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We consider coding schemes for computationally bounded channels, which can introduce an arbitrary set of
errors as long as (a) the fraction of errors is bounded with high probability by a parameter p and (b) the
process that adds the errors can be described by a sufficiently “simple” circuit. Codes for such channel models
are attractive since, like codes for standard adversarial errors, they can handle channels whose true behavior
is unknown or varying over time.

For two classes of channels, we provide explicit, efficiently encodable/decodable codes of optimal rate where
only inefficiently decodable codes were previously known. In each case, we provide one encoder/decoder that
works for every channel in the class. The encoders are randomized, and probabilities are taken over the
(local, unknown to the decoder) coins of the encoder and those of the channel.
Unique decoding for additive errors: We give the first construction of a polynomial-time encod-

able/decodable code for additive (a.k.a. oblivious) channels that achieve the Shannon capacity 1 − H(p).
These are channels that add an arbitrary error vector e ∈ {0, 1}N of weight at most pN to the transmit-
ted word; the vector e can depend on the code but not on the randomness of the encoder or the particular
transmitted word. Such channels capture binary symmetric errors and burst errors as special cases.
List decoding for polynomial-time channels: For every constant c > 0, we construct codes with optimal

rate (arbitrarily close to 1 − H(p)) that efficiently recover a short list containing the correct message with
high probability for channels describable by circuits of size at most Nc. Our construction is not fully explicit
but rather Monte Carlo (we give an algorithm that, with high probability, produces an encoder/decoder pair
that works for all time Nc channels). We are not aware of any channel models considered in the information
theory literature other than purely adversarial channels, which require more than linear-size circuits to
implement. We justify the relaxation to list decoding with an impossibility result showing that, in a large
range of parameters (p > 1/4), codes that are uniquely decodable for a modest class of channels (online,
memoryless, nonuniform channels) cannot have positive rate.
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1. INTRODUCTION

The theory of error-correcting codes has had two divergent schools of thought, dating
back to its origins, based on the underlying model of the noisy channel. Shannon’s
theory [Shannon 1948] modeled the channel as a stochastic process with a known
probability law. Hamming’s work [Hamming 1950] suggested a worst-case/adversarial
model, where the channel is subject only to a limit on the number of errors it may cause.
These two approaches share several common tools; however, in terms of quantitative

results, the classical results in the harsher Hamming model are much weaker. For in-
stance, for the binary symmetric channel that flips each transmitted bit independently
with probability p < 1/2, the optimal rate of reliable transmission is known to be the
Shannon capacity 1− H(p), where H(·) is the binary entropy function [Shannon 1948].
Concatenated codes [Forney 1966] and polar codes [Arikan 2009] can transmit at rates
arbitrarily close to this capacity and are efficiently decodable. In contrast, for adver-
sarial channels that can corrupt up to a fraction p of symbols in an arbitrary manner,
the optimal rate is unknown in general, though it is known for all p ∈ (0, 1

2 ) that the
rate has to be much smaller than the Shannon capacity. In fact, for p ∈ [ 14 , 1

2 ), the
achievable rate over an adversarial channel is asymptotically zero, while the Shannon
capacity 1 − H(p) remains positive.
Codes that tolerate worst-case errors are attractive because they assume nothing

about the distribution of the errors introduced by the channel, only a bound on the
number of errors. Thus, they can be used to transmit information reliably over a large
range of channels whose true behavior is unknown or varies over time. In contrast,
codes tailored to a specific channel model tend to fail when the model changes. For
example, concatenated codes with a high rate outer code, which can transmit efficiently
and reliably at the Shannon capacity with i.i.d. errors, fail miserably in the presence
of burst errors that occur in long runs.
In this article, we consider several intermediate models of uncertain channels, as a

meaningful and well-motivated bridge between the Shannon and Hamming models.
Specifically, we consider computationally bounded channels, which can introduce an
arbitrary set of errors as long as (a) the total fraction of errors is bounded by pwith high
probability and (b) the process which adds the errors can be described by a sufficiently
“simple” circuit. The idea and motivation behind these models is that natural processes
may be mercurial but are not computationally intensive. These models are powerful
enough to capture natural settings like i.i.d. and burst errors but weak enough to
allow efficient communication arbitrarily close to the Shannon capacity 1 − H(p). The
models we study, or close variants, have been considered previously-see Section 2 for
a discussion of related work. The computational perspective we espouse is inspired by
the works of Lipton [1994] and Micali et al. [2005].
For two classes of channels, we construct efficiently encodable and decodable codes

of optimal rate (arbitrarily close to 1 − H(p)) where only inefficiently decodable codes
were previously known. In each case, we provide one encoder/decoder that works for
every channel in the class. In particular, our results apply even when the channel’s
behavior depends on the code. One of our constructions is fully explicit, while the other
is probabilistic (“Monte Carlo”).

Structure of this article. We first describe the models and our results briefly (Sec-
tion 1.1) and outline our main technical contributions (Section 1.2). In Section 2, we
describe related lines of work aimed at handling (partly) adversarial errors with rates
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near Shannon capacity. We state precise definitions in Section 3 and results in Sec-
tion 4. Section 5 describes our list-decoding-based code constructions for recovery from
additive errors. As the needed list-decodable codes are not explicitly known, this only
gives an existential result. Section 6 describes the approach behind our efficient con-
structions at a high level. The remainder of the article describes and analyzes the
constructions in detail, in order of increasing channel strength: additive errors (Sec-
tion 7) and time-bounded errors (Section 8). The appendices contain extra details on
the building blocks in our constructions (A), results for the “average” error criterion (B),
and our impossibility result showing the necessity of list decoding for error fractions
exceeding 1/4 (C), respectively.

1.1. Summary of Results

The encoders we construct are stochastic (that is, randomized). The encoder/decoder
pair are required to succeed with high probability over the local (unknown to the
decoder) coins of the encoder and the choices of the channel. The same encoder/decoder
pair must work for all channels in a given family and for all messages of a given length;
in particular, the message may be chosen adversarially and known to the channel.
Our results do not assume any setup or shared randomness between the encoder and
decoder. We provide a precise definition in Section 3.

Unique decoding for additive channels. We give the first explicit construction of
stochastic codes with polynomial-time encoding/decoding algorithms that approach the
Shannon capacity 1− H(p) for additive (a.k.a. oblivious) channels. These are channels
that add an arbitrary error vector e ∈ {0,1}N of Hamming weight at most pN to the
transmitted codeword (of length N). The error vector may depend on the code and
the message but, crucially, not on the encoder’s local random coins. Additive errors
capture binary symmetric errors as well as certain models of correlated errors, like
burst errors. For a deterministic encoder, the additive error model is equivalent to the
usual adversarial error model. A randomized encoder is thus necessary to achieve the
Shannon capacity.
We also provide a novel, simple proof that (inefficient) capacity-achieving codes ex-

ist for additive channels. We do so by combining linear list-decodable codes with rate
approaching 1 − H(p) (known to exist, but not known to be efficiently decodable) with
a special type of authentication scheme. Previous existential proofs relied on com-
plex random coding arguments [Csiszár and Narayan 1988a; Langberg 2008]; see the
discussion of related work below.

Necessity of list decoding for richer channel models. The additive errors model
postulates that the error vector has to be picked obliviously before seeing the codeword.
To model more complex processes, we will allow the channel to see the codeword and
decide on the error as a function of the codeword. We will stipulate a computational
restriction on how the channel might decide what error pattern to cause. The simplest
restriction (beyond the additive/oblivious case) is a “memoryless” channel that decides
the action on the ith bit based only on that bit (and perhaps some internal state that
is oblivious to the codeword).
First, we show that even against suchmemoryless channels, reliable unique decoding

with positive rate is impossible when p > 1/4. The idea is that even a memoryless
adversary can make the transmitted codeword difficult to distinguish from a different,
random codeword. The proof relies on the requirement that a single code must work
for all channels, since the “hard” channel depends on the code.
Thus, to communicate at a rate close to 1− H(p) for all p, we consider the relaxation

to list decoding: The decoder is allowed to output a small list of messages, one of which
is correct. List-decodable codes with rate approaching 1−H(p) are known to exist even
for adversarial errors [Zyablov and Pinsker 1982; Elias 1991]. However, constructing
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efficient (i.e., polynomial-time encodable and decodable) binary codes for list decoding
with near-optimal rate is a major open problem.1 Therefore, our goal is to exploit the
computational restrictions on the channel to get efficiently list-decodable codes.
Computationally bounded channels. We consider channels whose behavior on N-
bit inputs is described by a circuit of size T(N) (for example, T(N) = O(N2)). We
sometimes call this the time-bounded model and refer to T(·) as a time bound. We do
not know of any channel models considered in the information theory literature other
than purely adversarial channels, which require more than linear time to implement.
We also discuss (online) space-bounded channels; these channels make a single pass

over the transmitted codeword, deciding which locations to corrupt as they go, and
are limited to storing at most S(N) bits (that is, they can be describe by one-pass
branching programs of width at most 2S(N)). Logarithmic space channels, in particular,
can be realized by polynomial-size circuits.
List decoding for polynomial-time channels. Our main contribution for time-
bounded channels is a construction of polynomial-time encodable and list-decodable
codes that approach the optimal rate for channels whose time bound is a polynomial in
the block length N. Specifically, we give an efficiently computable encoding function,
Enc, that stochastically encodes the message m into Enc(m; r), where r is private ran-
domness chosen at the encoder, such that for every message m and time Nc-bounded
channel W, the decoder takes W(Enc(m; r)) as input and returns a small list of mes-
sages that, with high probability over r and the coins of the channel, contains the real
messagem. The size of the list is polynomial in 1/ε, where N(1− H(p)− ε) is the length
of the transmitted messages. We stress that the decoder does not know the choice of
random bits r made at the encoder.
The construction of our encoding function Enc(·, ·) isMonte Carlo—we give a random-

ized algorithm that, with high probability, produces an encoder/decoder pair Enc/Dec
reliably communicate across all time-Nc-bounded channels (Definition 3.3). The ran-
domized construction is polynomial time, and the resulting function Enc(m; r) can be
computed from m, r in deterministic polynomial time. However, we do not know how
to efficiently check and certify that a particular encoder Enc has the claimed proper-
ties. Obtaining fully explicit constructions remains an intriguing open problem. In the
case of polynomial-time bounded channels, it seems unlikely that one can solve the
problem without additional complexity assumptions (such as the existence of certain
pseudorandom generators). In the case of online logspace-bounded channel, it may be
possible to obtain fully explicit constructions without complexity assumptions (using,
for example, Nisan’s pseudorandom generators for logspace). We will elaborate on this
aspect in Section 9.
One technicality is that the decoder need not return all words within a distance

pN of the received word (as is the case for the standard “combinatorial” notion of list
decoding), but it must return the correct message as one of the candidates with high
probability. This notion of list decoding is natural for stochastic codes in communication
applications. In fact, it is exactly the notion that is needed in constructions that “sieve”
the list, such as in Guruswami [2003] and Micali et al. [2005], and one application of
our results is a uniquely decodable code for the public-key model (assuming a specific
polynomial-time bound), strengthening results ofMicali et al. [2005]. See the discussion
of related work in Section 2 for a more precise statement.
For both the additive and time-bounded models, our constructions require newmeth-

ods for applying tools from cryptography and derandomization to coding-theoretic prob-
lems. We give a brief high-level discussion of these techniques next. An expanded
overview the approach behind our code construction appears in Section 6.

1Over large alphabets, explicit optimal rate list-decodable codes are known.

Journal of the ACM, Vol. 63, No. 4, Article 35, Publication date: September 2016.



Optimal Rate Code Constructions for Computationally Simple Channels 35:5

1.2. Techniques

Control/payload construction. In our constructions, we develop several new tech-
niques. The first is a novel “reduction” from the standard coding setting with no setup
to the setting of shared secret randomness. In models in which errors are distributed
evenly, such a reduction is relatively simple [Ahlswede 1978]; however, this reduction
fails against adversarial errors. Instead, we show how to hide the secret randomness
(the control information) inside the main codeword (the payload) in such a way that
the decoder can learn the control information but (a) the control information remains
hidden to a bounded channel and (b) its encoding is robust to a certain, weaker class of
errors. We feel this technique should be useful in other settings of bounded adversarial
behavior.
Our reduction can also be viewed as a novel way of bootstrapping from “small” codes,

which can be decoded by brute force, to “large” codes, which can be decoded efficiently.
The standard way to do this is via concatenation; unfortunately, concatenation does not
work well even against mildly unpredictable models, such as the additive error model.

Pseudorandomness. Second, our results further develop a surprising connection be-
tween coding and pseudorandomness. Hiding the “control information” from the chan-
nel requires us to make different settings of the control information indistinguishable
from the channel’s point of view. Thus, our proofs apply techniques from cryptography
together with constructions of pseudorandom objects (generators, permutations, and
samplers) from derandomization. Typically, the “tests” that must be fooled are compo-
sitions of the channel (which we assume has low complexity) with some subroutine of
the decoder (which we design to have low complexity). The connection to pseudoran-
domness appeared in a simpler form in the previous work on bounded channels [Lipton
1994; Galil et al. 1995; Micali et al. 2005]; our use of this connection is significantly
more delicate.
The necessary pseudorandom permutations and samplers can be explicitly con-

structed, and the construction of the needed complexity-theoretic pseudorandom gener-
ators is where we uses randomness in our construction. For the case of additive errors,
information-theoretic objects that we can construct deterministically efficiently (such
as t-wise-independent strings) suffice and we get a fully explicit construction.

2. BACKGROUND AND RELATED PREVIOUS WORK

There are several lines of work aimed at handling adversarial, or partly adversarial,
errors with rates near the Shannon capacity. We survey them briefly here and highlight
the relationship to our results.

List decoding. List decoding was introduced in the late 1950s [Elias 1957; Wozencraft
1958] and has witnessed a lot of recent algorithmic work (cf. the survey [Guruswami
2007]). Under list decoding, the decoder outputs a small list of messages that must
include the correct message. Random coding arguments demonstrate that there exist
binary codes of rate 1− H(p)− ε that can tolerate pN adversarial errors if the decoder
is allowed to output a list of size O(1/ε) [Elias 1991; Zyablov and Pinsker 1982;
Guruswami et al. 2002]. The explicit construction of binary list-decodable codes with
rate close to 1− H(p), however, remains a major open question. We provide such codes
for the special case of corruptions introduced by space- or time-bounded channels.

Adding Setup—Shared Randomness. Another relaxation is to allow randomized
coding strategies where the sender and receiver share “secret” randomness, hidden
from the channel, which is used to pick a particular, deterministic code at random from
a family of codes. Such randomized strategies were called private codes in Langberg
[2004]. Using this secret shared randomness, one can transmit at rates approaching
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1 − H(p) against adversarial errors (for example, by randomly permuting the symbols
and adding a random offset [Lipton 1994; Langberg 2004]). Using explicit codes
achieving capacity on the BSCp [Forney 1966], one can even get such randomized
codes of rate approaching 1− H(p) explicitly (although getting an explicit construction
with o(n) randomness remains an open problem [Smith 2007]). A related notion of
setup is the public key model of Micali et al. [2005], in which the sender generates a
public key that is known to the receiver and possibly to the channel. This model only
makes sense for computationally bounded channels, discussed below.
Our constructions are the first (for all three models) that achieve rate 1− H(p) with

efficient decoding and no setup assumptions.

AVCs: Oblivious, nonuniform errors. A different approach to modeling uncertain
channels is embodied by the rich literature on arbitrarily varying channels (AVCs),
surveyed in Lapidoth and Narayan [1998]. Despite being extensively investigated in
the information theory literature, AVCs have not received much algorithmic attention.
An AVC is specified by a finite state space S and a family of memoryless channels

{Ws : s ∈ S}. The channel’s behavior is governed by its state, which is allowed to
vary arbitrarily. The AVC’s behavior in a particular execution is specified by a vector
�s = (s1, . . . , sN) ∈ SN: The channel applies the operation Wsi to the ith bit of the
codeword. A code for the AVC is required to transmit reliably with high probability
for every sequence �s, possibly subject to some state constraint. Thus AVCs model
uncertainty via the nonuniform choice of the state vector �s ∈ SN. However—and this is
the one of the key differences that makes the bounded space model more powerful—the
choice of vector �s in an AVC is oblivious to the codeword; that is, the channel cannot
look at the codeword to decide the state sequence.
The additive errors channel we consider is captured by the AVC framework. Indeed,

consider the simple AVC where S = {0,1} and when in state s, the channel adds s
mod 2 to the input bit. With the state constraint

∑N
i=1 si � pN on the state sequence

(s1, s2, . . . , sN) of the AVC, this models additive errors, where an arbitrary error vector
e with at most p fraction of 1’s is added to the codeword by the channel, but e is chosen
obliviously of the codeword.
Csiszár andNarayan determined the capacity of AVCswith state constraints [Csiszár

andNarayan 1988b, 1989]. In particular, for the additive case, they showed that random
codes can achieve rate approaching 1−H(p) while correcting any specific error pattern
e of weight pN with high probability.2 Note that codes providing this guarantee cannot
be linear, since the bad error vectors are the same for all codewords in a linear code.
The decoding rule used in Csiszár and Narayan [1988b] to prove this claim was quite
complex, and it was simplified to the more natural closest codeword rule in Csiszár
and Narayan [1989]. Langberg [2008] revisited this special case (which he called an
oblivious channel) and gave another proof of the above claim, based on a different
random coding argument.
As outlined above, we provide two results for this model. First, we give a new, more

modular existential proof. More importantly, we provide the first explicit constructions
of codes for this model that achieve the optimal rate 1 − H(p).

2The AVC literature usually discusses the “average error criterion,” in which the code is deterministic but
the message is assumed to be uniformly random and unknown to the channel. We prefer the “stochastic
encoding” model, in which the message is chosen adversarially, but the encoder has local random coins. The
stochastic encoding model strictly stronger than the Average error model as long as the decoder recovers the
encoder’s random coins along with message. The arguments of Csiszár and Narayan [1988b] and Langberg
[2008] also apply to the stronger model.
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Polynomial-time-bounded channels. In a different vein, Lipton [1994] considered
channels whose behavior can be described by a polynomial-time algorithm. He showed
how a small amount of secret shared randomness (the seed for a pseudorandom gener-
ator) could be used to communicate at the Shannon capacity over any polynomial-time
channel that introduces a bounded number of errors. Micali et al. [2005] gave a similar
result in a public key model; however, their result relies on efficiently list-decodable
codes, which are only known with sub-optimal rate. Both results assume the existence
of one-way functions and some kind of setup. On the positive side, in both cases the
channel’s time bound need not be known explicitly ahead of time; one gets a tradeoff
between the channel’s time and its probability of success.
Our list decoding result removes the setup assumptions of Lipton [1994] and Micali

et al. [2005] at the price of imposing a specific polynomial bound on the channel’s
running time and relaxing to list decoding. However, our result also implies stronger
unique decoding results in the public-key model [Micali et al. 2005]. Specifically, our
codes can be plugged into the construction of Micali et al. to get unique decoding at
rates up to the Shannon capacity when the sender has a public key known to the
decoder (and possibly to the channel). The idea, roughly, is to sign messages before
encoding them; see Micali et al. [2005] for details. We remark that while they make use
of list-decodable codes in the usual sense where all close-by codewords can be found,
our weaker notion (where we find a list that includes the original message with high
probability) suffices for the application.
Ostrovsky et al. [2007] and Hemenway and Ostrovsky [2008] considered the con-

struction of locally decodable codes in the presence of computationally bounded errors
assuming some setup (private [Ostrovsky et al. 2007] and public [Hemenway and
Ostrovsky 2008] keys, respectively). The techniques used for locally decodable codes
differ substantially from those used in more traditional coding settings; we do not know
if the ideas from our constructions cacn be used to remove the setup assumptions from
Ostrovsky et al. [2007] and Hemenway and Ostrovsky [2008].

Logarithmic-space channels. Galil et al. [1995] considered a slightly weaker model,
logarithmic space, that still captures most physically realizable channels. They mod-
eled the channel as a finite automaton with polynomially many states. Using Nisan’s
generator for log-space machines [Nisan 1992], they removed the assumption of one-
way functions from Lipton’s construction in the shared randomness model [Lipton
1994].
In the initial version of this article, we considered nonuniform generalization of their

model that also generalizes arbitrarily varying channels. Our result for polynomial-
time-bounded channels, which implies a construction for logarithmic-space channels,
removes the assumption of shared setup in the model of Galil et al. [1995] but achieves
only list decoding. This relaxation is necessary for some parameter ranges, since unique
decoding in this model is impossible when p > 1/4.

Causal channels. The logarithmic-space channel can also be seen as a restriction of
online, or causal, channels, recently studied by Dey et al. [2008] and Langberg et al.
[2009]. These channels make a single-pass through the codeword, introducing errors
as they go. They are not restricted in either space usage or computation time. It is
known that codes for online channels cannot achieve the Shannon rate; specifically, the
achievable asymptotic rate is at most max(1 − 4p,0) [Dey et al. 2008]. Our impossibil-
ity result, which shows that the rate of codes for time- or space-bounded channels, is
asymptotically 0 for p > 1

4 , can be seen as a partial extension of the online channels
results of Dey et al. [2008], Langberg et al. [2009], and Dey et al. [2012] to compu-
tationally bounded channels, though our proof technique differs considerably. Recent
work ([Dey et al. 2012; Chen et al. 2015]), subsequent to the original appearance of
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this article, gives matching upper and lower bounds for the achievable rate of online
channels.

3. DEFINITIONS

A stochastic binary code of rate R ∈ (0,1), randomness length b and block length N is
given by an encoding function Enc : {0,1}RN × {0,1}b → {0,1}N which encodes the RN
message bits, together with b additional random bits, into an N-bit codeword. Here, N
and b are integers, and we assume for simplicity that RN is an integer. We normally
think of the code as being paired with a decoding algorithm Dec which maps {0,1}N
to either a single string (for unique decoding), or a list of strings (for list decoding), in
{0,1}RN.

Stochastic codes are useful in the context of communication against certain unknown
channels (see, e.g., the survey [Lapidoth and Narayan 1998]). For some such channels,
the capacity of deterministic codes over a particular class of channels may be smaller
under the maximum error probability criterion than under the average error probabil-
ity criterion (that is, it may be much harder to transmit the worst-case message than
a random one). Randomization at the encoder can allow achieving the larger capacity
even with a worst-case message.
A channel is a possibly randomized process W that maps {0,1}N into (distributions

on) {0,1}N. A channel W is pN-bounded if, for all inputs c, the string W(c) ⊕ c has
weight at most pN.
We discuss several families of (bounded) channels, listed here in increasing strength:

—Additive channels: channels We such that We(c) = c ⊕ e for a fixed string e ∈ {0,1}N.
The channel is bounded iff weight(e) � pN.

—Time-T channels: channels W implementable by a randomized circuit with at most
T gates.

—Adversarial channels (denoted ADVp): the family of all pN-bounded channels.

Definition 3.1. A stochastic code (Enc,Dec) uniquely decodes errors from a channel
W with probability 1− δ if the decoder outputs a single string and, for all m∈ {0,1}RN,

Pr
ω,coinsW

(Dec(W(Enc(m;ω))) = m) � 1 − δ ,

where the probability is taken over ω ← {0,1}b and any randomness used by W. A
stochastic code strongly decodes a channel if the decoder recovers both m and the
randomness ω of the encoder.
A stochastic code (Enc,Dec) L-list decodes errors from a channel W with probability

1 − δ if the decoder outputs a set of L strings and, for all m∈ {0,1}RN,

Pr
ω,coinsW

(m∈ Dec(W(Enc(m;ω)))) � 1 − δ ,

where the probability is taken over ω ← {0,1}b and any randomness used by W.
Finally, a stochastic code (uniquely or list) decodes errors from a familyW of channels

if the condition holds for all channelsW ∈ W in the family (with the same decoder Dec).

If a code decodes a family of channels, then themessagemmay depend on the channel
(and the description of the encoder and decoder), since decoding must work for all pairs
(m,W) in {0,1}RN × W.

Relation to combinatorial notions. The notion of stochastic list decodability does
not generally imply the “usual” notion of list decoding, since the decoder need not return
all codewords within a given distance—it need only generate a list that contains the
true message with high probability.
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Nevertheless, for the adversarial channel family ADVp, the existence of a stochastic
encoder/decoder pair implies the existence of codes that satisfy the usual combina-
torial notions of unique and list decodability. We recall the classical definition for
completeness.

Definition 3.2 (List-Decodable Codes). For a real p, 0 < p < 1, and an integer L � 1,
a code C ⊆ �n is said to be (p, L)-list decodable if for every y ∈ �n there are at most
L codewords of C within Hamming distance pn from y. If for every y the list of � L
codewords within Hamming distance pn from y can be found in time polynomial in
n, then we say C is efficiently (p, L)-list decodable. Note that (p,1)-list decodability is
equivalent to the distance of C being greater than 2pn.

Monte Carlo constructions. For some settings, our code constructions are not fully
explicit but rather “Monte Carlo”: We give a polynomial-time-randomized algorithm
that outputs, with high probability, an encoder/decoder pair that works for all codes in
a given family and for all messages of a given length. More precisely,

Definition 3.3. A polynomial-time algorithm A is a Monte Carlo construction of an
N-bit, rate R, correctness probability 1 − δ uniquely (respectively, list) decodable code
for a family of channels W if, on inputs 1N and 1k and a string of random bits r, A
outputs an N-bit, rate R stochastic code and

Pr
r←{0,1}∗

⎛
⎝ (Enc,Dec) uniquely (respectively, list) decodes

errors from W with probability 1 − δ

where (Enc,Dec) = A(1N,1k, r)

⎞
⎠ � 1 − 1

k
.

We can think of the string r as a string chosen once and for all when the code is
designed and available as part of the code description. Alternatively, we may think of
r as shared public randomness—that is, r is uniformly random but may be known to
the channel.

4. MAIN RESULTS

4.1. Codes for Worst-Case Additive Errors

Existential result via list decoding. We give a novel construction of stochastic codes
for additive errors by combining linear list-decodable codes with a certain kind of au-
thentication code called algebraic manipulation detection (AMD) codes. Such AMD
codes can detect additive corruption with high probability and were defined and con-
structed for cryptographic applications in Cramer et al. [2008]. The linearity of the
list-decodable code is therefore crucial to make the combination with AMD codes work.
The linearity ensures that the spurious messages output by the list-decoder are all
additive offsets of the true message and depend only on the error vector (and not on
m, r). An additional feature of our construction is that even when the fraction of errors
exceeds p, the decoder outputs a decoding failure with high probability (rather than
decoding incorrectly). This feature is important when using these codes as a component
in our explicit construction, mentioned next.
The formal result is stated below. Details can be found in Section 5. The notation

�p,ε expresses an asymptotic lower bound in which p and ε are held constant.

THEOREM 4.1. For every p, 0 < p < 1/2 and every ε > 0, there exists a family of
stochastic codes of rate R � 1− H(p)− ε and a deterministic (exponential time) decoder
Dec : {0,1}N → {0,1}RN ∪ {⊥} such that for every m ∈ {0,1}RN and every error vector
e ∈ {0,1}N of Hamming weight at most pN, Prr[Dec(Enc(m, r) + e) = m] � 1 − 2−�p,ε(N).
Moreover, when more than a fraction p of errors occur, the decoder is able to detect this
and report a decoding failure (⊥) with probability at least 1 − 2−�p,ε(N).
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Given an explicit family of linear binary codes of rate R that can be efficiently list-
decoded from fraction p of errors with list-size bounded by a polynomial function in N,
one can construct an explicit stochastic code of rate R− o(1) with the above guarantee
along with an efficient decoder.

Explicit, efficient codes achieving capacity. Explicit binary list-decodable codes
of optimal rate are not known, so one cannot use the above connection to construct
explicit stochastic codes of rate ≈1 − H(p) for pN additive errors. Nevertheless, we
give an explicit construction of capacity-achieving stochastic codes against worst-case
additive errors. The construction is described at a high level in Section 6 and in further
detail in Section 7.

THEOREM 4.2. For every p ∈ (0,1/2), every ε > 0, and infinitely many N, there is
an explicit, efficient stochastic code of block length N and rate R � 1 − H(p) − ε that
corrects a p fraction of additive errors with probability 1 − o(1). Specifically, there are
polynomial-time algorithms Enc and Dec such that for every message m∈ {0,1}RN and
every error vector e of Hamming weight at most pN, we have Prr[Dec(Enc(m; r) + e) =
m] = 1 − exp(−�p,ε(N/ log2 N)).

A slight modification of our construction gives codes for the “average error criterion,”
in which the code is deterministic but the message is assumed to be uniformly random
and unknown to the channel (see Appendix B).

4.2. Unique Decoding Is Impossible for Nonoblivious Channels when p > 1
4

Weexhibit a very simple “zero space” (akamemoryless) channel that rules out achieving
any positive rate (i.e., the capacity is zero) when p > 1/4. In each position, the channel
either leaves the transmitted bit alone, sets it to 0, or sets it to 1. The channel works
by “pushing” the transmitted codeword towards a different valid codeword (selected
at random). This simple channel adds at most n/4 errors in expectation. We can get a
channel with a hard bound on the number of errors by allowing it logarithmic space.
Our impossibility result can be seen as strengthening a result by Dey et al. [2008] for
online channels in the special case where p > 1/4, though our proof technique, adapted
from Ahlswede [1978], differs considerably. Appendix C contains the proof.

THEOREM 4.3 (IMPOSSIBILITY FOR p > 1
4 ). For every stochastic binary code (Enc,Dec)

with block length n and rate R = ω(1/n) (that is, the size of the message space tends to
infinity with n),

(1) there is a distribution over memoryless channels that alters at most n/4 bits in
expectation and causes a decoding error for a uniformly random message with
probability at least 1

2 − o(1).
(2) for every 0 < ν < 1

4 , there is an online space-�log(n)
 channel W2 that alters at most
n( 14 +ν) bits (with probability 1) and causes a decoding error for a uniformly random
message with probability �(ν).

4.3. List-Decodable Codes for Polynomial-Time Channels

We next consider a very general noise model. The channel can look at the whole code-
word, and effect any error pattern, with the only restriction being that the channel
must compute the error pattern in polynomial time given the original codeword as
input. In fact, we will even allow non-uniformity and require that the error pattern be
computable by a polynomial size circuit.
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THEOREM 4.4. For all constants ε > 0, p ∈ (0,1/2), and c � 1, and for infinitely
many integers N, there exists a Monte Carlo construction (succeeding with probability
1 − N−�(1)) of a stochastic code of block length N and rate R � 1 − H(p) − ε with NO(c)

time-encoding/list-decoding algorithms (Enc,Dec) that have the following property: For
all messages m ∈ {0,1}RN, and all pN-bounded channels W that are implementable by
a size O(Nc) circuit, Dec(W(Enc(m; r))) outputs a list of at most poly(1/ε) messages that
includes the real message mwith probability at least 1 − N−�(1).

5. SIMPLE, NONEXPLICIT CODES FOR WORST-CASE ADDITIVE ERRORS

In this section, we will demonstrate how to use good linear list-decodable codes to get
good stochastic codes. The conversion uses the list-decodable code as a black box and
loses only a negligible amount in rate. In particular, by using binary linear codes that
achieve list-decoding capacity, we get stochastic codes that achieve the capacity for
additive errors. The linearity of the code is crucial for this construction. The other in-
gredient we need for the construction is a particular kind of authentication code, called
an algebraic manipulation detection (AMD) code, that can detect additive corruption
with high probability [Cramer et al. 2008].
Though we do not require it in the definition, our constructions in this section of

stochastic codes from list-decodable codes will also have the desirable property that
when the number of errors exceeds pn, with high probability the decoder will output a
decoding failure rather than decoding incorrectly.

5.1. Algebraic Manipulation Detection Codes

The following is not the most general definition of AMD codes from Cramer et al. [2008]
but suffices for our purposes.

Definition 5.1. Let G = (G1,G2,G3) be a triple of Abelian groups (whose group
operations are written additively) and δ > 0 be a real number. Let G = G1 × G2 × G3
be the product group (with component-wise addition). An (G, δ)-algebraic manipulation
code, or (G, δ)-AMD code for short, is given by amap f : G1×G2 → G3 with the following
property:

For every x ∈ G1, and all � ∈ G, Prr∈G2

[
D((x, r, f (x, r)) + �) /∈ {x,⊥}] � δ,

where the decoding function D : G → G1 ∪ {⊥} is given by D((x, r, s)) = x if f (x, r) = s
and ⊥ otherwise. The tag size of the AMD code is defined as log |G2|+ log |G3|—it is the
number of bits the AMD encoding appends to the source.

Intuitively, the AMD allows one to authenticate x via a signed form (x, r, f (x, r)) so
an adversary who manipulates the signed value by adding an offset � cannot cause
incorrect decoding of some x′ �= x. The following concrete scheme from Cramer et al.
[2008] achieves near optimal tag size and we will make use of it.

THEOREM 5.2. Let F be a finite field of size q and characteristic p and d be a positive
integer such that d + 2 is not divisible by p. Then the function f (d)AMD : F

d × F → F

given by f (d)AMD(x, r) = rd+2 +∑d
i=1 xir

i is a (G, d+1
q )-AMD code with tag size 2 log q, where

G = (Fd, F, F).3

5.2. Combining List Decodable and AMD Codes

Using a (p, L)-list-decodable code C of length n, for any error pattern e of weight at
most pn, we can recover a list of L messages that includes the correct message m. We

3Here we mean the additive group of the vector space F
d.

Journal of the ACM, Vol. 63, No. 4, Article 35, Publication date: September 2016.



35:12 V. Guruswami and A. Smith

would like to use the stochastic portion of the encoding to allow us to unambiguously
pick out m from this short list. The key insight is that if C is a linear code, then the
other (less than L) messages in the list are all fixed offsets ofm that depend only on the
error pattern e. So if prior to encoding by the list-decodable code C, the messages are
themselves encodings as per a good AMD code, and the tag portion of the AMD code is
good for these fixed L or fewer offsets, then we can uniquely detectm from the list using
the AMD code. If the tag size of the AMD code is negligible compared to the message
length, then the overall rate is essentially the same as that of the list-decodable code.
Since there exist binary linear (p, L)-list-decodable codes of rate approaching 1− H(p)
for large L, this gives stochastic codes (in fact, strongly decodable stochastic codes) of
rate approaching 1−H(p) for correcting up to a fraction p of worst-case additive errors.

THEOREM 5.3 (STOCHASTIC CODES FROM LIST DECODING AND AMD). Let b,d be positive
integers with d odd and k = b(d + 2). Let C : F

k
2 → F

n
2 be the encoding function of

a binary linear (p, L)-list-decodable code. Let f (d)AMD be the function from Theorem 5.2
for the choice F = F2b. Let C ′ be the stochastic binary code with encoding map E :
{0,1}bd × {0,1}b → {0,1}n given by

E(m, r) = C
(
m, r, f (d)AMD(m, r)

)
.

Then, if d+1
2b � δ

L, the stochastic code C ′ strongly decodes pN-bounded additive errors
with probability 1 − δ. If C is efficiently (p, L)-list decodable, then C ′ is efficiently (and
strongly) decodes pN-bounded additive errors with probability 1 − δ.

Moreover, when e has weight greater than pn, the decoder detects this and outputs ⊥
(a decoding failure) with probability at least 1 − δ.

Note that the rate of C ′ is d
d+2 times the rate of C.

PROOF. Fix an error vector e ∈ {0,1}n and a message m∈ {0,1}bd. Suppose we pick a
random r and transmit E(m, r), so y = E(m, r) + e was received.

The decoding function D, on input y, first runs the list-decoding algorithm for C to
find a list of 	 � Lmessages m′

1, . . . ,m
′
	 whose encodings are within distance pn of y. It

then decomposesm′
i as (mi, ri, si) in the obvious way. The decoder then checks if there is

a unique index i ∈ {1,2, . . . , 	} for which f (d)AMD(mi, ri) = si. If so, then it outputs (mi, ri),
otherwise it outputs ⊥.
Let us now analyze the above decoder D. First, consider the case when wt(e) � pn.

In this case, we want to argue that the decoder correctly outputs (m, r) with prob-
ability at least 1 − δ (over the choice of r). Note that, in this case, one of the m′

i ’s
equals (m, r, f (d)AMD(m, r)); say, this happens for i = 1 w.l.o.g. Therefore, the condition
f (d)AMD(m1, r1) = s1 will be met and we only need to worry about this happening for some
i > 1 also.

Let ei = y − C(m′
i) be the associated error vectors for the messages m′

i. Note that
e1 = e. By linearity of C, the ei ’s only depend on e; indeed, if c′

1, . . . , c
′
	 are all the

codewords of C within distance pn from e, then ei = c′
i + e. Let �i be the pre-image of

c′
i, that is, c

′
i = C(�i). Therefore, we have m′

i = m′
1 + �i, where the �i ’s only depend on

e. By the AMD property, for each i > 1, the probability that f (d)AMD(mi, ri) = si over the
choice of r is at most d+1

2b � δ/L. Thus with probability at least 1− δ, none of the checks
f (d)AMD(mi, ri) = si for i > 1 succeed, and the decoder thus correctly outputs m1 = m.
In the case when wt(e) > pn, the same argument shows that the check f (d)AMD(mi, ri) =

si passes with probability at most δ/L for each i (including i = 1). So with probability
at least 1 − δ, none of the checks pass, and the decoder outputs ⊥.
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Plugging into the above theorem, the existence of binary linear (p, O(1/ε))-list-
decodable codes of rate 1 − H(p) − ε/2, and picking d = 2�c0/ε
 + 1 for some abso-
lute constant c0, we can conclude the following result on existence of stochastic codes
achieving capacity for reliable communication against additive errors.

COROLLARY 5.4. For every p, 0 < p < 1/2 and every ε > 0, there exists a family of
stochastic codes of rate at least 1−H(p)−ε, which strongly decode pN-bounded additive
errors with probability at least 1 − 2−c(ε,p)n where n is the block length and c(ε, p) is a
constant depending only on ε and p.
Moreover, when more than a fraction p of errors occur, the code is able to detect this

and report a decoding failure with probability at least 1 − 2−c(ε,p)n.

Remark 5.5. For the above construction, if the decoding succeeds, then it correctly
computes in addition to the message m also the randomness r used at the encoder.
So the construction also gives deterministic codes for the “average error criterion,”
where, for every error vector, all but an exponentially small fraction of messages are
communicated correctly. See Appendix B for a discussion of codes for this model and
their relation to stochastic codes for additive errors.

6. OVERVIEW OF EXPLICIT CONSTRUCTIONS

Codes for Additive Errors. Our result is obtained by combining several ingredients
from pseudorandomness and coding theory. At a high level, the idea (introduced by
Lipton [1994] in the context of shared randomness) is that if we permute the symbols
of the codewords randomly after the error pattern is fixed, then the adversarial error
pattern looks random to the decoder. Therefore, an explicit code CBSC that can achieve
capacity for the binary symmetric channel (such as Forney’s concatenated code [Forney
1966]) can be used to communicate on ADVp after the codeword’s symbols are randomly
permuted. This allows one to achieve capacity against adversarial errors when the
encoder and decoder share randomness that is unknown to the adversary causing the
errors. But, crucially, this requires the decoder to know the random permutation used
for encoding.
Our encoder communicates the random permutation (in encoded form) also as part of

the overall codeword, without relying on any shared randomness, public key, or other
“extra” information. The decoder must be able to figure out the permutation correctly,
based solely on a noisy version of the overall codeword (that encodes the permutation
plus the actual data). The seed used to pick this random permutation (plus some extra
random seeds needed for the construction) is encoded by a low rate code that can
correct several errors (say, a Reed-Solomon code) and this information is dispersed into
randomly located blocks of the overall codeword (see Figure 1). The locations of the
control blocks are picked by a “sampler”—the seed for this sampler is also part of the
control information along with the seed for the random permutation.
The key challenge is to ensure that the decoder can figure out which blocks encode the

control information and which blocks consist of “data” bits from the codeword of CBSC
(the “payload” codeword) that encodes the actual message. The control blocks (which
comprise a tiny portion of the overall codeword) are further encoded by a stochastic
code (call it the control code) that can correct somewhat more than a fraction p, say,
a fraction p+ ε, of errors. These codes can have any constant rate—since they encode
a small portion of the message their rate is not so important, so we can use explicit
sub-optimal codes for this purpose.
Together with the random placement of the encoded control blocks, the control code

ensures that a reasonable (�(ε)) fraction of the control blocks (whose encodings by the
control code incur fewer than p+ ε errors) will be correctly decoded. Moreover, blocks
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Fig. 1. Schematic description of encoder from Algorithm 1.

with too many errors will be flagged as erasures with high probability. The fraction of
correctly recovered control blocks will be large enough that all the control information
can be recovered by decoding the Reed-Solomon code used to encode the control infor-
mation into these blocks. This recovers the permutation used to scramble the symbols
of the concatenated codeword. The decoder can then unscramble the symbols in the
message blocks and run the standard algorithm for the concatenated code to recover
the message.
One pitfall in the above approach is that message blocks could potentially get mis-

taken for corrupted control blocks and get decoded as erroneous control information
that leads the whole algorithm astray. To prevent this, in addition to scrambling the
symbols of the message blocks by a (pseudo)random permutation, we also add a pseu-
dorandom offset (which is nearly t-wise independent for some t much larger than the
length of the blocks). This will ensure that with high probability each message block
will be very far from every codeword and therefore will not be mistaken for a control
block.
An important issue we have glossed over is that a uniformly random permutation

of the n bits of the payload codeword would take �(n logn) bits to specify. This would
make the control information too big compared to the message length; we need it to
be a tiny fraction of the message length. We therefore use almost t-wise-independent
permutations for t ≈ εn/ logn. Such permutations can be sampled with ≈εn random
bits. We then make use of the fact that CBSC enables reliable decoding even when the
error locations have such limited independence instead of being a uniformly random
subset of all possible locations [Smith 2007].

Extending the Construction to Poly-Time Channels.The construction for additive
channels does not work against more powerful channels for (at least) two reasons:

(i) A more powerful channel may inject a large number of correctly formatted control
blocks into the transmitted word (recall, each of the blocks is quite small). Even if
the real control blocks are uncorrupted, the decoder will have trouble determining
which of the correct-looking control blocks is in fact legitimate.

(ii) Since the channel can decide the errors after seeing the codeword, it may be able to
learn which blocks of the codeword contain the control information and concentrate
errors on those blocks. Similarly, we have to ensure that the channel does not learn
about the permutation used to scramble the payload codeword and thus cause a bad
error pattern that cannot be decoded by the standard decoder for the concatenated
code.
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The first obstacle is the easier one to get around, and we do so by using list decoding:
Although the channel may inject spurious possibilities for the control information, the
total number of such spurious candidates will be bounded. This ensures that after list
decoding, provided at least a small fraction of the true control blocks do not incur too
many errors, the list of candidates will include the correct control information with
high probability.
To overcome the second obstacle, we make sure, using appropriate pseudorandom

generators and employing a “hybrid” argument, that the encoding of the message is
indistinguishable from a random string by a channel limited to a given time bound T,
even when the channel has knowledge of the message and certain parts of the control
information. One then uses this to ensure that the distribution of errors caused by
a time-T channel on the codeword is indistinguishable in polynomial time from the
distribution caused by the same channel on a uniformly random string. The latter
distribution is independent of the codeword. If these error distributions were in fact
statistically close (and not just close w.r.t. time-T tests), then successful decoding under
oblivious errors would also imply successful decoding under the error distribution
caused by the time-bounded channel. To show that closeness w.r.t. time-T tests does
indeed suffice, we need to consider each of the conditions for correct decoding separately.
The condition that enough control blocks have at most a fraction p + ε of errors

can be checked in polynomial time given nonuniform advice, namely the locations of
the control blocks. We use this together with the above indistinguishability to prove
that enough control blocks are correctly list decoded, and thus the correct control
information is among the candidates obtained by list decoding the control code.
The next step is to show that the payload codeword is correctly decoded given knowl-

edge of the correct control information. The idea is that there is a set of error patterns
such that (1) membership in the set can be checked in linear time, (2) the set has high
probability under any oblivious error distribution, and (3) any error pattern in the
set is correctly decoded with high probability by the concatenated code. Given these
properties, one can show that if the concatenated code errs with noticeable probability
on the actual error distribution, one can build a low-complexity distinguisher for the
error distributions, thus contradicting their computational indistinguishability.

Remark 6.1. An earlier version of this article had a more complicated argument for
online logspace channels, replacing one of the random components of the construction
with Nisan’s explicit pseudorandom generator for logspace. Nisan’s generator only
ensures that the error distribution caused by the channel is indistinguishable from
oblivious errors by online space-bounded machines. Therefore, in the above argument,
in order to arrive at a contradiction, we need to build a distinguisher than runs in online
logspace. However, the unscrambling of the error vector (according to the permutation
that was applied to the payload codeword) cannot be done in an online fashion. So we
had to resort to an indirect argument based on showing limited independence of certain
events related to the payload decoding. As pointed out by a reviewer, since the final
construction is anyway randomized, in the current version, we simply use a random
construction of pseudorandom generators for polynomial size circuits to build codes
resilient to polynomial-time-bounded channels (and hence also logspace channels).

7. EXPLICIT CODES OF OPTIMAL RATE FOR ADDITIVE ERRORS

This section describes our construction of codes for additive errors.

7.1. Ingredients

Our construction uses a number of tools from coding theory and pseudorandomness.
These are described in detail in Appendix A. Briefly, we use:
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—A constant-rate explicit stochastic code SC : {0,1}b × {0,1}b → {0,1}cob, defined on
blocks of length c0b = 
(logN), that is efficiently decodable with probability 1−c1/N
from a fraction p+O(ε) of additive errors decodable with probability 1− c1/N. These
codes are obtained via Theorem 4.1 (see Proposition A.1 in the appendix).

—A rate O(ε) Reed-Solomon code RS that encodes a message as the evaluation of a
polynomial at points α1, . . . , α	 in such a way that an efficient algorithm RS-DECODE

can efficiently recover the message given at most ε	/4 correct symbols and at most
ε/24 incorrect ones.

—A randomness-efficient sampler Samp : {0,1}σ → [N]	, such that for any subset
B⊆ [N] of size at least μN, the output set of the sampler intersects with B in roughly
a μ fraction of its size, that is, |Samp(s)∩ B| ≈ μ|Samp(s)|, with high probability over
s ∈ {0,1}σ . We use an expander-based construction from Vadhan [2004].

—A generator KNR : {0,1}σ → Sn for an (almost) t-wise-independent family of permu-
tations of the set {1, . . . ,n}, that uses a seed of σ = O(t logn) random bits (Kaplan
et al. [2006]).

—A generator POLYt : {0,1}σ → {0,1}n for a t-wise-independent distribution of bit
strings of length n, that uses a seed of σ = O(t logn) random bits.

—An explicit efficiently decodable, rate R = 1−H(p)−O(ε) codeREC : {0,1}Rn → {0,1}n
that can correct a p fraction of t-wise-independent errors, that is: For every message
m ∈ {0,1}Rn, and every error vector e ∈ {0,1}n of Hamming weight at most pn, we
have REC-DECODE(REC(m) + π (e)) = mwith probability at least 1 − 2−�(ε2t) over the
choice of a permutation π ∈R range(KNR). (Here π (e) denotes the permuted vector:
π (e)i = eπ (i).) A standard family of concatenated codes satisfies this property (see, for
example, Smith [2007]).

7.2. Analysis

The following (Theorem 4.2, restated) is our result on explicit construction of capacity-
achieving codes for additive errors.

THEOREM 7.1. For every p ∈ (0,1/2), and every ε > 0, the functions ENCODE, DECODE

(Algorithms 1 and 2) form an explicit, efficiently encodable and decodable stochastic
code with rate R = 1 − H(p) − ε such that for every m ∈ {0,1}RN and error vector
e ∈ {0,1}N of Hamming weight at most pN, we have Prω[DECODE(ENCODE(m;ω) + e) =
m] � 1 − exp(−�(ε2N/ log2 N))), where N is the block length of the code.

With all the ingredients described in Section A in place, we can describe and analyze
the code of Theorem 7.1. The encoding algorithm is given in Algorithm 1. The corre-
sponding decoder is given in Algorithm 2. Also, a schematic illustration of the encoding
is in Figure 1. The reader might find it useful to keep in mind the high-level description
from Section 6 when reading the formal description.

Starting the Proof of Theorem 7.1. First, note that the rate R of the overall code
approaches the Shannon bound: R is almost equal to the rate R′ of the code REC
used to encode the actual message bits m, since the encoded control information has
length O(εN). The code REC needs to correct a fraction p+25�ε of t-wise-independent
errors, so we can pick R′ � 1 − H(p) − O(ε). Now the rate R = R′N′

N = R′(1 − 24�ε) �
1 − H(p) − O(ε) (for small-enough ε > 0).

We now turn to the analysis of the decoder. Fix a message m∈ {0,1}R·N and an error
vector e ∈ {0,1}N with Hamming weight at most pN. Suppose that we run Enc on m
and coins ω chosen independently of the pairm, e, and let x = Enc(m;ω)+e. The decoder
parses x into blocks x1, . . . , xn′+	 of length � logN, corresponding to the blocks output
by the encoder.
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Algorithm 1. ENCODE: On Input Parameters N, p, ε (with p + ε < 1/2), and Message
m∈ {0, 1}R·N, where R = 1 − H(p) − O(ε).
1: � ← 2c0 Here c0 is the expansion of the stochastic code from Theorem 4.1 that

can correct a fraction p+ ε of errors.
n ← N

� logN The final codeword consists of n blocks of length � logN.
	 ← 24εN/ logN The control codeword is 	 blocks long.
n′ ← n− 	 and N′ ← n′ · (� logN) � The payload codeword is n′ blocks long (i.e., N′ bits).

Phase 1: Generate control information

2: Select seeds sπ , s�, sV uniformly in {0,1}ε2N.

3: ω ← (sπ , s�, sV ) Total length |ω| = 3ε2N.

Phase 2: Encode control information

4: Encode ω with a Reed-Solomon code RS to get symbols (a1, . . . ,a	).
� RS is a rate ε

8 Reed-Solomon code of length 24εN = 8
ε
·|ω| bits which evaluates polynomials

at points (α1, . . . , α	) in a field F of size ≈ N.

5: Encode each symbol together with its evaluation point: For i = 1, . . . , 	, do

— Ai ← (αi,ai)We add location information to each RS symbol to handle insertions and
deletions.

— Ci ← SC(Ai, ri), where ri is random of length 2 logN bits.
SC = SC2 logN,p+ε : {0,1}2 logN × {0, 1}2 logN → {0,1}� logN is a stochastic code that can
correct a fraction (p+ ε) of additive errors with probability 1 − c1/N2 > 1 − 1/N as per
Proposition A.1.

Phase 3: Generate the payload codeword

6: Encode musing a code that corrects random errors:

— P ← REC(m), REC : {0, 1}R′N′ → {0,1}N′ is a code that corrects a p+ 25�ε fraction of
t-wise-independent errors, as per Proposition A.9 . Here R′ = RN

N′ .

7: Expand the seeds sV , s�, sπ to get: � See Section 7.1 for summary of subroutines.

— a set V = Samp(sV ) ⊆ [n] of size 	,
� Samp is a expander-based sampler (Proposition A.4)

— offset � = POLY(s�) ∈ {0,1}N′ ,
� POLY is an almost t-wise-independent bit generator (Proposition A.8)

— permutation π = KNR(sπ ) from [N′] to [N′].
� KNR is an almost t-wise-independent permutation generator (Proposition A.6)

8: Scramble the payload codeword:

— π−1(P) ← (bits of P permuted according to π−1)
— Q← π−1(P) ⊕ �
— Cut Q into n′ blocks B1, . . . , Bn′ of length � logN bits.

Phase 4: Interleave blocks of payload codeword and control codeword

9: Interleave control blocks C1, . . . ,C	 with payload blocks B1, . . . , Bn′ , using control blocks
in positions from V and payload blocks in remaining positions.
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Algorithm 2. DECODE: On Input x of Length N:
1: Cut x into n′ + 	 blocks x1, . . . , xn′+	 of length � log(n) each.
2: Attempt to decode control blocks: For i = 1, . . . ,n′ + 	, do

— F̃i ← SC-DECODE(xi).
With high prob, non-control blocks are rejected (Lemma 7.5), and control blocks
are either correctly decoded or discarded (Lemma 7.4).

— If F̃i �=⊥, then parse F̃i as (α̃i, ãi), where α̃i, ãi ∈ F.

3: (s̃V , s̃�, s̃π ) ← RS-DECODE(pairs (α̃i, ãi) output above).
Control information is recovered w.h.p. (Lemma 7.6).

4: Expand the seeds s̃V , s̃�, s̃π to get set Ṽ , offset �̃, and permutation π̃ .

5: Q̃← concatenation of blocks xi not in Ṽ
Fraction of errors in Q̃ is at most p+ O(ε).

6: P̃ ← π (Q̃ ⊕ �̃)If control info is correct, then errors in P̃ are almost t-wise
independent.

7: m̃← REC-DECODE(P̃)Run the decoder from Proposition A.9.

The four lemmas below, proved in Section 7.3, show that the decoder recovers the
control information correctly with high probability. We then show that the payload
message is correctly recovered. The proof of the theorem is completed in Section 7.4.
The lemmas illuminate the roles of the main pseudorandom objects in the construc-

tion. First, the sampler seed is used to ensure that errors are not concentrated on the
control blocks, as captured in the next lemma:

Definition 7.2 (Good Sampler Seeds). A sampled set V is good for error vector e if
the fraction of control blocks with relative error rate at most p+ ε is at least ε

2 .

LEMMA 7.3 (GOOD SAMPLER LEMMA). For any error vector e of relative weight at most
p, with probability at least 1 − exp(−�(ε3N/ logN) over the choice of sampler seed sV ,
the set V is good for e.

Given a good sampler seed, the properties of the stochastic code SC guarantee that
many control blocks are correctly interpreted. Specifically:

LEMMA 7.4 (CONTROL BLOCKS LEMMA). For all e,V such that V is good for e, with
probability at least 1 − exp(−�(ε3N/ logN)) over the random coins (r1, r2, . . . , r	) used
by the 	 SC encodings, we have the following: (i) The number of control blocks correctly
decoded by SC-DECODE is at least ε	

4 , and (ii) the number of erroneously decoded control
blocks is less than ε	

24 .
(By erroneously decoded, we mean that SC-DECODE outputs neither ⊥ nor the correct

message.)

The offset � is then used to ensure that payload blocks are not mistaken for control
blocks:

LEMMA 7.5 (PAYLOAD BLOCKS LEMMA). For all m, e, sV , sπ , with probability at least
1−2−�(ε2N/ log2 N)) over the offset seed s�, the number of payload blocks incorrectly accepted
as control blocks by SC-DECODE is less than ε	

24 .

The two previous lemmas imply that the Reed-Solomon decoder will, with high
probability, be able to recover the control information. Specifically:
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LEMMA 7.6 (CONTROL INFORMATION LEMMA). For any m and e, with probability 1 −
2−�(ε2N/ log2 N) over the choice of the control information and the coins of SC, the control
information is correctly recovered, that is, (s̃V , s̃�, s̃π ) = (sV , s�, sπ ).

Remark 7.7. It would be interesting to achieve an error probability of 2−�ε(N), that
is, a positive “error exponent,” in Theorem 7.1 instead of the 2−�ε(N/ log2 N) bound we
get. A more careful analysis (perhaps one that works with almost t′-wise-independent
offset �) can probably improve our error probability to 2−�ε(N/ logN), but going further
using our approach seems difficult. The existential result due to Csiszár and Narayan
[1988b] achieves a positive error exponent for all rates less than capacity, as does our
existence proof using list decoding in Section 5.2.

Remark 7.8. A slight modification of our construction give codes for the “average
error criterion,” in which the code is deterministic but the message is assumed to be
unknown to the channel and the goal is to ensure that for every error vector most
messages are correctly decoded; see Theorem B.4 in Appendix B.

7.3. Proofs of Lemmas Used in Theorem 7.1

PROOF OF LEMMA 7.3. Let B⊂ [n] = [n′ + 	] be the set of blocks that contain a (p+ ε)
or smaller fraction of errors. We first prove that Bmust occupy at least an ε fraction of
total number of blocks: To see why, let γ be the proportion of blocks which have error
rate at most (p + ε). The total fraction of errors in x is then at least (1 − γ )(p + ε).
Since this fraction is at most p by assumption, we must have 1 − γ � p/(p + ε). So
γ � ε/(p+ ε) > ε.
Next, we show that the number of control blocks that have error rate at most p+ ε

cannot be too small. The error e is fixed before the encoding algorithm is run, and so
the sampler seed sV is chosen independently of the set B. Thus, the fraction of control
blocks in B will be roughly ε. Specifically, we can apply Proposition A.4 with μ = ε
(since B occupies at least an ε fraction of the set of blocks), θ = ε/2 and σ = ε2N.
We get that the error probability γ is exp(−�(θ2	)) = exp(−�(ε3N/ logN). (Note that
for constant ε, the seed length σ = ε2N � logN + 	 log(1/ε) is large enough for the
proposition to apply.)

POOOF OF LEMMA 7.4. Fix e and the sampled set V which is good for e. Consider a
particular received block xi that corresponds to control block j, that is, xi = Cj +ei. The
key observation is that the error vector ei depends on e and the sampler seed V , but it
is independent of the randomness used by SC to generate Cj . Given this observation,
we can apply Proposition A.1 directly:

(a) If block i has error rate at most p + ε, then SC-DECODE decodes correctly with
probability at least 1 − c1/N2 � 1 − 1/N over the coins of SC.

(b) If block i has error ratemore than p+ ε, then SC-DECODE outputs⊥with probability
at least 1 − c1/N2 � 1 − 1/N over the coins of SC.

Note that in both statements (a) and (b), the probability need only be taken over the
coins of SC.
Consider Y, the the number of control blocks that either (i) have “low” error rate

(� p+ ε) yet are not correctly decoded, or (ii) have high error rate, and are not decoded
as ⊥. Because statements (a) and (b) above depend only on the coins of SC, and these
coins are chosen independently in each block, the variable Y is statistically dominated
by a sum of independent Bernoulli variables with probability 1/N of being 1. Thus
E[Y] � 	/N < 1. By a standard additive Chernoff bound, the probability that Y
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exceeds ε	/24 is at most exp(−�(ε2	)). The bound on Y implies both the bounds in the
lemma.

PROOF OF LEMMA 7.5. Consider a block xi that corresponds to payload block j, that is,
xi = Bj + ei. Fix e, sV , and sπ . The offset � is independent of these, and so we may write
xi = yi + �i, where yi is fixed independently of �i. Since � is a t′-wise independent
string with t′ = �(ε2N/ logN) much greater than the size � logN of each block, the
string �i is uniformly random in {0,1}� logN. Hence, so is xi. By Proposition A.1 we
know that on input a random string, SC-DECODE outputs ⊥ with probability at least
1 − c1/N2 � 1 − 1/N.
Moreover, the t′-wise independence of the bits of � implies t′

� logN -wise independence

of the blocks of �. Define t′blocks = min{ t′
� logN , ε	

96 }. Note that �
(

ε2N
log2 N

)
� t′blocks � ε	

96 .
The decisions made by SC-DECODE on payload blocks are t′blocks-wise independent. Let
Z denote the number of payload blocks that are incorrectly accepted as control blocks
by SC-DECODE. We have E[Z] � n′

N � ε	/48 (for large-enough N).
We can apply a concentration bound of Bellare and Rompel [1994, Lemma 2.3] using

t = t′blocks, μ = E[Z] � ε	
48 , A= ε	

48 , to obtain the bound

Pr[Z � ε	
24 ] � 8

(
t′blocks · μ + (t′blocks)

2

(ε	/48)2

)t′blocks/2

� (logN)−�(t′blocks) � e−�(ε2N log logN/ log2 N).

This bound implies the lemma statement.

PROOF OF LEMMA 7.6 Suppose the events of Lemmas 7.4 and 7.5 occur, that is, for at
least ε	/4 of the control blocks the recovered value F̃i is correct, at most ε	/24 of the
control blocks are erroneously decoded, and at most ε	/24 of the payload blocks are
mistaken for control blocks.
Because the blocks of the control information come with the (possibly incorrect)

evaluation points α̃i, we are effectively given a codeword in the Reed-Solomon code
defined for the related point set {α̃i}. Now, the degree of the polynomial used for the
original RS encoding is d∗ = |ω|/ log(N) − 1 < 3ε2N/ logN = ε	/8. Of the pairs (α̃i, ãi)
decoded by SC-DECODE, we know at least ε	

4 are correct (these pairs will be distinct)
and at most 2 · ε	

24 are incorrect (some of these pairs may occur more than once or
even collide with one of the correct). If we eliminate any duplicate pairs and then run
the decoding algorithm from Proposition A.2, then the control information ω will be
correctly recovered as long as the number of correct symbols exceeds the number of
wrong symbols by at least d∗ + 1. This requirement is met if ε	

4 − 2 × ε	
24 � d∗ + 1. This

is indeed the case since d∗ < ε	/8.
Taking a union bound over the events of Lemmas 7.4 and 7.5, we get that the probabil-

ity that the control information is correctly decoded is at least 1−exp(−�(ε2N/ log2 N)),
as desired.

7.4. Completing the Proof of Main Theorem 7.1

PROOF OF THEOREM 7.1. We will first prove that the decoding of the payload codeword
succeeds assuming the correct control information ω = (sπ , s�, sV ) is handed directly to
the decoder, that is, in the “shared randomness” setting. We will then account for the
fact that we must condition on the correct recovery of the control information ω by the
first stage of the decoder.
Fix a message m, error vector e, and sampler seed sV , and let eQ be the restriction of

e to the payload codeword, that is, blocks not in V . The relative weight of eQ is at most
pN
N′ = pN′+	� logN

N′ = p(1 + 24ε� N
N′ ) � p(1 + 25�ε) (for sufficiently small ε).
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Now since sπ is selected independently from V , the permutation π is independent of
the payload error eQ. Consider the string P̃ that is input the the REC decoder. We can
write P̃ = π̃ (Q̃⊕ �̃) = π (Q⊕ eQ ⊕ �). Because a permutation of the bit positions is a
linear permutation of Z

N′
2 , we get P̃ = π (Q+ �) ⊕ π (eQ) = P ⊕ π (eQ).

Thus, the input to REC is corrupted by a fraction of at most p(1 + 25�ε) errors that
are t-wise independent, in the sense of Proposition A.9 [Smith 2007]. With probability
at least 1− e−�(ε2t) = 1− e−�(ε4N/ logN), the message m is correctly recovered by DECODE.
In the actual decoding, the control information is not handed directly to the decoder.

Let ω̃ be the candidate control information recovered by the decoder (in Step 8 of the
algorithm). The above suite of lemmas (Lemmas 7.3, 7.4, 7.5, and 7.6) show that the
control information is correctly recovered, that is, ω̃ = ω, with probability at least
exp(−�(ε2N/ log2 N))).

The overall probability of success is given by

Pr
ω
[payload decoding succeeds with control information ω̃],

which is at least

Pr
ω
[ω̃ = ω ∧ payload decoding succeeds with control information ω̃]

= Pr
ω
[ω̃ = ω ∧ payload decoding succeeds with control information ω]

� 1 − Pr
ω
[ω̃ �= ω] − Pr

ω
[payload decoding succeeds given ω]

� 1 − exp(−�(ε2N/ log2 N)) − exp(−�(ε4N/ logN)).

Because ε is a constant relative to logN, it is the former probability that dominates.
This completes the analysis of the decoder and the proof of Theorem 7.1.

8. CAPACITY-ACHIEVING CODES FOR TIME-BOUNDED CHANNELS

In this section, we outline a Monte Carlo algorithm that, for any desired error fraction
p ∈ (0,1/2), produces a code of rate close to 1 − H(p) which can be efficiently list
decoded from errors caused by an arbitrary randomized polynomial-time channel that
corrupts at most a fraction p of symbols with high probability. Recall that for p > 1/4,
resorting to list decoding is necessary even for very simple (constant space) channels
(Theorem 4.3).
We will use the same high-level approach from our construction for the additive

errors case, with some components changed. The main difference is that the codeword
will be pseudorandom to bounded distinguishers, allowing us to “reduce” to the case
of oblivious errors. (In fact, we will show that the errors are indistinguishable from
oblivious errors, which will turn out to suffice). We will make repeated use of the
following definition:

Definition 8.1 (Indistinguishability). For a given (possibly randomized) Boolean
function A on some domain D and two random variables X,Y taking values in D, we
write X

η≈A Y if
|Pr(A(X) = 1) − Pr(A(Y ) = 1)| � η.

We write X
η≈time T Y to indicate that X

η≈A Y for all circuits of size at most T.

Definition 8.2 (Pseudorandom Generators). A map G : {0,1}s → {0,1}n is said to be
(T, ε)-pseudorandom if

G(Us)
ε≈time T Ub,

where Um denotes the uniform distribution on {0,1}m.
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We begin the section with an overview of the code construction. We then develop
several key technical results: a construction of small “pseudorandom codes,” a useful
intermediate result, the Hiding Lemma, and, finally, we show how to use these to
analyze the decoder’s performance.

8.1. Code Construction and Ingredients

Parameters. Input parameters of the construction: N, p, S, ε, where

(1) N is the block length of the final code,
(2) pN is the bound on the number of errors introduced (0 < p < 1/2) by the channel

w.h.p.
(3) T0 is a bound on the circuit size (think “running time”) of the channel. We will

eventually set T0 = Nc for a constant c > 1, though most results hold for any
T0 > N.

(4) ε is a measure of how far the rate is from the optimal bound of 1 − H(p) (that is,
the rate must be at least 1 − H(p) − ε). We will assume 0 < 2ε < 1/2 − p.

The seeds/control information. The control information ω consists of three ran-
domly chosen strings sπ , sV , s� where sπ , sV are as in the additive errors case. We take
the lengths of sπ , sV be ζN where ζ = ζ (p, ε) will be chosen small enough compared to ε.
The third string s� ∈ {0,1}γ N is the seed of a pseudorandom generator Gen that

outputs N bits and fools circuits of size (roughly) T0. (A shorter seed would suffice
here, but we make all seeds the same length for simplicity—see below.) The offset
� ← Gen(s�) will be used to fool the polynomial-time channel. We do not need to add
the t′-wise-independent offset � as we did in the additive errors case.

Encoding the message. The payload codeword encoding the message m will be
π−1(REC(m)) ⊕ �, which is the same as the encoding for the additive channel, with
the offset � added to break dependencies in the time-bounded channel instead of the
t′-wise-independent offset �.

The code REC is the same as the code for the case of additive errors. We will denote
by βREC the maximum, over fixed error patterns e, of the probability, over permutations
π , that REC does not correctly decode the pattern π (e). As noted in Section 7.1, βREC �
2−�(ε2ζN/ logN). We will need the following additional property of REC: There is a circuit
of size Oε(N) that takes as input an error pattern e, permutation π , and set of control
positions V and checks whether or notRECwill decode the error pattern π (e) (restricted
to positions outside of V ) correctly. (This circuit works by counting the number of blocks
of the concatenated code which the inner code decodes incorrectly.)
For the offset �, we need a pseudorandom generator PolyPRG that is computable in

time poly(N) and secure against circuits of size T with polynomially small error, with
seed length at most γ N. Such generators can be constructed in a Monte Carlo fashion
(a random function from c logN to N bits will do for a large-enough constant c):

PROPOSITION 8.3 (FOLKLORE (ALSO FOLLOWS FROM PROPOSITION 8.4)). For every constant
ζ > 0 and polynomial T(N) � N, for sufficiently large N there exists a poly-time Monte
Carlo construction of a polynomial-time computable function PolyPRG from ζN to N
bits that is (T, 1

T ) pseudorandom with probability at least 1 − 1/T.

This construction can be made explicit assuming either that one-way functions ex-
ist [Yao 1982; Håstad et al. 1999] or that E �⊆ SIZE(2ε0n) for some absolute constant
ε0 > 0 [Impagliazzo and Wigderson 1997] (where E = TIME(2O(n)) and SIZE(2ε0n) de-
notes the class of languages that have size O(2ε0n) circuits). For space-bounded (as
opposed to time-bounded) distinguishers, there is even an explicit construction that
makes no assumptions [Nisan 1992]. However, as noted by one reviewer, we require
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a Monte Carlo algorithm to construct pseudorandom codes (as required by Proposi-
tion 8.4 below), even for space-bounded channels. Therefore, we use a Monte Carlo
construction of PolyPRG and get a single statement covering time- and space-bounded
channels.

Encoding the seeds. The control information (consisting of the seeds sπ , sV , s�) will
be encoded by a similar structure to the solution for the additive channel: a Reed-
Solomon code of rate RRS = RRS(p, ε) concatenated with an inner stochastic code. But
the stochastic codeSC (of Proposition A.1) will now be replaced by a pseudorandom code
PRC that satisfies two requirements: First, it has good list decoding properties and,
second, the (stochastic) encoding of any given message is indistinguishable from a ran-
dom string by a randomized time-bounded channel. The construction of the necessary
stochastic code is guaranteed by the following lemma.

PROPOSITION 8.4 (INNER CONTROL CODES EXIST). For some fixed positive integer �0 the
following holds. For all δ, 0 < δ < 1/2 and polynomials T = T(N) � N, for sufficiently
large N there exist R = R(δ) � (1/2 − δ)�(1) > 0 and a positive integer L = L(δ) �
1/(1/2−δ)O(1) such that there exists a poly(T) time-randomizedMonte Carlo algorithm A
that takes a random string of length poly(N,T) and outputs a stochastic code (Enc,Dec)
with block length b = �0 log(T) and rate k/b � R that, with probability at least 1− 2−b,
satisfies:

—(Enc,Dec) is (δ, L)-list decodable: For every y ∈ {0,1}b, there are at most L pairs (m, r)
such that E(m, r) is within Hamming distance δb of y;

—(Enc,Dec) is (T,1/T)-pseudorandom: For every m ∈ {0,1}k, we have

E(m,Us)
1/T≈ time T Ub ; and

—there exists a deterministic decoding procedure running in time poly(T) that, given a
string y ∈ {0,1}b, recovers the complete list of at most L pairs (m, r) whose encodings
E(m, r) are within Hamming distance at most δb from y.

Proposition 8.4 is proved in Section 8.3. An interesting direction for future work is
the design of explicit pseudorandom stochastic codes along the lines of Proposition 8.4.
See Section 9.

Full Code. To construct the final code, we will apply the Monte Carlo constructions
of the previous section with time T2 = T0 + O(Nmax{logN,2poly(1/ε)}) (the exact value
of T2 will be clear from the analysis). For constant ε, it suffices to take T2 = 2T0
when T0is a large-enough polynomial in N. This means the control blocks have length
�0 logT2 = 
(logT0). The control blocks occupy an ε fraction of the whole codeword,
which means the number of real control blocks is nctrl = 
( εN

logT0
).

As in the additive errors case, the control blocks will be interspersed with the payload
blocks at locations specified by the sampler’s output on sV .

Rate of the code. The code encoding the control information is of some small constant
rate Rctrl(p, ε), but the control information consists only of O(ζN) bits. Given ε, we can
select ζ small enough so the control portion of the codeword only adds εN/2 bits to the
overall encoding. The rate ofREC is at least (1−ε/10)(1−H(p)−ε/10) � 1−H(p)−ε/5.
So the rate of the overall stochastic code is at least 1 − H(p) − ε as desired.

8.2. List Decoding Algorithm for Full Encoding

The decoding algorithm for the full encoding will be similar to the additive case with
the principal difference being that the inner stochastic codes will be decoded using the
procedure guaranteed in Proposition 8.4. For each block, we obtain a list of L possible
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pairs of the form (αi,ai). This set of (at most NL) pairs is the fed into the polynomial-
time Reed-Solomon list-decoding algorithm (guaranteed by Proposition A.3), which
returns a list of poly(1/ε) values for the control information. This comprises the first
phase of the decoder.
Once a list of control vectors is recovered, the second phase of the decoder will run

the decoding algorithm for REC for each of these choices of the control information and
recover a list of possible messages.
The steps to decode each of inner stochastic codes takes time poly(T) and decoding

the Reed-Solomon code as well as REC takes time polynomial in N. So the overall
runtime is polynomial in N and T.

THEOREM 8.5. Let WT0 be an arbitrary randomized time-T0 channel on N input bits
that is pN bounded. Consider the code construction described in Section 8.1.
The resulting code has rate at least 1 − H(p) − ε. For every message m, with high

probability over the choice of control information sπ , sV , s�, the coins of PRC, and the
coins of WT0 , the list output by the decoding algorithm has size poly(1/ε) and includes
the message mwith probability at least

1 − O(N/T0).

The running time of the decoding algorithm is polynomial in N and T0.

The novelty compared to the additive errors case is in the analysis of the decoder,
which is more subtle since we have to deal with a much more powerful channel. The
remainder of this section deals with this analysis, which will establish the validity of
Theorem 8.5.

8.3. Monte Carlo Constructions of Pseudorandom Codes

POOOF OF PROPOSITION 8.4. The codes we design have a specific structure: A binary
stochastic code with encoding map E, where E : {0,1}k × {0,1}s → {0,1}b, is said to be
decomposable if there exist functions E1 : {0,1}k → {0,1}b and E2 : {0,1}s → {0,1}b such
that E(x, y) = E1(x) ⊕ E2(y) for every x, y. We say that such an encoding decomposes
as E = [E1, E2].
The existence will be shown by a probabilistic construction with a decomposable

encoding E(m, r) = C(m) ⊕ BPPRG(r), where C will be (the encoding map of) a linear
list-decodable code, and BPPRG will be a generator that fools size T circuits, obtained
by picking BPPRG(r) ∈ {0,1}b independently and uniformly at random for each seed
r (our analysis relies on more than just the pseudorandomness of BPPRG—we need
its domain to also have certain error correction properties). Here b = �0 log(T) for a
large-enough absolute constant �0 as in the statement of the Proposition. Note that
the construction time is 2O(b) = poly(T).
LIST-DECODING PROPERTY. We adapt the proof that a truly random set is list decodable.

Let C ⊆ {0,1}b be a linear (δ, LC = LC(δ))-list-decodable code; such codes exist for
rates less than 1 − H(δ) [Guruswami et al. 2002] and can be constructed explicitly
with positive rate R(δ) � (1/2 − δ)�(1) > 0 for any constant δ < 1/2 with a list size
LC � 1/(1/2 − δ)O(1) [Guruswami and Sudan 2000]. We will show that the composed
code E has constant list size with high probability over the choice of BPPRG as long as
the rate of the combined code is strictly less than 1 − H(δ).

Fix a ball B′ of radius δb in {0,1}b, and let X denote the size of the intersection of the
image of Ewith B′. We can view the image of E as a union of 2s sub-codesCr, whereCr is
the translated code C⊕BPPRG(r) (for r ∈ {0,1}s). Each sub-code Cr is (δ, LC)-list decod-
able since it is a translation ofC. We can then write X = ∑

r∈{0,1}s Xr, where Xr is the size
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of Cr ∩ B′. The Xr are independent integer-valued random variables with range [0, LC]
and expectation E[Xr] = |C| · |B′|/2b � 2−b(1−H(δ)−RC ), where RC denotes the rate of C.

If we set s = 10 logT0, then we get:

E[X] = 210 log(T)2−b(1−H(δ)−RC ) = 2−b(1−H(δ)−RC−10/�0).

Suppose RC + 10/�0 = 1 − H(δ) − α0, so E[X] = 2−α0b. Let t be the ratio L/E[X],
where L = L(δ) is the desired list-decoding bound for the composed code E. We will set
L = 3LC/α0. By the multiplicative Chernoff bound for bounded random variables, the
probability (over the choice of BPPRG) that X > L is at most ( te )

tE[X]/LC . Simplifying, we
get Pr[X > L] � ( Le )

22−3b � 2−2b.
Taking a union bound over all 2b possible balls B′, we get that with probability at

least 1−2−2b, the random choice of BPPRG satisfies the property that the decomposable
stochastic code with encoding map E = C ⊕ BPPRG is (δ, L)-list decodable.
PSEUDORANDOMNESS. The proof of pseudorandomness is standard, but we include it

here for completeness. It suffices to prove the pseudorandomness property against all
deterministic circuits of size T, since a randomized circuit is just a distribution over
deterministic ones.
Fix an arbitrary codeword C(m). Consider the (multi)set Xm = {C(m)⊕BPPRG(r)} as

r varies over {0,1}s. Each element of this set is chosen uniformly and independently
at random from {0,1}b. Fix a circuit B of size T. By a standard Chernoff bound, the
probability, over the choice of Xm, that Prx∈Xm[B(x) = 1] deviates from the probability
Pr[B(Ub) = 1] that B accepts a uniformly random string by more than ζ in absolute
value is at most exp(−�(ζ 2|Xm|)). For ζ = 1/T and |Xm| = 2s � T10, this probability is
at most exp(−�(T 8

0 )).
The number of circuits of size T is exp(O(T log(T))). By a union bound over all these

branching programs, we conclude that except with probability at most exp(−poly(T))
over the choice of BPPRG, the following holds for every size-T circuit B: |Prx∈Xm[B(x) =
1] − Pr[B(Ub) = 1]| � 1/T. Since mwas arbitrary, we have proved that the constructed
stochastic code is (T,1/T)-pseudorandom with probability at least 1 − 2−2b.

DECODING. Finally, it remains to justify the claim about the decoding procedure.
Given a string y ∈ {0,1}b, the decoding algorithm will go over all (m, r) ∈ {0,1}k×{0,1}s
by brute force and check for each whether dist(E(m, r), y) � δb. By the list-decoding
property, there will be at most L such pairs (m, r). The decoding complexity is
2O(k+s) = 2O(b).

8.4. Analyzing Decoding: Main Steps

It will be convenient to explicitly name the different sources of error in the construction.
The code ingredients are selected so each of these terms is at most 1/T0.

β�(T) distinguishability of long generator (from uniform) by circuits of
size T

βPRC(T) distinguishability of PRC outputs by circuits of size T
βV max. probability (over choice of sampler set V ) that a fixed error

pattern will not be well-distributed among control blocks
βπ max. probability that any fixed error pattern will cause a decoding

error for code REC after π

Our analysis requires two main claims.

LEMMA 8.6 (FEW CONTROL CANDIDATES). The decoder recovers a list of L′ � poly(1/ε)
candidate values of the control information. The list includes the correct value
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ω = (sπ , sV , s�) of the control information used at the encoder with probability at least
1 − βcontrol, where

βcontrol � βV + β�(T2) + N · βPRC(T2) � (N + 3)/T0,

when T2 = T0 + O(N logN).

LEMMA 8.7 (PAYLOAD DECODING SUCCEEDS). Given the correct control information
(π,V, �), the decoder recovers the correct message with high probability. Specifically,
the probability of successful decoding is at least 1 − βpayload, where

βpayload � βπ + β�(T2) + N · βPRC(T2)) � (N + 3)/T0

and T2 = T0 + O(N2poly(1/ε)).

Combining these two lemmas, which we prove in the next two sections, we get that
except with probability at most βControl + βpayload � βV + βπ + 2β�(T2)+ 2N · βPRC(T2) �
2(N + 3)/T0, the decoder recovers a list of at most L′ � poly(1/ε) potential messages,
one of which is the correct original message. This establishes Theorem 8.5.

8.5. The Hiding Lemma

Given a message m, and pseudorandom outputs π,V, � based on the seeds sπ , sV , s�,
let

Enc(m;π,V, �, r1, . . . , rnctrl )
denote the output of the encoding algorithm when the ri ’s are used as the random bits
for the LSC encoding. Let Enc(m;π,V, ·) be a random encoding of the message musing
a given π,V and selecting all other inputs at random.

LEMMA 8.8 (HIDING LEMMA). For all messages m, sampler sets V , and permutations π ,
the random variable Enc(m;π,V, ·) is pseudorandom, namely:

Enc(m;π,V, ·) β≈time T UN,

where β � βHide(T)
def=� N · βPRC(T′) + β�(T′) and T′ = T + N.

For our purposes, the most important consequence of the Hiding Lemma that even
with the knowledge of m, π , and V , the distribution of errors inflicted by a space-
bounded channel on a codeword of our code and on a uniformly random string are
indistinguishable by time-bounded tests.
In other words, the pseudorandomness of the codewords allows us to reduce the

analysis of time-bounded errors to the additive case, as long as the events whose
probability we seek to bound can be tested for by small circuits. We encapsulate this
idea in the “Oblivious Errors Corollary” below. The proof of the Hiding Lemma follows
that of the corollary.

Definition 8.9 (Error Distribution). Given a randomized channel W on N bits and a
random variable D on {0,1}N, let EW(D) = D⊕ W(D) denote the error introduced by W
when D is sent through the channel.

COROLLARY 8.10 (ERRORS ARE NEAR-OBLIVIOUS). For every m, π,V and randomized
time-T channel W. The error distributions for a real codeword and a random string are
indistinguishable. That is, for every time-bound T′:

EW(UN)
β≈time T′ EW(Enc(m;π,V, ·)),

where β � βHide(T + T′ + N) and βHide(·) is the bound from the Hiding Lemma (8.8).
Note that the distinguishing circuits here may depend on m, π,V .
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PROOF OF COROLLARY. One can compose a distinguisher for the two error random
variables with the channel W to get a distinguisher for the original distributions of the
Hiding Lemma. This composition requires the addition of a layer of XOR gates (thus
adding N to the size of the circuit).

PROOF OF THE HIDING LEMMA (LEMMA 8.8). The proof proceeds by a standard hybrid
argument. Fix m, π,V , and recall that nctrl = |V | < N is the number of control blocks.
Let D0 be the random variable Enc(m;π,V, ·), and Dnctrl+1 be the uniform distribution
over {0,1}N. We define intermediate random variables D1, D2, . . . , Dnctrl : In Di, the first
i control blocks from D0 are replaced by random strings. For a given time-T circuit A,
let pi = Pr[A(Di) = 1].
Note that for i ∈ {1, . . . ,nctrl}, Di−1 and Di are distributed identically in all blocks

except the ith-control block. The pseudorandomness ofPRC implies that, conditioned on
any particular fixed value of the positions outside the ith control block, the distributions
Di−1 and Di are indistinguishable up to error βPRC(T) � βPRC(T′) by circuits of size T.
Averaging over the possible values of the other blocks, we get |pi − pi−1| � βPRC(T′).

To compare Dnctrl and Dnctrl+1 = UN, note that the two distributions would be identical
if the offset � were replaced by a truly random string. Since the control blocks are now
random (and, hence, carry no information about s�), we use a distinguisher for Dnctrl
and Dnctrl+1 (of size T) to get a distinguisher between � and UN′ (of size T′) by XORing
the challenge string with the REC encoding of the message, permuted according to π .
Becausem, π,V can be fixed, the encoding can be hardwired into the new distinguisher,
leading to a size increase of only N′ < N XOR gates. Thus, |pnctrl+1−pnctrl | � β�(T′), where
T′ = T + N.
Combining these bounds, we get |pnctrl+1 − p0| � NβPRC(T′) + β�(T′), as desired.

8.6. Control Candidates Analysis

Armed with the Hiding Lemma, we can show that the decoder can recover a small list
of candidate control strings, one of which is correct with high probability (Lemma 8.6).
There were fourmain lemmas in the analysis of additive errors. The first (Lemma 7.3)

stated that the sampler set V is good error pattern e for V with high probability. A
version of this lemma holds also for time-bounded errors. Recall that V is good for
e (Definition 7.2) if at least a fraction ε of the nctrl control blocks have an error rate
(fraction of flipped bits) bounded above by p+ ε.

LEMMA 8.11 (GOOD SAMPLERS: TIME-BOUNDED ANALOGUE TO LEMMA 7.3). For every pN-
bounded time-T0 channel with T0 > N and for every message m and permutation seed
sπ , the set V is good for the error pattern e introduced by the channel with probability
at least 1 − (βV + 2β�(T2) + 2N · βPRC(T2)) � 1 − 2(N + 3)/T0 over the choice of sampler
seed sV , the seed s� for the pseudorandom offset, the coins of the control encoding and
the coins of the channel. Here T2 = T0 + N logN.

PROOF. The crucial observation here is that Oblivious Errors Lemma implies that
the error pattern introduced by a bounded channel is almost independent of V from the
point of view of any time-T test. That is, by a simple averaging argument, the Oblivious
Errors Lemma implies that for every distribution on m, π,V , we have

(m, π,V, EW(UN))
β≈time T′ (m, π,V, EW(Enc(m;π,V, ·))) . (1)

The properties of the sampler imply that the probability of getting a good (control
set, error) pair in the left-hand distribution is at least 1 − βV .

Thus, all we really have to do is show that “goodness” of the control set V can be tested
efficiently, given e and V . Testing for goodness only involves counting the number of
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errors in each of the control blocks and tallying the number of control blocks with too
high a fraction of errors. This can be done in circuit size O(N logN) (in fact, quite a bit
less but the optimization does not matter here).
By the Oblivious Errors Lemma, the probability of a good (control set, error) pair on

the right-hand side of (1) is at least 1 − βV − βHide(T + O(N logN)), as desired.

We now turn to the second lemma in the analysis of the control information decoding
(Lemma 7.4 for additive errors), which stated that when the sampled positions V
are good for the error pattern e, one can correctly recover a large number of control
blocks. This is no longer true in our setting, but we require only the following weaker
statement.

LEMMA 8.12 (CORRECT CONTROL BLOCKS—LIST-DECODING VERSION). For any fixed e and
V such that V is good for e, the decoding algorithm for the inner codes PRC outputs
a list of L symbols containing the correct symbol ai for at least εnctrl

2 = 
( ε2N
logT0

) control
blocks.

PROOF. The list-decoding radius of the PRC code is set to be δ > p+ ε, so all blocks
with an error rate below p+ ε produce a valid list.

The third lemma from the analysis of additive errors (Lemma 7.5), which previously
stated that very few payload blocks are mistaken for control blocks, requires a signifi-
cant change, because it is possible for the time-bounded channel to inject fake control
blocks into the codeword (by changing a block to some pre-determined codeword of
PRC). Therefore, we can only say that the total number of candidate control blocks is
small.

LEMMA 8.13 (BOUNDING MISTAKEN CONTROL BLOCKS). For every m, e, ω, the total number
of candidate control symbols is at most NL

bctrl
= 
( NL

logT0
).

PROOF. Since each candidate control block has bctrl = 
(logT0) bits, there are N
logT0

blocks considered by the decoder. The list decoding of each such block yields at most L
candidate control symbols.

PROOF OF LEMMA 8.6. Given Lemmas 8.11, 8.12, and 8.13, we only need to ensure
that the rate RRS of the Reed-Solomon code used at the outer level to encode the control
information is small enough so list decoding is possible according to Proposition A.3 as
long as (1) the number of data pairs n is at most NL

bctrl
and (2) the number of agreements

t is at least 
( ε2N
logT0

). The claimed list decoding is possible with rate RRS = O(ε4/L),
and the list decoder will return at most O(L/ε2) candidates for the control information.
Since the list-decoding radius δ of PRC was chosen to be δ = p+ ε < 1/2 − ε, we have
L � 1/εO(1) by the guarantee of Proposition 8.4, so the output list size is bounded by a
polynomial in 1/ε. This proves Lemma 8.6.

8.7. Payload Decoding Analysis

We now show Lemma 8.7: Given a magical, correct copy of the control information, the
payload blocks will correctly be decoded to recover the message m. The assumption of
correct control information essentially places us in the shared randomness setting.
As with the analysis of the control block decoding, we use the fact that errors are

nearly oblivious (Corollary 8.10) to argue that the events that we needed to happenwith
high probability for successful decoding against additive errors (where the errors were
oblivious to the codeword) will also happen with good probability with a time-bounded
channel.
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PROOF OF LEMMA 8.7. Fix themessagemand the choiceV of the control block locations.
Recall that the probability for an oblivious error distribution that π (e) causes REC to
decode m incorrectly is at most βπ � 1/T0.

Note that given a permutation π , control set V and an error pattern e, one can easily
check if the payload code REC will correctly decode the error pattern (one could run
the full decoder for REC; alternatively, one can simply check that a sufficiently large
number of the inner code blocks are decoded correctly by the inner code). There is a
circuit of size O(N2poly(1/ε)) that verifies if decoding will occur correctly.

We can thus apply the Oblivious Errors Corollary (8.10) with T = T0 and T′ =
O(N2poly(1/ε)) to show the following: For every fixedm,V , the probability that a time-T0
channel W introduces errors that induce a decoding mistake (by REC) is at most

βπ + βHide(T2) = βπ + β�(T2) + NβPRC(T2) ,

where T2 = T0 + O(N2poly(1/ε)), as desired.

9. OPEN QUESTIONS

The code constructions of the previous sections leave several open questions

Uniquely decodable codes beyond the GV bound. The codes we design for time-
bounded channels are list decodable but not necessarily uniquely decodable. This is
inherent to the current analysis, since even a very simple adversary may inject valid
control blocks into the codeword, potentially causing the decoder to come up with
several seemingly valid control strings. For p � 1/4, we know the limitation is inherent
to any construction, because our lower bound describes an attack that can be carried
out by a very simple attacker. However, for p < 1/4, it may still be possible to design
codes that lead the decoder to a unique, correct codeword with high probability. Since
the initial version of this article was published, Haviv and Langberg [2011] showed
that random codes can tolerate causal errors slightly beyond the Gilbert-Varshamov
bound (regardless of the channel’s complexity) in the low-error regime (i.e., they can
achieve a rate better than 1 − H(2p) for correcting a fraction p of online errors, for
small p). Those codes are neither explicit nor decodable in polynomial time, however.

(More) Explicit Constructions for Time-Bounded Channels. Our design of time-
bounded channels uses Monte Carlo constructions in two places: for the pseudorandom
code PRC and the generator �. Constructions for the generator � are in fact known
based on worst-case hardness assumptions for circuits (say, that exponential time
does not have subexponential size circuits [Impagliazzo and Wigderson 1997]). An
interesting direction for future work is the design of explicit pseudorandom stochastic
codes along the lines of Proposition 8.4 under such hardness assumptions. This would
make the entire code construction explicit (conditionally).

Explicit Constructions for Online Space-Bounded Channels. Similarly to time-
bounded channels, one can define online space-bounded channels. An online space-S
channel is a width-2S branching program that makes a single in-order pass over the
transmitted codeword and outputs one bit for every bit that is read. Such channels
were first considered by Galil et al. [1995] and are special case of both time-bounded
channels (since a space-S channel can be implemented by a time-N · 2S circuit) and of
causal channels [Dey et al. 2008; Langberg et al. 2009].
Another direction for future work is the construction of fully explicit codes for

space-bounded channels, without hardness assumptions or Monte Carlo constructions.
We considered online space-bounded channels in the initial version of this article.
The analysis of the codes for such channels was complex, because the reductions
needed to preserve logarithmic space. Our original analysis, however, shows that
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one only needs to construct logarithmic-length, pseudorandom stochastic codes for
logarithmic-space channels in order to get a full construction (as one can use Nisan’s
generator [Nisan 1992] for �). The lemmas required for obtaining the full construc-
tion from these pieces can be found in version 3 of the arXiv version of this article
(http://arxiv.org/abs/1004.4017v3). One advantage of considering space-bounded chan-
nels is that one could potentially have codes whose running time is a fixed polynomial,
independent of the specific logarithmic space bound. Recent inefficient constructions
of codes for general online channels [Chen et al. 2015] give reason to hope that such
explicit codes for online logspace are possible.

APPENDIXES

A. INGREDIENTS FOR CODE CONSTRUCTION FOR ADDITIVE ERRORS

In this section, we will describe the various ingredients that we will need in our con-
struction of capacity achieving AVC codes, expanding on the brief mention of these
from Section 7.1.

A.1. Constant Rate Codes for Average Error

By plugging in an appropriate explicit construction of list-decodable codes (with sub-
optimal rate) into Theorem 5.3, we can also get the following explicit constructions
of stochastic codes, albeit not at capacity. We will make use of these codes to encode
blocks of logarithmic length control information in our final capacity-achieving explicit
construction. The total number of bits in all these control blocks together will only be a
small fraction of the total message length. So the stochastic codes encoding these blocks
can have any constant rate, and this allows us to use any off-the-shelf explicit constant
rate list-decodable code in Theorem 5.3 (in particular, we do not need a brute-force
search for small list-decodable codes of logarithmic block length). We get the following
claim by choosing d = 1 and picking C to be a binary linear (α, c1(α)/2)-list-decodable
code in Theorem 5.3.

PROPOSITION A.1. For every α, 0 < α < 1/2, there exists c0 = c0(α) > 0 and c1 = c1(α) <
∞ such that for all large-enough integers b, there is an explicit stochastic code SCk,α of
rate 1/c0 with encoding E : {0,1}b × {0,1}b → {0,1}c0b that is efficiently list decodable
over αN-bounded additive channels with probability 1 − c12−b.

Moreover, for every message and every error pattern of more than a fraction α of errors,
the decoder for SCk,α returns ⊥ and reports a decoding failure with probability 1−c12−b.
Further, there exists an absolute constant c3 = c3(α) such that on input a uniformly

random string y from {0,1}c0b, the decoder for SCk,α returns ⊥ with probability at least
1 − c12−b (over the choice of y).

PROOF. The claim follows by choosing d = 1 and picking C to be a binary linear
(α, c1(α)/2)-list-decodable code in Theorem 5.3. The claim about decoding a uniformly
random input follows since the number of strings y that differ from some valid output
of the encoder E is at most a fraction α of positions is at most 22b2H(α)c0b. By standard
entropy arguments, we have (1−H(α))c0b+ log(c1(α)/2) � 3b (since the code encodes 3b
bits, the capacity is 1−H(α), and at most log(c1(α)/2) additional bits of side information
are necessary to disambiguate the true message from the list). We conclude that the
probability that a random string gets accepted by the decoder is atmost 2−b·2log(c1(α)/2) �
c12−b.

Journal of the ACM, Vol. 63, No. 4, Article 35, Publication date: September 2016.

http://arxiv.org/abs/1004.4017v3


Optimal Rate Code Constructions for Computationally Simple Channels 35:31

A.2. Reed-Solomon Codes

If F is a finite field with at least n elements, and S = (α1, α2, . . . , αn) is a sequence of n
distinct elements from F, then the Reed-Solomon encoding, RSF,S,n,k(m), or just RS(m)
when the other parameters are implied, of a message m = (m0,m1, . . . ,mk−1) ∈ F

k is
given by

RSF,S,n,k(m) = ( f (α1), f (α2), . . . , f (αn)), (2)

where f (X) = m0 + m1X + · · · + mk−1Xk−1. The following is a classic result on unique
decoding Reed-Solomon codes [Peterson 1960], stated as a noisy polynomial reconstruc-
tion algorithm.

PROPOSITION A.2 (UNIQUE DECODING OF RS CODES). There is an efficient algorithm
with running-time polynomial in n and log |F| that, given n distinct pairs (αi,ai) ∈ F

2,
1 � i � n, and an integer k < n, finds the unique polynomial f of degree at most k, if
any, that satisfies f (αi) = ai for more than n+k

2 values of i. Note that this condition can
also be expressed as |{i : f (αi) = ai}| − |{i : f (αi) �= ai)}| > k.

We also state a list-decoding generalization (the version of Sudan [1997] suffices for
our purposes) that will be used in our result for space-bounded channels.

PROPOSITION A.3 (LIST DECODING OF RS CODES [SUDAN 1997]). There is an efficient
algorithm with running-time polynomial in n and log |F| that, given n distinct pairs
(αi,ai) ∈ F

2, 1 � i � n, and integer k < n, finds the set L of all polynomials f of degree
at most k, if any, that satisfy f (αi) = ai for at least t values of i as long as t >

√
2kn.

Moreover, there are at most
√
2n/k polynomials in the set L.

A.3. Pseudorandom Constructs

A.3.1. Samplers. Let [N] = {1,2, . . . , N}. If B ⊆ [N] → {0,1} has density μ (i.e., μN
elements), then standard tail bounds imply that for a random subset V ⊆ [N] of size
	, the density of B ∩ V is within ±θ of μ with overwhelming probability (at least
1 − exp(−cθ 	)). But picking a random subset of size 	 requires ≈ 	 log(N/	) random
bits. The following shows that a similar effect can be achieved by a sampling procedure
that uses fewer random bits. The idea is the well-known one of using random walks of
length 	 in a low-degree expander on N vertices. This could lead to repeated samples
while we would like 	 distinct samples. This can be achieved by picking slightly more
than 	 samples and discarding the repeated ones. The result below appears in this form
as Lemma 8.2 in Vadhan [2004].

PROPOSITION A.4. For every N ∈ N, 0 < θ < μ < 1, γ > 0, and integer 	 � 	0 =
�( 1

θ2 log(1/γ )), there exists an explicit efficiently computable function Samp : {0,1}σ →
[N]	, where σ � O(logN + 	 log(1/θ )) with the following property:
For every B⊆ [N] of size at least μN, with probability at least 1− γ over the choice of

a random s ∈ {0,1}σ , |Samp(s) ∩ B| � (μ − θ )|Samp(s)|.
We will use the above samplers to pick the random positions in which the blocks

holding encoded control information are interspersed with the data blocks. The sam-
pling guarantee will ensure that a reasonable fraction of the control blocks have no
more than a fraction p+ ε of errors when the total fraction of errors is at most p.

A.3.2. Almost t-Wise Independent Permutations.

Definition A.5. A distributionD on Sn (the set of permutations of {1,2, . . . ,n}) is said
to almost t-wise independent if for every 1 � i1 < i2 < · · · < it � n, the distribution of
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(π (i1), π (i2), . . . , π (it)) for π chosen according to D has statistical distance at most 2−t

for the uniform distribution on t-tuples of t distinct elements from {1,2, . . . ,n}.
A uniformly random permutation of {1,2, . . . ,n} takes logn! = 
(n logn) bits to

describe. The following result shows that almost t-wise-independent permutations can
have much shorter descriptions.

PROPOSITION A.6 (KAPLAN ET AL. [2006]). For all integers 1 � t � n, there exists
D = O(t logn) and an explicitmapKNR : {0,1}σ → Sn, computable in time polynomial in
n, such that the distribution KNR(s) for random s ∈ {0,1}σ is almost t-wise independent.

A.3.3. t-Wise-Independent Bit Strings. We will also need small sample spaces of binary
strings in {0,1}n which look uniform for any t positions.

Definition A.7. A distribution D on {0,1}n is said to t-wise independent if for every
1 � i1 < i2 < · · · < it � n, the distribution of (xi1 , xi2 , . . . , xit ) for x = (x1, x2, . . . , xn)
chosen according to D equals the uniform distribution on {0,1}t.
Using evaluations of degree t polynomials over a field of characteristic 2, the following

well-known fact can be shown. We remark that the optimal seed length is about t
2 logn

and was achieved in Alon et al. [1986], but we can work with the weaker O(t logn) seed
length.

PROPOSITION A.8. Let n be a positive integer, and let t � n. There exists σ � O(t logn)
and an explicit map POLYt : {0,1}σ → {0,1}n, computable in time polynomial in n such
that the distribution POLYt(s) for random s ∈ {0,1}σ is t-wise independent.

A.4. Capacity Achieving Codes for t-Wise-Independent Errors

Forney [1966] constructed binary linear concatenated codes that achieve the capacity
of the binary symmetric channel BSCp. Smith [2007] showed that these codes also
correct patterns of at most a fraction p of errors w.h.p. when the error locations are
distributed in a t-wise-independent manner for large-enough t. The precise result is
the following.

PROPOSITION A.9. For every p, 0 < p < 1/2 and every ε > 0, there is an explicit family
of binary linear codes of rate R � 1− H(p)− ε such that a code REC : {0,1}Rn → {0,1}n
of block length n in the family provides the following guarantee. There is a polynomial-
time-decoding algorithm Dec such that for every message m ∈ {0,1}Rn, every error
vector e ∈ {0,1}n of Hamming weight at most pn, and every almost t-wise-independent
distribution D of permutations of {1,2, . . . ,n}, we have

Dec(REC(m) + π (e)) = m

with probability at least 1 − 2−�(ε2t) over the choice of a permutation π ∈R D, as long as
ω(logn) < t < εn/10. (Here π (e) denotes the permuted vector: π (e)i = eπ (i).)

Wewill use the above codes (which we denoteREC, for “random-error code”) to encode
the actual data in our stochastic code construction.

B. CAPACITY-ACHIEVING CODES FOR AVERAGE ERROR

The average error criterion is an extensively studied topic in the literature on arbitrar-
ily varying channels; see the survey in Lapidoth and Narayan [1998] and the many
references therein. Here we assume the message is unknown to the channel and the
decoding error probability is taken over a uniformly random choice of the message and
the noise of the channel. The following defines this notion for the special case of the
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additive errors. The idea is that we want every error vector to be bad for only a small
fraction of messages.

Definition B.1 (Codes for Average Error). A code C with encoding function E : M →
�n is said to be (efficiently) p decodable with average error δ if there is a (polynomial-
time-computable) decoding function D : �n → M ∪ {⊥} such that for every error vector
e ∈ �n of weight atmost pN, the following holds for at least a fraction (1−δ) of messages
m∈ M: D(E(m) + e) = m.

B.1. Codes for Average Error from Stochastic Codes for Additive Errors

Using a strongly decodable stochastic code, we can get a code for average error by
simply using the last few bits of the message as the randomness of the stochastic
encoder. If the number of random bits used by the stochastic code is small compared to
the message length, then the rates of the codes in the two models are almost the same.

OBSERVATION B.2. A stochastic code SSC that is strongly list decodable over pN-
bounded additive channels with probability 1 − δ gives a code AVC of the same block
length that is p decodable with average error δ. If the ratio of number of random bits
to message bits in SSC is λ, then the rate of AVC is (1 + λ) times the rate of SSC.

B.2. Explicit Capacity-Achieving Codes for Average Error

We would now like to apply Observation B.2 to the stochastic codes constructed in
Section 7 and also construct explicit codes achieving capacity for the average error
criterion. For this, we need to ensure that the decoder for the stochastic code can also
recover all the random bits used at the encoding. We already showed (Lemma 7.6) that
the random string ω comprising the control information is in fact correctly recovered
w.h.p. However, there is no hope to recover all the random strings r1, r2, . . . , r	 used
by the various SC encodings. This is because some of these control blocks could incur
much more than a fraction p+ ε of errors (or, in fact, be totally corrupted).
Our idea is to use the same random string r for each of the 	 encodings SC(Ai, r) in

Step 5. Since each run of SC-DECODE is correct with probability at least 1 − c1/N2, by
a union bound over all n blocks, we can claim that all the following events occur with
probability at least 1 − c1/N (over the choice of r):

Among the control blocks, all of the at least ε	/2 control blocks with at most a
fraction p + ε of errors are decoded correctly, along with the random string r, by
SC-DECODE. Further, SC-DECODE outputs ⊥ on all the other control blocks. Thus the
correct random string r gets at least ε	/2 “votes.”

By Lemma 7.5, with probability at least 1 − exp(−�(ε2N/ log2 N))) (over the choice of
ω), the number of payload blocks that get accepted as control blocks is at most ε	/24.
(Note that this lemma only used the t′-wise independence of the offset string �.)

The above facts imply that the control information ω is recovered correctly with
probability at least 1−O(1/N) over the choice of (ω, r) (this is the analog of Lemma 7.6).
Also r is the unique string that will get at least ε	/2 votes from the various runs
of SC-DECODE. Therefore, it can be correctly identified (with probability at least 1 −
O(1/N) over the choice of (ω, r)) after running SC-DECODE on all the n blocks. We
can thus conclude the following result on capacity-achieving codes for average error
(Definition B.1).

LEMMA B.3 (POLYNOMIALLY SMALL AVERAGE ERROR). For every p ∈ (0,1/2), and every
ε > 0, there is an explicit family of binary codes of rate at least 1 − H(p) − ε that are
efficiently p decodable with average error O(1/N), where N is the block length of the
code.
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One can reduce the error probability in this theorem by using redundant, but t-
wise-independent, values ri for the control block encodings. Specifically, let (r1, . . . , r	)
be a random codeword from a Reed-Solomon code of dimension ε	/8 (the simpler con-
struction above corresponds to a majority code). Then the ri values are, in particular,
ε	/8-wise independent. One can modify the proof of Lemma 7.4 (which states that suf-
ficiently many control blocks are recovered) to rely on only this limited independence.
Under the same conditions that the control information is correctly recovered, there
is enough information to recover the entire vector r1, . . . , r	. We can thus prove the
following.

THEOREM B.4 (EXPONENTIALLY SMALL AVERAGE ERROR). For every p ∈ (0,1/2), and every
ε > 0, there is an explicit family of binary codes of rate at least 1 − H(p) − ε that are
efficiently p decodable with average error exp(−�ε(N/ log2 N)), where N is the block
length of the code.

C. IMPOSSIBILITY RESULTS FOR BIT-FIXING CHANNELS WHEN p > 1
4

We prove Theorem 4.3, which shows that even very simple channels prevent reliable
communication if they can introduce a fraction errors strictly greater than 1/4. In par-
ticular, this result (a) separates the additive (i.e., oblivious) error model from bounded-
space channels when p > 1/4 and (b) shows that some relaxation of correctness is
necessary to handle space- and time-bounded channels when p > 1/4.
Our proof adapts the impossibility results of Ahlswede [1978] on arbitrarily varying

channels. We present a self-contained proof for completeness. Readers familiar with
the AVCs literature will recognize the idea of symmetrizability from Ahlswede [1978].

The Swapping Channel. We begin by considering a simple swapping channel, whose
behavior is specified by a state vector s = (s1, . . . , sn) ∈ {0,1}n. On input a transmitted
word c = (c1, . . . , cn) ∈ {0,1}n, the channel Ws outputs ci in all positions where ci = si
and a random bit in all positions where ci �= si. The bits selected randomly by the
channel at different positions are independent.
There are several equivalent characterizations that help to understand the channel’s

behavior. First, we may view the channel as outputting either ci or si, independently
for each position,

Ws(c)i =
{
ci if ci = si
U ← {0,1} if ci �= si

=
{
ci with prob. 1/2
si with prob. 1/2 .

This view of the channel makes it obvious that the output distribution is symmetric
with respect to the inversion of c and s. That is,

Ws(c) and Wc(s) are identically distributed. (3)

The key idea behind our lower bounds is that if s is itself a valid codeword, then the
decoder cannot tell whether c was sent with state s or s was sent with state c. If c and
s code different messages, then the decoder will make a mistake with probability at
least 1/2.
Note that the expected number of errors introduced by the channel is half of

the Hamming distance dist(c, s); specifically, the number of errors is distributed as
Binomial(dist(c, s), 1

2 ). As long as dist(c, s) is close to n/2, then the number of errors will
be less than n( 14 + ν) with high probability.

Hard Channel Distributions. Given an stochastic encoder Enc(·; ·), consider the
following distribution on swapping channels: Pick a random codeword in the image of
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Enc and use it as the state,

Wmain(c) :

{Select m′, r′ uniformly at random
Compute s ← Enc(m′, r′)
Output Ws(c)

.

LEMMA C.1. Under the conditions of Theorem 4.3, for channel Wmain:

(a) The probability of a decoding error on a random message is 1
2 − o(1).

(b) The expected number of bits altered by W(main) is at most n/4.

PROOF. (a) We are interested in bounding the probability of a decoding error:

Pr(correct decoding) = Pr
m,r

channel coins

(Dec(Wmain(Enc(m, r))) = m)

= Pr
m,r,m′ ,r′

swapping coins

(Dec(WEnc(m′,r′)(Enc(m, r))) = m) .

Because of the symmetry of the swapping channel, the right-hand side is equal to the
probability that the decoder outputs m′, rather than m. This is a decoding error as long
as m′ differs from m. We assumed that the size of the message space grows with n, so
the probability thatm= m′ goes to 0 with n. We use “right” and “wrong” and shorthand
for the events that decoding is correct and incorrect, respectively.

Pr(right) = Pr
m,m′

(decoder outputs m′) � Pr(wrong ∨ m= m′) � Pr(wrong) + o(1) .

Thus, the probability of correct decoding is at most 1
2 − o(1). This proves part (a) of the

Lemma.
It remains to show that the expected number of bit corruptions is at most n/4. This

follows directly from the following fact, which is essentially the Plotkin bound from
coding theory:

CLAIM C.2. If (m, r) is independent of and identically distributed to (m′, r′), then the
expectation of the distance dist(Enc(m, r),Enc(m′, r′)) is at most n/2.

PROOF. By linearity of expectation, the expected Hamming distance is the sum, over
positions i, of the probability that Enc(m, r) and Enc(m′, r′) disagree in the ith positions.
The probability that two i.i.d. bits disagree is at most 1

2 , so the expected distance is at
most n

2 .

Part (b) of the lemma follows since the expected number of errors introduced by the
swapping channel is half of the Hamming distance between the transmitted word and
the state vector.

Bounding the Number of Errors. To prove part (2) of Theorem 4.3, we will find a
(nonuniform) channel with a hard bound on the number of bits it alters. In logarithmic
space, it is easy for the channel to count the number of bits it has flipped so far and
stop altering bits when a threshold has been exceeded. The difficult part is to show
that such a channel will still cause a significant probability of decryption error.
As before, the channel will select m′, r′ at random and run the swapping channel

Ws with state s = Enc(m′, r′). In addition, however, it will stop altering bits once the
threshold of n( 14 + ν) bits have been exceeded.

Consider now the transmission of a random codeword c = Enc(m, r). Let G be the
event that dist(c, s) � n( 12 + ν). By a Markov bound, the probability of G is at most
1/2

1/2+ν
, and so the probability of G is 1−Pr(Ḡ) � 2ν

1+2ν
� ν. Conditioned on G, the number

Journal of the ACM, Vol. 63, No. 4, Article 35, Publication date: September 2016.



35:36 V. Guruswami and A. Smith

of bits altered by Ws on input c is dominated by Binomial(n( 12 + ν), 1
2 ). The probability

that the number of bits altered exceeds n( 14 + ν) is therefore at most exp(−�(ν2n)).
On the other hand, conditioned on G there is a significant probability of a decoding

error. To see why this is the case, first note that conditioned on G the error-bounded
channel will simulate Ws(c) nearly perfectly. Moreover, the event G is symmetric in c
and s, and so conditioning on G does not help to distinguish Wc(s) from Ws(c). By the
same reasoning as in the previous proof,

Pr(incorrect decoding|G) � 1
2

− o(1) .

Since G has probability at least ν, the channel causes a decoding error with probability
at least ν

2 − o(1), in expectation over the choice of s. Hence, there exists a specific
string s∗ for which the channel causes a decoding error with probability ν

2 − o(1). This
completes the proof of Theorem 4.3.
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