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Abstract—In this paper, we initiate a principled study of
how the generalization properties of approximate differential
privacy can be used to perform adaptive hypothesis testing,
while giving statistically valid p-value corrections. We do
this by observing that the guarantees of algorithms with
bounded approximate max-information are sufficient to correct
the p-values of adaptively chosen hypotheses, and then by
proving that algorithms that satisfy (e, d)-differential privacy
have bounded approximate max-information when their inputs
are drawn from a product distribution. This substantially
extends the known connection between differential privacy
and max-information, which previously was only known to
hold for (pure) (e,0)-differential privacy. It also extends our
understanding of max-information as a partially unifying
measure controlling the generalization properties of adaptive
data analyses. We also show a lower bound, proving that
(despite the strong composition properties of max-information),
when data is drawn from a product distribution, (e,J)-
differentially private algorithms can come first in a composition
with other algorithms satisfying max-information bounds, but
not necessarily second if the composition is required to itself
satisfy a nontrivial max-information bound. This, in particular,
implies that the connection between (¢, d)-differential privacy
and max-information holds only for inputs drawn from product
distributions, unlike the connection between (¢, 0)-differential
privacy and max-information.

I. INTRODUCTION

Adaptive Data Analysis refers to the reuse of data to
perform analyses suggested by the outcomes of previously
computed statistics on the same data. It is the common
case when exploratory data analysis and confirmatory data
analysis are mixed together, and both conducted on the
same dataset. It models both well-defined, self-contained
tasks, like selecting a subset of variables using the LASSO
and then fitting a model to the selected variables, and also
much harder-to-specify sequences of analyses, such as those
that occur when the same dataset is shared and reused by
multiple researchers.

Recently two lines of work have arisen, in statistics and
computer science respectively, aimed at rigorous statistical
understanding of adaptive data analysis. By and large, the
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goal in the statistical literature (often called “selective” or
“post-selection” inference [1]) is to derive valid hypothesis
tests and tight confidence intervals around parameter values
that arise from very specific analyses, such as LASSO
model selection followed by least squares regression (see
e.g. [2, 3]). In contrast, the second line of work has
aimed for generality (at the possible expense of giving tight
application-specific bounds). This second literature imposes
conditions on the algorithms performing each stage of the
analysis, and makes no other assumptions on how, or in
what sequence, the results are used by the data analyst.
Two algorithmic constraints that have recently been shown
to guarantee that future analyses will be statistically valid
are differential privacy [4, 5] and bounded output descrip-
tion length, which are partially unified by a measure of
information called max-information [6]. This paper falls
into the second line of research—specifically, we extend the
connection made in [4, 5] between differential privacy and
the adaptive estimation of low-sensitivity queries to a more
general setting that includes adaptive hypothesis testing with
statistically valid p-values.

Our main technical contribution is a quantitatively
tight connection between differential privacy and a max-
information. Max-information is a measure of correlation,
similar to Shannon’s mutual information, which allows
bounding the change in the conditional probability of events
relative to their a priori probability. Specifically, we extend a
bound on the max-information of (e, 0)-differentially private
algorithms, due to [6], to the much larger class of (e, 0)-
differentially private algorithms.

A. Post-Selection Hypothesis Testing

To illustrate an application of our results, we consider a
simple model of one-sided hypothesis tests on real valued
test statistics. Let X denote a data domain. A dataset x
consists of n elements in X: x € X™. A hypothesis test is
defined by a test statistic ¢; : X" — R, where we use i
to index different test statistics. Given an output a = ¢;(x),
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together with a distribution P over the data domain, the
p-value associated with a and P is simply the probability
of observing a value of the test statistic that is at least as
extreme as a, assuming the data was drawn independently
from P: pl(a) = Prx.pn[¢:(X) > a]. Note that there
may be multiple distributions P over the data that induce
the same distribution over the test statistic. With each test
statistic ¢;, we associate a null hypothesis H(()z) C A(X),!
which is simply a collection of such distributions. The p-
values are always computed with respect to a distribution
P e H él), and hence from now on, we elide the dependence
on P and simply write p;(a) to denote the p-value of a test
statistic ¢; evaluated at a.

The goal of a hypothesis test is to reject the null hypoth-
esis if the data is not likely to have been generated from the
proposed model, that is, if the underlying distribution from
which the data were drawn was not in Hél). By definition,
if X truly is drawn from P" for some P € H, (l), then
pi(¢;(X)) is uniformly distributed over [0,1]. A standard
approach to hypothesis testing is to pick a significance level
a € [0,1] (often o = 0.05), compute the value of the test
statistic a = ¢;(X), and then reject the null hypothesis
if p;(a) < «. Under this procedure, the probability of
incorrectly rejecting the null hypothesis—i.e., of rejecting
the null hypothesis when X ~ P™ for some P € H((,Z)—is
at most a.. An incorrect rejection of the null hypothesis is
called a false discovery.

The discussion so far presupposes that ¢;, the test statistic
in question, was chosen independently of the dataset X. Let
T denote a collection of test statistics, and suppose that
we select a test statistic using a data-dependent selection
procedure A : X" — T. If ¢, = A(X), then rejecting
the null hypothesis when p;(¢;(X)) < « may result in a
false discovery with probability much larger than « (indeed,
this kind of naive approach to post-selection inference is
suspected to be a primary culprit behind the prevalence
of false discovery in empirical science [7, 8, 9]). This is
because even if the null hypothesis is true (X ~ P™ for some
P e Héz)), the distribution on X conditioned on ¢; = A(X)
having been selected need not be P™. Our goal in studying
valid post-selection hypothesis testing is to find a valid p-
value correction function + : [0, 1] — [0, 1], which we define
as follows:

Definition 1.1 (Valid p-value Correction Function). A func-
tion vy : [0,1] — [0,1] is a valid p-value correction function
for a selection procedure A : X" — T if for every
significance level o € [0,1], the procedure:

1) Select a test statistic ¢; = A(X) using selection

procedure A. 4

2) Reject the null hypothesis Héz) if pi(¢:(X)) < ().

has probability at most « of resulting in a false discovery.

'A(X) denotes the set of probability distributions over X'

488

Necessarily, to give a nontrivial correction function -, we
will need to assume that the selection procedure A satisfies
some useful property. In this paper, we focus on differential
privacy, which is a measure of algorithmic stability, and
more generally, max-information, which is defined in the
next subsection. Differential privacy is of particular interest
because it is closed under post-processing and satisfies
strong composition properties. This means that, if the test
statistics in 7 are themselves differentially private, then the
selection procedure A can represent the decisions of a worst-
case data analyst, who chooses which hypothesis tests to run
in arbitrary ways as a function of the outcomes of previously
selected tests.

Finally, we note that, despite the fact that previous works
[4, 5] are explicitly motivated by the problem of false
discovery in empirical science, most of the technical results
to date have been about estimating the means of adaptively
chosen predicates on the data (i.e., answering statistical
queries) [4], and more generally, estimating the values of
low-sensitivity (i.e., Lipschitz continuous) functions on the
dataset [5, 10, 11]. These kinds of results do not apply
to the problem of adaptively performing hypothesis tests
while generating statistically valid p-values, because p-
values are by definition not low-sensitivity statistics. See the
full version for a detailed discussion.

There is one constraint on the selection procedure 4 that
does allow us to give nontrivial p-value corrections—that
A should have bounded max-information. A condition of
bounded mutual information has also been considered [10]
to give p-value corrections - but as we discuss in the full
version, it is possible to obtain a strictly stronger guarantee
by instead reasoning via max-information. Max-information
is a measure introduced by [6], which we discuss next.

B. Max-Information (and p-values)

Given two (arbitrarily correlated) random variables X,
Z, we let X ® Z denote a random variable (in a different
probability space) obtained by drawing independent copies
of X and Z from their respective marginal distributions. We
write log to denote logarithms base 2.

Definition I.2 (Max-Information [6]). Let X and Z
be jointly distributed random variables over the domain
(X, Z). The max-information between X and Z, denoted
by 1(X; Z), is the minimal value of k such that for every
x in the support of X and z in the support of Z, we have
Pr[X = z|Z = 2] < 2¥Pr [X = x]. Alternatively,
Pr((X,Z2) = (z,2)]

Lo(X; Z) = log PrX®©Z=(n2)]

sup
(w,2)€(X,Z)

The B-approximate max-information between X and Z is
defined as
Pr((X,Z2)eO]-5

I5c(X:2) = log Pr(X® Z € O]

sup
OC(XxZ),
Pr[(X,Z)€0]>8



We say that an algorithm A : X™ — Y has [-approximate
max-information of k, denoted as I5(A,n) < k if
for every distribution S over elements of X™, we have
I8 (X; A(X)) < k when X ~ S. We say that an algorithm
A X" — Y has -approximate max-information of k over
product distributions, written I fo p(A,n) <k, if for every
distribution P over X, we have I5 (X; A(X)) < k when
X ~ P,

It follows immediately from the definition that if an algo-
rithm has bounded max-information, then we can control
the probability of “bad events” that arise as a result of
the dependence of A(X) on X: for every event O, we
have Pr[(X, A(X)) € O] < 2*Pr[X ® A(X) € O] + 8.
For example, if A is a data-dependent selection procedure
for selecting a test statistic, we can derive a valid p-value
correction function  as a function of a max-information
bound on A:

Theorem L3. Let A: X" — T be a data-dependent algo-
rithm for selecting a test statistic such that 150713(.»4, n) < k.
Then the following function vy is a valid p-value correction

function for A:
0> |

Proof: Fix a distribution P™ from which the dataset X
is drawn. If “2_,66 < 0, then the theorem is trivial, so assume
otherwise. Define O C X™ x T to be the event that A selects
a test statistic for which the null hypothesis is true, but its

p-value is at most y(«):

O ={(x,¢;): P € H" and p;(¢:(x)) < 7(a)}

Note that the event O represents exactly those outcomes
for which using v as a p-value correction function results
in a false discovery. Note also that, by definition of the
null hypothesis, Pr[X ® A(X) € O] < v(a) = %2,
Hence, by the guarantee that [ fo p(A,n) <k, we have that
Pr[(X, A(X) € O)] is at most 2* - (“2%5 +h=a. [ |

Because of Theorem 1.3, we are interested in methods for
usefully selecting test statistics using data dependent algo-
rithms A for which we can bound their max-information.
It was shown in [6] that algorithms which satisfy pure
differential privacy also have a guarantee of bounded max-
information:

a—f

7(a) = max (2,

Theorem 1.4 (Pure Differential Privacy and Max-Informa-
tion [6]). Let A: X™ — Y be an (¢, 0)-differentially private
algorithm. Then for every 3 > 0:

Io(A,n) <log(e) - en, and

17 o(A,n) < log(e) - (62n/2 +ey/nIn(2/p) /2)
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This connection is powerful, because there are a vast col-
lection of data analyses for which we have differentially pri-
vate algorithms— including a growing literature on differen-
tially private hypothesis tests [12, 13, 14, 15, 16, 17, 18, 19].
However, there is an important gap: Theorem 1.4 holds only
for pure (e,0)-differential privacy, and not for approximate
(e, 0)-differential privacy. Many statistical analyses can be
performed much more accurately subject to approximate
differential privacy, and it can be easier to analyze private
hypothesis tests that satisfy approximate differential privacy,
because the approximate privacy constraint is amenable to
perturbations using Gaussian noise (rather than Laplace
noise) [19]. Most importantly, for pure differential privacy,
the privacy parameter e degrades linearly with the number
of analyses performed, whereas for approximate differential
privacy, € need only degrade with the square root of the
number of analyses performed [20]. Hence, if the connection
between max-information and differential privacy held also
for approximate differential privacy, it would be possible to
perform quadratically more adaptively chosen statistical tests
without requiring a larger p-value correction factor.

C. Our Results

In addition to the framework just described for reasoning
about adaptive hypothesis testing, our main technical
contribution is to extend the connection between differential
privacy and max-information to approximate differential
privacy. We show the following (see Section III for a
complete statement):

Theorem III.1 (Informal). Let A : X" — Y be an
(e, 0)-differentially private algorithm. Then,

IEO,P(Aa n)=0 <n62 + n\/g) for =0 <n\/g> )

It is worth noting several things. First, this bound nearly
matches the bound for max-information over product distri-
butions from Theorem 1.4, except Theorem III.1 extends the
connection to the substantially more powerful class of (e, )-
differentially private algorithms. The bound is qualitatively
tight in the sense that despite its generality, it can be used
to nearly recover the tight bound on the generalization
properties of differentially private mechanisms for answering
low-sensitivity queries that was proven using a specialized
analysis in [5] (see the full version for a comparison).

We also only prove a bound on the max-information for
product distributions on the input, and not for all distribu-
tions (that is, we bound I ,(A,n) and not IZ (A,n)). A
bound for general distributions would be desirable, since
such bounds compose gracefully [6]. Unfortunately, a bound
for general distributions based solely on (e, d)-differential
privacy is impossible: a construction of De [21] implies the
existence of (¢, d)-differentially private algorithms for which



the max-information between input and output on arbitrary
distributions is much larger than the bound in Theorem III.1.

One might nevertheless hope that bounds on the max-
information under product distributions can be meaningfully
composed. Our second main contribution is a negative result,
showing that such bounds do not compose when algorithms
are selected adaptively. Specifically, we analyze the adaptive
composition of two algorithms, the first of which has a
small finite range (and hence, by [6], small bounded max-
information), and the second of which is (e, §)-differentially
private. We show that the composition of the two algo-
rithms can be used to exactly recover the input dataset, and
hence, the composition does not satisfy any nontrivial max-
information bound.

1) Further Interpretation: Although our presentation thus
far has been motivated by p-values, an algorithm A with
bounded max-information allows a data analyst to treat
any event A(x) that is a function of the output of the
algorithm “as if” it is independent of the dataset x, up
to a correction factor determined by the max-information
bound. Our results thus substantially broaden the class of
analyses for which approximate differential privacy promises
generalization guarantees—this class was previously limited
to estimating the values of low-sensitivity numeric valued
queries (and more generally, the outcomes of low-sensitivity
optimization problems) [5].

Our result also further develops the extent to which
max-information can be viewed as a unifying information
theoretic measure controlling the generalization properties of
adaptive data analysis. Dwork et al. [6] previously showed
that algorithms that satisfy bounded output description
length, and algorithms that satisfy pure differential privacy
(two constraints known individually to imply adaptive gener-
alization guarantees), both have bounded max-information.
Because bounded max-information satisfies strong composi-
tion properties, this connection implies that algorithms with
bounded output description length and pure differentially
private algorithms can be composed in arbitrary order and
the resulting composition will still have strong generalization
properties. Our result brings approximate differential privacy
partially into this unifying framework. In particular, when the
data is drawn from a product distribution, if an analysis that
starts with an (arbitrary) approximate differentially private
computation is followed by an arbitrary composition of
algorithms with bounded max-information, then the resulting
composition will satisfy a max-information bound. However,
unlike with compositions consisting solely of bounded de-
scription length mechanisms and pure differentially private
mechanisms, which can be composed in arbitrary order, in
this case it is important that the approximate differentially
private computation come first. This is because, even if
the dataset x is initially drawn from a product distribution,
the conditional distribution on the data that results after
observing the outcome of an initial computation need not be
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a product distribution any longer. In fact, the lower bound
we prove in Section IV is an explicit construction in which
the composition of a bounded description length algorithm,
followed by an approximate differentially private algorithm
can be used to exactly reconstruct a dataset drawn from a
product distribution (which can in turn be used to arbitrarily
overfit that dataset).

Finally, we draw a connection between max-information
and mutual information that allows us to improve on several
prior results that dealt with mutual information [10, 22] . We
present the proof in the full version.

Lemma L5. Let A: X™ — T be a selection rule.

e If IX; A(X)) < m and X ~ S for any distribution
over X", then for any k > 0, Ii(’“)(x; A(X)) < k for
ﬂ(k) S m+k(:).54.

o If IZ(X;AX)) < k for B € [0,0.3], then
I(X; A(X)) < 2kIn(2) + Bnlog, | X| + BIn(1/B).

We are able to improve on the p-value correction function
implicitely given in [10] given a mutual information bound,
by first converting mutual information to a max-information
bound and applying the p-value correction function from
this paper. Our main theorem Theorem III.1 combined with
Lemma 1.5 also obtains an improved bound on the mutual
information of approximate differentially private mecha-
nisms from Proposition 4.4 in [22]. The following corollary
improves the bound from [22] in its dependence on | X| from
X2 - log(1/]X]) to log | X].

Corollary 1.6. Let A : X" — T and X ~ P™. If e €
(0,1/2], 6 =Q ( o > and 0 = O(;5), we then have

€e
712

I(X; A(X))

~0 <n62 T+t (1+m(2/5) +nlog|2()) .

D. Other Related Work

Differential Privacy is an algorithmic stability condition
introduced by Dwork et al. [23]. Its connection to adaptive
data analysis was made by Dwork et al. [4] and both
strengthened and generalized by Bassily et al. [5]. Dwork
et al. [6] showed that algorithms with bounded description
length outputs have similar guarantees for adaptive data
analysis, and introduced the notion of max-information.
Cummings et al. [24] give a third method—compression
schemes—which can also guarantee validity in adaptive
data analysis in the context of learning. Computational and
information theoretic lower bounds for adaptively estimating
means in this framework were proven by Hardt and Ullman
[25], and Steinke and Ullman [26].

Russo and Zou [10] show how to bound the bias of
sub-gaussian statistics selected in a data-dependent manner,
in terms of the mutual information between the selection
procedure and the value of the statistics. In particular (using



our terminology), they show how to give a valid p-value
correction function in terms of this mutual information. In
the full version , we demonstrate that if a bound on the
mutual information between the dataset and the output of
the selection procedure is known, then it is possible to sub-
stantially improve on the p-value correction function given
by [10] by instead using the mutual information bound to
prove a max-information bound on the selection procedure.
[11] study adaptive data analysis in a similar framework to
[10], and give a minimax analysis in a restricted setting.

McGregor et al. [22], and De [21] also study (among
other things) information theoretic bounds satisfied by dif-
ferentially private algorithms. Together, they prove a result
that is analogous to ours, for mutual information—that
while pure differentially private algorithms have bounded
mutual information between their inputs and their outputs,
a similar bound holds for (approximate) (¢, d)-differentially
private algorithms only if the data is drawn from a product
distribution.

II. PRELIMINARIES

We will use the following vector notation throughout:
X = (21, %) X0 = (Ta, Tag1, - ,Tp)s (X_iyt) =
(x1, - ,Ti—1,t,Tip1, -+ , &, ). We denote the distribution
of a random variable X as p(X). In our analysis, jointly
distributed random variables (X, Z) will typically be of
the form (X, A(X)) where X ~ P™ is a dataset of n
elements sampled from domain X, and A4 : A" — Y is
a (randomized) algorithm that maps a dataset to some range
Y. We denote by A(X) the random variable that results
when A is applied to a dataset X ~ P™ (note that here,
the randomness is both over the choice of dataset, and the
internal coins of the algorithm). When the input variable is
understood, we will sometimes simply write .A.

It will be useful in our analysis to compare the distri-
butions of two random variables. In the introduction, we
define (approximate-) max-information, and we now give
some other measures between distributions. We first define
indistinguishability, and then differential privacy.

Definition II.1 (Indistinguishability [27]). Two random
variables X,Y taking values in a set D are (e,0)-
indistinguishable, denoted X ~.; Y, if for all O C D,

PriX e O] <e®-Pr[Y € O]+ and
Pr[Y e O] <ef-Pr[X € O] +4.

Definition II.2 (Point-wise indistinguishibility [27]). Two
random variables X, Z taking values in a set D are point-
wise (e, 0)-indistinguishable if with probability 1 — & over
a~ p(X):

e ‘Pr[Z=a]<Pr[X =a]<ePr[Z=ad.

Before we define differential privacy, we say that two
databases x,x’ € X™ are neighboring if they differ in at
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most one entry. We now define differential privacy in terms
of indistinguishability:

Definition IL.3 (Differential Privacy [23, 28]). A randomized
algorithm A : X™ — Y is (e, §)-differentially private if for
all neighboring datasets x,x' € X™, we have A(X) ~¢s
A(x').

In the appendix, we give several useful connections be-
tween these definitions along with other more widely known

measures between distributions, e.g., KL-divergence, and
total-variation distance.

III. MAX-INFORMATION FOR (€, §)-DIFFERENTIALLY
PRIVATE ALGORITHMS

In this section, we prove a bound on approximate max-
information for (e, d)-differentially private algorithms over
product distributions.

Theorem IIL1. Let A: X™ — Y be an (e, 0)-differentially
private algorithm for € € (0,1/2] and ¢ € (0,€). For 8 =

e—€n + O <n\/§> we have

1'50713(.,47 n) =0 (eQn + n\/§> .

We will prove Theorem IIl.1 over the course of this
section, using a number of lemmas. We first set up some
notation. We will sometimes abbreviate conditional proba-
bilities of the form Pr [X = x| A = a] as Pr [X = x|a] when
the random variables are clear from context. Further, for any

x € X™ and a € ), we define
PriA=a,X =x]
Pr

[A=a] Pr[X=x]
Bl

Pr [Xl = xi|a, Xi_l]
If we can bound Z(a,x) with high probability over

(a,x) ~ p(A(X),X), then we can bound the approximate

max-information by using the following lemma:

Lemma IIL.2 ([6, Lemma 18]). If Pr [Z(A(X),X) > k] <

B, then 15 (A(X); X) < k.

We next define each term in the sum of Z(a,x) as
Pr [Xi = xi|a,xlfl]

The plan of the proof is simple: our goal is to apply
Azuma’s inequality to the sum of the Z;’s to achieve a bound
on Z with high probability. Applying Azuma’s inequality
requires both understanding the expectation of each term
Z;(a,x}), and being able to argue that each term is bounded.
Unfortunately, in our case, the terms are not always bounded
— however, we will be able to show that they are bounded

def

Zi(a’v X71) = log

2



with high probability. This plan is somewhat complicated by
the conditioning in the definition of Z;(a,x?).

First, we argue that we can bound each Z; with high
probability. This argument takes place over the course of
Claims II1.3, II1.4, IIL.5 and IIL.6.

Claim IIL3. If A is (¢, 6)-differentially private and X ~
P", then for each i € [n] and each prefix X\~ * € X'~ we
have:

('A? Xl)

xi~1 Re,§ A xi1 ® X;.

We now define the following set of “good outcomes and
prefixes” for any ¢ > 0:

51(5) = {(a,x’i—l) : Xi %36’5 Xi‘a.’xifl} (3)

We use a technical lemma from [27] (stated in the full
version ), and Claim IIL.3 to derive the following result:

Claim IIL4. If A is (¢, 0)-differentially private and X ~
P", then for each i € [n] and each prefix X" € X'~ we
have for 5>0andé déf% 42

l—e—¢ :

Pr [(A, X1 e Si(3)|xlfl} >1-4.

We now define the set of outcome/dataset prefix pairs for
which the quantities Z; are not large:

Fi ={(a,x}) : |Zi(a,x})| < 6e}. @)

Using another technical lemma from [27] (which we state
in the full version), we prove:

26
1—e—3¢

Claim IILS. Given (a,x%") € &(3) and 6" ¥
have:

we
Pr[(A,X}) € Fila,xi7'] >1-04".

We now define the “good” tuples of outcomes and
databases as

Gi(5) = {(a,xg) e, xT) e &) & (axi) e f}

Q)
G<i(d) = {(a,x1) : (a,21) € G1(9), -+, (a,x}) € Gi(9) |

(6)
Claim IIL6. If A is (e, 0)-differentially private and X ~
P, then

Pr [(A, X)eG) =1-d 0o
for &' and 8" given in Claim II.4 and Claim IIL.5, respec-
tively.

Having shown a high probability bound on the terms Z;,
our next step is to bound their expectation so that we can
continue towards our goal of applying Azuma’s inequality.
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Note a complicating factor — throughout the argument, we
need to condition on the event (A, X}) € F; to ensure that
Z; has bounded expectation.

We will use the following shorthand notation for condi-
tional expectation:

E [Zi(A, X§)|a,xi_17}}]

YE[Z(AX)MA = a, X =x7 (4, X)) € F,

with similar notation for sets G;(d), ggi(é).

Lemma IIL7. Let A be (¢, d)-differentially private and X ~
P". Given (a,xi™') € £(9), for all € € (0,1/2] and & €
(0,¢/15],

E [Zi(A, X{)la,x{™", Fi] = O(€ +9).

Finally, we need to apply Azuma’s inequality to a set
of variables that are bounded with probability 1, not just
with high probability. Towards this end, we define variables
T; that will match Z; for “good events”, and will be zero
otherwise—and hence, are always bounded:

Ti(a,x}) = {Zi(a’ xi) i (a.x1) € G<i(0)

otherwise
The next lemma verifies that the variables 7; indeed
satisfy the requirements of Azuma’s inequality:

Lemma IIL8. Ler A be (¢, §)-differentially private and X ~
‘P™. The variables T; defined in (7) are bounded by 6¢ with
probability 1, and for any (a,x.™') € Y x X*~! and b€
[0,¢/15],

E [T;(A,X})|a,x7'] = O(e? + 6 /¢),

(7

(®)
where the bound does not depend on n or 1.

We can then apply Azuma’s inequality to the sum of
Ti(a,x}), where each term will match Z;(a,x}) for most
(a,x%) coming from (A(X), X?) for each i € [n]. Note that,
from Lemma II1.2, we know that a bound on Y, Z;(a, x})
with high probability will give us a bound on approximate
max-information. See the full version for a formal analysis.

IV. A COUNTEREXAMPLE TO NONTRIVIAL
COMPOSITION AND A LOWER BOUND FOR
NON-PRODUCT DISTRIBUTIONS

It is known that algorithms with bounded description
length have bounded approximate max-information [6]. In
section III, we showed that (e,d)-differentially private al-
gorithms have bounded approximate max-information when
the dataset is drawn from a product distribution. In this sec-
tion, we show that although approximate max-information
composes adaptively [6], one cannot always run a bounded
description length algorithm, followed by a differentially
private algorithm, and expect the resulting composition to



have strong generalization guarantees. In particular, this
implies that (e, d)-differentially private algorithms cannot
have any nontrivial bounded max-information guarantee over
non-product distributions.

Specifically, we give an example of a pair of algorithms
A and B such that A has output description length o(n)
for inputs of length n, and B is (¢, d)-differentially private,
but the adaptive composition of A followed by B can be
used to exactly reconstruct the input database with high
probability. In particular, it is easy to overfit to the input X
given B(X; .A(X)), and hence, no nontrivial generalization
guarantees are possible. Note that this does not contradict
our results on the max-information of differentially private
algorithms for product distributions: even if the database
used as input to A is drawn from a product distribution,
the distribution on the database is no longer a product
distribution once conditioned on the output of A. The
distribution of B’s input violates the hypothesis that is used
to prove a bound on the max-information of B.

Theorem IV.1. Let X = {0,1} and Y = {X™ U {L}}.

Let X be a uniformly distributed random variable over X™.

For n > 64e, for every € € (O7 %} ,0 € (O, ﬂ there exists

an integer v > 0 and randomized algorithms A : X™ —

{0,1}", and B : X™ x {0,1}" — Y, such that:

log(1/6) logn

€

log(%) for all > 0;

2) for every a € {0,1}", B(X,a) is (e,0)-differentially
private and 15 (X; B(X,a)) < 1 for all > 26;

3) for every x € X™, with probability at least 1 —
0, we have that B(x;A(x))) = x. In particular,
I2 (X, B(X; A(X))) >n—1forall 0 < < L—0.

I)r=0 and I% (X; A(X)) < r +

De [21] showed that the mutual information of (e, ?d)-
differentially private protocols can be large: if %log (%)
O(n), then there exists an (e, d)-differentially private al-
gorithm B and a distribution S such that for X ~ &,
1(X; B(X)) Q(n), where I denotes mutual informa-
tion. De’s construction also has large approximate max-
information.

By the composition theorem for approximate max-
information (given in the full version), our construction
implies a similar bound:

Corollary IV.2. There exists an (€, 0)-differentially private
mechanism C : X™ — Y such that I22(C,n) >n—1—7r—
log(1/B1) for all B, € (0,1/2 — ) and B3 € (0,1/2 —§ —
B1), where r = O (710‘;(1/52 log(n)).

We adapt ideas from De’s construction in order to prove
Theorem IV.1. In De’s construction, the input is not drawn
from a product distribution—instead, the support of the input
distribution is an error-correcting code, meaning that all
points in the support are far from each other in Hamming
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distance. For such a distribution, De showed that adding the
level of noise required for differential privacy does not add
enough distortion to prevent decoding of the dataset.

Our construction adapts De’s idea. Given as input a
uniformly random dataset x, we show a mechanism .4 which
outputs a short description of a code that contains x. Because
this description is short, .4 has small max-information. The
mechanism B is then parameterized by this short description
of a code. Given the description of a code and the dataset x,
B approximates (privately) the distance from x to the nearest
codeword, and outputs that codeword when the distance is
small. When B is composed with .4, we show that it outputs
the dataset x with high probability.

We define the mechanisms .4 and B from the theorem
statement in Algorithm 1 and Algorithm 2, respectively.

Brief description of A: For any input x € X", mechanism
A returns a vector ax € {0,1}" such that x € Cy,, where
Ca, = {c € X" : Hc = ay} is an affine code with
minimum distance ¢{. We give further details in the full
version of the paper.

Input: x € {0,1}"
Output: a, € {0,1}"
1 Return Hx (multiplication in Fy).
Algorithm 1: 4

Brief description of B, s: For any input x € X" and
a € {0,1}", mechanism B, s first computes dx, which is
the distance of x from f(x), i.e., the nearest codeword to
x in code C,. Next, it sets cfx to be dx perturbed with
Laplace noise L ~ Lap(1/e). It returns f(x) if dy is below

e -1 log(1
a threshold w “</ (t - 70g( /9) ) and L otherwise.
€

4

Input: x € {0,1}" (private) and a € {0, 1}"(public)
Output: b € Y
1 Compute the distance of x to the nearest codeword in
code Cy. Let dy = micp (dist Hamm(x,c)) and
ceCa
f(x) =arg micn (dist Hamm(x,c)) (breaking ties
ceCy
arbitrarily).
2 Let dx = dx + L, where L ~ Lap(1/¢), and Lap(c)
denotes a random variable having Laplace(0,c)
distributiog. L lox(1/6
ifczx <(—=- og(/)) then
4 €
| Return f(x).
else

‘ Return L.
end

N & s

Algorithm 2: B, 5

We prove Theorem IV.1 in the full version.



ACKNOWLEGMENTS

R.R. acknowledges support in part by a grant from
the Sloan foundation, and NSF grant CNS-1253345. A.R.
acknowledges support in part by a grant from the Sloan
foundation, a Google Faculty Research Award, and NSF
grants CNS-1513694 and CNS-1253345. O.T. and A.S.
acknowledge support in part by a grant from the Sloan
foundation, a Google Faculty Research Award, and NSF
grant IIS-1447700. We thank Salil Vadhan for pointing
out that our max-information bound can be used to bound
mutual information, thus improving on a result in [22].

(1]

(2]
(3]

[4]

[5

—_

(6]

(7]
(8]

(9]

[10]

[11]

[12]

REFERENCES

R. Berk, L. Brown, A. Buja, K. Zhang, and L. Zhao, “Valid
post-selection inference,” The Annals of Statistics, vol. 41,
no. 2, pp. 802-837, 2013.

W. Fithian, D. Sun, and J. Taylor, “Optimal inference after
model selection,” arXiv preprint arXiv:1410.2597, 2014.

J. D. Lee, D. L. Sun, Y. Sun, and J. E. Taylor, “Exact
post-selection inference, with application to the lasso,” arXiv
preprint arXiv:1311.6238, 2013.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold,
and A. L. Roth, “Preserving statistical validity in adaptive
data analysis,” in Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, ser. STOC ’15.
New York, NY, USA: ACM, 2015, pp. 117-126. [Online].
Available: http://doi.acm.org/10.1145/2746539.2746580

R. Bassily, K. Nissim, A. D. Smith, T. Steinke, U. Stemmer,
and J. Ullman, “Algorithmic stability for adaptive data analy-
sis,” in Proceedings of the 48th Annual ACM on Symposium
on Theory of Computing, STOC, 2016.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold,
and A. Roth, “Generalization in adaptive data analysis
and holdout reuse,” in Advances in Neural Information
Processing Systems 28, C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, R. Garnett, and R. Garnett, Eds.
Curran Associates, Inc., 2015, pp. 2341-2349. [Online].
Available: http://papers.nips.cc/paper/5993-generalization-in-
adaptive-data-analysis-and-holdout-reuse.pdf

A. Gelman and E. Loken, “The statistical crisis in science,”
American Scientist, vol. 102, no. 6, p. 460, 2014.

R. L. Wasserstein and N. A. Lazar, “The asa’s statement
on p-values: context, process, and purpose,” The American
Statistician, vol. 0, no. ja, pp. 00-00, 2016. [Online].
Auvailable: http://dx.doi.org/10.1080/00031305.2016.1154108
J. P. Simmons, L. D. Nelson, and U. Simonsohn,
“False-Positive ~ Psychology:  Undisclosed  Flexibility
in Data Collection and Analysis Allows
Presenting  Anything as  Significant,”  Psychological
Science, Oct. 2011. [Online]. Available:
http://pss.sagepub.com/lookup/doi/10.1177/0956797611417632
D. Russo and J. Zou, “Controlling bias in adaptive data
analysis using information theory,” in Proceedings of the
19th International Conference on Artificial Intelligence and
Statistics, AISTATS, 2016.

Y. Wang, J. Lei, and S. E. Fienberg, “A minimax theory for
adaptive data analysis,” CoRR, vol. abs/1602.04287, 2016.
[Online]. Available: http://arxiv.org/abs/1602.04287

A. Johnson and V. Shmatikov, “Privacy-preserving data explo-
ration in genome-wide association studies,” in Proceedings of
the 19th ACM SIGKDD International Conference on Knowl-

494

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

edge Discovery and Data Mining, ser. KDD "13. New York,
NY, USA: ACM, 2013, pp. 1079-1087.

C. Uhler, A. Slavkovic, and S. E. Fienberg, “Privacy-
preserving data sharing for genome-wide association studies,”
Journal of Privacy and Confidentiality, vol. 5, no. 1, 2013.
F. Yu, S. E. Fienberg, A. B. Slavkovic, and C. Uhler, “Scalable
privacy-preserving data sharing methodology for genome-
wide association studies,” Journal of Biomedical Informatics,
vol. 50, pp. 133-141, 2014.

V. Karwa and A. Slavkovi¢, “Inference using noisy degrees:
Differentially private beta-model and synthetic graphs,” The
Annals of Statistics, vol. 44, no. 1, pp. 87-112, 2016.

C. Dwork, W. Su, and L. Zhang, “Private false discovery rate
control,” arXiv preprint arXiv:1511.03803, 2015.

O. Sheffet, “Differentially private least squares: Estimation,
confidence and rejecting the null hypothesis,” arXiv preprint
arXiv:1507.02482, 2015.

Y. Wang, J. Lee, and D. Kifer, “Differentially private hy-
pothesis testing, revisited,” arXiv preprint arXiv:1511.03376,
2015.

M. Gaboardi, H. Lim, R. Rogers, and S. Vadhan, “Differen-
tially private chi-squared hypothesis testing: Goodness of fit
and independence testing,” arXiv preprint arXiv:1602.03090,
2016.

C. Dwork, G. N. Rothblum, and S. P. Vadhan, “Boosting
and differential privacy,” in 51th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA, 2010, pp. 51-60.
[Online]. Available: http://dx.doi.org/10.1109/FOCS.2010.12
A. De, “Lower bounds in differential privacy,” in Proceedings
of the 9th International Conference on Theory of Cryptogra-
phy, ser. TCC’12, 2012, pp. 321-338.

A. McGregor, I. Mironov, T. Pitassi, O. Reingold,
K. Talwar, and S. P. Vadhan, “The Ilimits of two-
party differential privacy,” Electronic Colloquium on

Computational Complexity (ECCC), vol. 18, p. 106, 2011.
[Online]. Available: http://eccc.hpi-web.de/report/2011/106
C. Dwork, F. Mcsherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in In Proceedings
of the 3rd Theory of Cryptography Conference. Springer,
2006, pp. 265-284.

R. Cummings, K. Ligett, K. Nissim, A. Roth, and Z. S. Wu,
“Adaptive learning with robust generalization guarantees,’
arXiv preprint arXiv:1602.07726, 2016.

M. Hardt and J. Ullman, “Preventing false discovery in
interactive data analysis is hard,” in Foundations of Computer
Science (FOCS), 2014 IEEE 55th Annual Symposium on.
IEEE, 2014, pp. 454-463.

T. Steinke and J. Ullman, “Interactive fingerprinting codes and
the hardness of preventing false discovery,” in Proceedings of
The 28th Conference on Learning Theory, 2015, pp. 1588—
1628.

S. Kasiviswanathan and A. Smith, “On the ‘Semantics’ of
Differential Privacy: A Bayesian Formulation,” Journal of
Privacy and Confidentiality, vol. Vol. 6: Iss. 1, Article 1,
2014, available at http://repository.cmu.edu/jpc/vol6/iss1/1.
The theorem numbers and exact statements refer to the Arxiv
version (v3).

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor, “Our data, ourselves: Privacy via distributed noise
generation,” in Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg,
Russia, May 28 - June 1, 2006, Proceedings, pp. 486-503.



