
Reusable Fuzzy Extractors for Low-Entropy Distributions

Ran Canetti∗ Benjamin Fuller† Omer Paneth‡ Leonid Reyzin§ Adam Smith¶

February 25, 2016

Abstract

Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert repeated noisy readings of a secret into the
same uniformly distributed key. To eliminate noise, they require an initial enrollment phase that takes
the first noisy reading of the secret and produces a nonsecret helper string to be used in subsequent
readings. Reusable fuzzy extractors (Boyen, CCS 2004) remain secure even when this initial enrollment
phase is repeated multiple times with noisy versions of the same secret, producing multiple helper strings
(for example, when a single person’s biometric is enrolled with multiple unrelated organizations).

We construct the first reusable fuzzy extractor that makes no assumptions about how multiple
readings of the source are correlated (the only prior construction assumed a very specific, unrealistic
class of correlations). The extractor works for binary strings with Hamming noise; it achieves compu-
tational security under assumptions on the security of hash functions or in the random oracle model.
It is simple and efficient and tolerates near-linear error rates.

Our reusable extractor is secure for source distributions of linear min-entropy rate. The construc-
tion is also secure for sources with much lower entropy rates—lower than those supported by prior
(nonreusable) constructions—assuming that the distribution has some additional structure, namely,
that random subsequences of the source have sufficient minentropy. We show that such structural
assumptions are necessary to support low entropy rates.

We then explore further how different structural properties of a noisy source can be used to construct
fuzzy extractors when the error rates are high, building a computationally secure and an information-
theoretically secure construction for large-alphabet sources.

Keywords Fuzzy extractors, reusability, key derivation, error-correcting codes, computational en-
tropy, digital lockers, point obfuscation.

1 Introduction

Fuzzy Extractors Cryptography relies on long-term secrets for key derivation and authentication.
However, many sources with sufficient randomness to form long-term secrets provide similar but not
identical values of the secret at repeated readings. Prominent examples include biometrics and other
human-generated data [Dau04, ZH93, BS00, EHMS00, MG09, MRW02], physically unclonable functions
(PUFs) [PRTG02, TSS+06, GCVDD02, SD07], and quantum information [BBR88]. Turning similar
readings into identical values is known as information reconciliation ; further converting those values into

∗Email: canetti@cs.bu.edu. Boston University and Tel Aviv University.
†Email: bfuller@cs.bu.edu. Boston University and MIT Lincoln Laboratory.
‡Email: paneth@cs.bu.edu. Boston University.
§Email: reyzin@cs.bu.edu. Boston University.
¶Email: asmith@cse.psu.edu. Pennsylvania State University.

1

uniformly random secret strings is known as privacy amplification [BBR88]. Both of these problems
have interactive and non-interactive versions. In this paper, we are interested in the non-interactive
case, which is useful for a single user trying to produce the same key from multiple noisy readings of a
secret at different times. A fuzzy extractor [DORS08] is the primitive that accomplishes both information
reconciliation and privacy amplification non-interactively.

Fuzzy extractors consist of a pair of algorithms: Gen (used once, at “enrollment”) takes a source value
w, and produces a key r and a public helper value p. The second algorithm Rep (used subsequently) takes
this helper value p and a close w′ to reproduce the original key r. The standard correctness guarantee
is that r will be correctly reproduced by Rep as long as w′ is no farther than t from w according to
some notion of distance (specifically, we work with Hamming distance; our primary focus is on binary
strings, although we also consider larger alphabets). The security guarantee is that r produced by Gen is
indistinguishable from uniform, even given p. In this work, we consider computational indistinguishabil-
ity [FMR13] rather than the more traditional information-theoretic notion. (Note that so-called “robust”
fuzzy extractors [Mau97, MW97, BDK+05, CDF+08, DKK+12] additionally protect against active at-
tackers who modify p; we do not consider them here, except to point out that our constructions can be
easily made robust by the random-oracle-based transform of [BDK+05, Theorem 1].)

Reusability A fuzzy extractor is reusable (Boyen [Boy04]) if it remains secure even when a user enrolls
the same or correlated values multiple times. For example, if the source is a biometric reading, the user
may enroll the same biometric with different noncooperating organizations. Reusability is particularly
important for biometrics which, unlike passwords, cannot be changed or created. It is also useful in other
contexts, for example, to permit a user to reuse the same visual password across many services or to make
a single physical token (embodying a PUF) usable for many applications.

Each enrollment process will get a slightly different enrollment reading wi, and will run Gen(wi) to
get a key ri and a helper value pi. Security for each ri should hold even when an adversary is given all
the values p1, . . . , pρ and even the keys rj for j 6= i (because one organization cannot be sure how other
organizations will use the derived keys).

As pointed out by Dodis et al. [DKL09, Section 6], reusable extractors for the nonfuzzy case (i.e.,
without p and Rep) can be constructed using leakage-resilient cryptography. However, adding error-
tolerance makes the problem harder. Most constructions of fuzzy extractors are not reusable [Boy04,
STP09, BA12, BA13]. In fact, the only known construction of reusable fuzzy extractors [Boy04] requires
very particular relationships between wi values1, which are unlikely to hold for a practical source.

1.1 Our Contribution

A Reusable Fuzzy Extractor We construct the first reusable fuzzy extractor whose security holds
even if the multiple readings wi used in Gen are arbitrarily correlated, as long as the fuzzy extractor is
secure for each wi individually. This construction is the first to provide reusability for a realistic class
of correlated readings. Our construction is based on digital lockers ; in the most efficient instantiation,
it requires only evaluation of cryptographic hash functions and is secure in the random oracle model or
under strong computational assumptions on the hash functions.2 The construction can output arbitrarily
long r.

1Specifically, Boyen’s construction requires that the exclusive or wi⊕wj of any two secrets not leak any information about
wi.

2The term “digital lockers” was introduced by Canetti and Dakdouk [CD08]; the fact that such digital lockers can be
built easily out cryptographic hash functions was shown by [LPS04, Section 4].

2

Our construction handles a wider class of sources than prior work. It is secure if the bits of w are
partially independent. Namely, we require that, for some known parameter k, the substring formed by
the bits at k randomly chosen positions in w is unguessable (i.e., has minentropy that is superlogarithmic
is the security parameter). We call sources with this feature “sources with high-entropy samples.” This
requirement is in contrast to most constructions of fuzzy extractors that require w to have sufficient
minentropy.

All sources of sufficient minentropy have high-entropy samples (because sampling preserves the entropy
rate [Vad03]). However, as we now explain, the family of sources with high-entropy samples also includes
some low-entropy sources. (Note that, of course, the entropy of a substring never exceeds the entropy of
the entire string; the terms “high” and “low” are relative to the length.)

Low-entropy sources with high-entropy samples are easy to construct artificially: for example, we can
build a source of length n whose bits are k-wise independent by multiplying (over GF(2)) a fixed n × k
matrix of rank k by a random k-bit vector. In this source, the entropy rate of any substring of length k
is 1, while the entropy rate of the entire string is just k/n.

Such sources also arise naturally whenever w exhibits a lot of redundancy. For example, when the
binary string w is obtained via signal processing from some underlying reading (such as an image of an
iris or an audio recording of a voice), the signal itself is likely to have a lot of redundancy (for example,
nearby pixels of an image are highly correlated). By requiring only high-entropy samples rather than
a high entropy rate, we free the signal processing designer from the need to remove redundancy when
converting the underlying reading to a string w used in the fuzzy extractor. Thus, we enable the use of
oversampled signals.

Our construction can tolerate n lnn
k errors (out of the n bits of w) if we allow the running time of the

construction (the number of hash function evaluations) to be linear in n. More generally, we can tolerate
cn lnn

k errors if we allow running time linear in nc. Note that, since in principle k needs to be only slightly
superlogarithmic to ensure the high-entropy condition on the samples, our allowable error rate is only
slightly sublinear.

The Advantage of Exploiting the Structure of the Distribution Following the tradition of
extractor literature [CG88, NZ93], much work on fuzzy extractors has focused on providing constructions
that work for any source of a given minentropy m. In contrast, our construction exploits more about the
structure of the distribution than just its entropy. As a result, it supports not only all sources of a given
(sufficiently high) minentropy, but also many sources with an entropy rate much lower than the error
rate. We know of no prior constructions with this property. We now explain why, in order to achieve this
property, exploiting the structure of the distribution is necessary.

A fuzzy extractor that supports t errors out of a string of n bits and works for all sources of minentropy
m must have the entropy rate m

n at least as big as the binary entropy3 of the error rate, h2(
t
n) (to be exact,

m ≥ nh2(
t
n) − 1

2 log n − 1
2). The reason for this requirement is simple: if m too small, then a single ball

of radius t, which contains at least 2nh2(
t
n
)− 1

2
logn− 1

2 points [Ash65, Lemma 4.7.2, Equation 4.7.5, p. 115],
may contain the entire distribution of 2m points inside it. For this distribution, an adversary can run Rep
on the center of this ball and always learn the key r. This argument leads to the following proposition,
which holds regardless of whether the fuzzy extractor is information-theoretic or computational, and
extends even to the interactive setting.

3Binary entropy h2(α) for 0 < α < 1 is defined as −α log2 α − (1 − α) log2(1 − α); it is greater than α log2
1
α

and, in
particular, greater than α for interesting range α < 1

2
.

3

Proposition 1. If the security guarantee of a fuzzy extractor holds for any source of minentropy m and
the correctness guarantees holds for any t errors and m < log |Bt| (where |Bt| denotes the number of
points in a ball of radius t), the fuzzy extractor must provide no security. In particular, for the binary
Hamming case, m must exceed nh2(

t
n)− 1

2 log n− 1
2 ≈ nh2(

t
n) > t log2

n
t .

Thus, in order to correct t errors regardless of the structure of the distribution, we would have to assume a
high total minentropy m. In contrast, by taking advantage of the specific properties of the distribution, we
can handle all distributions of sufficiently high minentropy, but also some distributions whose minentropy
that is much less than t < nh2(

t
n).

Beating the bound of Proposition 1 is important. For example, the IrisCode [Dau04], which is the
state of the art approach to handling what is believed to be the best biometric [PPJ03], produces a source
where m is less than nh2(

t
n) [BH09, Section 5]. PUFs with slightly nonuniform outputs suffer from similar

problems [KLRW14].
We emphasize that in applications of fuzzy extractors to physical sources, any constraint on the

source—whether minentropy-based or more structured—is always, by necessity, an assumption about the
physical world. It is no more possible to verify that a source has high minentropy than it is to verify
that it has high-entropy samples4. Both statements about the source can be derived only by modeling
the source—for example, by modeling the physical processes that generate irises or PUFs.

Some prior work on key agreement from noisy data also made assumptions on the structure of the
source (often assuming that it consists of independent identically distributed symbols, e.g. [Mau93,
MW96, MTV09, YD10, HMSS12]). However, we are not aware of any work that beat the bound of
Propostion 1, with the exception of the work by Holenstein and Renner [HR05, Theorem 4]. Their
construction supports a uniform length n binary w, with a random selection of (n−m) bits leaked to the
adversary and t random bits flipped in w′. They show that it is possible to support any m > 4t(1 − t

n),
which is lower than log |Bt| ≈ nh2(tn), but still higher than t.

Constructions Exploiting the Structure of the Distribution for Larger Alphabets In addition
to the binary alphabet construction that supports reuse and low entropy rates, as discussed above, we
explore how low entropy rates can be supported when symbols of the string w comes from a large, rather
than a binary, alphabet. We obtain two additional constructions, both of which allow for distributions
whose total minentropy is lower than the volume of the ball of radius t (in the large-alphabet Hamming
space). Unfortunately, neither of them provides reusability, but both can tolerate a linear error rate
(of course, over the larger alphabet, where errors may be more likely, because each symbol carries more
information).

Our second construction for large alphabets works for sources with sparse high-entropy marginals :
sources for which sufficiently many symbols have high entropy individually, but no independence among
symbols is assumed (thus, the total entropy may be as low as the entropy of a single symbol).

Our third construction for large alphabets provides information-theoretic, rather than computational,
security. It works for sparse block sources. These are sources in which a sufficient fraction of the symbols
have entropy conditioned on previous symbols.

Both constructions should be viewed as evidence that assumptions on the source other than total
minentropy may provide new opportunities for increasing the error tolerance of fuzzy extractors.

4However, standard heuristics for estimating entropy can also be used to indicate whether a source has high-entropy
samples. For a corpus of noisy signals, repeat the following a statistically significant number of times: 1) sample k indices 2)
run the heuristic entropy test on the corpus which each sample restricted to the k indices.

4

Our Approach Our approach in all three constructions is different from most known constructions
of fuzzy extractors, which put sufficient information in p to recover the original w from a nearby w′

during Rep (this procedure is called a secure sketch). We deliberately do not recover w, because known
techniques for building secure sketches do not work for sources whose entropy rate is lower than its error
rate. (This is because they lose at least log |Bt| bits of entropy regardless of the source. This loss is
necessary when the source is uniform [DORS08, Lemma C.1] or when reusability against a sufficiently
rich class of correlations is desired [Boy04, Theorem 11]; computational definitions of secure sketches
suffer from similar problems [FMR13, Corollary 1].) Instead, in the computational constructions, we lock
up a freshly generated random r using parts of w in an error-tolerant way; in the information-theoretic
construction, we reduce the alphabet in order to reduce the ball volume while maintaining entropy.

We note that the idea of locking up a random r has appeared in a prior theoretical construction of a
computational fuzzy extractor for any source. Namely, Bitansky et al.. [BCKP14] show how to obfuscate
a proximity point program that tests if an input w′ is within distance t of the value w hidden inside
the obfuscated program and, if so, outputs the secret r (such a program would be output by Gen as p
and run by Rep). However, such a construction is based on very strong assumptions (semantically secure
graded encodings [PST13]) and, in contrast to our construction, is highly impractical in terms of efficiency.
Moreover, it is not known to provide reusability, because known obfuscation of proximity point programs
is not known to be composable.

2 Definitions

For a random variables Xi over some alphabet Z we denote by X = X1, ..., Xn the tuple (X1, . . . , Xn).
For a set of indices J , XJ is the restriction of X to the indices in J . The set Jc is the complement of
J . The minentropy of X is H∞(X) = − log(maxx Pr[X = x]), and the average (conditional) minentropy
of X given Y is H̃∞(X|Y) = − log(Ey∈Y maxx Pr[X = x|Y = y]) [DORS08, Section 2.4]. For a random
variable W , let H0(W) be the logarithm of the size of the support of W , that is H0(W) = log |{w|Pr[W =
w] > 0}|. The statistical distance between random variables X and Y with the same domain is ∆(X,Y) =
1
2

∑
x |Pr[X = x] − Pr[Y = x]|. For a distinguisher D we write the computational distance between X

and Y as δD(X,Y) = |E[D(X)]− E[D(Y)]| (we extend it to a class of distinguishers D by taking the
maximum over all distinguishers D ∈ D). We denote by Ds the class of randomized circuits which output
a single bit and have size at most s.

For a metric space (M, dis), the (closed) ball of radius t around x is the set of all points within radius
t, that is, Bt(x) = {y|dis(x, y) ≤ t}. If the size of a ball in a metric space does not depend on x, we denote
by |Bt| the size of a ball of radius t. We consider the Hamming metric over vectors in Zn, defined via
dis(x, y) = |{i|xi 6= yi}|. For this metric, |Bt| =

∑t
i=0

(
n
i

)
(|Z| − 1)i. Un denotes the uniformly distributed

random variable on {0, 1}n. Unless otherwise noted logarithms are base 2. Usually, we use capitalized
letters for random variables and corresponding lowercase letters for their samples.

2.1 Fuzzy Extractors

In this section we define computational fuzzy extractors. Similar definitions for information-theoretic
fuzzy extractors can be found in the work of Dodis et al. [DORS08, Sections 2.5–4.1]. The definition of
computational fuzzy extractors allows for a small probability of error.

Definition 1. [FMR13, Definition 4] Let W be a family of probability distributions over M. A pair of
randomized procedures “generate” (Gen) and “reproduce” (Rep) is an (M,W, κ, t)-computational fuzzy

5

extractor that is (εsec, ssec)-hard with error δ if Gen and Rep satisfy the following properties:

• The generate procedure Gen on input w ∈ M outputs an extracted string r ∈ {0, 1}κ and a helper
string p ∈ {0, 1}∗.

• The reproduction procedure Rep takes an element w′ ∈ M and a bit string p ∈ {0, 1}∗ as inputs.
The correctness property guarantees that if dis(w,w′) ≤ t and (r, p)← Gen(w), then Pr[Rep(w′, p) =
r] ≥ 1− δ, where the probability is over the randomness of (Gen,Rep).

• The security property guarantees that for any distribution W ∈ W, the string r is pseudorandom
conditioned on p, that is δDssec ((R,P), (Uκ, P)) ≤ εsec.

In the above definition, the errors are chosen before P : if the error pattern between w and w′ depends
on the output of Gen, then there is no guarantee about the probability of correctness. In Constructions 1
and 2 it is crucial that w′ is chosen independently of the outcome of Gen.

Information-theoretic fuzzy extractors are obtained by replacing computational distance by statistical
distance. We do make a second definitional modification. The standard definition of information-theoretic
fuzzy extractors considers W consisting of all distributions of a given entropy. As described in the
introduction, we construct fuzzy extractors for parameter regimes where it is impossible to provide security
for all distributions with a particular minentropy. In both the computational and information-theoretic
settings we consider a family of distributions W.

2.2 Reusable Fuzzy Extractors

A desirable feature of fuzzy extractors is reusability [Boy04]. Intuitively, it is the ability to support
multiple independent enrollments of the same value, allowing users to reuse the same biometric or PUF,
for example, with multiple noncooperating providers.5 More precisely, the algorithm Gen may be run
multiple times on correlated readings w1, ..., wρ of a given source. Each time, Gen will produce a different
pair of values (r1, p1), ..., (rρ, pρ). Security for each extracted string ri should hold even in the presence
of all the helper strings p1, . . . , pρ (the reproduction procedure Rep at the ith provider still obtains only
a single w′i close to wi and uses a single helper string pi). Because the multiple providers may not trust
each other, a stronger security feature (which we satisfy) ensures that each ri is secure even when all rj
for j 6= i are also given to the adversary.

Our ability to construct reusable fuzzy extractors depends on the types of correlations allowed among
w1, . . . , wρ. Boyen [Boy04] showed how to do so when each wi is a shift of w1 by a value that is oblivious
to the value of w1 itself (formally, wi is a result of a transitive isometry applied to w1). Boyen also showed
that even for this weak class of correlations, any secure sketch must lose at least log |Bt| entropy [Boy04,
Theorem 11].

We modify the definition of Boyen [Boy04, Definition 6] for the computational setting. We first present
our definition and then compare to the definitions of Boyen.

Definition 2 (Reusable Fuzzy Extractors). Let W be a family of distributions over M. Let (Gen,Rep) be
a (M,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-hard with error δ. Let (W 1,W 2, . . . ,W ρ)
be ρ correlated random variables such that each W j ∈ W. Let D be an adversary. Define the following
game for all j = 1, ..., ρ:

5Reusability and unlinkability are two different properties. Unlinkability prevents an adversary from telling if two enroll-
ments correspond to the same physical source [CS08, KBK+11]. We do not consider this property in this work.

6

• Sampling The challenger samples wj ←W j and u← {0, 1}κ.

• Generation The challenger computes (rj , pj)← Gen(wj).

• Distinguishing The advantage of D is

Adv(D)
def
= Pr[D(r1, ..., rj−1, rj , rj+1, ..., rρ, p1, ..., pρ) = 1]

− Pr[D(r1, ..., rj−1, u, rj+1, ..., rρ, p1, ..., pρ) = 1].

(Gen,Rep) is (ρ, εsec, ssec)-reusable if for all D ∈ Dssec and for all j = 1, ..., ρ, the advantage is at most
εsec.

Comparison with the definition of Boyen Boyen considers two versions of reusable fuzzy extractors.
In the first version (called ”outsider security” [Boy04, Definition 6]), the adversary sees p1, ..., pρ and tries
to learn about the values w1, ..., wρ or the keys r1, ..., rρ. This version is weaker than our version, because
the adversary is not given any ri values. In the second version (called “insider security” [Boy04, Definition
7]) , the adversary controls some subset of the servers and can run Rep on arbitrary p̃i. This definition
allows the adversary, in particular, to learn a subset of keys ri (by performing key generation on the
valid pi), just like in our definition. However, it also handles the case when the pi values are actively
compromised. We do not consider such an active compromise attack. As explained in Section 1, protection
against such an attack is called “robustness” and can be handled separately—for example, by techniques
from [BDK+05, Theorem 1].

In Boyen’s definitions, the adversary creates a perturbation function f i after seeing p1, ..., pi−1 (and
generated keys in case of insider security) and the challenger generates wi = f i(w1). The definition is
parameterized by the class of allowed perturbation functions. Boyen constructs an outsider reusable fuzzy
extractor for unbounded ρ when the perturbation family is a family of transitive isometries; Boyen then
adds insider security using random oracles.

In contrast, instead of considering perturbation functions to generate wi, we simply consider all tuples
of distributions as long as each distribution is in W, because we support arbitrary correlations among
them.

3 Tools: Digital Lockers, Point Functions, and Hash Functions

Our main construction uses digital lockers, which are computationally secure symmetric encryption
schemes that retain security even when used multiple times with correlated and weak (i.e., nonuniform)
keys [CKVW10]. In a digital locker, obtaining any information about the plaintext from the ciphertext
is as hard as guessing the key. They have the additional feature that the wrong key can be recognized
as such (with high probability). We use notation c = lock(key, val) for the algorithm that performs the
locking of the value val using the key key, and unlock(key, c) for the algorithm that performs the unlocking
(which will output val if key is correct and ⊥ with high probability otherwise).

The following simple and efficient construction of digital lockers was shown to provide the desired
security in the random oracle model of [BR93] by Lynn, Prabhakaran, and Sahai [LPS04, Section 4]. Let
H be a cryptographic hash function, modeled as a random oracle. The locking algorithm lock(key, val)
outputs the pair nonce, H(nonce, key)⊕ (val||0s), where nonce is a nonce, || denotes concatenation, and s
is a security parameter. As long as the entropy of key is superlogarithmic, the adversary has negligible
probability of finding the correct key; and if the adversary doesn’t find the correct key, then the adversarial

7

knowledge about key and val is not significantly affected by this locker. Concatenation with 0s is used to
make sure that unlock can tell (with certainty 1 − 2−s) when the correct value is unlocked.

It is seems plausible that in the standard model (without random oracles), specific cryptographic hash
functions, if used in this construction, will provide the necessary security [CD08, Section 3.2], [Dak09,
Section 8.2.3]. Moreover, Bitansky and Canetti [BC10], building on the work of [CD08, CKVW10],
show how to obtain composable digital lockers based on a strong version of the Decisional Diffie-Hellman
assumption without random oracles.

The security of digital lockers is defined via virtual-grey-box simulatability [BC10], where the simulator
is allowed unbounded running time but only a bounded number of queries to the ideal locker. Intuitively,
the definition gives the primitive we need: if the keys to the ideal locker are hard to guess, the simulator
will not be able to unlock the ideal locker, and so the real adversary will not be able to, either. Formally,
let idealUnlock(key, val) be the oracle that returns val when given key, and ⊥ otherwise.

Definition 3. The pair of algorithm (lock, unlock) with security parameter λ is an `-composable secure
digital locker with error γ if the following hold:

• Correctness For all key and val, Pr[unlock(key, lock(key, val)) = val] ≥ 1−γ. Furthermore, for any
key′ 6= key, Pr[unlock(key′, lock(key, val)) =⊥] ≥ 1− γ.

• Security For every PPT adversary A and every positive polynomial p, there exists a (possibly
inefficient) simulator S and a polynomial q(λ) such that for any sufficiently large s, any polynomially-
long sequence of values (vali, keyi) for i = 1, . . . , `, and any auxiliary input z ∈ {0, 1}∗,∣∣∣Pr

[
A
(
z, {lock (keyi, vali)}

`
i=1

)
= 1
]
− Pr

[
S
(
z, {|keyi|, |vali|}

`
i=1

)
= 1
]∣∣∣ ≤ 1

p(s)

where S is allowed q(λ) oracle queries to the oracles {idealUnlock(keyi, vali)}`i=1.

Point Functions In one of the constructions for large alphabets, we use a weaker primitive: an obfus-
cated point function. This primitive can be viewed as a digital locker without the plaintext: it simply
outputs 1 if the key is correct and 0 otherwise. Such a function can be easily constructed from the
digital locker above with the empty ciphertext, or from a strong version of the Decisional Diffie-Hellman
assumption [Can97]. We use notation c = lockPoint(key) and unlockPoint(key, c); security is defined the
same way as for digital lockers with a fixed plaintext.

4 Main Result: Reusable Construction for Sources with High-Entropy
Samples

Sources with High-Entropy Samples Let the source W = W1, . . . ,Wn consist of strings of length n
over some arbitrary alphabet Z (the case of greatest interest is that of the binary alphabet Z = {0, 1};
however, we describe the construction more generally). For some parameters k, α, we say that the source
W is a source with α-entropy k-samples if H̃∞(Wj1 , . . . ,Wjk | j1, . . . , jk) ≥ α for uniformly random 1 ≤
j1, . . . , jk ≤ n. See Section 1 for a discussion of how sources with this property come up naturally.

8

The Sample-then-Lock Construction The construction first chooses a random r to be used as the
output of the fuzzy extractor. It then samples a random subset of symbols v1 = wj1 , ..., wjk and creates
a digital locker that hides r using v1.

6 This process is repeated to produce some number ` of digital
lockers all containing r, each unlockable with v1, ..., v`, respectively. The use of the composable digital
lockers allows us to sample multiple times, because we need to argue only about individual entropy of Vi.
Composability also allows reusability.7

Note that the output r can be as long as the digital locker construction can handle (in particular,
the constructions discussed in Section 3 allow r to be arbitrarily long). Also note that it suffices to have
r that is as long as a seed for a pseudorandom generator, because a longer output can be obtained by
running this pseudorandom generator on r.

Construction 1 (Sample-then-Lock). Let Z be an alphabet, and let W = W1, ...,Wn be a source with α-
entropy k-samples, where each Wj is over Z. Let ` be a parameter, to be determined later. Let lock, unlock
be an `-composable secure digital locker with error γ (for κ-bit values and keys over Zk). Define Gen,Rep
as:

Gen

1. Input: w = w1, ..., wn

2. Sample r
$← {0, 1}κ.

3. For i = 1, ..., `:

(i) Choose uniformly random 1 ≤
ji,1, ..., ji,k ≤ n

(ii) Set vi = wji,1 , ..., wji,k .

(iii) Set ci = lock(vi, r).

(iv) Set pi = ci, (ji,1, ..., ji,k).

4. Output (r, p), where p = p1 . . . p`.

Rep

1. Input: (w′ = w′1, ..., w
′
n, p = p1 . . . p`)

2. For i = 1, ..., `:

(i) Parse pi as ci, (ji,1, ..., ji,k).

(ii) Set v′i = w′ji,1 , ..., w
′
ji,k

.

(iii) Set ri = unlock(v′i, ci). If ri 6=⊥
output ri.

3. Output ⊥.

How to Set Parameters: Correctness vs. Efficiency Tradeoff To instantiate Construction 1, we
need to choose a value for `. Recall we assume that dis(w,w′) ≤ t. For any given i, the probability that
v′i = vi is at least (1− t

n)k. Therefore, the probability that no v′i matches during Rep, causing Rep output
to ⊥, is at most (

1−
(

1− t

n

)k)`
.

In addition, Rep may be incorrect due to an error in one of the lockers, which happens with probability at
most `·γ. Thus, to make the overall error probability less than fuzzy extractor’s allowable error parameter
δ we need to set ` so that (

1−
(

1− t

n

)k)`
+ ` · γ ≤ δ.

6We present and analyze the construction with uniformly random subsets; however, if necessary, it is possible to substan-
tially decrease the required public randomness and the length of p by using more sophisticated samplers. See [Gol11] for an
introduction to samplers.

7For the construction to be reusable ρ times the digital locker must be composable ` · ρ times.

9

This provides a way to set ` to get a desirable δ, given a digital locker with error γ and source parameters
n, t, k.

To get a bit more insight, we need to simplify the above expression. We can use the approximation
ex ≈ 1 + x to get (

1−
(

1− t

n

)k)`
≈ (1− e−

tk
n)` ≈ exp(−`e−

tk
n).

The value γ can be made very small very cheaply in known locker constructions, so let us assume that γ
is small enough so that ` · γ ≤ δ/2. Then if tk = cn lnn for some constant c, setting ` ≈ nc log 2

δ suffices.
We now provide the formal statement of security for Construction 1; we consider reusability of this

construction below, in Theorem 2.

Theorem 1. Let λ be a security parameter, LetW be a family of sources over Zn with α-entropy k-samples
for α = ω(log λ). Then for any ssec = poly(λ) there exists some εsec = ngl(λ) such that Construction 1 is
a (Zn,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-hard with error δ = (1− (1− t

n)k)` + `γ ≈
exp(−`e−

tk
n) + `γ. (See above for an expression of ` as a function the other parameters.)

Proof. Correctness is already argued above. We now argue security.
Our goal is to show that for all ssec = poly(λ) there exists εsec = ngl(λ) such that δDssec ((R,P), (U,P)) ≤

εsec. Fix some polynomial ssec and let D be a distinguisher of size at most ssec. We want to bound

|E[D(R,P)]− E[D(U,P)]|

by a negligible function.
We proceed by contradiction: suppose this difference is not negligible. That is, suppose that there is

some polynomial p(·) such that for all λ0 there exists some λ > λ0 such that

|E[D(R,P)]− E[D(U,P)]| > 1/p(λ).

We note that λ is a function of λ0 but we omit this notation for the remainder of the proof for clarity.
By the security of digital lockers (Definition 3), there is a polynomial q and an unbounded time

simulator S (making at most q(λ) queries to the oracles {idealUnlock(vi, r)}`i=1) such that∣∣∣E[D(R,P1, ..., P`)]− E
[
S{idealUnlock(vi,r)}

`
i=1

(
R, {ji,1, ..., ji,k}`i=1, k, κ

)]∣∣∣
≤ 1

3p(λ)
. (1)

The same is true if we replaced R above by an independent uniform random variable U over {0, 1}κ.
We now prove the following lemma, which shows that S cannot distinguish between R and U .

Lemma 1. Let U denote the uniform distribution over {0, 1}κ. Then∣∣∣E [S{idealUnlock(vi,r)}`i=1

(
R, {ji,1, ..., ji,k}`i=1, k, κ

)]
−E

[
S{idealUnlock(vi,r)}

`
i=1

(
U, {ji,1, ..., ji,k}`i=1, k, κ

)] ∣∣∣
≤ q(q + 1)

2α
≤ 1

3p(λ)
, (2)

where q is the maximum number of queries S can make.

10

Proof. Fix any u ∈ {0, 1}κ (the lemma will follow by averaging over all u). Let r be the correct value
of R. The only information about whether the value is r or u can obtained by S through the query
responses. First, modify S slightly to quit immediately if it gets a response not equal to ⊥ (such S is
equally successful at distinguishing between r and u, because the first non-⊥ response tells S if its input
is equal to the locked value r, and subsequent responses add nothing to this knowledge; formally, it is easy
to argue that for any S, there is an S′ that quits after the first non-⊥ response and is just as successful).
There are q+1 possible values for the view of S on a given input (q of those views consist of some number
of ⊥ responses followed by the first non-⊥ response, and one view has all q responses equal to ⊥). By
[DORS08, Lemma 2.2b], H̃∞(Vi|V iew(S), {jik}) ≥ H̃∞(Vj |{jik})− log(q+ 1) ≥ α− log(q+ 1). Therefore,
at each query, the probability that S gets a non-⊥ answer (equivalently, guesses Vi) is at most (q+ 1)2−α.
Since there are q queries of S, the overall probability is at most q(q + 1)/2α. Then since 2α is ngl(λ),
there exists some λ0 such that for all λ > λ0, q(q + 1)/2α ≤ 1/(3p(λ)).

Adding together Equation 1, Equation 2, and Equation 1 in which R is replaced with U , we obtain that

δD((R,P), (U,P)) ≤ 1

p(λ)
.

This is a contradiction and completes the proof of Theorem 1.

Reusability of Construction 1 The reusability of Construction 1 follows from the security of dig-
ital clockers. Consider any ρ number of reuses. For each fixed i ∈ {1, ..., ρ}, we can treat the keys
r1, . . . , ri−1, ri+1, . . . , rρ and the sampled positions as auxiliary input to the digital locker adversary. The
result follows by simulatability of this adversary, using the same argument as the proof of Theorem 1
above. Note that this argument now requires the digital locker to be ρ · `-composable.

Theorem 2. Fix ρ and let all the variables be as in Theorem 1, except that (lock, unlock) is an ` · ρ-
composable secure digital locker (for κ-bit values and keys over Zk). Then for all ssec = poly(n) there
exists some εsec = ngl(n) such that Construction 1 is (ρ, εsec, ssec)-reusable fuzzy extractor.

Comparison with work of [ST09] The work of Škorić and Tuyls [ST09] can be viewed as a fuzzy
extractor that places the entire string into a single digital locker (in their paper, they use the language of
hash functions). Their Rec procedure symbol searches for a nearby value that unlocks the digital locker,
limiting Rec to a polynomial number of error patterns. We use a subset of symbols to lock and take
multiple samples, greatly increasing the error tolerance.

5 Additional Constructions for the Case of Large Alphabets

In this section we provide additional constructions of fuzzy extractors that exploit the structure of the
distribution w (instead of working for all distributions of a particular min-entropy). As stated in the
introduction, both constructions work for low entropy rates when w comes from a large source alphabet
Z.

5.1 Construction for Sources with Sparse High-Entropy Marginals

In this section, we consider an alternative construction that is suited to sources over large alphabets.
Intuitively, we use single symbols of w to lock bits of a secret that we then transform into r; we use

11

error-correcting codes to handle bits of the secret that cannot be retrieved due to errors in w′. Our main
technical tool is obfuscated point functions (a weaker primitive than digital lockers; see Section 3 for the
definition).

This construction requires enough symbols individually to contain sufficient entropy, but does not
require independence of symbols, or even “fresh” entropy from them. Unlike the previous construction,
it tolerates a linear fraction of errors (but over a larger alphabet, where errors may be more likely.).
However, it cannot work for small alphabets, and is not reusable.

Sources with Sparse High-Entropy Marginals This construction works for distributions W =
W1, ...,Wn over Zn in which enough symbols Wj are unpredictable even after adaptive queries to equality
oracles for other symbols. This quality of a distribution is captured in the following definition.

Definition 4. Let idealUnlock(key) be an oracle that returns 1 when given key and 0 otherwise. A source
W = W1, ...,Wn has β-sparse α-entropy q-marginals if there exists a set J ⊂ {1, ..., n} of size at least
n− β such that for any unbounded adversary S,

∀j ∈ J, H̃∞(Wj |V iew(S(·)))) ≥ α.

where S is allowed q queries to the oracles {idealUnlock(Wi)}ni=1.

We show some examples of such sources in Appendix A.4. In particular, any source W where for all j,
H∞(Wj) ≥ α = ω(log λ) (but all symbols may arbitrarily correlated) is a source with sparse high-entropy
marginals (Proposition 3).

The Error-Correct-and-Obfuscate Construction This construction is inspired by the construction
of Canetti and Dakdouk [CD08]. Instead of having large parts of the string w unlock r, we have individual
symbols unlock bits of the output.

Before presenting the construction we provide some definitions from error correcting codes. We use
error-correct codes over {0, 1}n which correct up to t bit flips from 0 to 1 but no bit flips from 1 to 0 (this
is the Hamming analog of the Z-channel [TABB02]).8

Definition 5. Let e, c ∈ {0, 1}n be vectors. Let x = Err(c, e) be defined as follows

xi =

{
1 ci = 1 ∨ ei = 1

0 otherwise.

Definition 6. A set C (over {0, 1}n) is a (t, δcode)-Z code if there exists an efficient procedure Decode
such that

∀e ∈ {0, 1}n|Wgt(e) ≤ t, Pr
c∈C

[Decode(Err(c, e)) 6= c] ≤ δcode.

Construction 2 (Lock-and-Error-Correct). Let Z be an alphabet and let W = W1, ...,Wn be a distribution
over Zn. Let C ⊂ {0, 1}n be (t, δcode)-Z code. Let lockPoint, unlockPoint be an n-composable secure
obfuscated point function with error γ (for keys over Z). Define Gen,Rep as:

8Any code that corrects t Hamming errors also corrects t 0 → 1 errors, but more efficient codes exist for this type of
error [TABB02]. Codes with 2Θ(n) codewords and t = Θ(n) over the binary alphabet exist for Hamming errors and suffice
for our purposes (first constructed by Justensen [Jus72]). These codes also yield a constant error tolerance for 0 → 1 bit
flips. The class of errors we support in our source (t Hamming errors over a large alphabet) and the class of errors for which
we need codes (t 0→ 1 errors) are different.

12

Gen

1. Input: w = w1, ..., wn

2. Sample c← C.

3. For j = 1, ..., n:

(i) If cj = 0:

Let pj = lockPoint(wj).

(ii) Else: rj
$← Z.

Let pj = lockPoint(rj).

4. Output (c, p), where p = p1 . . . pn.

Rep

1. Input: (w′, p)

2. For j = 1, ..., n:

(i) If unlockPoint(w′j , pj) = 1: set
c′j = 0.

(ii) Else: set c′j = 1.

3. Set c = Decode(c′).

4. Output c.

As presented, Construction 2 is not yet a computational fuzzy extractor. The codewords c are not
uniformly distributed and it is possible to learn some bits of c (for the symbols of W without much
entropy). However, we can show that c looks like it has entropy to a computationally bounded adversary
who knows p. Applying a randomness extractor with outputs over {0, 1}κ (technically, an average-case
computational randomness extractor) to c, and adding the extractor seed to p, will give us the desired
fuzzy extractor. See Appendix A.1 for the formal details.

Construction 2 is secure if no distinguisher can tell whether it is working with rj or wj . By the
security of point obfuscation, anything learnable from the obfuscation is learnable from oracle access to
the function. Therefore, our construction is secure as long as enough symbols are unpredictable even
after adaptive queries to equality oracles for individual symbols, which is exactly the property satisfied
by sources with sparse high-entropy marginals.

The following theorem formalizes this intuition (proof in Appendix A.2).

Theorem 3. Let λ be a security parameter. Let Z be an alphabet. Let W be a family of sources
with β-sparse α = ω(log λ)-entropy q-marginals over Zn, for any q = poly(n). Furthermore, let C be
a (t, δcode)-Z code over Zn. Then for any ssec = poly(n) there exists some εsec = ngl(n) such that
Construction 2, followed by a κ-bit randomness extractor (whose required input entropy is ≤ H0(C)− β),
is a (Zn,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-hard with error δcode + n(1/|Z|+ γ).

Entropy vs. Error Rate The minimum entropy necessary to satisfy Definition 4 is ω(log λ) (for exam-
ple, when all symbols are completely dependent but are all individually unguessable). The construction
corrects a constant fraction of errors. When n = λ1/c then the entropy is smaller than the number of
errors m = ω(log λ) < Θ(n) = λ1/c.

Output Length The extractor that follows Construction 2 can output H0(C) − β − 2 log(1/εsec) bits
using standard information-theoretic techniques (such as the average-case leftover hash lemma [DORS08,
Lemma 2.2b, Lemma 2.4]). To get a longer output, Construction 2 can be run multiple (say, µ) times
with the same input and independent randomness to get multiple values c, concatenate them, and extract
from the concatenation, to obtain an output of sufficient length µ(H0(C)− β)− 2 log(1/εsec). The goal is
to get an output long enough to use as a pseudorandom generator seed: once the seed is obtained, it can
be used to generate arbitrary polynomial-length r, just like Construction 1.

13

Further Improvement If most codewords have Hamming weight close to 1/2, we can decrease the
error tolerance needed from the code from t to about t/2, because roughly half of the mismatches between
w and w′ occur where cj = 1.

Lack of Reusability Even though Construction 2 uses composable obfuscated point functions, it is
not reusable. Definition 4 allows sources with some “weak” symbols that can be completely learned by
an adversary observing p. If a source is enrolled multiple times this partial information may add up over
time to reveal the original value w1. In contrast, Construction 1, leaks no partial information for the
supported sources, allowing reusability.

5.2 Information-Theoretic Construction for Sparse Block Sources

The construction in this section has information-theoretic security, in contrast to only computational
security of the previous two constructions. It uses symbol-by-symbol condensers to reduce the alphabet
size while preserving most of the entropy, and then applies a standard fuzzy extractor to the resulting
string.

This construction requires less entropy from each symbol than the previous construction; however, it
places more stringent independence requirements on the symbols. It tolerates a linear number of errors.

Sparse Block Sources This construction works for sources W = W1, ...,Wn over Zn in which enough
symbols Wj contribute fresh entropy conditioned on previous symbols. We call this such sources sparse
block sources, weakening the notion of block sources (introduced by Chor and Goldreich [CG88]), which
require every symbol to contribute fresh entropy.

Definition 7. A distribution W = W1, ...,Wn is an (α, β)-sparse block source if there exists a set of
indices J where |J | ≥ n− β such that the following holds:

∀j ∈ J, ∀w1, ..., wj−1 ∈W1, ...,Wj−1,H∞(Wj |W1 = w1, ...,Wj−1 = wj−1) ≥ α.

The choice of conditioning on the past is arbitrary: a more general sufficient condition is that there
exists some ordering of indices where most items have entropy conditioned on all previous items in this
ordering (for example, is possible to consider a sparse reverse block source [Vad03]).

The Condense-then-Fuzzy-Extract Construction The construction first condenses entropy from
each symbol of the source and then applies a fuzzy extractor to the condensed symbols. We’ll denote the
fuzzy extractor on the smaller alphabet as (Gen′,Rep′). A condenser is like a randomness extractor but
the output is allowed to be slightly entropy deficient. Condensers are known with smaller entropy loss
than possible for randomness extractors (e.g. [DPW14]).

Definition 8. A function cond : Z × {0, 1}d → Y is a (m, m̃, ε)-randomness condenser if whenever
H∞(W) ≥ m, then there exists a distribution Y with H∞(Y) ≥ m̃ and (cond(W, seed), seed) ≈ε (Y, seed).

The main idea of the construction is that errors are “corrected” on the large alphabet (before condens-
ing) while the entropy loss for the error correction is incurred on a smaller alphabet (after condensing).

Construction 3. Let Z be an alphabet and let W = W1, ...,Wn be a distribution over Zn. We describe
Gen,Rep as follows:

14

Gen

1. Input: w = w1, ..., wn

2. For j = 1, ..., n:

(i) Sample seedi ← {0, 1}d.
(ii) Set vi = cond(wi, seedi).

3. Set (r, p′)← Gen′(v1, ..., vn).

4. Set p = (p′, seed1, ..., seedn).

5. Output (r, p).

Rep

1. Input: (w′, p = (p′, seed1, ..., seedn))

2. For j = 1, ..., n:

(i) Set v′i = cond(w′i, seedi).

3. Output r = Rep′(v′, p′).

The following theorem shows the security of this construction (proof in Appendix B).

Theorem 4. Let W be a family of (α = Ω(1), β ≤ n(1 − Θ(1)))-sparse block sources over Zn and let
cond : Z×{0, 1}d → Y be a (α, α̃, εcond)-randomness conductor. Define V as the family of all distributions
with minentropy at least α̃(n− β) and let (Gen′,Rep′) be (Yn,V, κ, t, εfext)-fuzzy extractor with error δ.9

Then (Gen,Rep) is a (Zn,W, κ, t, nεcond + εfext)-fuzzy extractor with error δ.

Overcoming Proposition 1 Proposition 1 shows that no fuzzy extractor can be secure for all sources
of a given minentropy m < log |Bt|. Construction 3 supports sparse block sources whose overall entropy
is less than log |Bt|. The structure of a sparse block source implies that H∞(W) ≥ α(n− β) = Θ(n). We
assume that H∞(W) = Θ(n). Using standard fuzzy extractors (for Gen′,Rep′) it is possible to correct
t = Θ(n) errors, yielding log |Bt| > Θ(n) when |Z| = ω(1).

Acknowledgements

The authors are grateful to Nishanth Chandran, Nir Bitansky, Sharon Goldberg, Gene Itkis, Bhavana
Kanukurthi, and Mayank Varia for helpful discussions, creative ideas, and important references. The
authors also thank the anonymous referees for useful feedback on the paper.

The work of A.S. was performed while at Boston University’s Hariri Institute for Computing and
RISCS Center, and Harvard University’s “Privacy Tools” project.

Ran Canetti is supported by the NSF MACS project, an NSF Algorithmic foundations grant 1218461,
the Check Point Institute for Information Security, and ISF grant 1523/14. Omer Paneth is additionally
supported by the Simons award for graduate students in theoretical computer science. The work of Ben-
jamin Fuller is sponsored in part by US NSF grants 1012910 and 1012798 and the United States Air Force
under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommenda-
tions are those of the authors and are not necessarily endorsed by the United States Government. Leonid
Reyzin is supported in part by US NSF grants 0831281, 1012910, 1012798, and 1422965. Adam Smith is
supported in part by NSF awards 0747294 and 0941553.

9We actually need (Gen′,Rep′) to be an average case fuzzy extractor (see [DORS08, Definition 4] and the accompanying
discussion). Most known constructions of fuzzy extractors are average-case fuzzy extractors. For simplicity we refer to
Gen′,Rep′ as simply a fuzzy extractor.

15

References

[Ash65] Robert Ash. Information Theory. Interscience Publishers, 1965.

[BA12] Marina Blanton and Mehrdad Aliasgari. On the (non-) reusability of fuzzy sketches and
extractors and security improvements in the computational setting. IACR Cryptology ePrint
Archive, 2012:608, 2012.

[BA13] Marina Blanton and Mehrdad Aliasgari. Analysis of reusability of secure sketches and fuzzy
extractors. IEEE transactions on information forensics and security, 8(9-10):1433–1445,
2013.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM Journal on Computing, 17(2):210–229, 1988.

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point obfuscation. In
Advances in Cryptology–CRYPTO 2010, pages 520–537. Springer, 2010.

[BCKP14] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On virtual grey box
obfuscation for general circuits. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II,
2014.

[BDK+05] Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Secure
remote authentication using biometric data. In EUROCRYPT, pages 147–163. Springer,
2005.

[BH09] Marina Blanton and William MP Hudelson. Biometric-based non-transferable anonymous
credentials. In Information and Communications Security, pages 165–180. Springer, 2009.

[Boy04] Xavier Boyen. Reusable cryptographic fuzzy extractors. In Proceedings of the 11th ACM
conference on Computer and communications security, CCS ’04, pages 82–91, New York,
NY, USA, 2004. ACM.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security, pages
62–73, 1993.

[BS00] Sacha Brostoff and M.Angela Sasse. Are passfaces more usable than passwords?: A field
trial investigation. People and Computers, pages 405–424, 2000.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial infor-
mation. In Advances in Cryptology-CRYPTO’97, pages 455–469. Springer, 1997.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit output.
In Advances in Cryptology–EUROCRYPT 2008, pages 489–508. Springer, 2008.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. Detection of
algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In
Advances in Cryptology–EUROCRYPT 2008, pages 471–488. Springer, 2008.

16

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2), 1988.

[CKVW10] Ran Canetti, Yael Tauman Kalai, Mayank Varia, and Daniel Wichs. On symmetric en-
cryption and point obfuscation. In Theory of Cryptography, 7th Theory of Cryptography
Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, pages 52–
71, 2010.

[CS08] F Carter and A Stoianov. Implications of biometric encryption on wide spread use of
biometrics. In EBF Biometric Encryption Seminar (June 2008), 2008.

[Dak09] Ramzi Ronny Dakdouk. Theory and Application of Extractable Functions. PhD thesis, Yale
University, 2009. http://www.cs.yale.edu/homes/jf/Ronny-thesis.pdf.

[Dau04] John Daugman. How iris recognition works. Circuits and Systems for Video Technology,
IEEE Transactions on, 14(1):21 – 30, January 2004.

[DKK+12] Yevgeniy Dodis, Bhavana Kanukurthi, Jonathan Katz, Leonid Reyzin, and Adam Smith.
Robust fuzzy extractors and authenticated key agreement from close secrets. IEEE Trans-
actions on Information Theory, 58(9):6207–6222, 2012.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary
input. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
621–630. ACM, 2009.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008.

[DPW14] Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. Key derivation without entropy
waste. In Advances in Cryptology–EUROCRYPT 2014, pages 93–110. Springer, 2014.

[EHMS00] Carl Ellison, Chris Hall, Randy Milbert, and Bruce Schneier. Protecting secret keys with
personal entropy. Future Generation Computer Systems, 16(4):311–318, 2000.

[FMR13] Benjamin Fuller, Xianrui Meng, and Leonid Reyzin. Computational fuzzy extractors. In
Advances in Cryptology-ASIACRYPT 2013, pages 174–193. Springer, 2013.

[GCVDD02] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. Silicon physical
random functions. In Proceedings of the 9th ACM conference on Computer and communi-
cations security, pages 148–160. ACM, 2002.

[Gol11] Oded Goldreich. A sample of samplers: A computational perspective on sampling. In
Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation, pages 302–332. Springer, 2011.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

17

http://www.cs.yale.edu/homes/jf/Ronny-thesis.pdf

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational entropy, or
toward separating pseudoentropy from compressibility. In EUROCRYPT, pages 169–186,
2007.

[HMSS12] Matthias Hiller, Dominik Merli, Frederic Stumpf, and Georg Sigl. Complementary ibs: Ap-
plication specific error correction for PUFs. In IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pages 1–6. IEEE, 2012.

[HR05] Thomas Holenstein and Renato Renner. One-way secret-key agreement and applications
to circuit polarization and immunization of public-key encryption. In Victor Shoup, editor,
Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture
Notes in Computer Science, pages 478–493. Springer, 2005.

[Jus72] Jørn Justesen. Class of constructive asymptotically good algebraic codes. Information
Theory, IEEE Transactions on, 18(5):652–656, 1972.

[KBK+11] Emile JC Kelkboom, Jeroen Breebaart, Tom AM Kevenaar, Ileana Buhan, and Raymond NJ
Veldhuis. Preventing the decodability attack based cross-matching in a fuzzy commitment
scheme. Information Forensics and Security, IEEE Transactions on, 6(1):107–121, 2011.

[KLRW14] Patrick Koeberl, Jiangtao Li, Anand Rajan, and Wei Wu. Entropy loss in PUF-based key
generation schemes: The repetition code pitfall. In Hardware-Oriented Security and Trust
(HOST), 2014 IEEE International Symposium on, pages 44–49. IEEE, 2014.

[KR09] Bhavana Kanukurthi and Leonid Reyzin. Key agreement from close secrets over unsecured
channels. In EUROCRYPT, pages 206–223, 2009.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In
Advances in Cryptology–CRYPTO 2010, pages 631–648. Springer, 2010.

[KZ07] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM Journal on Computing, 36(5):1231–1247, 2007.

[LPS04] Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for
obfuscation. In Advances in Cryptology–EUROCRYPT 2004, pages 20–39. Springer, 2004.

[Mau93] Ueli M. Maurer. Secret key agreement by public discussion from common information. IEEE
Transactions on Information Theory, 39(3):733–742, 1993.

[Mau97] Ueli M. Maurer. Information-theoretically secure secret-key agreement by NOT authenti-
cated public discussion. In Walter Fumy, editor, Advances in Cryptology - EUROCRYPT
’97, International Conference on the Theory and Application of Cryptographic Techniques,
Konstanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes in Com-
puter Science, pages 209–225. Springer, 1997.

[MG09] Rene Mayrhofer and Hans Gellersen. Shake well before use: Intuitive and secure pairing of
mobile devices. IEEE Transactions on Mobile Computing, 8(6):792–806, 2009.

[MRW02] Fabian Monrose, Michael K Reiter, and Susanne Wetzel. Password hardening based on
keystroke dynamics. International Journal of Information Security, 1(2):69–83, 2002.

18

[MTV09] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Low-overhead implementation of a soft
decision helper data algorithm for SRAM PUFs. In Cryptographic Hardware and Embedded
Systems-CHES 2009, pages 332–347. Springer, 2009.

[MW96] Ueli M. Maurer and Stefan Wolf. Towards characterizing when information-theoretic secret
key agreement is possible. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances
in Cryptology - ASIACRYPT ’96, International Conference on the Theory and Applications
of Cryptology and Information Security, Kyongju, Korea, November 3-7, 1996, Proceedings,
volume 1163 of Lecture Notes in Computer Science, pages 196–209. Springer, 1996.

[MW97] Ueli M. Maurer and Stefan Wolf. Privacy amplification secure against active adversaries.
In Burton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO ’97, 17th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings, volume 1294 of Lecture Notes in Computer Science, pages 307–321. Springer,
1997.

[NZ93] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, pages 43–52, 1993.

[PPJ03] Salil Prabhakar, Sharath Pankanti, and Anil K Jain. Biometric recognition: Security and
privacy concerns. IEEE Security & Privacy, 1(2):33–42, 2003.

[PRTG02] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical one-way func-
tions. Science, 297(5589):2026–2030, 2002.

[PST13] Rafael Pass, Karn Seth, and Sidharth Telang. Obfuscation from semantically-secure multi-
linear encodings. Cryptology ePrint Archive, Report 2013/781, 2013. http://eprint.iacr.
org/.

[SD07] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device authenti-
cation and secret key generation. In Proceedings of the 44th annual Design Automation
Conference, pages 9–14. ACM, 2007.

[ST09] B. Skoric and P. Tuyls. An efficient fuzzy extractor for limited noise. Cryptology ePrint
Archive, Report 2009/030, 2009. http://eprint.iacr.org/.

[STP09] Koen Simoens, Pim Tuyls, and Bart Preneel. Privacy weaknesses in biometric sketches. In
Security and Privacy, 2009 30th IEEE Symposium on, pages 188–203. IEEE, 2009.

[TABB02] Luca G Tallini, Sulaiman Al-Bassam, and Bella Bose. On the capacity and codes for the
Z-channel. In IEEE International Symposium on Information Theory, page 422, 2002.

[TSS+06] Pim Tuyls, Geert-Jan Schrijen, Boris Skoric, Jan Geloven, Nynke Verhaegh, and Rob
Wolters. Read-proof hardware from protective coatings. In Cryptographic Hardware and
Embedded Systems - CHES 2006, pages 369–383. 2006.

[Vad03] Salil P Vadhan. On constructing locally computable extractors and cryptosystems in the
bounded storage model. In Advances in Cryptology-CRYPTO 2003, pages 61–77. Springer,
2003.

19

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[YD10] Meng-Day Mandel Yu and Srinivas Devadas. Secure and robust error correction for physical
unclonable functions. IEEE Design & Test, 27(1):48–65, 2010.

[ZH93] Moshe Zviran and William J. Haga. A comparison of password techniques for multilevel
authentication mechanisms. The Computer Journal, 36(3):227–237, 1993.

A Analysis of Construction 2

A.1 Computational Fuzzy Conductors and Computational Extractors

In this section we introduce tools necessary to convert Construction 2 to a computation fuzzy extractor.
We first define an object weaker than a computational fuzzy extractor: it outputs a key with computational
entropy (instead of a pseudorandom key). We call this object a computational fuzzy conductor. It is the
computational analogue of a fuzzy conductor (introduced by Kanukurthi and Reyzin [KR09]). Before
defining this object, we define conditional computational “HILL” ([HILL99]) entropy.

Definition 9. [HLR07, Definition 3] Let (W,S) be a pair of random variables. W has HILL entropy
at least m conditioned on S, denoted HHILL

εsec,ssec(W |S) ≥ m if there exists a joint distribution (X,S), such

that H̃∞(X|S) ≥ m and δDssec ((W,S), (X,S)) ≤ εsec.

Definition 10. A pair of randomized procedures “generate” (Gen) and “reproduce” (Rep) is an (M,W, m̃, t)-
computational fuzzy conductor that is (εsec, ssec)-hard with error δ if Gen and Rep satisfy Definition 1,
except the last condition is replaced with the following weaker condition:

• for any distribution W ∈ W, the string r has high HILL entropy conditioned on P . That is
HHILL
εsec,ssec(R|P) ≥ m̃.

Computational fuzzy conductors can be converted to computational fuzzy extractors (Definition 1)
using standard techniques, as follows. The transformation uses a computational extractor. A computa-
tional extractor is the adaption of a randomness extractor to the computational setting. Any information-
theoretic randomness extractor is also a computational extractor; however, unlike information-theoretic
extractors, computational extractors can expand their output arbitrarily via pseudorandom generators
once a long-enough output is obtained. We adapt the definition of Krawczyk [Kra10] to the average case:

Definition 11. A function cext : {0, 1}n×{0, 1}d → {0, 1}κ a (m, εsec, ssec)-average-case computational
extractor if for all pairs of random variables X,Y (with X over {0, 1}n) such that H̃∞(X|Y) ≥ m, we
have δDssec ((cext(X;Ud), Ud, Y), Uκ × Ud × Y) ≤ εsec.

Combining a computational fuzzy conductor and a computational extractor yields a computational
fuzzy extractor:

Lemma 2. Let (Gen′, Rep′) be a (M,W, m̃, t)-computational fuzzy conductor that is (εcond, scond)-hard
with error δ and outputs in {0, 1}n. Let cext : {0, 1}n×{0, 1}d → {0, 1}κ be a (m̃, εext, sext)-average case
computational extractor. Define (Gen,Rep) as:

• Gen(w; seed) (where seed ∈ {0, 1}d): run (r′, p′) = Gen′(w) and output r = cext(r′; seed), p =
(p′, seed).

• Rep(w′, (p′, seed)) : run r′ = Rep′(w′; p′) and output r = cext(r′; seed).

20

Then (Gen,Rep) is a (M,W, κ, t)-computational fuzzy extractor that is (εcond + εext, s
′)-hard with error δ

where s′ = min{scond − |cext| − d, sext}.

Proof. It suffices to show if there is some distinguisher D′ of size s′ where

δD
′
((cext(X;Ud), Ud, P

′), (Uκ, Ud, P
′)) > εcond + εext

then there is an distinguisher D of size scond such that for all Y with H̃∞(Y |P ′) ≥ m̃,

δD((X,P ′), (Y, P ′)) ≥ εcond.

Let D′ be such a distinguisher. That is,

δD
′
(cext(X,Ud)× Ud × P ′, Uκ × Ud × P ′) > εext + εcond.

Then define D as follows. On input (y, p′) sample seed ← Ud, compute r ← cext(y; seed) and output
D(r, seed, p′). Note that |D| ≈ s′ + |cext|+ d = scond. Then we have the following:

δD((X,P ′), (Y, P ′)) = δD
′
((cext(X,Ud), Ud, P

′), cext(Y, Ud), Ud, P
′)

≥ δD′((cext(X,Ud), Ud, P
′), (Uκ × Ud × P ′))

− δD′((Uκ × Ud × P ′), (cext(Y,Ud), Ud, P
′))

> εcond + εext − εext = εcond.

Where the last line follows by noting that D′ is of size at most sext. Thus D distinguishes X from all Y
with sufficient conditional minentropy. This is a contradiction.

A.2 Security of Construction 2

It suffices to prove that Construction 2 is a (Zn,W, m̃ = H0(C) − β, t)-comp. fuzzy conductor, i.e.,
that C has HILL entropy H0(C) − β conditioned on P . The final extraction step will convert it to a
computational fuzzy extractor (see Lemma 2).

The security proof of Construction 2 is similar to the security proof of Construction 1. However, it is
made more complicated by the fact that the definition of sources with sparse high-entropy marginals (Definition 4)
allows for certain weak symbols that can easily be guessed. This means we must limit our indistinguishable
distribution to symbols that are difficult to guess. Security is proved via the following lemma:

Lemma 3. Let all variables be as in Theorem 3. For every ssec = poly(n) there exists some εsec = ngl(n)
such that HHILL

εsec,ssec(C|P) ≥ H0(C)− β.

We give a brief outline of the proof, followed by the proof of the new statement. It is sufficient to
show that there exists a distribution C ′ with conditional minentropy and δDssec ((C,P), (C ′, P)) ≤ ngl(n).
Let J be the set of indices that exist according to Definition 4. Define the distribution C ′ as a uniform
codeword conditioned on the values of C and C ′ being equal on all indices outside of J . We first note that
C ′ has sufficient entropy, because H̃∞(C ′|P) = H̃∞(C ′|CJc) ≥ H∞(C ′, CJc) − H0(CJc) = H0(C) − |Jc|
(the second step is by [DORS08, Lemma 2.2b]). It is left to show δDssec ((C,P), (C ′, P)) ≤ ngl(n). The
outline for the rest of the proof is as follows:

21

• Let D be a distinguisher between (C,P) and (C ′, P). By the security of obfuscated point functions,∣∣∣E[D(C,P1, ..., Pn)]− E
[
S{idealUnlock(·)}

n
i=1 (C, n · |Z|)

]∣∣∣
is small.

• Show that even an unbounded S making a polynomial number of queries to the stored points cannot
distinguish between C and C ′. That is,∣∣∣E [S{idealUnlock(·)}ni=1 (C, n · |Z|)

]
− E

[
S{idealUnlock(·)}

n
i=1
(
C ′, n · |Z|

)]∣∣∣
is small.

• By the security of obfuscated point functions,∣∣∣E [S{idealUnlock(·)}ni=1
(
C ′, n · |Z|

)]
− E[D(C ′, P1, ..., Pn)]

∣∣∣
is small.

Proof of Lemma 3. The overall approach and the proof of the first and third bullet as in Theorem 1. We
only prove the second bullet. Define the distribution X as follows:

Xj =

{
Wj Cj = 0

Rj Cj = 1.

Lemma 4. ∆
(
S{idealUnlock(Xi)}

n
i=1 (C, n · |Z|) , S{idealUnlock(Xi)}ni=1 (C ′, n · |Z|)

)
≤ (n− β)2−(α+1).

Proof. It suffices to show that for any two codewords that agree on Jc, the statistical distance is at most
(n− β)2−(α+1).

Lemma 5. Let c∗ be true value encoded in X and let c′ a codeword in C ′. Then,

∆
(
S{idealUnlock(Xi)}

n
i=1 (c∗, n · |Z|) , S{idealUnlock(Xi)}ni=1

(
c′, n · |Z|

))
≤ (n− β)2−(α+1).

Proof. Recall that for all j ∈ J , H̃∞(Wj |V iew(S)) ≥ α. The only information about the correct value of
c∗j is contained in the query responses. When all responses are 0 the view of S is identical when presented
with c∗ or c′. We now show that for any value of c∗ all queries on j ∈ J return 0 with probability
1− 2−α+1. Suppose not. That is, suppose the probability of at least one nonzero response on index j is
> 2−(α+1). Since w,w′ are independent of rj , the probability of this happening when c∗j = 1 is at most

q/Z or equivalently 2− log |Z|+log q. Thus, it must occur with probability:

2−α+1 < Pr[non zero response location j]

= Pr[c∗j = 1] Pr[non zero response location j ∧ c∗j = 1]

+ Pr[c∗j = 0] Pr[non zero response location j ∧ c∗j = 0]

≤ 1× 2− log |Z|+log q + 1× Pr[non zero response location j ∧ c∗j = 0] (3)

We now show that for α ≤ log |Z| − log q:

22

Claim 1. If W is a source with β-sparse α-entropy q-marginals over Z, then α ≤ log |Z| − log q.

Proof. Let J ⊂ {1, ..., n} the set of good indices. It suffices to show that there exists an S making q
queries such that for some

j ∈ J, H̃∞(Wj |S{idealUnlock(Xi)}
n
i=1) ≤ log |Z| − log q.

Let j ∈ J be some arbitrary element of J and denote by wj,1, ..., wj,q the q most likely outcomes of
Wj (breaking ties arbitrarily). Then

∑q
i=1 Pr[Wj = wj,i] ≥ q/|Z|. Suppose not. This means that there is

some wj,i with probability Pr[Wj = wj,i] < 1/|Z|. Since there are Z − q remaining possible values of Wj

for their total probability to be at least 1 − q/|Z| at least of these values has probability at least 1/Z.
This contradicts the statement wj,1, ..., wj,q are the most likely values. Consider S that queries the jth
oracle on wj,1, .., wj,q. Denote by Bad the random variable when Wj ∈ {wj,1, .., wj,q} After these queries
the remaining minentropy is at most:

H̃∞(Wj |SJW (·,·))

= − log
(

Pr[Bad = 1]× 1 + Pr[Bad = 0]×max
w

Pr[Wj = w|Bad = 0]
)

≤ − log (Pr[Bad = 1]× 1)

= − log

(
q

|Z|

)
= log |Z| − log q

This completes the proof of Claim 1.

Rearranging terms in Equation 3, we have:

Pr[non zero response location j ∧ cj = 0] > 2−α+1 − 2−(log |Z|−log q) = 2−α

When there is a 1 response and cj = 0 this means that there is no remaining minentropy. If this occurs
with over 2−α probability this violates the condition on W (Definition 4). By the union bound over the
indices j ∈ J the total probability of a 1 in J is at most (n − β)2−α+1. Recall that c∗, c′ match on all
indices outside of J . Thus, for all c∗, c′ the statistical distance is at most (n − β)2−α+1. This concludes
the proof of Lemma 5.

Lemma 4 follows by averaging over all points in C ′.

A.3 Correctness of Construction 2

We now argue correctness of Construction 2. We first assume ideal functionality of the obfuscated point
functions. Consider a coordinate j for which cj = 1. Since w′ is chosen independently of the points rj , and
rj is uniform, Pr[rj = w′j] = 1/|Z|. Thus, the probability of at least one 1→ 0 bit flip (the random choice
ri being the same as w′i) is ≤ n(1//|Z|). Since there are most t locations for which wj 6= w′j there are at
most t 0 → 1 bit flips in c, which the code will correct with probability 1 − δcode, because c was chosen
uniformly. Finally, since each obfuscated point function is correct with probability 1 − γ, Construction 2
is correct with error at most δcode + n(1/|Z|+ γ).

23

A.4 Characterizing sources with sparse high-entropy marginals

Definition 4 is an inherently adaptive definition and a little unwieldy. In this section, we partially charac-
terize sources that satisfy Definition 4. The majority of the difficulty in characterizing Definition 4 is that
different symbols may be dependent, so an equality query on symbol i may reshape the distribution of
symbol j. In the examples that follow we denote the adversary by S as the simulator in Definition 3. We
first show some sources that have sparse high-entropy marginals (Section A.4.1) and then show sources
with high overall entropy that do not have sparse high-entropy marginals (Section A.4.2).

A.4.1 Positive Examples

We begin with the case of independent symbols.

Proposition 2. Let W = W1, ...,Wn be a source in which all symbols Wj are mutually independent. Let
α be a parameter. Let J ⊂ {1, ..., n} be a set of indices such that for all j ∈ J , H∞(Wj) ≥ α. Then
for any q, W is a source with (n− |J |)-sparse (α − log(q + 1))-entropy q-marginals. In particular, when
α = ω(log n) and q = poly(n), then W is a source with (n− |J |)-sparse ω(log n)-entropy q-marginals.

Proof. It suffices to show that for all j ∈ J, H̃∞(Wj |V iew(S(·))) = α − log(q + 1) where S is allowed q
queries to the oracles {idealUnlock(Wi)}ni=1. We can ignore queries for all symbols but the jth, as the
symbols are independent. Furthermore, without loss of generality, we can assume that no duplicate queries
are asked, and that the adversary is deterministic (S can calculate the best coins). Let A1, A2, . . . Aq be
the random variables representing the oracle answers for an adversary S making q queries about the ith
symbol. Each Ak is just a bit, and at most one of them is equal to 1 (because duplicate queries are
disallowed). Thus, the total number of possible responses is q + 1. Thus, we have the following,

H̃∞(Wj |V iew(S(·))) = H̃∞(Wj |A1, . . . , Aq)

= H∞(Wj)− |A1, . . . , Aq|
= α− log(q + 1) ,

where the second line follows from the first by [DORS08, Lemma 2.2].

In their work on computational fuzzy extractors, Fuller, Meng, and Reyzin [FMR13] show a construction
for symbol-fixing sources, where each symbol is either uniform or a fixed symbol (symbol-fixing sources
were introduced by Kamp and Zuckerman [KZ07]). Proposition 2 shows that Definition 4 captures, in
particular, this class of distributions. However, Definition 4 captures more distributions. We now consider
more complicated distributions where symbols are not independent.

Proposition 3. Let f : {0, 1}e → Zn be a function. Furthermore, let fj denote the restriction of
f ’s output to its jth coordinate. If for all j, fj is injective then W = f(Ue) is a source with 0-sparse
(e− log(q + 1))-entropy q-marginals.

Proof. f is injective on each symbol, so

H̃∞(Wj |V iew(S)) = H̃∞(Ue|V iew(S)) .

Consider a query qk on symbol j. There are two possibilities: either qk is not in the image of fj ,
or qk can be considered a query on the preimage f−1j (qk). Then (by assuming S knows f) we can
eliminate queries which correspond to the same value of Ue. Then the possible responses are strings with
Hamming weight at most 1 (like in the proof of Claim 2), and by [DORS08, Lemma 2.2] we have for all
j, H̃∞(Wj |V iew(S)) ≥ H∞(Wj)− log(q + 1).

24

Note the total entropy of a source in Proposition 3 is e, so there is a family of distributions with
total entropy ω(log n) for which Construction 2 is secure. For these distributions, all the coordinates are
as dependent as possible: one determines all others. We can prove a slightly weaker claim when the
correlation between the coordinates Wj is arbitrary:

Proposition 4. Let W = W1, ...,Wn. Suppose that for all j, H∞(Wj) ≥ α, and that q ≤ 2α/4 (this holds
asymptotically, in particular, if q is polynomial and α is super-logarithmic). Then W is a source with
0-sparse (α− 1− log(q + 1))-entropy q-marginals.

Proof. Intuitively, the claim is true because the oracle is not likely to return 1 on any query. Formally,
we proceed by induction on oracle queries, using the same notation as in the proof of Proposition 2. Our
inductive hypothesis is that Pr[A1 6= 0 ∨ · · · ∨Ai−1 6= 0] ≤ (i− 1)21−α. If the inductive hypothesis holds,
then, for each j,

H∞(Wj |A1 = · · · = Ai−1 = 0) ≥ α− 1 . (4)

This is true for i = 1 by the condition of the theorem. It is true for i > 1 because, as a consequence
of the definition of H∞, for any random variable X and event E, H∞(X|E) ≥ H∞(X) + log Pr[E]; and
(i− 1)21−α ≤ 2q2−α ≤ 1/2.

We now show that Pr[A1 6= 0 ∨ · · · ∨ Ai 6= 0] ≤ i21−α, assuming that Pr[A1 6= 0 ∨ · · · ∨ Ai−1 6= 0] ≤
(i− 1)21−α.

Pr[A1 6= 0 ∨ · · · ∨ Ai−1 6= 0 ∨Ai 6= 0]

= Pr[A1 6= 0 ∨ · · · ∨ Ai−1 6= 0] + Pr[A1 = · · · = Ai−1 = 0 ∧Ai = 1]

≤ (i− 1)21−α + Pr[Ai = 1 |A1 = · · · = Ai−1 = 0]

≤ (i− 1)21−α + max
j

2−H∞(Wj |A1=···=Ai−1=0)

≤ (i− 1)21−α + 21−α

= i21−α

(where the third line follows by considering that to get Ai = 1, the adversary needs to guess some Wj , and
the fourth line follows by (4)). Thus, using i = q+ 1 in (4), we know H∞(Wj |A1 = · · · = Aq = 0) ≥ α−1.
Finally this means that

H̃∞(Wj |A1, . . . , Aq) ≥ − log
(

2−H∞(Wj |A1=···=Aq=0) Pr[A1 = · · · = Aq = 0] + 1 · Pr[A1 6= 0 ∨ · · · ∨ Aq 6= 0]
)

≥ − log
(

2−H∞(Wj |A1=···=Aq=0) + q21−α
)

≥ − log
(
(q + 1)21−α

)
= α− 1− log(q + 1) .

A.4.2 Negative Examples

Propositions 2 and 3 rest on there being no easy “entry” point to the distribution. This is not always
the case. Indeed it is possible for some symbols to have very high entropy but lose all of it after equality
queries.

25

Proposition 5. Let p = (poly(λ)) and let f1, ..., fn be injective functions where fj : {0, 1}j×log p → Z.10

Then define the distribution Un and consider W1 = f1(U1,...,log p), W2 = f2(U1,...,2 log p),,Wn = fn(U).
There is an adversary making p× n queries such that H̃∞(W |V iew(S(·))) = 0.

Proof. Let x be the true value for Up×n. We present an adversary S that completely determines x. S
computes y11 = f1(x

1
1), ..., y

p
1 = f(xp1). Then S queries on (y1), ..., (yp) to the first oracle, exactly one answer

returns 1. Let this value be y∗1 and its preimage x∗1. Then S computes y12 = f2(x
∗
1, x

1
2), ..., y

p
2 = f2(x

∗
1, x

p
2)

and queries y12, ..., y
p
2 . Again, exactly one of these queries returns 1. This process is repeated until all of

x is recovered (and thus w).

The previous example relies on an adversary’s ability to determine a symbol from the previous symbols.
We formalize this notion next. We define the entropy jump of a source as the remaining entropy of a
symbol when previous symbols are known:

Definition 12. Let W = W1, ...,Wn be a source under ordering i1, ..., in. The jump of a symbol ij is
Jump(ij) = maxwi1 ,...,wij−1

H0(Wij |Wi1 = wi1 , ...,Wij−1 = wij−1).

An adversary who can learn symbols in succession can eventually recover the entire secret. In order
for a source to have sparse high-entropy marginals, the adversary must get “stuck” early enough in this
recovery process. This translates to having a super-logarithmic jump early enough.

Proposition 6. Let W be a distribution and let q be a parameter, if there exists an ordering i1, ..., in such
that for all j ≤ n−β+ 1, Jump(ij) = log q/(n−β+ 1), then W is not a source with β-sparse high-entropy
q-marginals.

Proof. For convenience relabel the ordering that violates the condition as 1, ..., n. We describe an un-
bounded adversary S that determines W1, ...,Wn−β+1. As before S queries the q/n possible values for W1

and determines W1. Then S queries the (at most) q/(n− β + 1) possible values for W2|W1. This process
is repeated until Wn−β+1 is learned.

Presenting a sufficient condition for security is more difficult as S may interleave queries to different
symbols. It seems like the optimum strategy for S is to focus on a single symbol at a time, but it is
unclear how to formalize this intuition.

B Analysis of Construction 3

Proof. Let W ∈ W . It suffices to argue correctness and security. We first argue correctness.
Correctness: When wi = w′i, then cond(wi, seedi) = cond(w′i, seedi) and thus vi = v′i. Thus,

for all w,w′ where dis(w,w′) ≤ t, then dis(v, v′) ≤ t. Then by correctness of (Gen′,Rep′), Pr[(r, p) ←
Gen′(v) ∧ r′ ← Rep(v′, p) ∧ r′ = r] ≥ 1− δ.

Security: We now argue security. Denote by seed the random variable consisting of all n seeds and
V the entire string of generated V1, ..., Vn. To show that

R|P, seed ≈nεcond+εfext U |P, seed,

it suffices to show that H̃∞(V |seed) is nεcond close to a distribution with average minentropy α̃(n − β).
The lemma then follows by the security of (Gen′,Rep′).11

10Here we assume that |Z| ≥ n× log p, that is the source has a small number of symbols.
11Note, again, that (Gen′,Rep′) must be an average-case fuzzy extractor. Most known constructions are average-case and

we omit this notation.

26

We now argue that there exists a distribution Y where H̃∞(Y |seed) ≥ α̃(n−β) and (V, seed1, ..., seedn) ≈
(Y, seed1, .., seedn). First note since W is (α, β) sparse block source that there exists a set of indices J
where |J | ≥ n− β such that the following holds:

∀j ∈ J, ∀w1, ..., wj−1 ∈W1, ...,Wj−1,H∞(Wj |W1 = w1, ...,Wj−1 = wj−1) ≥ α.

Then consider the first element of j1 ∈ J , ∀w1, ..., wj1−1 ∈W1, ...,Wj1−1,

H∞(Wj1 |W1 = w1, ...,Wj1−1 = wj1−1) ≥ α.

Thus, there exists a distribution Yj1 with H̃∞(Yj1 |seedj1) ≥ α̃ such that

(cond(Wj1 , seedj1), seedj1 ,W1, ...,Wj1−1) ≈εcond (Yj1 , seedj1 ,W1, ...,Wj1−1)

and since (seed1, ..., seedj1) are independent of these values

(cond(Wj1 , seedj1),Wj1−1, ...,W1, seedj1 , ..., seed1) ≈εcond (Yj1 ,Wj1−1, ...,W1, seedj1 , , ..., seed1) .

Consider the random variable

Zj1 = (Yj1 , cond(Wj1−1, seedj1−1), ..., cond(W1, seed1))

and note that
H̃∞(Zj1 |seed1, ..., seedj1) ≥ α′.

Applying a deterministic function does not increase statistical distance and thus,

(cond(Wj1 , seedj1), cond(Wj1−1, seedj1−1), .., cond(W1, seed1), seedj1 , ..., seed1)

≈nεcond (Zj1 , seedj1 , ..., seed1)

By a hybrid argument there exists a distribution Z with H̃∞(Z|seed) ≥ α̃(n− β) where

(cond(Wn, seedn), ..., cond(W1, seed1), seedn, ..., seed1)

≈nεcond (Z, seedn, ..., seed1).

This completes the proof of Theorem 4.

27

	Introduction
	Our Contribution

	Definitions
	Fuzzy Extractors
	Reusable Fuzzy Extractors

	Tools: Digital Lockers, Point Functions, and Hash Functions
	Main Result: Reusable Construction for Sources with High-Entropy Samples
	Additional Constructions for the Case of Large Alphabets
	Construction for Sources with Sparse High-Entropy Marginals
	Information-Theoretic Construction for Sparse Block Sources

	Analysis of Construction 12
	Computational Fuzzy Conductors and Computational Extractors
	Security of Construction 12
	Correctness of Construction 12
	Characterizing sources with sparse high-entropy marginals
	Positive Examples
	Negative Examples

	Analysis of Construction 16

