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Abstract

Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert repeated noisy readings of a high-entropy
secret into the same uniformly distributed key. A minimum condition for the security of the key is the
hardness of guessing a value that is similar to the secret, because the fuzzy extractor converts such a
guess to the key.

We define fuzzy min-entropy to quantify this property of a noisy source of secrets. Fuzzy min-
entropy measures the success of the adversary when provided with only the functionality of the fuzzy
extractor, that is, the ideal security possible from a noisy distribution. High fuzzy min-entropy is
necessary for the existence of a fuzzy extractor.

We ask: is high fuzzy min-entropy a sufficient condition for key extraction from noisy sources? If
only computational security is required, recent progress on program obfuscation gives evidence that
fuzzy min-entropy is indeed sufficient. In contrast, information-theoretic fuzzy extractors are not known
for many practically relevant sources of high fuzzy min-entropy.

In this paper, we show that fuzzy min-entropy is sufficient for information theoretically secure
fuzzy extraction. For every source distribution W for which security is possible we give a secure fuzzy
extractor.

Our construction relies on the fuzzy extractor knowing the precise distribution of the source W .
A more ambitious goal is to design a single extractor that works for all possible sources. Our second
main result is that this more ambitious goal is impossible: we give a family of sources with high fuzzy
min-entropy for which no single fuzzy extractor is secure. We show three flavors of this impossibility
result: for standard fuzzy extractors, for fuzzy extractors that are allowed to sometimes be wrong, and
for secure sketches, which are the main ingredient of most fuzzy extractor constructions.

Keywords: Fuzzy extractors, secure sketches, information theory, biometric authentication, error-
tolerance, key derivation, error-correcting codes.

1 Introduction

Sources of reproducible secret random bits are necessary for many cryptographic applications. In many
situations these bits are not explicitly stored for future use, but are obtained by repeating the same
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process (such as reading a biometric or a physically unclonable function) that generated them the first
time. However, bits obtained this way present a problem: noise [4, 8, 12, 14, 18, 29, 30, 32, 36, 38, 42].
That is, when a secret is read multiple times, readings are close (according to some metric) but not
identical. To utilize such sources, it is often necessary to remove noise, in order to derive the same value
in subsequent readings.

The same problem occurs in the interactive setting, in which the secret channel used for transmitting
the bits between two users is noisy and/or leaky [41]. Bennett, Brassard, and Robert [4] identify two fun-
damental tasks. The first, called information reconciliation, removes the noise without leaking significant
information. The second, known as privacy amplification, converts the high entropy secret to a uniform
random value. In this work, we consider the noninteractive version of these problems, in which these
tasks are performed together with a single message.

The noninteractive setting is modeled by a primitive called a fuzzy extractor [13], which consists of
two algorithms. The generate algorithm (Gen) takes an initial reading w and produces an output key
along with a nonsecret helper value p. The reproduce (Rep) algorithm takes the subsequent reading w′

along with the helper value p to reproduce key. The correctness guarantee is that the key is reproduced
precisely when the distance between w and w′ is at most t.

The security requirement for fuzzy extractors is that key is uniform even to a (computationally un-
bounded) adversary who has observed p. This requirement is harder to satisfy as the allowed error
tolerance t increases, because it becomes easier for the adversary to guess key by guessing a w′ within
distance t of w and running Rep(w′, p).

Fuzzy Min-Entropy We introduce a new entropy notion that precisely measures how hard it is for
the adversary to guess a value within distance t of the original reading w. Suppose w is sampled from a
distribution W . To have the maximum chance that w′ is within distance t of w, the adversary would want
to maximize the total probability mass of W within the ball Bt(w

′) of radius t around w′. We therefore
define fuzzy min-entropy

Hfuzz
t,∞ (W )

def
= − log max

w′
Pr[W ∈ Bt(w′)].

The security of the resulting key cannot exceed the fuzzy min-entropy (Proposition 3.2).
However, existing constructions do not measure their security in terms of fuzzy min-entropy; instead,

their security is shown to be the min-entropy of W , denoted H∞(W ), minus some loss, for error-tolerance,
that is at least log |Bt|.1 Since (trivially) H∞(W ) − log |Bt| ≤ Hfuzz

t,∞ (W ), it is natural to ask whether
this loss is necessary. This question is particularly relevant when the gap between the two sides of the
inequality is high.2 As an example, iris scans appear to have significant Hfuzz

t,∞ (W ) (because iris scans
for different people appear to be well-spread in the metric space [11]) but negative H∞(W )− log |Bt| [6,
Section 5]. We therefore ask: is fuzzy min-entropy sufficient for fuzzy extraction? There is evidence that it
may be sufficient when the security requirement is computational rather than information-theoretic—see
Section 1.2. We provide an answer for the case of information-theoretic security in two settings.

Contribution 1: Sufficiency of Hfuzz
t,∞ (W ) for a Precisely Known W It should be easier to construct

a fuzzy extractor when the designer has precise knowledge of the probability distribution function of W .
In this setting, we show that it is possible to construct a fuzzy extractor that extracts a key almost as
long as Hfuzz

t,∞ (W ) (Theorem 4.2). Our construction crucially utilizes the probability distribution function

1We omit w in the notation |Bt| since, as with almost all previous work, we study metrics where the volume of the ball
Bt(w) does not depend on the center w.

2For nearly uniform distributions, Hfuzz
t,∞(W ) ≈ H∞(W )− log |Bt|. In this setting, standard coding based constructions of

fuzzy extractors (using appropriate codes) yield keys of size approximately Hfuzz
t,∞(W ).
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of W and, in particular, cannot necessarily be realized in polynomial time (this is similar, for example,
to the interactive information-reconciliation feasibility result of [33]). This result shows that Hfuzz

t,∞ (W ) is
a necessary and sufficient condition for building a fuzzy extractor for a given distribution W .

A number of previous works in the precise knowledge setting have provided efficient algorithms and
tight bounds for specific distributions—generally the uniform distribution or i.i.d. sequences (for example,
[26, 27, 37, 19, 40, 25]). Our characterization unifies previous work, and justifies using Hfuzz

t,∞ (W ) as the
measure of the quality of a noisy distribution, rather than cruder measures such as H∞(W )− log |Bt|. Our
construction can be viewed as a reference to evaluate the quality of efficient constructions in the precise
knowledge setting by seeing how close they get to extracting all of Hfuzz

t,∞ (W ).

Contribution 2: The Cost of Distributional Uncertainty Assuming precise knowledge of a distri-
bution W is often unrealistic for high-entropy distributions; they can never be fully observed directly and
must therefore be modeled. It is imprudent to assume that the designer’s model of a distribution is com-
pletely accurate—the adversary, with greater resources, would likely be able to build a better model. (In
particular, the adversary has more time to build the model after a particular construction is deployed.)
Because of this, existing designs work for a family of sources (for example, all sources of min-entropy
at least m with at most t errors). The fuzzy extractor is designed given only knowledge of the family.
The attacker may know more about the distribution than the designer. We call this the distributional
uncertainty setting.

Our second contribution is a set of negative results for this more realistic setting. We provide two
impossibility results for fuzzy extractors. Both demonstrate families W of distributions over {0, 1}n such
that each distribution in the family has Hfuzz

t,∞ linear in n, but no fuzzy extractor can be secure for most
distributions in W. Thus, a fuzzy extractor designer who knows only that the distribution comes from W
is faced with an impossible task, even though our positive result, Theorem 4.2, shows that fuzzy extractors
can be designed for each distribution in the family individually.

The first impossibility result (Theorem 5.1) assumes that Rep is perfectly correct and rules our fuzzy
extractors for entropy rates as high as Hfuzz

t,∞ (W ) ≈ 0.18n. The second impossibility result (Theorem 6.1),
relying on the work of Holenstein and Renner [24], also rules out fuzzy extractors in which Rep is allowed
to make a mistake, but applies only to distributions with entropy rates up to Hfuzz

t,∞ (W ) ≈ 0.07n.
We also provide a third impossibility result (Theorem 7.2), this time for an important building block

called “secure sketch,” which is used in most fuzzy extractor constructions (in order to allow Rep to recover
the original w from the input w′). The result rules out secure sketches for a family of distributions with
entropy rate up to 0.5n, even if the secure sketches are allowed to make mistakes. Because secure sketches
are used in most fuzzy extractors constructions, the result suggests that building a fuzzy extractor for
this family will be very difficult. We define secure sketches formally in Section 7.

These impossibility results motivate further research into computationally, rather information-theoretically,
secure fuzzy extractors (Section 1.2).

1.1 Our Techniques

Techniques for Positive Results for a Precisely Known Distribution We now explain how to
construct a fuzzy extractor for a precisely known distribution W with fuzzy min-entropy. We begin with
distributions in which all points in the support have the same probability (so-called “flat” distributions).
Gen simply extracts a key from the input w using a randomness extractor. Consider some subsequent
reading w′. To achieve correctness, the string p must permit Rep to disambiguate which point w ∈ W
within distance t of w′ was given to Gen. Disambiguating multiple points can be accomplished by universal
hashing, as long as the size of hash output space is slightly greater than the number of possible points.
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Thus, Rep includes into the public value p a “sketch” of w computed via a universal hash of w. To
determine the length of that sketch, consider the heaviest (according to W ) ball B∗ of radius t. Because
the distribution is flat, B∗ is also the ball with the most points of nonzero probability. Thus, the length
of the sketch needs to be slightly greater than the logarithm of the number of non-zero probability points
in B∗. Since Hfuzz

t,∞ (W ) is determined by the weight of B∗, the number of points cannot be too high and
there will be entropy left after the sketch is published. This remaining entropy suffices to extract a key.

For an arbitrary distribution, we cannot afford to disambiguate points in the ball with the greatest
number of points, because there could be too many low-probability points in a single ball despite a high
Hfuzz
t,∞ (W ). We solve this problem by splitting the arbitrary distribution into a number of nearly flat

distributions we call “levels.” We then write down, as part of the sketch, the level of the original reading
w and apply the above construction considering only points in that level. We call this construction leveled
hashing (Construction A.1).

Techniques for Negative Results for Distributional Uncertainty We construct a family of distri-
butions W and prove impossibility for a uniformly random W ←W. We start by observing the following
asymmetry: Gen sees only the sample w (obtained via W ←W and w ←W ), while the adversary knows
W .

To exploit the asymmetry, in our first impossibility result (Theorem 5.1), we construct W so that
conditioning on the knowledge of W reduces the distribution to a small subspace (namely, all points on
which a given hash function produces a given output), but conditioning on only w leaves the rest of the
distribution uniform on a large fraction of the entire space. An adversary can exploit the knowledge of
the hash value to reduce the uncertainty about key, as follows.

The nonsecret value p partitions the metric space into regions that produce a consistent value under
Rep (preimages of each key under Rep(·, p)). For each of these regions, the adversary knows that possible
w lie at distance at least t from the boundary of the region (else, the fuzzy extractor would have a nonzero
probability of error). However, in the Hamming space, the vast majority of points lie near the boundary
(this result follows by combining the isoperimetric inequality [20], which shows that the ball has the
smallest boundary, with bounds on the volume of the interior of a ball, which show that this boundary
is large). This allows the adversary to rule out so many possible w that, combined with the adversarial
knowledge of the hash value, many regions become empty, leaving key far from uniform.

For the second impossibility result (Theorem 6.1, which rules out even fuzzy extractors that are allowed
a possibility of error), we let the adversary know some fraction of the bits of w. Holenstein and Renner
[24] showed that if the adversary knows each bit of w with sufficient probability, and bits of w′ differ from
bits of w with sufficient probability, then so-called “information-theoretic key agreement” is impossible.
Converting the impossibility of information-theoretic key agreement to impossibility of fuzzy extractors
takes a bit of technical work.

1.2 Related Settings

Other settings with close readings: Hfuzz
t,∞ is sufficient The security definition of fuzzy extractors

can be weakened to protect only against computationally bounded adversaries [17]. In this computational
setting, for most distance metrics a single fuzzy extractor can simultaneously secure all possible distribu-
tions by using virtual grey-box obfuscation for all circuits in NC1 [5]. This construction is secure when the
adversary can rarely learn key with oracle access to the program functionality. The set of distributions
with fuzzy min-entropy are exactly those where an adversary learns key with oracle access to the func-
tionality with negligible probability. Thus, extending our negative result to the computational setting
would have negative implications on the existence of obfuscation.
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Furthermore, the functional definition of fuzzy extractors can be weakened to permit interaction
between the party having w and the party having w′. Such a weakening is useful for secure remote
authentication [7]. When both interaction and computational assumptions are allowed, secure two-party
computation can produce a key that will be secure whenever the distribution W has fuzzy min-entropy.
The two-party computation protocol needs to be secure without assuming authenticated channels; it can
be built under the assumptions that collision-resistant hash functions and enhanced trapdoor permutations
exist [3].

Correlated rather than close readings A different model for the problem of key derivation from
noisy sources does not explicitly consider the distance between w and w′, but rather views w and w′ as
samples of drawn from a correlated pair of random variables. This model is considered in multiple works,
including [41, 10, 1, 28]; recent characterizations of when key derivation is possible in this model include
[34] and [39]. In particular, Hayashi et al. [21] independently developed an interactive technique similar to
our non-interactive leveled hashing, which they called “spectrum slicing.” To the best of our knowledge,
prior results on correlated random variables are in the precise knowledge setting; we are unaware of works
that consider the cost of distributional uncertainty.

2 Preliminaries

Random Variables We generally use uppercase letters for random variables and corresponding lowercase
letters for their samples. A repeated occurrence of the same random variable in a given expression signifies
the same value of the random variable: for example (W, SS(W )) is a pair of random variables obtained
by sampling w according to W and applying the algorithm SS to w.

The statistical distance between random variables A and B with the same domain is SD(A,B) =
1
2

∑
a |Pr[A = a]− Pr[B = b]| = maxS Pr[A ∈ S]− Pr[B ∈ S].

Entropy Unless otherwise noted logarithms are base 2. Let (X,Y ) be a pair of random variables. Define
min-entropy of X as H∞(X) = − log(maxx Pr[X = x]), and the average (conditional) min-entropy of X
given Y as H̃∞(X|Y ) = − log(Ey∈Y maxx Pr[X = x|Y = y]) [13, Section 2.4]. Define Hartley entropy
H0(X) to be the logarithm of the size of the support of X, that is H0(X) = log |{x|Pr[X = x] > 0}|.
Define average-case Hartley entropy by averaging the support size: H̃0(X|Y ) = log(Ey∈Y |{y|Pr[X =
x|Y = y] > 0}|). For 0 < a < 1, define the binary entropy h2(p) = −p log p − (1 − p) log(1 − p) as the
Shannon entropy of any random variable that is 0 with probability p and 1 with probability 1− p.
Randomness Extractors We use randomness extractors [31], as defined for the average case in [13,
Section 2.5].

Definition 2.1. Let M, χ be finite sets. A function ext : M× {0, 1}d → {0, 1}κ a (m̃, ε)-average case
extractor if for all pairs of random variables X,Y over M, χ such that H̃∞(X|Y ) ≥ m̃, we have

SD((ext(X,Ud), Ud, Y ), Uκ × Ud × Y ) ≤ ε.

Metric Spaces and Balls For a metric space (M, dis), the (closed) ball of radius t around w is the set
of all points within radius t, that is, Bt(w) = {w′|dis(w,w′) ≤ t}. If the size of a ball in a metric space
does not depend on w, we denote by |Bt| the size of a ball of radius t. We consider the Hamming metric
over vectors in Zn for some finite alphabet Z, defined via dis(w,w′) = |{i|wi 6= w′i}|. Uκ denotes the
uniformly distributed random variable on {0, 1}κ.

We will use the following bounds on |Bt| in {0, 1}n, see [2, Lemma 4.7.2, equation 4.7.5, p. 115] for
proofs.
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Lemma 2.2. Let τ = t/n. The volume |Bt| of the ball of radius in t in the Hamming space {0, 1}n
satisfies

1√
8nτ(1− τ)

· 2nh2(τ) ≤ |Bt| ≤ 2nh2(τ) .

2.1 Fuzzy Extractors

In this section, we define fuzzy extractors, slightly modified from the work of Dodis et al. [13, Sections
3.2]. First, we allow for error as discussed in [13, Section 8]. Second, in the distributional uncertainty
setting we consider a general family W of distributions instead of families containing all distributions of
a given min-entropy. Let M be a metric space with distance function dis.

Definition 2.3. An (M,W, κ, t, ε)-fuzzy extractor with error δ is a pair of randomized procedures, “gen-
erate” (Gen) and “reproduce” (Rep). Gen on input w ∈ M outputs an extracted string key ∈ {0, 1}κ and
a helper string p ∈ {0, 1}∗. Rep takes w′ ∈ M and p ∈ {0, 1}∗ as inputs. (Gen,Rep) have the following
properties:

1. Correctness: if dis(w,w′) ≤ t and (key, p)← Gen(w), then Pr[Rep(w′, p) = key] ≥ 1− δ.

2. Security: for any distribution W ∈ W, if (Key, P )← Gen(W ), then
SD((Key, P ), (Uκ, P )) ≤ ε.

In the above definition, the errors must be chosen before p is known in order for the correctness guarantee
to hold.

The Case of a Precisely Known Distribution If in the above definition we take W to be a one-
element set containing a single distribution W , then the fuzzy extractor is said to be for a precisely known
distribution. In this case, we need to require correctness only for w that have nonzero probability. Note
that we have no requirement that the algorithms are compact or efficient, and so the distribution can be
fully known to them.

3 New Notion: Fuzzy Min-Entropy

The fuzzy extractor helper string p allows everyone, including the adversary, to find the output of Rep(·, p)
on any input w′. Ideally, p should not provide any useful information beyond this ability, and the outputs
of Rep on inputs that are too distant from w should provide no useful information, either. In this ideal
scenario, the adversary is limited to trying to guess a w′ that is t-close to w. Letting w′ be the center of
the maximum-weight ball in W is optimal, we measure the quality of a source by (the negative logarithm
of) this weight.

Definition 3.1. The t-fuzzy min-entropy of a distribution W in a metric space (M, dis) is:

Hfuzz
t,∞ (W ) = − log

max
w′

∑
w∈M|dis(w,w′)≤t

Pr[W = w]


Fuzzy min-entropy measures the functionality provided to the adversary by Rep (since p is public), and
thus is a necessary condition for security. We formalize this statement in the following proposition.
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Proposition 3.2. Let W be a distribution over (M, dis) with Hfuzz
t,∞ (W ) = m. Let (Gen,Rep) be a

(M, {W}, κ, t, ε)-fuzzy extractor with error δ. Then

2−κ ≥ 2−m − δ − ε.

If δ = ε = 2−κ, then κ cannot exceed m + 2. Additionally, if fuzzy min-entropy of the source is only
logarithmic in a security parameter while the δ and ε parameters are negligible, then extracted key must
be of at most logarithmic length.

Proof. Let W be a distribution where Hfuzz
t,∞ (W ) = m. This means that there exists a point w′ ∈M such

that Prw∈W [dis(w,w′) ≤ t] = 2−m. Consider the following distinguisher D:

• Input key, p.

• If Rep(w′, p) = key, output 1.

• Else output 0.

Clearly, Pr[D(Key, P ) = 1] ≥ 2−m − δ, while Pr[D(Uκ, P ) = 1] = 1/2−κ. Thus,

SD((Key, P ), (Uκ, P )) ≥ δD((Key, P ), (Uκ, P )) ≥ 2−m − δ − 2−κ.

Proposition 3.2 extends to the settings of computational security and interactive protocols. Fuzzy min-
entropy represents an upper bound on the security from a noisy source. However, there are many dis-
tributions with fuzzy min-entropy with no known information-theoretically secure fuzzy extractor (or
corresponding impossibility result).

We explore other properties of fuzzy min-entropy in Appendix E. These properties are included to
demonstrate the utility of fuzzy min-entropy and are not necessary to complete the proofs in this work.

4 Hfuzz
t,∞ (W ) is Sufficient in the Precise Knowledge Setting

In this section, we build fuzzy extractors that extract almost all of Hfuzz
t,∞ (W ) for any distribution W .

We reiterate that these constructions assume precise knowledge of W and are not necessarily polynomial-
time. They should thus be viewed as feasibility results. We begin with flat distributions and then turn
to arbitrary distributions.

4.1 Warm-Up for Intuition: Fuzzy Extractor for Flat Distributions

Let supp(W ) = {w|Pr[W = w] > 0} denote the support of a distribution W . A distribution W is flat
if all elements of supp(W ) have the same probability. Our construction for this case is quite simple: to
produce p, Gen outputs a hash of its input point w and an extractor seed; to produce key, Gen applies
the extractor to w. Given w′, Rep looks for w ∈ supp(W ) that is near w′ and has the correct hash value,
and applies the extractor to this w to get key.

The specific hash function we use is universal. (We note that universal hashing has a long history of
use for information reconciliation, for example [4], [33], and [35]. This construction is not novel; rather,
we present it as a stepping stone for the case of general distribuions).
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Definition 4.1 ([9]). Let F : K ×M → R be a function. We say that F is universal if for all distinct
x1, x2 ∈M:

Pr
K←K

[F (K,x1) = F (K,x2)] =
1

|R|
.

In our case, the hash output length needs to be sufficient to disambiguate elements of supp(W )∩Bt(w′)
with high probability. Observe that there are at most 2H∞(W )−Hfuzz

t,∞(W ) such elements when W is flat, so
output length slightly greater (by log 1/δ) than H∞(W ) − Hfuzz

t,∞ (W ) will suffice. Thus, the output key
length will be Hfuzz

t,∞ (W ) − log 1/δ − 2 log 1/ε + 2 (by using average-case leftover hash lemma, per [13,
Lemma 2.2b, Lemma 2.4]). As this construction is only a warm-up, so we do not state it formally and
proceed to general distributions.

4.2 Fuzzy Extractor for Arbitrary Distributions

The hashing approach used in the previous subsection does not work for arbitrary sources. Consider a
distribution W consisting of the following balls: B1

t is a ball with 2H∞(W ) points with total probability

Pr[W ∈ B1
t ] = 2−H∞(W ), B2

t , ..., B
2−H∞(W )

t are balls with one point each with probability Pr[W ∈ Bi
t] =

2−H∞(W ). The above hashing algorithm writes down H∞(W ) bits to achieve correctness on B1
t . However,

with probability 1 − 2−H∞(W ) the initial reading is outside of B1
t , and the hash completely reveals the

point.
Instead, we use a layered approach: we separate the input distribution W into nearly-flat layers, write

down the layer from which the input w came (i.e., the approximate probability of w) as part of p, and
rely on the construction from the previous part for each layer. In other words, the hash function output
is now variable-length, longer if probability of w is lower. Thus, p now reveals a bit more about w. To
limit this information and the resulting security loss, we limit number of layers. As a result, we lose only
1 + logH0(W ) more bits of security compared to the previous section. We emphasize that this additional
loss is quite small: if W is over {0, 1}n, it is only 1 + log n bits (so, for example, only 11 bits if W is 1000
bits long, and no more than 50 bits for any remotely realistic W ). We thus obtain the following theorem.

Theorem 4.2. For any metric space M, distribution W over M, distance t, error δ > 0, and security
ε > 0, there exists a (M, {W}, κ, t, ε)-known distribution fuzzy extractor with error δ for κ = Hfuzz

t,∞ (W )−
logH0(W ) − log 1/δ − 2 log 1/ε + 1. (Note that the value logH0(W ) is doubly logarithmic in the size of
the support of W and is smaller than log 1/δ and log 1/ε for typical setting of parameters.)

We provide the construction and the proof in Appendix A. The main idea is that providing the level
information makes the distribution look nearly flat (the probability of points differs by at most a factor
of two, which increases the entropy loss as compared to the flat case by only one bit). And the level
information itself increases the entropy loss by logH0(W ) bits, because there are only H0(W ) levels that
contain enough weight to matter.

5 Impossibility of Fuzzy Extractors for Family with Hfuzz
t,∞

In the previous section, we showed the sufficiency of Hfuzz
t,∞ (W ) for building fuzzy extractors when the

distribution W is precisely known. However, it may be infeasible to completely characterize a high-entropy
distribution W . Traditionally, algorithms deal with this distributional uncertainty by providing security
for a family of distributions W. In this section, we show that distributional uncertainty comes at a real
cost.

8



We demonstrate an example over the binary Hamming metric in which every W ∈ W has linear
Hfuzz
t,∞ (W ) (which is in fact equal to H∞(W )), and yet there is some W ∈ W where even for 3-bit output

keys and high constant ε = 1
4 . In fact, we show that the adversary need not work hard: even a uniformly

random choice of distribution W from W will thwart the security of any (Gen,Rep). The one caveat is
that, for this result, we require Rep to be always correct (i.e., δ = 0). As mentioned in the introduction,
this perfect correctness requirement is removed in Sections 6 and 7 at a cost of lower entropy rate and
stronger primitive, respectively.

As basic intuition, the result is based on the following reasoning: Gen sees only a random sample w
from a random W ∈ W , but not W . The adversary sees W but not w. Because Gen does not know
which W the input w came from, Gen must produce p that works for many distributions W that contain
w in their support. Such p must necessarily reveal a lot of information. The adversary can combine
information gleaned from p with information about W to narrow down the possible choices for w and
thus distinguish key from uniform.

Theorem 5.1. Let M denote the Hamming space {0, 1}n. There exists a family of distributions W over
M such that for each element W ∈ W, Hfuzz

t,∞ (W ) = H∞(W ) ≥ m, and yet any (M,W, κ, t, ε)-fuzzy
extractor with error δ = 0 has ε > 1/4.

This holds as long as κ ≥ 3 and under the following conditions on the entropy rate µ = m/n, noise
rate τ = t/n, and n:

• any 0 ≤ τ < 1
2 and µ > 0 such that µ < 1− h2(τ) and µ < 1− h2

(
1
2 − τ

)
• any n ≥ max

(
2

1−h2(τ)−µ ,
5

1−h2( 1
2
−τ)−µ

)
.

Note that the conditions on µ and τ imply the result applies to any entropy rate µ ≤ .18 as long as τ
is set appropriately and n is sufficiently large (for example, the result applies to n ≥ 1275 and τ = .6

√
µ

when 0.08 ≤ µ ≤ .18; similarly, it applies to n ≥ 263 and τ =
√
µ when 0.01 ≤ µ ≤ 0.08). The τ vs. µ

tradeoff is depicted in Figure 1.

Proof Sketch. Here we describe the family W and provide a brief overview of the main proof ideas. We
provide a full proof in Appendix B. We will show the theorem holds for an average member of W. Let Z
denote a uniform choice of W from W and denote by Wz the choice specified by a particular value of z.

Let {Hashk}k∈K be a family of hash function with domain M and the following properties:

• 2−a-universality: for all v1 6= v2 ∈ M, Prk←K[Hashk(v1) = Hashk(v2)] ≤ 2−a, where a = n ·
h2
(
1
2 − τ

)
+ 3.

• 2m-regularity: for each k ∈ K and h in the range of Hashk, |Hash−1k (h)| = 2m, where m ≥ µn.

• preimage sets have minimum distance t + 1: for all k ∈ K, if v1 6= v2 but Hashk(v1) = Hashk(v2),
then dis(v1, v2) > t.

We show such a hash family exists in Appendix B. Let Z be the random variable consisting of pairs
(k, h), where k is uniform in K and h is uniform in the range of Hashk. Let Wz for z = (k, h) be the
uniform distribution on Hash−1k (h). By the 2m-regularity and minimum distance properties of Hash,
H∞(Wz) = Hfuzz

t,∞ (Wz) = m. Let W = {Wz}.
The intuition is as follows. We now want to show that for a random z ← Z, if (key, p) is the output

of Gen(Wz), then key can be easily distinguished from uniform in the presence of p and z.
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Figure 1: The region of τ (x-axis) and µ (y-axis) pairs for which Theorem 5.1 applies is the region below
both curves.

In the absence of information about z, the value w is uniform onM (by regularity of Hash). Knowledge

of p reduces the set of possible w from 2n to 2n·h2(
1
2
−τ), because, by correctness of Rep, every candidate

input w to Gen must be such that all of its neighbors w′ of distance at most t produce the same output
of Rep(w′, p). And knowledge of z reduces the set of possible w by another factor of 2a, because a hash
value with a random hash function key likely gives fresh information about w.

6 Impossibility in the Case of Imperfect Correctness

The impossibility result in the previous section applies only to fuzzy extractors with perfect correctness.
In this section, we build on the work of Holenstein and Renner [24] to show the impossibility of fuzzy
extractors even when they are allowed to make mistakes a constant fraction δ (as much as 4%) of the time.
However, the drawback of this result, as compared to the previous section, is that we can show impossibility
only for a relatively low entropy rate of at most 7%. In Section 7, we rule out stronger primitives called
secure sketches with nonzero error (which are used in most fuzzy extractor constructions), even for entropy
rate as high as 50%.

Theorem 6.1. Let M denote the Hamming space {0, 1}n. There exists a family of distributions W over
M such that for each element W ∈ W, Hfuzz

t,∞ (W ) = H∞(W ) ≥ m, and yet any (M,W, κ, t, ε)-fuzzy

extractor with error δ ≤ 1
25 has ε > 1

25 .
This holds for any κ > 0 under the following conditions on the entropy rate µ = m/n, noise rate

τ = t/n, and n:

• any 0 ≤ τ ≤ 1
2 and µ such that µ < 4τ(1− τ)

(
1− h2

(
1

4−4τ

))
• any sufficiently large n (as a function of τ and µ)

Note that the conditions on µ and τ imply that the result applies to any entropy rate µ ≤ 1
15 as long

as τ is set appropriately and n is sufficiently large. The τ vs. µ tradeoff is depicted in Figure 2.

10
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Figure 2: The region of τ (x-axis) and µ (y-axis) pairs for which Theorem 6.1 applies is the region below
this curve.

Proof Sketch. We now describe the family W and provide an overview of the main ideas. The full proof
is in Appendix C.

Similarly to the proof of Theorem 5.1, we will prove that any fuzzy extractor fails for an element Wz

of W chosen according to the distribution Z. In this case, Z will not be uniform but rather binomial
(with tails cut off). Essentially, Z will contain each bit of w with (appropriately chosen) probability β;
given Z = z, the remaining bits of w will be uniform and independent.

For a string z ∈ {0, 1,⊥}n, denote by info(z) the number of entries in z that are not ⊥: info(z) =
|{i s.t zi 6=⊥}|. Let Wz be the uniform distribution over all strings in {0, 1}n that agree with z in positions
that are not ⊥ in z (i.e., all strings w ∈ {0, 1}n such that for 1 ≤ i ≤ n, either zi =⊥ or wi = zi).

We will use W to prove the theorem statement. First, we show that every distribution Wz ∈ W has
sufficient Hfuzz

t,∞ . Indeed, z constrains info(z) coordinates out of n and leaves the rest uniform. Thus,

Hfuzz
t,∞ (Wz) is the same as Hfuzz

t,∞ of the uniform distribution on the space {0, 1}n−info(z). Second, we now

want to show that SD((Key, P, Z), (Uκ, P, Z)) > 1
25 . To show this, we use a result of Holenstein and

Renner [24, Theorem 4]. Their result shows impossibility of interactive key agreement for a noisy channel
where the adversary observes each bit with some probability. Several technical results are necessary to
apply the result in our setting (presented in Appendix C).

7 Stronger Impossibility Result for Secure Sketches

Most fuzzy extractor constructions share the following feature with our Construction A.1: p includes
information that is needed to recover w from w′; both Gen and Rep simply apply an extractor to w.
The recovery of w from w′, known as information-reconciliation, forms the core of many fuzzy extractor
constructions. The primitive that performs this information reconciliation is called secure sketch. In this
section we show stronger impossibility results for secure sketches. First, we recall their definition from
[13, Section 3.1] (modified slightly, in the same way as Definition 2.3).

Definition 7.1. An (M,W, m̃, t)-secure sketch with error δ is a pair of randomized procedures, “sketch”

11
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Figure 3: The region of τ (x-axis) and µ (y-axis) pairs for which Theorem 7.2 applies is the region below
both curves.

(SS) and “recover” (Rec). SS on input w ∈ M returns a bit string ss ∈ {0, 1}∗. Rec takes an element
w′ ∈M and ss ∈ {0, 1}∗. (SS,Rec) have the following properties:

1. Correctness: ∀w,w′ ∈M if dis(w,w′) ≤ t then Pr[Rec(w′, SS(w)) = w] ≥ 1− δ.

2. Security: for any distribution W ∈ W, H̃∞(W |SS(W )) ≥ m̃.

Secure sketches are more demanding than fuzzy extractors (secure sketches can be converted to fuzzy
extractors by using a randomness extractors like in our Construction A.1 [13, Lemma 4.1]). We prove
a stronger impossibility result for them. Specifically, in the case of secure sketches, we can extend the
results of Theorems 5.1 and 6.1 to cover imperfect correctness (that is, δ > 0) and entropy rate µ up to
1
2 . Since most fuzzy extractor constructions rely on secure sketches, this result gives evidence that fuzzy
extractors even with imperfect correctness and for high entropy rates are difficult to construct in the case
of distributional uncertainty.

Theorem 7.2. Let M denote the Hamming space {0, 1}n. There exists a family of distributions W over
M such that for each element W ∈ W, Hfuzz

t,∞ (W ) = H∞(W ) ≥ m, and yet any (M,W, m̃, t)-secure sketch
with error δ has m̃ ≤ 2.

This holds under the following conditions on δ, the entropy rate µ = m/n, noise rate τ = t/n, and n:

• any 0 ≤ τ < 1
2 and µ > 0 such that µ < h2(τ) and µ < 1− h2(τ)

• any n ≥ max
(
.5 logn+4δn+4

h2(τ)−µ , 2
1−h2(τ)−µ

)
Note that the result holds for any µ < 0.5 as long as δ < (h2(τ)−µ)/4 and n is sufficiently large. The

τ vs. µ tradeoff is depicted in Figure 3.
We provide the proof, which uses similar ideas to the proof of Theorem 5.1, in Appendix D.
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A Proof of Theorem 4.2

We first provide a full description of the layered hashing construction.

Construction A.1. Let W be a distribution over a metric space M with H∞(W ) = m.

• Let δ ≤ 1
2 be the error parameter.

• Let ` = m+H0(W )− 1; round ` down so that `−m is an integer (i.e., set ` = m+ b(`−m)c).

• For each i = m,m + 1, . . . , ` − 1, let Li = (2−(i+1), 2−i] and let Fi : Ki ×M → Ri be a family of
universal hash functions with log |Ri| = i+ 1−Hfuzz

t,∞ (W ) + log 1/δ. Let L` = (0, 2−`].

• Let ext be an (m̃, ε)-average-case extractor for m̃ = Hfuzz
t,∞ (W )− logH0(W )− log 1/δ−1 with output

length κ.

Define GenW ,RepW as:

GenW

1. Input: w.

2. Find i such that
Pr[W = w] ∈ Li.

3. If i = ` then set ss = (i, w, 0).

4. Else sample K ← Ki
and set ss = (i, Fi(K,w),K)

5. Sample a uniform extractor
seed seed

6. Output key = ext(w, seed),
p = (ss, seed).

RepW

1. Input: (w′, p = (ss, seed))

2. Parse ss as (i, y,K)

3. If i = ` then set w∗ = y.

4. Else

(a) Let W ∗ = {w∗|dis(w∗, w′) ≤ t
∧ Pr[W = w∗] ∈ Li}.

(b) Find any w∗ ∈W ∗ such that
Fi(K,w

∗) = y;
if none exists, set w∗ =⊥.

5. Output ext(w∗, seed).

We instantiate this construction with the extractor parameters given by [13, Lemma 2.4] (namely,
κ = m̃− 2 log 1/ε+ 2) in order to prove Theorem 4.2.

Proof of Theorem 4.2. We first argue correctness. Fix some w,w′ within distance t. When Pr[W = w] ∈
L`, then Rep is always correct, so let’s consider only the case when Pr[W = w] 6∈ L`. The algorithm Rep
will never output ⊥ since at least the correct w will match the hash. Thus, an error happens when another
element w∗ ∈ W ∗ has the same hash value F (Ki, w

∗) as F (Ki, w). Observe that the total probability
mass of W ∗ is less than |W ∗| · 2−(i+1) but greater than or equal to the maximum probability mass in a

ball of radius t, 2−H
fuzz
t,∞(W ). Therefore, |W ∗| ≤ 2i+1−Hfuzz

t,∞(W ). Each element of W ∗ has the same hash as
F (K,w) with probability at most 1/|Ri|, and thus correctness with error |W ∗|/|R| ≤ δ follows by the
union bound.

Security: We now argue security of the construction. Let Wi = {w|Pr[W = w] ∈ Li}. For ease of
notation, let us make the special case of i = ` as part of the general case, as follows: define K` = {0},
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F`(0, w) = w, and R` = W`. Also, denote by SS the randomized function that maps w to ss. First, we
set up the analysis by levels:

2−H̃∞(W |SS(W )) = E
ss

max
w

Pr[W = w | SS(W ) = ss]

=
∑
ss

max
w

Pr[W = w ∧ SS(W ) = ss]

=
∑̀
i=m

∑
K∈Ki

∑
y∈Ri

max
w

Pr[W = w ∧ SS(W ) = (i, y,K)]

≤
∑̀
i=m

∑
K∈Ki

∑
y∈Ri

max
w∈Wi

Pr[W = w ∧ Fi(K,w) = y ∧K output by Gen] .

We now pay the penalty of |Ri| for the presence of y (observe that removing the condition that Fi(K,w) =
y from the conjuction cannot reduce the probability):

2−H̃∞(W |SS(W )) ≤
∑̀
i=m

∑
K∈Ki

∑
y∈Ri

max
w∈Wi

Pr[W = w ∧K is chosen by SS]

=
∑̀
i=m

∑
K∈Ki

|Ri| · max
w∈Wi

Pr[W = w ∧K is chosen by SS] .

We now get rid of the key, because it is independent:

2−H̃∞(W |SS(W )) ≤
∑̀
i=m

∑
K∈Ki

|Ri| · max
w∈Wi

Pr[W = w] · 1

|Ki|

=
∑̀
i=m

|Ri| · max
w∈Wi

Pr[W = w] ≤ |R`| · 2−` +

`−1∑
i=m

|Ri| · 2−i .

Finally, we add everything up, recalling that |Ri| for i < ` is 2i+1−Hfuzz
t,∞(W )+log 1/δ.

2−H̃∞(W |SS(W )) ≤ 2H0(W ) · 2−` + (`−m) · 21−Hfuzz
t,∞(W )+log 1/δ

(next line uses ` > m+H0(W )− 2)

< 22−m + (`−m) · 21−Hfuzz
t,∞(W )+log 1/δ

(next line uses m ≥ Hfuzz
t,∞ (W ) and log 1/δ ≥ 1)

≤ (`−m+ 1) · 21−Hfuzz
t,∞(W )+log 1/δ

(next line uses ` ≤ m+H0(W )− 1)

≤ H0(W ) · 21−Hfuzz
t,∞(W )+log 1/δ .

Taking the negative logarithm of both sides, we obtain m̃
def
= H̃∞(W |SS(W )) = Hfuzz

t,∞ (W )− logH0(W )−
log 1/δ − 1. Applying the (m̃, ε) randomness extractor gives us the desired result.
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B Proof of Theorem 5.1

Proof. As a reminder, we show the impossibility for an average member of W. For completeness, we
reiterate the family W introduced in the proof sketch.

Let {Hashk}k∈K be a family of hash function with domain M and the following properties:

• 2−a-universality: for all v1 6= v2 ∈ M, Prk←K[Hashk(v1) = Hashk(v2)] ≤ 2−a, where a = n ·
h2
(
1
2 − τ

)
+ 3.

• 2m-regularity: for each k ∈ K and h in the range of Hashk, |Hash−1k (h)| = 2m, where m ≥ µn.

• preimage sets have minimum distance t + 1: for all k ∈ K, if v1 6= v2 but Hashk(v1) = Hashk(v2),
then dis(v1, v2) > t.

We demonstrate the existence of such a hash family in Lemma B.3. Let Z be the random variable
consisting of pairs (k, h), where k is uniform in K and h is uniform in the range of Hashk. Let Wz

for z = (k, h) be the uniform distribution on Hash−1k (h). By the 2m-regularity and minimum distance
properties of Hash, H∞(Wz) = Hfuzz

t,∞ (Wz) = m. Let W = {Wz}.
We now want to show that for a random z ← Z, if (key, p) is the output of Gen(Wz), then key can be

easily distinguished from uniform in the presence of p and z. The intuition is as follows: in the absence
of information about z, the value w is uniform onM (by regularity of Hash). Knowledge of p reduces the

set of possible w from 2n to 2n·h2(
1
2
−τ), because, by correctness of Rep, every candidate input w to Gen

must be such that all of its neighbors w′ of distance at most t produce the same output of Rep(w′, p) (see
Lemma B.1). And knowledge of z reduces the set of possible w by another factor of 2a, because a hash
value with a random hash function key likely gives fresh information about w (see Lemma B.2).

To formalize the intuition of the previous two sentences, view the sequence of events that we are
trying to analyze as a game. The adversary chooses a uniform k ∈ K and uniform h in the range of Hashk.
A uniform w from M s.t. Hashk(w) = h then gets chosen, (key, p) = Gen(w) gets computed, and the
adversary receives p. The output of this game is (k, h, w, p, key). Note that, by regularity of Hashk, w is
uniform in M.

Consider now an alternative game. A uniform w gets chosen from M and uniform key k gets chosen
from K. (key, p) = Gen(w) gets computed. The adversary receives (k, h = Hashk(w), p). The output of
the game is (k, h, w, p, key).

The distributions of the adversary’s views and the outputs in the two games are identical: indeed, in
both games, three random variable are uniform and independent (i.e., w is uniform inM, k is uniform in
K, and the random coins of Gen are uniform in their domain), and the rest are determined fully by these
three. However, the second game is easier to analyze, which is what we now do.

The following lemma shows that the knowledge of p and key reduces the entropy of w.

Lemma B.1. Suppose M is {0, 1}n with the Hamming metric, κ ≥ 2, 0 ≤ t ≤ n/2, and ε ≥ 0. Suppose
(Gen,Rep) is a (M,W, κ, t, ε)-fuzzy extractor with error δ = 0, for some distribution family W over M.
Let τ = t/n. For any fixed p, there is a set GoodKeyp ⊆ {0, 1}κ of size at least 2κ−1 such that for every
key ∈ GoodKeyp,

log |{v ∈M|(key, p) ∈ supp(Gen(v))}| ≤ n · h2
(

1

2
− τ
)
≤ n ·

(
1− 2

ln 2
· τ2
)
,

and, therefore, for any distribution DM on M,

H0(DM|Gen(DM) = (key, p)) ≤ n · h2
(

1

2
− τ
)
≤ n ·

(
1− 2

ln 2
· τ2
)
.
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Proof. The set GoodKeyp consists of all keys for which H0(M|Rep(M, p) = key) ≤ 2n−κ+1.
The intuition is as follows. By perfect correctness of Rep, the input w to Gen has the following

property: for all w′ within distance t of w, Rep(w′, p) = Rep(w, p). Thus, if we partition M according to
the output of Rep, the true w is t away from the interior of a part. Interior sets are small, which means
the set of possible of w values is small. (We note that by perfect correctness, Rep has a deterministic
output even if the algorithm is randomized, so this partition is well-defined.)

To formalize this intuition, fix p and partition M according to the output of Rep(·, p) as follows: let
Qp,key = {w′ ∈M|Rep(w′, p) = key}. Note that there are 2κ keys and thus 2κ parts Qp,key. Let GoodKeyp
by the set of keys for which these parts are not too large: key ∈ GoodKeyp ⇔ |Qp,key| ≤ 2·M/2κ = 2n−κ+1.
Observe that GoodKeyp contains at least half the keys: |GoodKeyp| ≥ 2κ−1 (if not, then ∪key|Qp,key| >
|M|). For the remainder of the proof we focus on elements in GoodKeyp.

As explained above, if w is the input to Gen, then every point w′ within distance t of w must be in
the same part Qp,key as w, by correctness of Rep. Thus, w must come from the interior of some Qp,key,
where interior is defined as

Inter(Qp,key) = {w ∈ Qp,key|∀w′ s.t. dis(w,w′) ≤ t, w′ ∈ Qp,key} .

We now use the isoperimetric inequality to bound the size of Inter(Qp,key). Define a near-ball3 centered
at x to be any set S that is contained in a ball of some radius η and contains the ball of radius η − 1
around x. The inequality of [16, Theorem 1] (the original result is due to Harper [20]) says that for any
sets A,B ⊂ {0, 1}n, there are near-balls X and Y centered at 0n and 1n, respectively, such that |A| = |X|,
|B| = |Y |, and mina∈A,b∈B dis(a, b) ≤ minx∈X,y∈Y dis(x, y).

Letting A be the Inter(Qp,key) and B be the complement of Qp,key and applying this inequality, we
get a near-ball Sp,key centered at 0n and a near-ball D centered at 1n, such that |Sp,key| = |Inter(Qp,key)|,
|D| = 2n − |Qp,key|, and ∀s ∈ Sp,key, d ∈ D, dis(s, d) > t. Note that since key ∈ GoodKeyp and κ ≥ 2, we
have |Qp,key| ≤ 2n−κ+1, and therefore |D| ≥ 2n−1.

Thus, D includes all the strings of Hamming weight dn/2e (because it is centered at 1n and takes
up at least half the space), which means that the maximum Hamming weight of an element of Sp,key is
dn/2e − t− 1 ≤ n/2− t (because each element of Sp,key is at distance more than t from D). We can now
use binary entropy to bound the size of Sp,key by Lemma 2.2:

|Inter(Qp,key)| = |Sp,key| ≤ |{x|dis(x, 0) ≤ n/2− t}| ≤ 2n·h2(
1
2
− t

n) .

The theorem statement follows by taking the logarithm of both sides and by observing (using Taylor
series expansion at τ = 0 and noting that the third derivative is negative) that h2

(
1
2 − τ

)
≤ 1− 2

ln 2 ·τ
2.

We now analyze how the entropy drops further when the adversary learns Hashk(w). Let K denote
the uniform distribution on K.

Lemma B.2. Let L be a distribution. Let {Hashk}k∈K be a family of 2−a-universal hash functions on the
support of L. Assume k is uniform in K and independent of L. Then

H̃0(L|K,HashK(L)) < log(1 + | supp(L)| · 2−a) ≤ max(1, 1 +H0(L)− a) .

3In most statements of the isoperimetric inequality, this type of set is simply called a ball. We use the term near -ball for
emphasis.
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Proof. Let UL denote the uniform distribution on the support of L.

2H̃0(L|K,HashK(L)) = E
k←K,h

|{v ∈ L|Hashk(v) = h}|

= E
k←K

∑
h

Pr[Hashk(L) = h] · |{v ∈ L|Hashk(v) = h}|

= E
k←K

∑
h

|L| · Pr[Hashk(L) = h] · Pr[Hashk(UL) = h]

= | supp(L)| · E
k←K

Pr
v1←L,v2←UL

Pr[Hashk(v1) = Hashk(v2)]

= | supp(L)| · Pr
v1←L,v2←UL,k←K

Pr[Hashk(v1) = Hashk(v2)]

≤ | supp(L)| ·
(

Pr
v1←L,v2←UL

[v1 = v2] + Pr
v1←L,v2←UL

[v1 6= v2] · 2−a
)

< 1 + | supp(L)| · 2−a .

Let M denote the uniform distribution on M. By Lemma B.1, for any p, H0(M|Gen(M) = (key, p)
such that key ∈ GoodKeyp) ≤ n · h2

(
1
2 −

t
n

)
+ κ (because there are most 2κ keys in GoodKeyp). Applying

Lemma B.2 (and recalling that κ ≥ 3), we get that for any p,

H̃0(M|Gen(M) = (key, p) s.t. key ∈ GoodKeyp,K,HashK(M))

< max

(
1, 1 + n · h2

(
1

2
− t

n

)
+ κ− a

)
≤ κ− 2 .

(Note carefully the somewhat confusing conditioning notation above, because we are conditioning on both
events and variables. The event is key ∈ GoodKeyp and the variables are k and Hashk(M).)

By correctness, for a fixed p, Rep(w, p) can produce only one key—the same one that was produces
during Gen(w). Since applying a deterministic function (in this case, Rep) cannot increase H0, we get
that for each p,

H̃0(key|Gen(M) = (key, p) s.t. key ∈ GoodKeyp,K,HashK(M)) < κ− 2 .

Thus, on average over z = (k, h), over half the keys in GoodKeyp (i.e., over a quarter of all possible 2κ

keys) cannot be produced. Let Implausible be the set of triples (key, p, z = (k, h)) such that Pr[Gen(Wz) =
(key, p)] = 0. Triples drawn by sampling w from Wz and computing (p, key) = Gen(w) never come from
this set. On other hand, random triples come Implausible at over quarter of the time. Thus, by definition
of statistical distance, ε > 1

4 .
It remains to show that the hash family with the desired properties exists.

Lemma B.3. For any 0 ≤ τ < 1
2 , µ > 0, α, and n such that µ ≤ 1− h2(τ)− 2

n and µ ≤ 1−α− 2
n , there

exists a family of hash functions {Hashk}k∈K on {0, 1}n that is 2−a-universal for a = αn, 2m regular for
m ≥ µn, and whose preimage sets have minimum distance t+ 1 for t = τn.

Proof. Let C be the the set of all binary linear codes of rate µ (to be precise, dimension m = dµne), length
n, and minimum distance t+ 1:

C = {C|C is a linear subspace of {0, 1}n, dim(C) = m, min
c∈C−{0n}

dis(c, 0n) > t} .
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For each C ∈ C, fix HC , an (n−m)×n parity check matrix for C, such that C = kerHC . For v ∈ {0, 1}n,
let the syndrome synC(v) = HC · v. Let {Hashk}k∈K = {synC}C∈C .

2m regularity follows from the fact that for each h ∈ {0, 1}n−µn, Hash−1k (h) is a coset of C, which
has size 2m. The minimum distance property is also easy: if v1 6= v2 but synC(v1) = synC(v2), then
HC(v1 − v2) = 0n, hence v1 − v2 ∈ C − {0n} and hence dis(v1, v2) = dis(v1 − v2, 0) > t.

We show 2−a-universality by first considering a slightly larger hash family. Let K′ be the set of
all m-dimensional subspaces of {0, 1}n; for each C ′ ∈ K′, choose a parity check matrix HC′ such that
C ′ = kerHC′ , and let synC′(v) = HC′ ·v. Let {Hash′k′}k′∈K′ = {synC′}C′∈K′ . This family is 2m−n-universal:
for v1 6= v2, PrC′∈K′ [HC′ · v1 = HC′ · v2] = PrC′∈K′ [v1 − v2 ∈ kerHC′ = C ′] = 2m

2n , because C ′ is a random
m-dimensional subspace. Note that this family is not much bigger than our family {Hashk}k∈K, because,
as long as µ < 1 − h2(τ), almost every subspace of {0, 1}n of dimension m has minimum distance t + 1
for a sufficiently large n. Formally,

Pr
C′∈K′

[C ′ /∈ C] = Pr
C′∈K′

[∃v1 6= v2 ∈ C ′ s. t. dis(v1, v2) ≤ t]

= Pr
C′∈K′

[∃v1 6= v2 ∈ C ′ s. t. dis(v1 − v2, 0n) ≤ t]

= Pr
C′∈K′

[∃v ∈ C ′ − {0n} s. t. dis(v, 0n) ≤ t]

≤
∑

v∈Bt(0n)−{0n}

Pr
C′∈K′

[v ∈ C ′] ≤ 2nh2(τ) · 2m

2n
≤ 1

2

(the penultimate inequality follows by Lemma 2.2 and the last one from m ≤ µn+1 and µ ≤ 1−h2(τ)− 2
n).

Since this larger family is universal and at most factor of two bigger than our family, our family is
also universal:

Pr
C∈C

[synC(v1) = synC(v2)] =
|{C ∈ C|synC(v1) = synC(v2)}|

|C|

≤ |{C ∈ K
′|synC(v1) = synC(v2)}|

|K′|
· |K

′|
|C|
≤ 2m−n+1

Thus, we obtain the desired result as long as m − n + 1 ≤ −a, which is implied by the condition
µ ≤ 1− α− 2

n and the fact that m ≤ µn+ 1.

Applying Lemma B.3 with α = h2
(
1
2 − τ

)
+ 3

n , we see that the largest possible µ is

max
τ

min

(
1− h2(τ), 1− h2

(
1

2
− τ
))
≈ 0.1887.

Using the quadratic approximation to h2
(
1
2 − τ

)
(see Lemma B.1), we can let µ be a free variable and

set τ = .6
√
µ, in which case both constraints will be satisfied for all 0 < µ ≤ .18 and sufficiently large n,

as in the theorem statement. This concludes the proof of Theorem 5.1.

C Proof of Theorem 6.1

Proof. Similarly to the proof of Theorem 5.1, we will prove that any fuzzy extractor fails for an average
element ofW: letting Z denote a choice of W fromW, we will show that SD((Key, P, Z), (Uκ, P, Z)) > 1

25 .

21



For completeness, we reiterate the family of distributions introduced in the proof sketch. In this case,
Z will not be uniform but rather binomial (with tails cut off). Essentially, Z will contain each bit of
w with (appropriately chosen) probability β; given Z = z, the remaining bits of w will be uniform and
independent.

For a string z ∈ {0, 1,⊥}n, denote by info(z) the number of entries in z that are not ⊥: info(z) =
|{i s.t zi 6=⊥}|. Let Wz be the uniform distribution over all strings in {0, 1}n that agree with z in positions
that are not ⊥ in z (i.e., all strings w ∈ {0, 1}n such that for 1 ≤ i ≤ n, either zi =⊥ or wi = zi).

Let 0 ≤ β′ ≤ 1 be a parameter (we will set it at the end of the proof). Let Z ′ denote the distribution
on strings in {0, 1,⊥}n in which each symbol is, independently of other symbols, ⊥ with probability 1−β′,
0 with probability β′/2, and 1 with probability β′/2. Let β = β′+ 1.4√

n
. Consider two distribution families:

W ′ = {Wz}z←Z′ and a smaller family W = {Wz}z←Z , where Z = Z ′|info(Z ′) ≤ βn (the second family is
smaller because, although on average info(Z ′) = β′n, there is a small chance that info(Z ′) is higher than
even βn).

We will use W to prove the theorem statement. First, we will show that every distribution Wz ∈ W
has sufficient Hfuzz

t,∞ . Indeed, z constrains info(z) coordinates out of n and leaves the rest uniform. Thus,

Hfuzz
t,∞ (Wz) is the same as Hfuzz

t,∞ of the uniform distribution on the space {0, 1}n−info(z). Let a = n−info(z).
By Lemma 2.2

Hfuzz
t,∞ (Wz) ≥ a

(
1− h2

(
t

a

))
≥ n(1− β)

(
1− h2

(
t

n(1− β)

))
= n(1− β)

(
1− h2

(
τ

1− β

))
.

and therefore

µ = (1− β)

(
1− h2

(
τ

1− β

))
. (1)

Note that smaller β gives a higher fuzzy entropy rate.
Second, we now want to show, similarly to the proof of Theorem 5.1, that SD((Key, P, Z), (Uκ, P, Z)) >

1
25 . We will do so by considering the family W. Observe that by triangle inequality

SD((Key, P, Z), (Uκ, P, Z)) ≥ SD((Key, P, Z ′), (Uκ, P, Z
′))

− SD((Key, P, Z ′), (Key, P, Z))

− SD((Uκ, P, Z), (Uκ, P, Z
′))

≥ SD((Key, P, Z ′), (Uκ, P, Z
′))− 2 · SD(Z ′, Z)

≥ SD((Key, P, Z ′), (Uκ, P, Z
′))− 1

25
.

The last line follows by Hoeffding’s inequality [22],

SD(Z ′, Z) = Pr[info(Z ′) > βn] ≤ exp

(
−2n

(
1.4√
n

)2
)
<

1

50
.

Denote SD((Key, P, Z ′), (Uκ, P, Z
′)) by ε′. To bound ε′, we recall a result of Holenstein and Renner

[24, Theorem 4] (we will use the version presented in [23, Lemma 4.4]). For a random variable W with a
values in {0, 1}n, let W noisy denote a noisy copy of W : namely, the random variable obtained by passing
W through a binary symmetric channel with error rate 1−α

2 (that is, W noisy
i = Wi with probability 1+α

2

and W noisy
i = 1 −Wi with probability 1−α

2 , independently for each position i). Holenstein and Renner
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show that if α2 ≤ β, then Shannon entropy of Key conditioned on P and W noisy is greater than Shannon
entropy of Key conditioned on Z and W noisy . Intuitively, this means that the Rep, when given P and
W noisy , knows less about Key than the adversary (who knows P and Z).

Recall the definitions of Shannon entropy H1(X)
def
= Ex←X − log Pr[X = x] and conditional Shannon

entropy H1(X|Y )
def
= Ey←Y H1(X|Y = y).

Theorem C.1 ([24, Theorem 4]; [23, Lemma 4.4]). Suppose that (P,Key) is a pair of random variables
derived from W . If α2 ≤ β′, then

H1(Key|P,Z ′) ≤ H1(Key|P,W noisy)

where H1 denotes Shannon entropy, W noisy is W passed through a binary symmetric channel with error
rate 1−α

2 , and Z ′ is W passed through a binary erasure channel with erasure rate 1− β′.

(For a reader interested in how our statement of Lemma C.1 follows from [23, Lemma 4.4], note that
what we call Key, P,W noisy , and Z ′ are called U, V, Y , and Z, respectively, in [23]. Note also that we use
only the part of the lemma that says that secret key rate S→ = 0 when α2 ≤ β, and the definition [23,
Definition 3.1] of the notion S→ in terms of Shannon entropy.)

We now need to translate this bound on Shannon entropy to the language of statistical distance ε of
the key from uniform, reliability δ of the procedure Rep, and key length κ, as used in the definition of
fuzzy extractors. First, we will do this translation for the case of noisy rather than worst-case input to
Rep.

Corollary C.2. Let (W,W noisy , Z ′) be a triple of correlated random variables such that

• W and W noisy are uniform over {0, 1}n,

• W noisy is W passed through a binary symmetric channel with error rate 1−α
2 (that is, each bit

position of W agrees with corresponding bit position of W noisy with probability 1+α
2 ), and

• Z ′ is W passed through a binary erasure channel with erasure rate 1−β′ (that is, each bit position of
Z ′ agrees with the corresponding bit position of W with probability β′ and is equal to ⊥ otherwise).

Suppose Gen(W ) produces (Key, P ) with Key of length κ. Suppose Pr[Rep(W noisy , P ) = Key] = 1 − δ′].
Suppose further that SD((Key, P, Z ′), (Uκ, P, Z

′)) = ε′. If α2 ≤ β′, then

κ ≤ h2(ε
′) + h2(δ

′)

1− ε′ − δ′
.

In other words, if α2 ≤ β′, ε′ ≤ 1
12 , and δ′ ≤ 1

12 , then even a 1-bit Key is impossible to obtain.

(We note that a similar result follows from [23, Theorem 3.17] if we set the variables S→, γ, and m in
that theorem to 0, δ, and κ, respectively. However, we could not verify the correctness of that theorem
due to its informal treatment of what “ε-close to uniform” means; it seems that the small correction term
−h2(ε), just like in our result, is needed on the right-hand side to make that theorem correct.)

Proof. Reliability allows us to bound the entropy of the key. By Fano’s inequality [15, Section 6.2, p.
187], H1(Key|P,W noisy) ≤ κδ′ + h2(δ

′). Hence, by Theorem C.1 (and the assumption that α2 > β′), we
have

H1(Key|P,Z ′) ≤ κδ′ + h2(δ
′). (2)

We now need the following lemma, which shows that near-uniformity implies high entropy.
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Lemma C.3. For a pair of random variables (A,B) such that the statistical distance between (A,B) and
Uκ ×B is ε, then H1(A|B) ≥ (1− ε)κ− h2(ε) .

Proof. Let E denote a binary random variable correlated with (A,B) as follows: when A = a and B = b,
then E = 0 with probability

max(Pr[(A,B) = (a, b)]− Pr[Uκ ×B = (a, b)], 0) .

Similarly, let F denote a binary random variable correlated with Uκ × B as follows: when Uκ = a and
B = b, then F = 0 with probability

max(Pr[Uκ ×B = (a, b)]− Pr[(A,B) = (a, b)], 0) .

Note that Pr[E = 0] = Pr[F = 0] = ε, by definition of statistical distance. Note also that (A,B|E = 1)
is the same distribution as (Uκ × B|F = 1). Since conditioning cannot increase Shannon entropy (by a
simple argument — see, e.g., [2, Theorem 1.4.4]), we get

H1(A|B) ≥ H1(A|B,E)

= Pr[E = 1]H1(A|B,E = 1) + Pr[E = 0]H1(A|B,E = 0)

≥ (1− ε)H1(A|B,E = 1) = (1− ε)H1(Uκ|B,F = 1).

To bound this latter quantity, note that (the first line follows from the chain rule H1(X) ≤ H1(X,Y ) =
H1(X|Y ) +H1(Y ) [2, Theorem 1.4.4])

κ = H1(Uκ|B) ≤ H1(Uκ|B,F ) +H1(F )

= (1− ε)H1(Uκ|B,F = 1) + ε ·H1(Uκ|B,F = 0) + h2(ε)

≤ (1− ε)H1(Uκ|B,F = 1) + ε · κ+ h2(ε)

Rearranging terms, we get H1(Uκ|B,F = 1) ≥ κ− h2(ε)/(1− ε), and thus

H1(A|B) ≥ (1− ε)κ− h2(ε) .

This concludes the proof of Lemma C.3.

Combining (2) and Lemma C.3 (applied to A = Key, B = (P,Z ′), and ε = ε′), we get the claimed
bound. This concludes the proof of Corollary C.2.

Next, we translate this result from the noisy-input-case to the worst-case input case. Set α =
√
β′.

Suppose t ≥ n
(
1−
√
β′

2 + 1.4√
n

)
. By Hoeffding’s inequality [22],

Pr[dis(W,W noisy) > t] ≤ exp

(
−2n

(
1.4√
n

)2
)
<

1

50
.

Thus, a fuzzy extractor that corrects t errors with reliability δ implies that Pr[Rep(W noisy , P ) = Key] ≥
1− δ′] for δ′ = δ + 1

50 . Since δ ≤ 1/25, we have δ′ < 1/12 and Corollary C.2 applies to gives us ε′ > 1/12
and ε > 1/12− 1/25 > 1/25 as long as κ > 0.

Finally, we work out the relationship between µ and τ and eliminate β, as follows. Recall that

β = β′ + 1.4√
n

; therefore
√
β ≤

√
β′ + 1.2

n1/4 , and it suffices to take τ ≥ 1−
√
β

2 + 2
4√n . Thus, we can set

any τ > 1−
√
β

2 as long as n is sufficiently large. Solving for β (that is, taking any β > (1 − 2τ)2) and

substituting into Equation 1, we can get any µ < 4τ(1− τ)
(

1− h2
(

1
4−4τ

))
for a sufficiently large n.
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D Proof of Theorem 7.2

Proof. Similarly to the proof of Theorem 5.1, we will prove that any secure sketch algorithm fails
for an average element of W: letting Z denote a uniform choice of W from W, we will show that
H̃∞(WZ |SS(WZ), Z) ≤ 2. The overall proof strategy is the same as for Theorem 5.1. We highlight
only the changes here. Recall that |Bt| denotes the volume of the ball of radius t in the space {0, 1}n.
The parameters of the hash family are the same, except for universality: we require 2−a-universality for
a = (n− log |Bt|+ h2(2δ))/(1− 2δ) .

We postpone the question of the existence of such a hash family until the end of the proof. We can
now state and the analogue of Lemma B.1. This result is an extension of lower bounds from [13, Appendix
C], which handles only the case of perfect correctness. It shows that the value of the sketch reduces the
entropy of a uniform point by approximately log |Bt|.

Lemma D.1. Let M denote the Hamming space {0, 1}n and |Bt| denote the volume of a Hamming
ball of radius t in {0, 1}n. Suppose (SS,Rec) is a (M,W, m̃, t) secure sketch with error δ, for some
distribution family W overM. Then for every v ∈M there exists a set GoodSketchv such that Pr[SS(v) ∈
GoodSketchv] ≥ 1/2 and for any fixed ss,

log |{v ∈M|ss ∈ GoodSketchv}| ≤
n− log |Bt|+ h2(2δ)

1− 2δ
,

and, therefore, for any distribution DM over M,

H0(DM|ss ∈ GoodSketchDM) ≤ n− log |Bt|+ h2(2δ)

1− 2δ
.

Proof. For any v ∈ M , define Neight(v) be the uniform distribution on the ball of radius t around v and
let

GoodSketchv = {ss| Pr
v′←Neight(v)

[Rec(v′, ss) 6= v] ≤ 2δ]} .

We prove the lemma by showing two propositions.

Proposition D.2. For all v ∈M, Pr[SS(v) ∈ GoodSketchv] ≥ 1/2.

Proof. Let the indicator variable 1v′,ss be 1 if Rec(v′, ss) = v and 0 otherwise. Let qss be the quality of
the sketch on the ball Bt(v):

qss = Pr
v′←Neight(v)

[Rec(v′, ss) = v] = E
v′∈Neight(v)

1v′,ss .

By the definition of correctness for (SS,Rec), for all v′ ∈ Bt(v),

Pr
ss←SS(v)

[Rec(v′, ss) = v] ≥ 1− δ .

Hence, Ess←Gen(v) 1v′,ss ≥ 1− δ. Therefore,

E
ss←Gen(v)

qss = E
ss
E
v′

1v′,ss = E
v′
E
ss

1v′,ss ≥ E
v′

(1− δ) = 1− δ .

Therefore, applying Markov’s inequality to 1 − qss, we get Pr[qss ≥ 1− 2δ] = Pr[1− qss ≤ 2δ] ≤ 1/2.
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To finish the proof of Lemma D.1, we will show that the set {v ∈M|ss ∈ GoodSketchv} forms a kind
of error-correcting code, and then bound the size of the code.

Definition D.3. We say that a set C is an (t, δ)-Shannon code if there exists a (possibly randomized)
function Decode such that for all c ∈ C,

Pr
c′←Neight(c)

[Decode(c′) 6= c] ≤ δ.

The set {v ∈M|ss ∈ GoodSketchv} forms (t, 2δ) Shannon code if we set Decode(y) = Rec(y, ss). We now
bound the size of such a code.

Proposition D.4. If C ⊆ {0, 1}n is a (t, δ)-Shannon code, then

log |C| ≤ n− log |Bt|+ h2(δ)

1− δ
.

Proof. Let the pair of random variables (X,Y ) be obtained as follows: let X be a uniformly chosen
element of C and Y be a uniformly chosen element of the ball of radius t around Y . By the existence of
Decode and Fano’s inequality [15, Section 6.2, p. 187], H1(X|Y ) ≤ h2(δ) + δ log |C|. At the same time,
H1(X|Y ) = H1(X)−H1(Y ) +H1(Y |X) (because H1(X,Y ) = H1(X) +H1(Y |X) = H1(Y ) +H1(X|Y )),
and therefore H1(X|Y ) ≥ log |C| − n+ log |Bt| (because H1(Y ) ≤ n). Therefore, log |C| − n+ log |Bt| ≤
h2(δ) + δ log |C|, and the lemma follows by rearranging terms.

Lemma D.1 follows from Proposition D.4.

We now show that entropy drops further when the adversary learns Hashk(w). Let M denote the uni-
form distribution onM and K denote the uniform distribution on K. Applying Lemma B.2 to Lemma D.1,
we get that for any ss,

H̃0(M|ss ∈ GoodSketchM,K,HashK(M)) < max

(
1, 1 +

n− log |Bt|+ h2(2δ)

1− 2δ
− a
)
. (3)

To complete the proof, we will use this bound on H̃0 as a bound on H̃∞, as justified by the following
lemma:

Lemma D.5. For any random variables X and Y , H̃∞(X|Y ) ≤ H̃0(X|Y ).

Proof. Starting with the definition of H̃∞, recall that − log a = log 1/a, and apply Jensen’s inequality to
get

log
1

Ey∈Y maxx Pr[X = x|Y = y])
≤ log E

y∈Y

1

maxx Pr[X = x|Y = y])

≤ log E
y∈Y
|{x|Pr[X = x|Y = y] > 0}| .

We need just one more lemma before we can complete the result, an analogue of [13, Lemma 2.2b]
for conditioning on a single value Z = z rather than with Z on average (we view conditioning on a single
value as equivalent to conditioning on an event).
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Lemma D.6. For any pair of random variables (X,Y ) and event η that is a (possibly randomized)
function of (X,Y ), H̃∞(X|η, Y ) ≥ H̃∞(X|Y )− log 1/Pr[η].

Proof. The intuition is that to guess X given Y , the adversary can guess that η happened and fail if the
guess is wrong. Formally,

H̃∞(X|Y ) =− log E
y←Y

max
x

Pr[X = x|Y = y] = − log E
y←Y

max
x

Pr[X = x ∧ Y = y]

Pr[Y = y]

≤− log E
y←Y

max
x

Pr[X = x ∧ Y = y ∧ η]

Pr[Y = y]

=− log E
y←Y

max
x

Pr[X = x ∧ Y = y|η] Pr[η]

Pr[Y = y]

= log
1

Pr[η]
− log

∑
y←Y

max
x

Pr[X = x ∧ Y = y|η]

= log
1

Pr[η]
− log E

y←Y |η
max
x

Pr[X = x ∧ Y = y|η]

Pr[Y = y|η]

= log
1

Pr[η]
− log E

y←Y |η
max
x

Pr[X = x|η ∧ Y = y]

= log
1

Pr[η]
+ H̃∞(X|η, Y ) .

Combining Lemmas D.6 and D.5 with Equation 3, we get

H̃∞(WZ |Z, SS(WZ)) = H̃∞(M|SS(M),K,HashK(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃∞(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,K,HashK(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃0(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,K,HashK(M))

< log
1

Pr[SS(M) ∈ GoodSketchM]
+ max

(
1, 1 +

n− log |Bt|+ h2(2δ)

1− 2δ
− a
)
.

We can have shown that H̃∞(WZ |Z, SS(WZ)) ≤ 2, because the first term of the above sum is at most 1

by Proposition D.2 and the second term is 1 by our choice of a as a = n−log |Bt|+h2(2δ)
1−2δ .

It remains to show that the desired hash family exists. Note in that (because δ < .25) setting any
α ≥ 1 − h2(τ) + .5 logn+4δn+2

n and choosing an αn-universal hash function will be sufficient, because, by
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Lemma 2.2, log |Bt| ≥ nh2(τ)− 1
2 log n− 1, and so

a =
n− log |Bt|+ h2(2δ)

1− 2δ
≤n · 1− h2(τ) + (.5 log n+ 1 + h2(2δ))/n

1− 2δ

<n · (1− h2(τ) +
.5 log n+ 1 + h2(2δ)

n
+ 4δ)

≤n ·
(

1− h2(τ) +
.5 log n+ 4δn+ 2

n

)
≤n · α

(the second inequality is true because for any x < 1 and 0 < y < .5, x/(1 − y) < x + 2y, because
x < (x+ 2y)(1− y), because 0 < y(2− x− 2y); the third inequality follows from h2(2δ) < 1).

Such a hash family exists by Lemma B.3 as long as µ ≤ 1− α− 2/n ≤ h2(τ)− (.5 log n+ 4δn+ 4)/n
and µ ≤ 1− h2(τ)− 2/n).

E Properties of Fuzzy Min-Entropy

In this section, we show that fuzzy min-entropy has some natural properties. These properties are not
necessary for any proofs in this work and are included to illustrate the utility of fuzzy min-entropy. For
example, conditioning on an event p of probability Pr[P = p] decreases fuzzy min-entropy by a factor of
at most log 1/Pr[P = p].

Lemma E.1. Hfuzz
t,∞ (W |P = p) ≥ Hfuzz

t,∞ (W ) + log Pr[P = p].

Proof.

Hfuzz
t,∞ (W |P = p) = − log

max
w′

∑
w∈(W |P=p)|dis(w,w′)≤t

Pr[W = w|P = p]


= − log

max
w′

∑
w∈(W |P=p)|dis(w,w′)≤t

Pr[W = w ∧ P = p]

Pr[P = p]


≥ − log

max
w′

∑
w∈W |dis(w,w′)≤t

Pr[W = w]

Pr[P = p]


= Hfuzz

t,∞ (W ) + log Pr[P = p].

Conditional Fuzzy min-entropy We define a conditional notion of fuzzy min-entropy for a random
variable P . In our proofs, we will use a conditional version of fuzzy min-entropy.

Definition E.2. The t-conditional fuzzy min-entropy of a distribution W |P in a metric space (M, dis)
is:

H̃fuzz
t,∞ (W |P ) = − log

 E
p∈P

max
w′

∑
w∈W |P=p|dis(w,w′)≤t

Pr[W = w|P = p]

 .
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Lemma E.3. H̃fuzz
t,∞ (W |P ) ≥ Hfuzz

t,∞ (W )−H0(P ).

Proof.

H̃fuzz
t,∞ (W |P ) = − log

 E
p←P

max
w′

∑
w∈W |P=p|dis(w,w′)≤t

Pr[W = w|P = p]


= − log

∑
p

max
w′

∑
w∈W |P=p|dis(w,w′)≤t

Pr[W = w|P = p] Pr[P = p]


= − log

∑
p

max
w′

∑
w∈W |P=p|dis(w,w′)≤t

Pr[W = w ∧ P = p]


≥ − log

∑
p

max
w′

∑
w∈W |P=p|dis(w,w′)≤t

Pr[W = w]


≥ − log

∑
p

max
w′

∑
w∈W |dis(w,w′)≤t

Pr[W = w]


≥ − log

2H0(P )

max
w′

∑
w∈W |dis(w,w′)≤t

Pr[W = w]


≥ Hfuzz

t,∞ (W )−H0(P ).
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