator random variable. Since the
gradient of the function f(-) matches the gradient of
the median function at every 6, the two function can
differ by at most a constant. This completes the proof
of Lemma 7. u

Since the optimal solution does not change under a
translation by a scalar, we have the following as a direct
corollary of Lemma 7.

Corollary 8. For every I-Lipschitz loss function ( :
[0,1] x D — R, there is a randomized algorithm
Z : D — [0,1] (given by Lemma 7), such that for
every distribution P on D, the distribution Q on [0,1]
obtained by running Z on a single draw from P satisfies

Lp(0) = medg(0) forall 6 € [0,1], 4
where Lp(0) is the population risk Eqp[€(0,d)].

Theorem 6 and Corollary 8 now directly gives us the
following result:



Theorem 9. Let ¢ : [0,1] Xx D — R be a 1-Lipschitz
loss function such that {(,d) = 0 for all d € D. For
every distribution P on P, with probability 1 — ~y over
D ~ P" and f + 1D-GENERAL(D, (), where 1D-
GENERAL(+, ) is the algorithm presented in Figure 4,

we have
|i-s]_ <0 (10g<52n>6 ﬁ(e%/v)) |

and Lp(0) is the population risk Ep.p(¢(0,D)). In
particular, to achieve error o with probability 1 —y, the
algorithm requires sample size n = O(log(1/v)/e%a?).

The above theorem basically shows that we can
uniformly approximate any 1-Lipschitz convex function
defined over R. This observation is crucial for our
algorithm in the high dimensional case.

Since an optimization problem is invariant under an
affine transformation, without any loss of generality, we
can assume that £(0?,d) = 0 in the high dimensional
case. Our main result of this section is as follows.

Theorem 10. Let C C RP be contained in the unit
ball, and let ¢ : C x D — R be a I-Lipschitz loss
Sunction such that £(0P,d) = 0 for all d € D. For every
distribution P on D, with probability 1 — v over D ~
P" and Oy, < HIGHD-GENERAL(D, ¢) for HIGHD-
GENERAL(+, -) presented in Figure 3, we have
1

/Plog®(e%n) 10g2(1/7)>

e2n

errp(Opiv) < O <

In particular, to achieve error o with probability 1 — -,
the algorithm requires sample size n = Q(gzé%)
Proof: Let us define the function fas follows. On

input 6, we perform two steps to compute the value of
f(6). We first find a point §’ and the direction u; such
that ¢’ is parallel to u; and ¢’ is closest to # in Euclidean
distance. We then compute the function ff(e' ).

Let v/ = ~/k. Fix a j € [k]. From Theorem 6, we
have with probability 1 —+’ for all 6 on a (-net defined
on the line parallel to the line u;,

log(e?n/k) [klog(e2n/ky")
€ n

1F7(0) — Lp(8)| = O (

This implies that, with probability 1 — v over the
random coins of the algorithm and the local randomizer
of 1D-GENERAL,

If = Lplle = O
n

<log(62n/k) klog(e?n/~)
€

) |
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Input. A dataset D = (di,--- ,d,) € D" such that d;
is chosen i.i.d. from the distribution P, and a loss function
£ :CxD — R, where C is a convex set and £ is 1-Lipschitz
function.

Preprocessing step. The algorithm chooses k ran-
dom directions, uj,---,ug. Then it defines k sets
as follows: For j € [k], define the set S; =
{G=D |2, .73 —1&. If j = k, then S; =

S;u{ile],-,n}
User side computation. Every user i s.t. {i € S;} invokes
1D-GENERAL on its side with input (d;, u;) to send 7; to
the server. N
Server side computation.: On receiving 7; from all user
i € [n], the server performs the following steps:
1) For 1 < j <k, invokes its end of the 1D-GENERAL
algorithm (Figure 4) with {7{} to get f7.
ies,)
2) Compute 0; := argming, f’ and then compute
Opriv := argmin, 17(6,).
Output. The server outputs Gpriy .

Figure 5. Private Non-interactive Optimization (HIGHD-GENERAL)

As before, when If—Lp|loe < . the minimizer Oy,
of f satisfies errp (Gpriv) < @, so bounding the value of
« suffices to approximately compute Lp.

In order to complete the proof we need to find
the value of k. Let us denote by 6* the true minima
of Lp(-). From here on, we drop the subscript P
when clear from the context. Let BP(6*, «) be the
p-dimensional ball of radius a (to be chosen later)
centered at #*. Now in order to complete the proof, we
need the size of £ such that there is at least one line u*
that intersects BP(0*, ). From the Lipschitz property,
L(O) — L(6*) < ||0 — 0%[]2 < aif |0 — 6%|]2 < . Let
Q; be the spherical cap* formed by a line u; picked by
the algorithm. Let S(X) denote the surface area of the
convex body X. Let Good be the event that the line u;
intersects the ball B, (0", «). Using [11, Lemma 2.35],
we have Pr[Good] = S(Q;)/S(C).We first prove the
following claim.

Claim 11. Ler Good,C, Q; be as defined above. Let «
be the contact angle® of the spherical cap. If o is small,
then

Pr[Good] > \/?psmp—l(a) > \/g <5§>p1-

4A spherical cap is the region of a sphere which lies above (or
below) a given plane [5]. In this section, the spherical cap Q; is
defined by the plane whose normal is the line u; and is the region
of the sphere which does not include the center of the sphere.

5The angle between the normal to the sphere at the bottom of the
cap and the base plane is called the contact angle.



Proof: Using the sine rule, we have « cos(a/2) =
sina Using the fact that sin®a + cos?>a = 1 and

cosa = 2cos?(a/2) — 1, rearranging the expression

gives us
« /1 —cos?a
— = — =V1- . 5
V2 1+ cosa cose )
In particular, this implies that cosa = 1 — %2

Therefore,

2
Pr[Good] > 4/ — sin?(a)
P
Sy 2\ VD)

_ F2<1_<1_a)>

™ 2

/2
> =

g

This completes the proof of Claim 11.

k 0(2(p 1)/2108(1/’)’) \/ﬁ)

then Claim 11 implies that there ex1sts an j € [k| such
that, with probability 1 — -, u; intersects B,(6*, c).
Substituting this value of & in equation (5), we get

1F - Lol =0 [ 80 \/log%s?n)\/pw—?
9

noP~1

aP~1

2(p—1)/2"

If we set

1/(p+1)
Setting a = O <(£10g3(€2n) 10g2(1/7)) ’ >’

we get ||[f — Lp|lo < . This completes the proof
of Theorem 10. u

In particular, to achieve a given error «, the theorem
states that the algorithm HIGHD-GENERAL requires
sample complexity n = Q(W) for a constant ¢ > 0
(roughly 2).

III. ROUND COMPLEXITY OF ADAPTIVE
ALGORITHMS USING NEIGHBORHOOD ORACLES

In this section, we show that, for a natural class of
algorithms, the exponential dependence on the dimen-
sion is essential. We first define the basic model and
then state our result. We assume that an algorithm has
an access to a special kind of oracle which we call
a neighborhood-based oracle and can make queries in
batches, where queries in a particular batch may depend
on the queries and response from previous batches.

Neighborhood-based oracles. We assume that the al-
gorithm has access to an oracle Op(-) for a convex
function F': C — [0, 1], where C C R” is a convex set
over which the function is defined. We say the oracle is
neighborhood-based (also called local, see the footnote
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on page 3) if, given 6 € C, the oracle outputs a value
that depends on the function F'(-) and the infinitesimal
neighborhood of the query point 6. For example, one
such query can be to compute the h-th order gradient,
V" F(6), at the point 6.

Query model. We assume that the algorithm is random-
ized and can make at most g queries in 1" batches, where
batch-: consists of g; queries such that ZiTzl ¢ = q.
We call any such algorithms that makes at most ¢
queries in T-batches a (q, T')-adaptive algorithm if, for
all 1 <4 < T — 1, the queries in the (i 4+ 1)-th batch
depends only on the queries made and the responses
received during the first ¢ batches. When 7' = 1, we
call such algorithm a g-nonadaptive algorithm. Note
that our query model does not assume the queries made
in a particular batch are independent, i.e., queries in a
single batch may have non-trivial correlation.

Our first claim shows that there exists a distribution
over convex function defined on a convex set C C RP,
such that for a function F' chosen from this distribution,
any g-nonadaptive algorithm can outputs a #* such that
F(0*) —mingee F(0) < /21 with probability at most
qaP. That is, to get a constant success probability, any
non-adaptive algorithm has to make number of queries
exponential in the dimension of the underlying convex
set. More precisely, we show the following.

Theorem 12. Ler BP(0P, 1) denote a unit ball centered
around the origin. There exists a distribution F of
convex functions from BP(0P, 1) to [0, 1] such that, for
F ~ F, the following holds:

1) Let Op(-) be a neighborhood based oracle for F
as defined above. Then the output 0* of any q-
nonadaptive and randomized algorithm, with ora-
cle access to Op(-), satisfies

min

Pr HF(H ) - 6cBP(0r,1)

F(G)‘ < a/21] < qaP.

2) There exists a (poly(log(1/«)),2)-adaptive algo-
rithm that can compute 0* with probability at least
2/3, such that ‘F(G*) — Mingegr(or,1) F(G)’ <a.

Remark 1. We first note the implication of this result in
the model of local-differential privacy. Theorem 12 rules
out any nonadaptive algorithms, including non-private
algorithms, that just uses gradient information. This in
particular implies that there exists a convex function
for which no local-differentially private algorithm, with
access to neighborhood oracle, can output a Oy, such
that errp(Opriv) < « with high probability. In other
words, it shows that adaptivity is necessary for gradient



based methods to achieve polynomial dependence on the
dimension.

The idea behind of our proof is as follows. Recall
that we need to construct a distribution of functions
F such that a function sampled from F is hard to
optimized using only non-adaptive queries. We define
a distribution F that satisfies the following properties:
(1) the minimum of any function sampled from F lies
in a uniformly at random chosen p-dimensional ball B
of radius «, (ii) any algorithm that makes neighborhood
queries does not learn anything about the optimum point
unless it queries a point inside the ball 3, and (iii) if an
algorithm queries a point inside the ball, it learns the
optimum value. Once we have such a distribution of
function, we are basically done because the probability
with which any query point is a point inside a small
p-dimensional ball depends on the volume of B and the
volume of B decays exponentially with p.

We now return to proving Theorem 12.

Proof of Theorem 12: Let C := {c1, - ,cn}
be the centers of N balls that forms an a-packing of
BP(0P,1). That is,

Vi € [N] and 0 such that ||0 — c;|l2 < o, 0 € B(0”,1)
Vi #j S [N], ||Cz 7CjH2 Z 2a.

Pick a point ¢ € C uniformly at random. Pick two points
¢ € B,(0P,1) and ¢ € B,(07,1) such that a/6 <
le—€l2 < /3, a/6 <|[le—¢2 < o/3, and [|c—¢[|y >
2a/3. Define the following functions:

Fy(0) := max{||t9 — |2, 1“0 —¢ll2+ 1}
3 3
1
)
The function F' is chosen by flipping a uniform coin
b and setting F'(0) := Fy(0). Since all three functions
f, fo, and f1 are convex function and point-wise max-
imum of two convex functions is a convex function,
both Fy and F} are convex functions. Similarly, it is
easy to verify that the function F'(f) is 1-Lipschitz.
Moreover, VF(0) = 1 for all 0 € B”(07,1)\B(c, «)
and VF(6) = 1/3 for all § € B(c, a).

We first enumerate some key properties of F(-). The
same properties holds for Fy(-) as well. Let 6* :=
argminge gy (¢ o) £'(0). First note that F'(€) = Fp(e)
if b = 0. That is the minimum of the function F' is
0* = ¢ when b = 0. Similarly, §* = ¢ when b = 1.

We fix a notation that we use very often in this proof.
For a function G, let

1 -
Fi(0) := maX{HH —cl|2, gHG —cll2+

disc(G;0) := |G(0) — G(0)|.

min
0eBr(or,1)
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When b 0, for all # € BP(0P,1) such that
disc(Fp;0) < a/21, we have ||§ — ¢||2 < /7. This is
because of the construction of f; and that the minimum
of Fy occurs at @ = ¢. That is, for all such 6,

o= 0llo > fle =&l — 0 =&l > 5 = 5 >0
- I . 200 « «
&= 0lle > 6 &llz — 6 -l > 5~ 5> 2

Moreover, since ||0 —¢||2 < a/7, we have |0 —c||2 <
a/3 4+ a7 < a. Therefore, all 6 such that disc(Fp;0),
we have 0 € BP(c,«). Similarly, when b = 1, for all
¢ € BP(0P,1) such that disc(Fy;60) < «/21, we have
¢ € BP(c,a), |lc = (|2 > 0, and [[¢ — 0|2 > a/2.
The second and higher order derivative of the func-
tion F is identically zero and the VF(¢) = 1 for
all & € BP(0P,1)\BP(c,«) and VF = 1/3 for all
0 € BP(c, ).

This implies that in order to output whether 8* = ¢ or
0* = ¢, at least one of the queries of any g-nonadaptive
algorithm has to be a point inside the ball B?(c, «).
Now fix a query :. Since the ratio of the volume of
ball BP(c,a) to the volume of BP(0P,1) is aP, the
probability that the query ¢ is a point inside the ball
is a”. By a union bound, the probability that any query
lands in the ball is at most qa®, as desired.

To prove the second part of the claim, we show that
there is an efficient adaptive algorithm Adaptive that
outputs 6* such that disc(F'; 6*) < «. Adaptive makes
two batches of queries:

1) In the first batch, Adaptive randomly picks a point
0 € BP(0P,1) and queries for the gradient VF(0).

2) Let g be the direction of the gradient returned.
In the second batch, Adaptive randomly picks
poly(log(1/a)) points in BP(0P, 1) along the di-
rection of g and makes gradient queries at all these
points in the second round.

By Chernoff bound, with probability at least 2/3, a
query in the second batch is a point that lies in
BP(c, «). This allows the algorithm to output #* such
that disc(F'; 6*) < a. This completes the proof. [ |

In the view of Theorem 12, a natural question arises
is whether, is it always possible to output a 6* using
constant round of adaptivity and neighborhood oracles
for a function F' sampled from any arbitrary distribution
F of functions defined over a convex set C, such that
disc(F, 0*) < a? Our next result shows that this is not
true in general. That is, there exists a distribution of
functions from BP(0?,1) to [0, 1], such that, for F(-)
sampled from that distribution, no (poly(p), O(1))-
adaptive (and randomized) algorithm with access to
Op can output a 0* such that disc(F,0*) < « with



a constant probability. More formally, we have the
following theorem.

Theorem 13. Ler B (07, 1) denotes a unit ball centered
around the origin. There exists a distribution F of
convex functions from a unit ball BP(0P,1) to [0,1]
such that, for F' ~ F, the following holds. Let Op(-) be
a neighborhood based oracle for F as defined above.
For every o > 0, there exists a T = T(a), with
T(a) = O(log(1l/a), such that the output 0* of any
(¢, T)-adaptive and randomized algorithm with oracle
access to Op(-), satisfies

(T +1)g277
1—3-»

= BP(07,1) and ry = 1. Recursively
, T}, define the

Pr HF(@*) —  min

F(t‘))‘ < a] <
0eBr(0r,1)

Proof: Let By
for all level of recursion, i = {1,---
following:

1) Define an packing V; of the ball B;_
of radius r; := 1 (%)1_1.

2) Pick a random ball from the packing V; with
center c(¥). Set this ball as B; for the next level
of recursion.

3) Randomly pick cé ), C1 € B; such that (i) balls of
radius r; /6 with centers c(()) and cg " lies in B; are

disjoint, (ii) n/12 < ||c(z )H llc® — cll )||2 <
r;/6 and (iii) ||c30 cg |2 > 7:/3.

4) If all the conditions in step 3 are not satisfied, go
back to step 2 and repeat.

1 with balls

We define two functions at every level of the recur-
sion as follows:

i—1 j
0= (1o (24 (2

i i—1 j
(i) . 4 ) 1 Ti 4
0= (3) o= cla+ 3+3;<7)

Set f(0) = |0 — cM||o. Now pick T random bits
b1, -+ ,br and set the function as follows:

. T
ro = {10, {100} ) ©
Claim 14. The function F(-) is convex.

Proof: First note that the two functions defined in
every levels of recursion are convex. Further, f(-) is
convex. Since point-wise maximum of convex functions
is convex, the claim follows. [ |

We now return to the proof of Theorem 13. Without
loss of generality, let us assume that all the random
bits by,--- ,bp are 0. We can make this assumption

because the functions at the same level sets are defined
analogously. We first prove the following structural
property of our function. The claim basically says that
in a small ball around the points chosen in step 3 above
in any level of recursion, F'(-) is defined by only the
functions at the lower level of recursion.

Claim 15. Let i be any index in [T]. Then for every
0 in the ball of radius r;11 = %(%) around c()

F(0) = maxi<y<r { £ (0)}.

Proof: We prove the claim by induction.
Base case. When i = 1, then we have for all § € B,
f0) = 0 — cWV|y € [1/12,5/18]. However, by
construction, f{"(9) := 2116 — col)||2—|— €[1/3, 4/9]

Therefore, for all 6 € By, F(0) = maxi<j<r {fo}

This completes the base case.
Inductive case. Let us assume that for every 0
in the ball of radius r;4; around c”, F(60)

j=1

max;< ;<7 {féj)(ﬁ)}. To prove the claim, we need

to prove that, for 6 € B;yo around C(H_l), F9) =
maX;<;<T { fo ( )} From the induction hypothesis

we know that F(0) = max;<j<r {fg(@)} in the ball
B;. Since B;1o C B;;1 by construction, we need to

. , T
show that f()(9) < max{fé(@)} . Note that
) , j=it1
fo (¢) and f(H_l)( 0) grows linearly as the distance
of the point # from cé) with slope (7)2 and ( )Hl

7
respectlvely. Therefore, if we prove that f, (lH)( 0) >

f(8 ) at the boundary of the ball B;;5 and at

i+1) (i+1)
0

, we are done. At 0 = ¢ , we have

i i—1 j
Dgy< (Y i Lo 4
fo()—(7> 6 3T 32\7
Jj=1
1 Tli 4j (i+1)
<4t ) < 0).
_3+3J_1(7> </fo (0)

For 6 at the boundary of the ball 5,14, we have

i i—1 j
() B 4 () 1 T 4
fo (0) = (7) 6 — cq |+3+3Z<7)
< (4)i||c‘”” il + () 16670
=\7 0
T ! J
5 3Z< )
Jj=1

4 T 4 (i+1)
<(Z) 2 = _
< (7) : +(7) e+ g, =

1 o).



This completes the proof that for every 6 in the ball of
radius 7,1 around cg”l), F(0) = max{ (J)(Q)}
and Claim 15 follows. ]

One of the main corollaries of Claim 15 is that céT) =
argminge gy g 1) £'(0). Another direct consequence of
this structural theorem is that F'(#) is 1-Lipschitz.

Now suppose 6 € (0P, 1) is such that disc(F’; 0) <

Jj=t

% (55 )T -We l;now that F(0) = féT)(G) in the ball of
radius 3 ({g) . Since CéT) = afgmineesp(()p 1) F(G),
we know that |6 — CST)HQ < 114 (15) ||

( )

(%) around c;

C(()T)Hz. Since balls of radius % (75 7

18

ch) are disjoint, this implies that any such @ is closer
to c(()T) In other words, for any algorithm to output a
6 such that disc(F;0) < (1—78)T,

where the minimizer is c; ’ or cg ). That is, any such
algorithm has to query for a point inside the ball B in
at least one of the 7" batches.

Now the adversary can compute the minimizer in less
than 7" rounds if, in the batch-j query, one of its queries
is a point inside B; for ¢« > j. Let Fj;; be such an
event. Then for i > 1, Pr[E; ;| = g;vol(B;)/vol(B;) <
g ()77 Therefore, the probability with which the
adversary succeeds in computing a minimizer in less

than 7" rounds is
1 Tp Tp
<o((3) "+ (R))

T
r \/ El
i=1

Setting T := O(log(1/a)) completes the proof.

and

it has to distinguish

7
18

IV. NOISY-GRADIENT BASED METHODS

In this section we give noisy versions of the gradient
computation based algorithms to solve convex opti-
mization. Before we present our noisy gradient based
method, we first provide an exposition of an algorithm
(in Section IV-A), which we will use heavily in this and
later sections, for estimating the gradient (and also the
loss) of the population risk L(0) = Egwp [£(0;d)] at
any 6.

A. Locally Differentially Private (LDP) Function and
Gradient Oracles

Gradient oracle: For a given data set D
{dy, -+ ,d,} drawn ii.d. from the population distri-
bution P, the objective is to estimate the gradient
of L(0) = Eu4up [¢(0;d)] at a given 6, using local
reports from n/T samples from D. Algorithm NOISY-
GRADIENT-ORACLE is expected to be called to estimate
the gradient at 7" different 6’s (61, - - ,07) using T sets
of n/T disjoint samples.
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Input. Current partition number: ¢, number of par-
titions: 7', current model estimate: Ocyrent, privacy
parameter: ¢, value flag: flag € {T, F}, fixed model:
Oo. Let D = {dy,---,d,} ~ P™ be the data set,

L(6) = Eqp [€(0;d)] is a 1-Lipschitz function.
Algorithm. Perform the following stepS'
1) Define &, = {(t—1)[2 |2 —1} If
t_T thenSt StU t

2) The server sends Ocyrrent to all the users. Ev-
ery user ¢ s.t. {i € S;} does the following:
Compute z; := R (VI (Ocurrent; di)) and z; =

Re(€(Ocurrent; di)—L£(0p; d;)), where R.(+) is the
randomizer defined in Appendix A
3) Compute Lossnisy () = E z; and
LESt
Gradneisy (t) = Si >z
¢ 1E€S

4) If flag=F, return Grad,os, () else return
(Gradnoisy (t), Lossnoisy (1)).

Locally Noisy Gradient Oracle (NOISY-GRADIENT-

Figure 6.
ORACLE)

Privacy guarantee. The following theorem is immedi-
ate from the privacy result of Duchi et al. [14].

Theorem 16. NOISY-GRADIENT-ORACLE is e-LDP.

In particular, since differential privacy is preserved
under post-processing, all our algorithms in this section
are ¢-LDP. In the following, we state the following
utility guarantees for the algorithm NOISY-GRADIENT-
ORACLE. We will use both the unbiasedness and the
concentration properties below heavily in the later al-
gorithms (see Appendix A for a proof).

Theorem 17. Let D = {dy, -+ ,d,} be drawn i.id.
from the distribution P, and let L(0) = Eqp [£(0;d)).
Then for a fixed partition number t € [T] and a Ocyrrent
(independent of the data samples in t), the following
are true for Algorithm NOISY-GRADIENT-ORACLE.

1) Unbiasedness: E [Gradnoisy (t)] = VL(Ocurrent)-
2) Bounded variance:
E [||Gradnoisy (t) — VL(ecur,em)H;} = O (Tp/ne?).
3) Tight concentration: Let x be any vector
(with ||x||, < 1) independent of the sample
set Sy and the gaussian noise added in Fig-

ure 6. Then with probability at least 1 — 7,
[{(Gradpoisy (t),%) — (VL (Ocurrent), X)| is bounded

by O ( Tlog(l/ﬂy)/m??)



Function oracle: We have the following bound on
the estimation of the loss (population risk) at a given
Ocurrent- The proof of this theorem is analogous to
Theorem 17.

Theorem 18. Let 0y be a fixed model in the con-
vex set C. Let x be any vector (with |x||, < 1)
independent of the Gaussian noise added in Figure
6. Using the notation from Theorem 17, for Algo-
rithm NOISY-GRADIENT-ORACLE with probability at
least 1 — 7, |LoSSnoisy (t) — (L(Bcurrent) — L(00))]

o) («/Tlog(l/fy)/nEZ) .
B. Noisy Cutting Plane Method

In this section we provide the details of the main
cutting plane method (Figure 7) The algorithm for noisy
cutting plane method is a simple variation of the cutting
plane method of Levin [30] and Newman [35]. However,
we need to be careful due to the effect of the noise at
every iteration. To better understand the algorithm, we
first review the basic cutting plane method. In a cutting
plane method, we assume there is an oracle which, in
every iteration ¢ € [T of the first stage, either returns a
point ¢, in the convex set C, with sufficiently small error,
or a hyperplane that divides the solution space roughly
by half. The idea is that after 7" iterations, there will be
at least one iteration t* € [T such that errp(f) < a,
where « is the desired accuracy. Finally, the output is an
0 € {61, ,07} such that it minimizes the loss L(0).

In the differentially private variant of the cutting-
plane method (Algorithm 7 (PRIVATE-COG)), instead
of using the exact gradient (or the function oracle
for the loss L(#)), we use their differentially private
variant from Section IV-A. The e-local differential
privacy of PRIVATE-COG follows immediately from
Theorem 16 and that differential privacy is preserved
under post-processing. In Theorem 19 we provide the
utility guarantee. (See Appendix B-B for the proof.)

Theorem 19. Let C be a bounded convex set such that
(ICll2 < 1. Let D = {d1,--- ,dy} be drawn i.id. from
the distribution P. Let L(0) = Eqp [£(0; d)]. Then with
probability 1 — ~ over the coin tosses of NOISY-COG,

errp (Bpi) = O (TI(T/7)/ (ne?) + (1 - 1/e)"/7) .

Remark 2. The algorithm can be made efficient by
using the randomized algorithm of Bertsimas and Vem-
pala [9] to compute the center of gravity.

C. Noisy Gradient Descent

In this section we focus on understanding the role of
interaction in the convergence rate of gradient descent
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Input. Given a convex set C such that ||Cl|2 < 1.
Let D ={dy,--- ,d,} ~ P" be the data set, L(0) =
Eqp [¢(0;d)] is a 1-Lipschitz function.

Algorithm. The server does the following.
1) Set Cp := C. Pick a point 6, € C.
2) fort=1,---,T,
a) Compute ¢; < COG(C;—1) and estimate
(VLpiv(01), Loriv(60:)) <—NOISY-GRADIENT-
ORACLE (t,T,0;,e,T,00).

b) The server updates the convex
set as follows: C; — Ci—1 N
{0 € RP : (VLpi(60:),0 — 0;) <0}
Output. The server outputs the following.
Opriv := argmin  {Lpv(04)} (7)
0,€{01, .01}

Figure 7. A Noisy Cutting Plane Method (NOISY-COG)

Input. Given a convex set C such that ||Cl]s < 1.
Let D = {di, - ,d,} ~ P be the data set, L(0) =
Eqp [¢(0;d)] is a 1-Lipschitz function.
Algorithm. The server defines a step size 7; and
follows the following steps.
1) Pick a point 6, € C.
2)y fort=1,--- T,
a) Estimate V Ly (0,)=NOISY-GRADIENT-
ORACLE(t, T, 04,2, F).
b) Computes 0,11 = II¢ (0r — 7V Lpriv (6:))
Output. 0,5, 1= 01

Figure 8. Local and Noisy Gradient Descent Algorithm (NOISY-
GRADIENT-DESCENT)

style algorithms in the local model with access to noisy
gradient oracle (NOISY-GRADIENT-DESCENT (Figure
8)). We analyze the gradient descent algorithm when
the convex function has certain properties, such as Lip-
schitz property, smoothness and strong convexity. While
noisy gradient descent has been extensively studied
in [7, 14, 29] for optimality of excess empirical risk
(both in the local and the central model), we focus on
the interaction complexity of noisy gradient descent to
achieve those errors. The rounds of interaction differ
significantly under various assumptions on the loss
function £(-, d). As a result, we state them categorically
below. Moreover, in each of the setting, we get e-
LDP algorithm by using the noisy gradient oracle from
Section IV-A.

The fact that NOISY-GRADIENT-DESCENT is e-LDP



follows immediately from Theorem 16. In the following
we state the interaction round complexity of NOISY-
GRADIENT-DESCENT. While the first three results in
Theorem 20 follow immediately from prior works ([40]
and [29] respectively) in combination with Theorem 16,
the bound for smooth and strongly convex functions
require a new analysis, which we state in Appendix B-C.

Theorem 20 (Utility guarantees for noisy gradient
descent). Let C be a bounded convex set such that
IClla < 1. Let D = {dy,---,dn} be drawn i.id.
from the distribution P, and let L(0) = Eqp [£(0;d)].
Let ((-;-) be 1-Lipschitz in the first parameter. The
following are true for the NOISY-GRADIENT-DESCENT
algorithm.

1) If learning rate 1 = %/, then Elerrp(Opiv)] =

T
@) <logT (1/\/?—1— \/p/n52)> .
2) If () is A-strongly convex and the learn-
ing rate n ;. then Elerrp(Opv)]
1) (M + plog(T)

AT ne2A

3) If () is [B-smooth and the learning rate
n = Ait, then Nestrov’s accelerated vari-
ant of NOISY-GRADIENT-DESCENT [29] satisfies

2 2
E [errp ()] = O (7= + ELA8T

4) If L(-;-) is B-smooth and A-strongly convex, then

with learning rate n = % we have

E [errp(Opiv)] = O (ge_AT/ﬁ + fl’—;) .

Remark 3. For 1 -Li[lschitz convex functions, one can
achieve an error of O(\/p/n) in T = \/n/p rounds
of interaction. Variants of this result has appeared in
[7, 14, 43]. Qnder A-strong convexity, one can achieve
an error of O(p/n) in T = n/p rounds of interaction.
Variants of this result has appeared in [7, 43]. Under
B-smoothness, one can achieve an error of O(y/p/n)
inT = (n/p)"/* rounds of interaction. The algorithm is
a variant of the classic Nestrov’s accelerated gradient
descent (see [29] for a complete exposition.) Further,
if we assume A-strong convexity and [3-smoothness
along with the default 1-Lipschitzness property, then one

log(n)

can show that with T = ~—» NOISY-GRADIENT-
DESCENT algorithm achieves an error of O(p/n).

All the number of rounds of interaction above are
tight [33, 34], and equals that of the non-private coun-
terparts. Notice that Theorem 20 in essence implies
that NOISY-GRADIENT-DESCENT algorithm reaches
the “error level” in computing the gradient of the loss
function at the same rate as the non-private counterpart.
The main takeaway from this section is that differen-
tially private (noisy) gradient descent can be shown
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to converge to the optimal error level, with the same
asymptotic number of interactions as the non-private
variant.

V. CONCLUSIONS

This paper looks at how the structure of an optimiza-
tion problem affects the amount of interaction necessary
for a locally-private algorithm to arrive at an accurate
answer. The starting observation for our work is that
the parallelizability of local protocol queries matters—
protocols that require multiple rounds of interaction
are slower and harder to engineer. The ideal is a
noninteractive protocol, in which all queries are asked
in parallel. However, protocols with just a few rounds
of interaction (that is, batches of queries) can be useful.

There are accurate, noninteractive protocols for some
tasks, such as computing sums or finding heavy hitters.
But current protocols for convex optimization use as
many rounds of interaction as there are participants in
the protocol. We focus on convex optimization since it
is a fundamental tool in statistics and machine learning.

We find that the structure of an optimization problem
affects not only the accuracy that can be achieved by
differentially private protocols, but also the amount of
interaction necessary to get that accuracy.

Our paper provides both good and bad news for the
prospective implementer of locally private optimization.
On the positive side, we draw three main conclusions:

(i) For very low-dimensional convex optimization,
there are reasonable noninteractive protocols. These
protocols have nearly the same theoretical guarantees
as the best interactive protocols when the dimension
is constant. Evaluating their effectiveness in practice—
and especially understanding the range of dimensions at
which they offer an attractive tradeoff—requires further
study.

(if) Sometimes problem structure can be exploited
to find good noninteractive protocols. We illustrate this
with a noninteractive algorithm for linear regression that
has the same asymptotic error as the best interactive
one, even in high dimensions (see, Appendix C). This
exploits the fact that the quadratic loss function itself
has a compact description.

(iii) A few rounds of interaction help enormously. The
same ideas that go into designing protocols with many
rounds of interaction can be adapted to get protocols
with optimal error and just a few rounds of interaction.
Specifically, an optimization algorithm is “first-order” if
it gets information only by approximating the gradient
or the loss function at a small number of “query” points.
First-order optimization methods that make few queries
and handle noise gracefully can be turned into protocols



that use few rounds of interaction. We demonstrate this
for gradient descent and the cutting plane method.

The best choice of algorithm depends on the tradeoff
between various aspects of the problem structure (di-
mension, smoothness, strong convexity); see Figure 2.
Interestingly, the smoothness of a problem does not af-
fect the error achievable by the best differentially private
algorithm, but it can drastically reduce interaction.

Unfortunately, for general convex optimization (that
is, without assuming both smoothness and strong con-
vexity), our protocols still require a number of rounds
of interaction that grows polynomially with the problem
dimension.

On the negative side, we show:

(iv) Known algorithmic design techniques for
local private learning cannot provide noninterac-
tive protocols—or even ones with few rounds of
interaction—for general convex optimization in high
dimensions. Specifically, any first-order optimization
algorithm must either have “many” batches of queries,
or make exponentially-many queries (in the dimension
p) in order to have nontrivial accuracy. Here “many”
depends on the desired accuracy—the lower bound is
about log(1/«) for desired error «. That means that
every nonadaptive first-order algorithm (one that asks
all its queries in one batch) must make exponentially
many queries to be useful. Consequently, very different
techniques are needed for noninteractive, general pur-
pose local optimization.

Both our positive and negative results highlight the
role of several key structural properties: (a) The di-
mension p, that is the number of real parameters in
the vectors # over which we aim to minimize a loss
function. (b) The variability of the loss function we
aim to minimize; measures of variability include the
“Lipschitz constant”—an upper bound on the amount
that any one individual can change the gradient of the
loss function—and the smoothness, which is an upper
bound on the rate at which the gradient changes as 6
varies. For example, the loss function for support vector
machines has low Lipschitiz constant but is not smooth
(the gradient changes abruptly). (c) The strong convexity
of the loss function. A strongly convex function is
bounded below by a quadratic function at every point
and, in particular, has a well-defined minimum. (d) The
shape and size of the constraint set C in which 6 resides.
We focus here on the role of the diameter of C, though
other work on (central) differential privacy suggests
that properties (the Gaussian width, and the number of
exptreme points) [43] also play a role.

Perhaps the simplest conclusion is that these struc-
tural properties are important, and a prospective imple-
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menter’s first task is to extract as much structure as
possible from the specific problem and include these
extra properties explicitly in the problem formulation.

The importance and difficulty of evaluation. This
paper focuses on the analytical evaluation of several
algorithms and advances some basic design principles.
One of the lessons of our work is that there is currently
no single all-purpose algorithm for local private learn-
ing, and so the choice of the best algorithm is likely to
depend on the problem and the data at hand. That high-
lights the need for further algorithmic research—what
new techniques can we bring to bear? can we bypass
the lower bounds in this paper by using algorithms that
access the loss function differently?—as well as careful,
application-specific empirical evaluation. We hope this
study informs such efforts, both by suggesting specific
algorithms and highlighting structural properties that
play an important role.
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APPENDIX A.
LOCAL RANDOMIZER FOR e-LDP

Randomizer of Duchi et al. [14]. On input x € RP, the
randomizer R.(x) does the following. It first sets X =



bx/||x||2, where b € {—1, 1} Bernoulli random variable
Ber(1/2 + ||x||/2). We then sample T" ~ Ber(e® /(e +
1)) and outputs R.(x), where

Re(x) := {

Let y be any unit vector independent of the input
to the randomizer x. An alternate way to see the
randomizer R.(x) is that the output of R.(-) is such
that (y, R=(x)) = (¥, ce,aBuxu) for ¢, = O(\/ﬁ/g)
and B,y is £1 random variable chosen such that
E[R.(x)] = x. In the following we prove Theorem
17, the utility guarantee we desire from our NOISY-
GRADIENT-ORACLE.

Proof of Theorem 17: Duchi et al. [14, Section
V.C] proved that R.(x) is an unbiased estimator, i.e.,
E [Gradnoisy ()] = VL(Ocyrrent); therefore, the first part
follows. In order to show the second and the third part
of Theorem 17 , we show that the randomizer has sub-
gaussian tail (see Definition 21 and Theorem 22 below).

Uni(u e R? : (u
Uni(u e R : (u

,X) > 0)

,X) <0)

ifT =1
ifT=0"

Definition 21. A real-valued random variable X is sub-
gaussian if it has the property that there is some ¢ > 0
such that for every t € R one has E[e!X] < ¢"t"/2,
Moreover, Var(X) = c2.

Theorem 22. Given a vector x € RP, the randomizer of
Duchi et al. [14] defined above is a subgaussian random
vector with variance O(p/&?).

Proof: In the following, we use the notation
Mx(t) = E[e!*] to denote the moment generat-
ing function of the random variable X. Let A,y =
(V, e ¢Buxu). In order to prove that the randomizer of
Duchi et al. [14] outputs a subgaussian random vector,
it suffices to prove that A y is subgaussian.

MAv,x(t> _ ]E[ tAvﬁx] _ ]E[etcs‘p(v,u) + e—t%y,,(v,u)]
—Mvu(cgpt)—ﬁ— ( cgpt)
) <2

_ t?p/e?
= My (ce pt = 2etP/E

Using Definition 21 completes the proof. [ |

For the second part, notice that, by definition, the
set S; (the current batch in Algorithm 6) has ©O(n/k)
entries and every user in the set S; randomizes its
output independently of the others. This observation,
along with with Theorem 22, allows us to bound the
variance of the estimator Gradneisy (¢) in (8) below. Here
we use the fact that ||V{(0;d)||, < 1 for for all § € C
and d € D (where C is the convex set over which the
optimization is performed, and D is the domain of the
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data entries).

E [ l1Gradnoisy (1) = VL (Beurent) 3| = (T/n)Var(R. (x)

=0 (Tp/ne?). (8)
To prove the third part of Theorem 17, we
provide a tail bound on the the inner product

(Gradnoisy (t),y) for any vector y s.t [y, < 1
and is independent of R.(x). Now, by standard tail

bound for sub-gaussian distribution [45], we have,
Pr L|<T\’, Tlog(l/'y)/&:?n)} > 1 -
~.This completes the proof of Theorem 17. [ |

APPENDIX B.
MISSING PROOFS

A. Proof of Claim 4

Proof: In the net-based argument, one would first
construct an «/2-net over the convex set of size m and
then find the minimum over each of these net points.
To make it local-differentially private, we need to use
the randomizer of Duchi et al. [14]. This would incur a

total population error, O (\/ %ﬁg(l/w + ?With

probability 1 — 4. In a p-dimensional space [0, 17
need to have m = O((2/a)P) net points. Setting this
value of m, we get the population error
o
—]. ©
2) €))

o ( \/ @ plog(2/a) log(1/2)

To minimize equation (9), we need aPt2e2n =
2P+1plog(2/a)log(1/7). In other words, the popu-

1/(p+2)
lation error is at most O (’”1%7(171/7)) In
other words, equation (1) implies that one need n =
Q (EZ%) to get errp (Opriv) < v m

B. Proof of Theorem 19

Proof: We first state the following claim. The
claims allows us to work with an easy to handle function

Claim 23. Ler 6" = argmingce L(0), and let M () :=
L(0)— L(0y), where 0y is as in the first step of Figure 7.
Then the following holds : (i) 0* = argmingce M(6),
(ii) V8 € C, L(0) — L(6*) = M (0) — M(6").

Proof: The first part of the claim follows from
the fact that L(0p) is a constant, and subtracting a
constant from the objective function does not change the
argument of the optimum value. The second part fol-
lows from the following straightforward computation:
M(0) — M(6*) = L(6) — L(6p) — L(6*) + L(6p).This
completes the proof of Claim 23. |



We will use the following result about non-private
cutting plane method.

Lemma 24. [10, Theorem 2.1] Let C and p be as
defined in Theorem 19. Let 6* = argming. L(6) and
Cy be as defined in Figure 7 for iteration t € [T]. Let
E be the event that 0* € C; for all iterations t < T.
Conditioned on the event E, there exists an iteration
7 € [T, such that M(0;) satisfies the following bound.

M(0,) - M(0*) <2(1—1/e)"/?.

We now analyze the algorithm presented in Figure 7.
Our first lemma states the condition when the optimal
point is not excluded by NoI1sY-CoG.

Lemma 25. Let §* = argmingce L(0). Let g =
VLpyiv(0:) — VL)) for 0 < t < T. If for all T <
te[T), (g, 0 —0") > —a and M(0;) — M(0*) > «,
then 0* € C., where C is the convex set included after
T rounds.

Proof: Since the function M (-) is convex, we have
M(O) > M(0:) + (VM(6:),0 — 0;) for all § € C. This
implies that (VM (0;),0, — 0) > M (0;) — M(0)

Let o be a parameter that we will fix later.
Now, if M(6;) — M(0*) > «, then we have
(VM(6;),0, —0*) > M(0;) — M(6*) > «. This
further implies that (VM (6,),0" —0;) < —a. From
the description of NOISY-COG, we exclude all 6 € C
such that (VM (0;),0 — 0;) > (g,0 — 6;). Combining
these observations completes the proof of Lemma 25.

|

Lemma 26. Let 0* = argmingce M(6). Then with
probability 1 —+y over the coin tosses of PRIVATE-COG,
there exists a t € [T such that

M(00)~M(6") = O (V/Tlog(T/3)/ne® + (1 = 1/¢) 7 ).

Proof: From Theorem 17, for all ¢ € [T] we
have with probability at least 1 — ~, |(g, 0, — 6%)| =
Tlog(l/’y)/neZ) , where g = VL (6:) —
VL) for 0 < ¢t < T. If we pick «
Tlog(T/v)/ nez) , then taking union bound over

all the T rounds, Pr [Vt € [T], (g, 0" — 0;) < —a] < .
Lemma 26 now follows from Lemma 24 and 25. u
Lemma 26 and Theorem 18 gives Theorem 19. ®

C. Analysis for 1-Lipschitz, B-smooth and A-strongly
Convex Functions
In the following we provide the analysis of part (4)

from Theorem 20.
Proof of Theorem 20 (4): Let 0* = rglig L(0),

S
Dt = Ht—O* and Ziy1 = Gf—n(RE(VL(Gt))) Let gt —
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(VLpiv(0:) — VL(6;)) be the error in the estimation
in Algorithm PRIVATE-GRADIENT-ORACLE (Figure 6)
for t € [T]. First, by the Pythogorean theorem, we have,

[Deg1 — Dell3 = |1 Dell3 + |1 Desrlls — 2Dy, Dyyr).
(10)

Using the -smoothness and A-strong convexity, we
have the following:

L(0141) — L(0%) = L(0¢41) — L(6:) + L(0:) — L(0)
A
< (VL) D) + 2160 — 41~ S1D4B
1
= <E(9t —2Zi11) — 8,041 — 07)
B A .
+ §||9t+1 — 0I5 — 5||9t —0*[I3
1
= <5(9t + 0101 — 0111 —2441) — 81,0141 — 07)
B A .
+ §||9t+1 — 0413 — §||9t —0*||3

< (0 — 07,0001 — 07) — (&, 011 — 0F)

|~

1 3 A
- 5||Dt+1||g + §||9t+1 — 043 - §||Dt||g~
(11)
Let Wi4+1 = 975 - nVL(Ht) NOW,
E[(gt, 01 — 07)] = E[(g¢, Orr1 — He(wig1))]

+ E[{gt, e (wit1) — 07)]
E[(g:, 0111 — He(wig1))]
Ell|lgell2/0¢+1 — e (wes1)]l2]
Elllgell2/|ze+1 — wirr)ll2]- (12)

Substituting equation (10) and equation (12) in equa-
tion (11), and then using the bound on g; from Theorem
17, for all 1 <t <T, we get

2E[L(0111,d) — L(0", d)]

1 9 1 2
< (77 - A) (D] - (I Del)
+ (ﬁ - }7) E[|D; — Dyl + O (Tp/ (n?))

< (5 - 8) BUDIEI - TB0DuAI + O (T0/ (n2).
(13)

Since E[L(0;41) — L(6*)] > 0, equation (13) implies
that

E[||Di1][3] < (1 — nA)E[| D3] +n- O (Tp/ (”al))



Let ||6p — 0*|2 < 1, then using the above equations,

we get
1 — e AT Tpo?
—nAT .
BlIDrI) < s 40 (= ) -0 ()

<e T 4.0 (Tp/ (nsQ)) . (15)

Using the fact that the function is B—smooth ie.,
Elerrp (Opriv)] < gIE[HDTH%] and setting 7 = 3, and
we have Theorem 20. [ |

APPENDIX C.
CASE STUDY: LINEAR REGRESSION

In this section we concentrate on a specific problem
of linear regression in the LDP model. We give a
simple non-interactive algorithm that outputs an esti-
mate (Theorem 27). We show that the error guarantee
achieved by this algorithm is the best one can hope
for by showing a matching lower bound (Theorem 31).
Our algorithm satisfies a slightly weaker variant of
the privacy definition in Definition 1, called (e,0)-
approxmiate differential privacy [16], where the def-
inition of closeness in Definition 1 is modified to
Pr[Q(d) € E] < e Pr[Q(d") € E] + 4. Consider
o~1 /n“(l), where 7 is the number of data samples.

A. Local-Differentially Private Linear Regression

Let Xy,---,X,, € RP be row vectors and y € R”
be a column vector, where d; := (X;,y;) € RP*! is the
data of the user i and D := (dy,- - - ,d,) be the dataset.
We present this section in the terms of empirical risk.
Using standard results [39], this bound can be converted
to population risk with no difference in the asymptotic
bound. For linear regression, we know that the loss
function has the following closed form expression.

00; (Xiyy;)) = (v, — (X0, 0))%, (16)

- 1 & 1
L(6:D) = — > 4(0:;d;)) = —|y—X60|3. (17
(B:D) = 5 3 06idh) = 5y = X017
and the minimizer has the form #* =

argmingc. ||y — X6||3. We show that it is possible
to non-interactively compute a 6, in (e,d)-local-
differentially private manner. More precisely, we show
the following.

Theorem 27. Let C C RP be a bounded convex set
(IICll2 < 1) over which the linear regression problem is
defined. There is an efficient non-interactive algorithm
that solves linear regression problem, stated in equa-
tion (17), while preserving (g,0)-local differential pri-
vacy such that with probability at least 99/100 over the
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coin tosses of the algorithm,
0 (V/plog(1/8)/ (ne?) ) .

Proof: Note that ||y — X603 = ||y||3 — 2(X6,y) +
(X0,X0). Since the first term does not depend on 6,
this implies that

errp (Opriv) =

1
argmln —Hy X053 = argmln 5 <X9 X0) — 2(X4,y).

We maintain the following two quantities:

1) Noisy covariance: Z := XX + B, where B ~
N(0,2nlog(1/6)/e%)P*P; and
2) Noisy terms, z : ;) + b, where b ~

(O_yiXi
N(0,2nlog(1/5)/e2)t>P.
This can be achieved in the local model as follows:
every user computes Z; := XlTXz + B;, where B; ~
N(0,210g(1/8)/e?)P*P and z; := y,X; + b;, where
b; ~ N(0,2log(1/8)/e?)1*P. The user then sends
(Z;,z;) to the server. The server can now compute

= > ,Z; and z = ) z;. This results in the same
noisy covariance and noisy term as above because
X'X = 3" X/X; and the noise matrix By,---, B,
and the noise vector by, --- b, are independent.
Now let us define

Loy (65 D) := (||yH2—2Z (vX] +b,0))

% (0T (XX + B)0)

and let the minimizer of E,,,N(e

~

instead of f(-;D)
We can decompose

FrcA)m now on, we vAvrite L(-
and Lp,i\,(-)Ainstead of Lpriv (-
L(0piv) — L(6%) as following:

%w%<m L(Oprv) —
(

pnv 9*) + LPI’IV (9*)

D) be <9priv.
)
D).

Zpriv (Qpriv) + Zpriv (apriv)
L(9)

S L( prlv) - prlv(eprlv) + Lpr|v<9*) (9*)
200l = 0"l + 03, B — (67)TBY"
2n '
(18)
The first inequality follows from the fact that

EP,;V(GPH\,) — fp,;v(é?*) < 0 (since * is the minimizer)
and the second inequality follows from the fact that
o) < -l || 2. Let 8 = iy — 0*. We can further

decompose epanGpriv as follows.

0. B, = (0°) ' BO*

oriv +B'BO* + (") 'BB + 3'BS

19)



Now using equation (19) in equation (18), the bound
on the singular values of Gaussian matrices [38] and
that ||Cl]2 < 1, we get

o~ o * 1 *
L(Oprv) — L(67) < 5 (2|[bll2[|0prv — 67]|2)
1 * 12
+ % (Amax(B)”@priv -0 H2)
1 *
+ 5, (2Amaz(B)[[piv — 07 [2/[C]l2)

= 0(Vplog(1/8)/ (ne?)) .
This completes the proof ot Theorem 27.

B. Lower Bound on Linear Regression

In this section we prove that the error bound achieved
in Theorem 27 is optimal.

Minimax rates. We use the framework of minimax
rates introduced by Duchi et al. [14] to prove the lower
bound. Let S C [0,1]/P! denote the simplex with |D|
corners, each representing one of the possible datasets.
Let P € S be a probability distribution over the datasets
D. User ¢ data d; is assumed to be drawn i.i.d. using the
distribution P. For every user i, let R;(-) be the local
randomizer of the user ¢ which is used to generate the
report Z; = R;(d;) € Z. Each of these randomizers
are assumed to use independent random bits. Let Alg
be an algorithm that is used to estimate the distribution
P based on Zy,---,Z,. The minimax rate is defined
as follows:

MinMax := minmax E[||Alg(Z1,- -+, Zp) — P||oo]-
Alg P

Now that we have described our framework to prove
the lower bound, we sketch our proof. Our proof uses
idea in Bassily and Smith [6]. In order to use their idea,
we need to first introduce the notion of an ~y-degrading
channel. For any v € [0,1], an y-degrading channel
W7 :D — D is a randomized mapping that is defined
as follows: for every d € D,

W(d) :

(20)

d with probability ~y
0 otherwise

Let MinMax, be the minimax error resulting from the
scenario where each user ¢ € [n] with data d; € D
first applies d; to an independent copy W7 of an ~-
degrading channel, and then apply the output to its (£, 0)
local-differentially private algorithm R; that outputs Z;.
That is, MinMax., is the minimax error when R, (-) is
replaced by R;(W;(-)) for all i € [n]. We first prove
the following claim.

Claim 28. If MinMax > 0.01, then MinMax,, > 0.01vy
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Proof: Let WY = ~D. Then Eqow~[0(0;d)] =
YEapll(6;d)] > This completes the proof
of Claim 28. [ ]

We now construct a hard instance of input to any LDP
algorithm. Let #H be the p-dimensional hypercube that is
just contained inside B”. Consider a codeword which is
the subset of the coordinates of # and has distance p/8.
Using Gilbert-Varshamov bound [31], we know that the
size of the codeword is N > 2r/8 We pick N distri-
butions Dy, - ,Dy. Each of these distributions are a
point distribution such that y — (X,0) = 1 < 6
Our result follows from the following claims:

e
100~

Claim 29. Let 0y, be the output of an algorithm that
solves the linear regression problem. Then the mutual
information between Ou, and the distribution of the
data points is 1(0piv; D) < ne?y? where v is the
parameter for the degrading channel.

Proof: Using the chain rule of mutual information
and Duchi et al. [14], we have the following:

I(Oprv; d) < 1(Z1,- -+, Znjd) < 4(e° = 1)’ < 1670
The claim now follows from Bassily and Smith [6]. &
30. For S{/mo
{9 e B L(6;D) < 1/100}, where D~ D
then i, j,i # j, S} ;100 1S /109 = 0.

Claim let =

any D;,

Proof: Let ¢ and j be adjacent node on the hyper-
cube H. Let Q be the intersection (of the extension)
of the sets Si/wo and Si/loo. Let C be the center of
the ball BP. First note that the boundary of S} /100 and

S{ /100 A€ hyperplane whose normal intersects at C. Let
¢ be the angle made by the normal of the hyperplane
corresponding to Si /100 and the line passing through
C and Q. First of all, sin¢( = /1/32, and cos( =
\/31/32.

By symmetry, the line CQ cuts the line between node-
1 and node-j into half. Therefore, the length of CQ is

— 2 ___ > 1. This implies that Q lies outside B”. MW
104/31/32

e now complete the proof of the main result.

Theorem 31. Any s-local differential private algorithm
Jor linear regression incurs an error (/p/ne?).

Proof: By Fano’s inequality [48] and Claim 29,

i i 1(Opiv; D) 8cne?y?
Pr I:epriv ¢ 51/100] >1- lggN >1-— » .
Then Claim 30 gives us that MinMax >

1072 (1 — 8cne?+?/p) . For v O(y/72), we get
MinMax > 1/100. By Claim 28, we have the overall

error Q (y/-Z3). ]



