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Abstract—In this paper, we address a class of visibility-based
pursuit-evasion game in which a mobile observer tries to maintain
a line-of-sight (LOS) with a mobile target in an environment con-
taining obstacles. The observer knows the current position of the
target as long as the target is in the observer’s LOS. At first, we
address this problem in an environment containing a single corner.
We formulate the game as an optimal control problem of maximiz-
ing the time for which the observer can keep the reachability set of
the target in its field-of-view. Using Pontryagin’s principle, we show
that the primitives for optimal motion of the observer are straight
lines (ST') and spiral-like curves (C'). Next, we present the synthe-
sis of the optimal trajectories from any given initial position of the
observer. We show that the optimal path of the observer belongs to
the class {ST,C — ST, ST — C — ST'}. Given any initial posi-
tion of the target, we present a partition of the workspace around
a corner based on the optimal control policy of the observer.

Index Terms—Optimal control, pursuit evasion, target tracking.

1. INTRODUCTION

OBILE robots have been extensively deployed for vi-
M sual surveillance in a wide range of applications, for
example, search operations [1], sports coverage [2], crowd and
social movement monitoring [3], [4], and wildlife research [5].
A problem that often arises in such scenarios is to keep mobile
entities of interest (called fargets) in the sensing range of the
robots (called observers). Target tracking refers to the problem
of planning motion for a mobile observer that tries to track a
mobile target in the presence of obstacles. Surveillance in such
surreptitious manner often involves a lack of information about
the future actions of the targets. In such cases, it is often as-
sumed that the targets either move randomly [6], [7] or they are
adversarial in nature [8], [9]. In this paper, we follow the latter
approach to design optimal pursuit trajectories for an observer
that tracks a mobile target.

In a game-theoretic setting, several solution concepts can
be used to compute the optimal strategy of a player. The
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most common solution concept is that of a Nash equilibrium
in noncooperative scenarios. For example, Bhattacharya and
Hutchinson [9] use the concept of a saddle-point equilibrium to
determine the optimal policy of the player in a visibility-based
target-tracking game. In this paper, we use the concept of dom-
inant strategy to design the controller for the observer [10]. A
strategy is dominant if it earns a player a larger payoff than any
of its other strategies, regardless of the actions of other players.
Existence of a dominant strategy for the observer reduces the
game between the observer and the target to an optimal control
problem. The geometry of the sensing model of the observer
around a corner, and the reachability set of the target permits a
dominant strategy for the observer. The dominant strategy can
be implemented in an open-loop manner, and provides local
guarantees on the tracking performance.

The contributions of this paper are as follows. For the target-
tracking problem around a corner, we use the concept of domi-
nant strategy to derive the optimal control of the observer in the
class of open-loop strategies. We show that the motion primi-
tives for optimal tracking are straight line (S7T") and spiral-like
curves (C) around the corner. Using the primitives, we synthe-
size the optimal trajectory of the observer, and show that they
belong to the class {ST,C — ST, ST — C — ST'}. We present
a cell decomposition of the workspace around the corner based
on the nature of the optimal trajectory. The framework proposed
in this paper is general, and can be used to characterize the opti-
mal policy of the agents with complex dynamics. Additionally,
the control policy for the observer does not require knowledge
about the instantaneous velocity of the target, which is a signifi-
cant improvement compared to the policies previously proposed
in [11] from an implementation perspective.

The rest of this paper is organized as follows. In Section II, we
present areview of the literature related to the tracking problem.
In Section III, we present the formulation of the target-tracking
problem around a single corner. In Section IV, we obtain the mo-
tion primitives for the observer based on Pontryagin’s minimum
principle. In Section V, we present the synthesis of the optimal
trajectories. In Section VI, we present a cell decomposition of
the workspace around a corner based on the optimal strategy
of the observer. In Section VII, we present our conclusions and
future research directions.

II. RELATED WORK

The problem of target following was initially introduced in
[12]. The authors proposed motion planning algorithms for a
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robot to maintain visibility with a target in a cluttered envi-
ronment. A numerical solution is proposed for a predictable
target. However, no guarantees for tracking can be obtained for
an unpredictable target. In case of a cooperative target, forma-
tion control techniques [13] as well as model-predictive control
[14], [15] techniques have been proposed to plan the path of
the observer. For a randomly moving target, there is an exten-
sive literature on designing observer’s trajectory that minimizes
the uncertainty in the predicted location of a target [7], [16].
Although it might be reasonable in some practical scenarios
to assume a random walk model for an unpredictable target
[17], considering worst case behavior of a target provides ro-
bust tracking strategies [18].

In the past, robust techniques for tracking unpredictable tar-
gets have been proposed based on worst case analysis. This
naturally lends to a game-theoretic framework [19] in which the
target is assumed to be adversarial in nature. Moreover, since
a pursuit-evasion game ensues between the observer and tar-
get, the theory of differential games [20] can be used to obtain
the optimal strategy for the observer. In a game, the optimal
policy of the observer depends on its set of allowable strate-
gies and information regarding the target [21]. For an observer
that has information regarding the current velocity of the target,
Bhattacharya and Hutchinson [11] solve the problem of max-
imizing the time for which the target can remain within the
sensing footprint of the observer around a corner. The result
around the corner is extended to provide bounds on the initial
position of the observer from which it can track in general en-
vironments. In the class of position-based feedback strategies,
Bhattacharya and Hutchinson [9] provide structural properties
of the optimal trajectories for the observer in general environ-
ments, which are used to compute the optimal trajectory of the
observer in simple environments [22], [23]. In summary, ef-
forts in this direction have primarily led to insights into the
structural properties of optimal trajectories for the observer in
general environments [11], [24] which in turn have been used to
construct optimal trajectories for the observer in simple environ-
ments [22]. However, their extension to general environments
containing multiple obstacles has been rather limited.

In this paper, we use the framework of optimal control
theory to obtain the observer’s motion. Optimal control theory
has been extensively applied in motion planning of mobile
robots. Minimal length paths and time-optimal trajectories
have been obtained for robots with different dynamic and
kinematic configurations. For example, in [25], the time
optimal trajectories for differential drive robots (DDRs) with
bounded velocity are presented. The primitives of minimum
wheel-rotation paths for DDRs are presented in [26]. Optimal
paths and velocity profiles for carlike robots that minimize the
energy consumption is presented in [27]. Many applications
relevant to target-tracking/pursuit evasion include: vision-based
time-optimal strategy for a differential-drive pursuer to capture
an evader [28], [29]; optimal strategy for the pursuer to maintain
a constant distance with the evader at minimal velocity [30];
time-optimal primitives for a pursuit-evasion game between
an omni-directional agent and a DDR in which the two agents
can switch roles. However, these works are limited to an
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obstacle-free environment [31]. Finding optimal trajectories
for a robot to a fixed point has been proved to be a challenging
problem in the presence of obstacles [32]-[34], not to mention
the problem of finding the optimal tracking strategy of a pursuer
in such environment. Therefore, a complete construction of
optimal tracking trajectories for a robot are primarily limited to
environment with simple obstacles [18], [22].

In the past, there have been some efforts to address the
target-following problem with sensing constraints. In [35],
Murrieta-Cid et al. address the problem of target following for
an observer equipped with a sensor that has a limited range. They
provide a necessary condition for tracking based on the cylin-
drical algebraic decomposition of the environment proposed
originally by Schwartz and Sharir. In [36], the framework of
chance-constrained optimization [37] is used to propose a one-
step look-ahead motion strategy that maximizes the probability
for keeping the target in the sensing footprint of an observer
with a limited field-of-view (FOV). The presence of obstacles
imposes constraints in sensing in addition to the constraints on
the positions of both the observer and the target. This gives
rise to optimization problems with joint state and control con-
straints also referred to as mixed constraints. The presence of
such constraints has long been known to constitute a challenge
as regards the derivation of appropriate necessary conditions
of maximum principle type. Problems with mixed constraints
have been studied systematically by Hestenes [38], Gamkrelidze
[39], and Neustadt [40] among many others, and remain an ac-
tive subject [41]-[48]. The necessary conditions for optimal
control problems with mixed constraints can be characterized
as the optimal solutions of multipoint boundary value problems
(MBVP). The solutions of the MBVP can be numerically com-
puted using shooting techniques [49], [50] and direct methods
[51]-[53]. In this paper, we use a different approach to deal
with the mixed constraints. We lift the problem into space-time
coordinates which in turn converts the dynamic optimization
problem into a static one. The mixed constraints either appear
as boundary conditions or as constraints on the curvature of the
optimal trajectories.

III. PROBLEM STATEMENT

In this section, we present the formulation of the target-
tracking problem studied in this paper. Consider a planar envi-
ronment containing multiple polygonal obstacles. Two mobile
agents, an observer and a target, are present on the plane. We
assume that they all have an omni-directional FOV with infinite
range. They are visible to each other when the line joining them
[line-of-sight (LOS)] does not intersect with the obstacle. We
assume that the target is initially visible to the observer. The
observer’s objective is to maintain an LOS with the target for
the maximum possible time, whereas the target’s objective is to
break LOS in the minimum time. Based on the above-described
formulation, we address the following problem: what should
be the optimal strategy for the observer to maximize the time
for which it can maintain an LOS with the target without any
information about the target’s strategy?
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Fig. 1. Illustration of optimal control problem.

In this paper, we address the problem around a corner. In order
to account for the worst case scenario, we assume an adversarial
target that tries to break the LOS in minimum amount of time.
Since the two agents in the problem have exactly opposite objec-
tives in this formulation, and they are mobile, a pursuit-evasion
game arises. Hereafter, we use the term pursuer interchangeably
with observer, and evader interchangeably with the target. Both
agents are assumed to be holonomic.

Consider a planar environment containing a semi-infinite ob-
stacle having one corner, as shown in Fig. 1 (dashed area). Let
the vertex be the origin, and let edge F represent the negative
x-axis. Let C = R? be the configuration space. Let Cops C C
be the obstacle region. Thus, the free configuration space is
defined as Cpee = C\Cobs- Two mobile agents: one pursuer and
one evader move on the plane with velocities v, (¢) and v, (t),
respectively. Their speeds are upper bounded by ©, and v,
respectively. Let a = ¥, / U, denote the ratio of the maximum
speeds of the two agents. Their positions p(¢) and e(t) are de-
noted by (z,(t),y,(t)) and (z.(t),y.(t)) in Cartesian coordi-
nates and (¢, (t),7,(t)) and (¢, (t),r.(t)) in polar coordinates,
respectively. Let py = p(0), ep =e(0) and d,(t) = |y,(t)],
de(t) = |y (t)|. Let d(z, S) = inf,cg ||z — y||2 denote the in-
fimum distance of a point = to a set S which may be a ray, a
line or a region. V' (z) denotes the visibility polygon [54] of a
point z. S* denotes the star region that is defined as the region
opposite to the obstacle across the vertex bounded by line [ and
the positive x-axis shown as the yellow region.

If p(t) € S*, the pursuer can track the evader forever, since
the entire free space Cr. is visible to it. The evader can win the
game in the following ways: first, the evader can break the LOS
with the pursuer around the corner. (When LOS is broken at a
time ¢, their positions py and e; are collinear with O, and the
angular speed of the evader around the corner is greater than
the angular speed of the pursuer around the corner). Second, the
evader can reach the origin before the pursuer reaches the star
region associated with the vertex. In this case, the evader can
win by moving along the edge of the obstacle that is not visible
to the pursuer.

IV. MOTION PRIMITIVES FOR THE OBSERVER

In this section, we derive the primitives for the pursuer’s tra-
jectory. First, we introduce the concept of a dominant strategy

Fig. 2.

Tracking environment around a corner.

for the pursuer, and discuss its relevance to the problem. In a
game-theoretic setting involving multiple players, a strategy is
dominant if it earns a player a larger payoff than any of its other
strategies, regardless of the actions of other players. Hence, a
strategy is dominant if it is always better than any other strat-
egy, for any profile of other players’ actions. Since the evader
is unpredictable, the pursuer lacks knowledge about the future
control policy and trajectory of the evader. However, at any time
t, the evader is located inside its reachable set, denoted as R(t).
A strategy for the pursuer that keeps R(¢') C V(p(t'))Vt' <t
succeeds in tracking the evader for time ¢. Additionally, such a
strategy is dominant since it keeps the evader within the pur-
suer’s FOV irrespective of the evader’s strategy until time ¢.
Therefore, we formulate the problem of persistent tracking for
an unpredictable evader as a problem of computing a dominant
strategy for the pursuer which ensures R(t) C V(p(t)). This
gives rise to the following problems.

1) An optimal control problem: In case the pursuer has no
strategy to reach the star region while maintaining the
visibility of the evader, we compute a strategy to maximize
the time for which it can ensure R(t) C V (p(¢)).

2) A reachability problem: In case the pursuer can reach
the star region using several strategies while maintaining
the visibility of the evader, we compute one of them.
Once the pursuer reaches the star region, it can see the
evader forever. An important thing to note here is that the
previous statement is not true in environments containing
multiple corners. However, the computation of a strategy
is required for the sake of completeness of the solution to
the persistent tracking problem around a single corner.

We assume that p(0) lies in the fourth quadrant, and e(0)

lies in the second quadrant (refer to Fig. 2). In Section VI-A,
we relax this assumption, and solve the problem for arbitrary
position of the pursuer and evader. In our case, R(t) is a disc
of radius v.t centered at e). For an evader with higher order
dynamics or motion constraints, analytical [55]-[59] as well
as numerical [60] tools are available to compute the reachable
sets. [; is the tangent to R(t) passing through O. As the radius
of R(t) increases, /; rotates counterclockwise. In order to keep
R(t) within its FOV, p(t) should lie above or on [;. The game
terminates at the moment when the pursuer lies on /;, and does
not have enough tangential velocity to “keep up” with [;. We can
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imagine the pursuer to be a kinematic agent moving on the plane
trying to avoid getting hit by a rotating bar (I;). The termination
condition can be mathematically expressed as follows:

~ Ve Uy

where R, = r.(0). The second condition in (1) refers to the
condition that the angular velocity of [, is greater than the an-
gular velocity of the pursuer around O. If the game does not
terminate, then the pursuer is capable of staying above [; until it
reaches the star region. Therefore, the geometry of the problem
around the corner allows us to find the maximum time for which
a dominant strategy exists for the pursuer.

 Let x1(t), 22(t), and 23(t) denote the states that represent
b (t), r,(t), and ¢, (t), respectively. Let u = {ug,us } € S' x
R * denote the control input, where u; () is the angle between
the pursuer’s velocity and its tangential direction with respect
to the radial line from the origin, and us(t) = |v, ()| is the
magnitude of v, (¢). From the equations of motion, we obtain
the following state equations:

ey

Ve

Ty = W7 21(0) = ¢¢(0) @)
.i‘g = —U2 sin uy, i) (0) = Rp (3)
i3 = % cos Uy, T3 (0) = d)p(()) (4)

Z2

where 1, describes the motion of [; as the disc’s radius in-
creases at a rate of ¥., & describes the pursuer’s motion in
radial direction, and @3 describes the pursuer’s motion in tan-
gential direction. Let the dynamics of the system be represented
as X(t) = f(x,u,t) where x = {x, 29, z3} and u = {uy,us}
represent the state and control vector, respectively.

The objective of the pursuer is to minimize the performance

index
ty
J:/ —1dt 5)
0

where t; denotes the first time at which the termination con-
ditions (1) are satisfied. In terms of the states, the terminal
conditions are as follows:

gi(x(tr),tr) = z1(ty) —as3(ty) —m=0 (6)
92(x(ty),tp) = 1 (ty) — @3(ty)

Ve ~ua(ty) A
R (z’)etf)Q .’L‘Q(tf) CoS Uy (t;) > 0.
@)

In order to maintain visibility before termination, the following
state inequality constraint must be satisfied:

S(x(t)) =m—a1(t) + a3(t) = 0. (8)

Equation (8) is a first-order state inequality constraint [61] with
the following derivative with respect to time:
Ve

S (1) = 22—8 cosuy (t) — RQ;—W ©)
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The Hamiltonian for the constrained system is defined as
follows:

H(x(t),u(t), p(t), u(t),t) = —1 +p" f + pS

e
= 14 (p—p)—
(p1 —n) R — (0.0)?
+ Uy <—p2 sinuy + ps i cos ul) + S (10)
)

where p = {p1, p2, p3} are costates, and p(t) > 0 is the influ-
ence function defined as follows:

0 S > 0, boundary constraint inactive
"= >0 S§=0,5" =0,boundary constraint active -
(11

Using Pontryagin’s minimum principle, the optimal control of
the pursuer is given by the following equation:

(ui, u3) = arg min H(x(t), u(t), p(t), u(t),1).  (12)
In the rest of this paper, * is used to denote quantities associated
with optimal solution to (5).

A. Inactive Boundary Constraints

Using Pontryagin’s minimum principle, we can show that the
pursuer moves on a straight line (S7") path with speed v, when
the boundary constraint is inactive (i.e., it = 0). The proof is
presented in the Appendix. Additionally, the following property
holds at termination.

Proposition 1: The pursuer’s velocity is always orthogonal
to the bar at termination.

Proof: Please refer to the proof in the Appendix. |

In [62], we analyzed the target-tracking problem for an ob-
server that tries to track a mobile target for a finite time 7'
around a corner. The analysis presented in [62] only consid-
ered the case when the boundary constraints are inactive. Since
the necessary conditions for optimality do not depend on the
duration for which the game is played, it leads to the same re-
sult when the boundary conditions are inactive. The remaining
sections in this paper investigate the optimal trajectory of the
pursuer for the case when the boundary constraints are active,
which is not considered in [62]. Therefore, a complete solution
to the optimal control problem for the pursuer around the corner
is presented in this paper.

B. Active Boundary Constraints

In this section, we will address the case in which the boundary
constraints are active. When the boundary constraint is active,
the pursuer’s trajectory satisfies the following equations:

S(x(t)=m—x1(t) +x3(t) =0
U9 (t) Ve

o) cosuy(t) — ——=——= =0

R? — (v,t)?
The above-mentioned equations model the fact that the pursuer
is collinear with [; and rotates with it at the same angular speed.

S(1>(t) —
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Fig. 3. “Spiral” (C) trajectory of the pursuer when it rotates along with /; at
speed 7, and stops at 5.

In other words, the pursuer “stays” on the rotating bar repre-
senting [;. The angular speed of the rotating bar at any time
is given by w(t) = 9. /+/R? — ©2t?> which is also the angular
speed of the pursuer when the boundary constraints are active.
The pursuer moves with its maximum speed v,, at all times. Let
vy, (t) and vy, (t) represent the pursuer’s velocity in the tangen-
tial and radial direction, respectively. We obtain the following

expressions for v}, (t) and vj (t):

S T -
vh(t) = 1:2—”((1»)02 vp(t) = o = [op (0 (13)
= ¢, = 7ﬁ Py = /02 — w222, (14)

Note that counterclockwise and toward the origin are defined
as the positive directions of the pursuer’s tangential and radial
velocities, respectively. Fig. 3 shows a trajectory of the pursuer
from its initial position when the boundary constraints are ac-
tive. The blue curve represents the pursuer’s trajectory when it
rotates with the bar from line /; to [5. Termination occurs when
vf)(t) = 7, since the bar keeps increasing its angular speed
while the pursuer can no longer do so as it cannot reduce its ra-
dius or increase its tangential speed. We use the term “spiral” to
refer to the pursuer’s trajectory when the boundary constraints
are active.

From the necessary conditions of optimal trajectories, we can
conclude that the optimal trajectory of the pursuer is comprised

of only straight line segments (“.S’7”’) and spirals (“C”’).

V. SYNTHESIS OF OPTIMAL TRAJECTORIES

From the previous section, we can conclude that the optimal
trajectory for the pursuer is a concatenation of S7" and C'. In this
section, we present the synthesis of the optimal trajectories. The
trajectories are optimal in the following sense. Given an initial
position of the pursuer, the trajectories maximize the time for
which the pursuer can keep the reachability set of the evader
within its visibility polygon if it cannot reach the star region
while ensuring R(t) € V(p(t)) for all . In case the pursuer

Obstacle

SI’U \

Fig.4.
space.

Surface swept by the bar and reachable cone of the pursuerinz —y — ¢

can reach the star region while keeping the reachable set of the
evader its FOV, we present a feasible strategy for the pursuer.

A. Lifting to x—y—t Space

In this section, we present a description of the optimal control
problem stated in the previous section in an extended space by
augmenting time as an additional dimension to the z — y plane.
To be specific, we reformulate the tracking problem in x — y —
t space. This converts the dynamic optimization problem of
generating trajectories for the pursuer on a plane into a static
optimization problem of computing maximal length paths in
space-time coordinates under constraints [from the necessary
conditions (12)] presented in the previous section.

Fig. 4 shows the corner and the space around itinx —y — ¢
coordinates. The initial positions of the players py and eq is
represented as points on the plane £ = (. As time progresses,
the trajectory of the pursuer is a curve in the x — y — t space.
Next, we describe the motion of the line/bar [; inthe v — y — t
space, and the reachable set of the pursuer. As the bar rotates

around the origin with angular velocity w(t) = ﬁ, it
2—(vet

forms a ruled surface in the x — y — t space (refer to Fig. 4).
We denote it as Sy,,.. The bar rotates around the corner until it
is aligned with a boundary of the obstacle/S™ (z-axis) in time
T = d. /v, where d, denotes the initial distance of e, from edge
Ey in Fig. 1. R(t) € V(p(t)) if and only if p(t) lies between
Sbar and the z — y plane. The pursuer’s reachable set in the
three-dimensional (3-D) space is a cone originating from its
initial position. We denote it as S, (refer to Fig. 4). At time
t, the radius of the cone is v,t. The pursuer’s objective is to
maximize the time from being hit by a rotating bar if it cannot
reach S*.

In the previous section, we showed that optimal trajectories
are comprised of C' and ST'. We will refer to them as primi-
tives, since the optimal path is obtained by concatenating the
primitives. Based on the aforementioned fact, a path obtained
by concatenating C' and ST segments is a candidate for an op-
timal path. Let “—" correspond to smooth transitions, and “x”
correspond to non-smooth transitions between two consecutive
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Fig. 5. Two consecutive ST segments with transition point P lying on S}, .

primitives. From the previous section, we know that the pur-
suer moves with the maximum speed v, on the optimal path.
Since the spirals are solution to (14), two distinct spirals never
intersect (Cauchy—Lipschtiz theorem [63]). Hence, transition
between two distinct C' curves is not possible. The next lemma
shows that non-smooth transitions between two ST segments
are not possible.

Lemma 1: The optimal path cannot contain transitions of the
type ST * ST.

Proof: We prove this lemma by contradiction. Consider an
ST x ST path P, P», which is a part of an optimal path. We
will show that we can modify P, P, to generate a new path on
which the pursuer can track for a longer time. First, we would
like to introduce the concept of “below” and “above” in 3-D.
A pursuer’s position in 3-D is “below” a surface if its projection
onto the surface along the ¢-axis has a greater ¢. The concept
of “above” is defined similarly. It is clear that if a pursuer’s
position is below the red surface S},,,, then the pursuer is ahead
of the bar. Let PP, and PP, denote the two ST line segments,
as shown in Fig. 5. Since the pursuer can see the evader along
P, P, both PP, and PP, are below S}, except for point P.
P lies on Sy, since transition between paths can only occur
when the boundary conditions are active. Since Sy, is differ-
entiable at every point, it has a tangent plane at every point.
Define H(P) to be the tangent plane at point P. Consider an e
ball around P with € > 0 that intersects PP, at P| and PP; at
Pj. Then locally, there always exists an ¢ ball such that P| and
Py are below the tangent plane H (P). Therefore, line segment
P| Py} is below H(P), thus below S}, . So the pursuer is able to
move along Py P| Py P, while maintaining visibility. Moreover,
in 3-D, the pursuer takes the same time to move on P P, and
PP, P,, meaning it does not move at full speed @, on P|P;.
So if the pursuer moves on P Py at full speed, it can reach Pj
in a shorter time and thus track the evader for a longer time.
Therefore, the tracking time on an ST * ST path (in which the
transition between ST segments occurs on Sp,,) can be im-
proved by replacing it with an ST % ST x ST path in which the
transition between ST segments occur in free space (inactive
boundary conditions). Note that the lemma makes no claims
about the optimality of the new path. In fact, the ST * ST « ST
path in free space cannot be optimal since only an S7" segment
can be optimal when the boundary conditions are inactive. Wl

Therefore, we can conclude that the optimal path of the
pursuer belongs to the family {ST,C,C x ST, ST « C,C —
ST,....C—-8ST—-C—...,85T—-C—-ST—-C-—...} ie,
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Fig. 6. (a) Terminal manifold Sj,,, and its partition in = —y — ¢ space.
(b) Projection of SY,,, and its partition on the x — .

any sequence of primitives in which two C' or ST paths are
not consecutive.

B. Description of the Terminal Manifold

In this section, we provide a description of the points in the
x —y — t space at which either the pursuer loses sight of the
evader or can see the evader forever. These are points at which
the tracking game terminates, since either of the players can
ensure their desired outcome.

If the pursuer reaches the boundary of the S* [denoted as
Region 4 in Fig. 6(a)] without losing sight of the evader, it can
see the evader forever. Therefore, Region 4 in Fig. 6(a) denotes
the set of termination points at which the pursuer can track the
evader forever. If the evader breaks the LOS with the pursuer,
the pursuer lies on the bar at termination. Therefore, the surface
Shar 18 the termination manifold for which the evader breaks the
LOS with the pursuer. Additionally, termination occurs when the
pursuer does not have sufficient tangential velocity to move with
the bar. This occurs when the radial distance of the pursuer 1,
at which it gets hit by the bar is greater than 7, /w(t). This is
called the Usable Part (UP) [20] or Region 3 of the terminal
manifold x — y — t space. Fig. 6 shows the UP. The yellow
curve represents the boundary of the UP (BUP).
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As discussed in Section III-B, the pursuer traces a spiral while
moving along with the rod when the boundary constraints are
active. The green curve in Fig. 6 is the spiral traced by a pur-
suer that moves with the bar from ¢ = 0, and reaches the point
of intersection between the BUP and S*. The region between
the green curve and the BUP is called the transition region or
Region 1. If the pursuer lies in the transition region, the spiral
traced by moving along with the bar (active boundary con-
straints) terminates on the BUP. The region to the left of the
green curve on Sy, is called the capture region or Region 2.
If the pursuer lies in the capture region, it can follow the spiral
traced by moving along with the bar (active boundary con-
straints) and reach the boundary of S*, as shown in Fig. 6. The
green curve is called the boundary of the capture region. Based
on the above discussion, we can conclude that the trajectory of
the pursuer until termination is known if it lies in Region 2 or 3.
In the next section, we construct optimal trajectory for a pursuer
that lies in the transition region.

C. Optimal Strategy in the Transition Region

In this section, we present the optimal strategy for a pursuer
that lies in the transition region. The main result in this section
is summarized in the following proposition.

Proposition 2: When the pursuer lies in the transition region,
its optimal trajectory belongs to the family {C' — ST, ST'}. The
transition from C' to ST occurs at the first instant at which the
pursuer can terminate the game on an S7" path without losing
visibility of R(t).

The outline of the proof is as follows. First, we show that if
a pursuer can follow an S7" path to termination, it is the op-
timal trajectory. However, that might not be possible from all
points in the transition region due to the constraints imposed by
Proposition 1 for termination on an ST path. Next, we present a
partition of the transition region based on the sign of the curva-
ture of the spirals passing through the points in the partition. We
show in Lemma 5 that if the pursuer lies in the partition in which
the spirals are of negative curvature, it is possible to follow an
ST path that respects the constraints imposed by Proposition 1,
thereby rendering the ST path optimal. Finally, we show that
the optimal paths from the remaining points in the transition
region belong to the category C' — ST". Based on the lemmas,
we present a formal proof of Proposition 2 at the end of the
section.

Fig. 7(a) shows Sy, for an arbitrary initial position of the
evader in the second quadrant, and S, in the x —y — ¢ space
for an arbitrary initial position of the pursuer in the transition
region. The height of the cone is equal to the time taken by
the bar to reach the boundary of the star region. In Fig. 7(b),
the region enclosed by the red curve is the projection of the
transition region on the « — y plane. The pursuer starts from a
point p(¢;) in the transition region, as shown in Fig. 7, at time
ti. The cone S, in Fig. 7(a) shows the reachable set of the
pursuer. The boundary of its intersection with Sy, is shown by
the curve drawn in blue, and its projection on the = — y plane is
shown by the blue curve in Fig. 7(b). Inside the blue curve, Sy,
is above S, , i.e., for any given = — y, the t-coordinate on S},

Fig. 7. (a) Intersection of the reachable set of the pursuer with S}, in the
x — y — t space when the initial position of the pursuer lies inside the transition
region. (b) Projection of the intersection on the x — y plane.

is greater than the ¢-coordinate on .S, . Outside the blue curve,
Sy, lies above Sy,,. Since p(t;) lies in the transition region,
the pursuer has enough speed to leave the bar, and move on a
straight line for a while in certain directions. Subsequently, the
pursuer is “caught” by the bar, and S, and Sy, intersect at that
instant. In other words, the pursuer can reach a part of the closed
blue curve in Fig. 7(b) by moving on a straight line from p(t1).
We call these set of points as the admissible part of the blue
curve, and the set of ST paths that terminate on the admissible
part as feasible. In Fig. 7(b), the part of the blue curve on the
right-hand side of the dashed blue line is the admissible part.

In Fig. 7(b), M is the intersection of the blue curve and
semicircle with diameter Op(t;). Since M lies on the blue
curve (intersection of reachable set of the pursuer and S.;),
the pursuer lies on /), (the bar at M) if it has a straight line
reaching it. Additionally, since {,; L Mp(t1), it is the optimal
trajectory since the pursuer will take a longer time to reach [y,
on any other path, thereby losing visibility of the disc before ¢; .
The following lemma summarizes the above discussion.

Lemma 2: When the pursuer lies in the transition region, its
optimal strategy is to move on a feasible S7" until termination
respecting the constraints of Proposition 1.
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Next, we show the following: first, if an S7" path to termina-
tion is not feasible from p(t¢; ), then the pursuer should follow
the spiral until it reaches a point from which an S7" path to
termination is feasible. Second, such a point exists on the spiral
before the pursuer reaches the BUP on the spiral. In order to es-
tablish the aforementioned facts, we first present some structural
properties of the spirals traced by the pursuer in the transition
region.

Property 1: The curvature of the spirals in the transition re-
gion changes sign once in the transition region. The curvature
is positive in the beginning at ¢ = 0, and negative before it ter-
minates on the BUP. The locus of inflection points, denoted
as s, 1S given by the following curve in polar coordinates

2v s 1/t Ue
r(t) = w\/w,_f—;’,ﬁ, 0(t) = sin 1(LR—”L) where w(t) = —\/R;*W

Note that there is an inflection point on the bar corresponding
to some spiral for every ¢ € {0,T'}, where T' denotes the time
required by the bar to reach the star region. Moreover, the loca-
tion of the inflection point on a bar is dependent on ¢ and w. We
use 7in¢ (t) to denote the distance of the inflection point from the
origin on the bar at time ¢. We use ;s to denote the locus of
inflection points.

Property 2: Fig. 8(a) shows ~i,¢ on Sy, in the transition
region, and Fig. 8(b), shows its projection on the x — y plane.
~Yint partitions the transition region into two parts. The partition
enclosed between 7,y and the BUP is denoted as -, ;. The
other partition is denoted as ’Yijl—f- The superscript denotes the
curvature of the spiral in the partition.

Property 3: Consider two spirals Cy and C5 with initial con-
ditions (19, ¢. — 7,0) and (149, ¢. — 7, 0), respectively. Since
two distinct spirals do not intersect, ry (t) > o (¢) atall ¢. There-
fore, the relative order of distance from the origin at any time is
maintained along the spirals. We use the term inner to refer to
all spirals that have smaller radial distance compared to a given
spiral at the same time. Likewise, we use the term outer to refer
to all spirals that have a larger radial distance compared to a
given spiral at the same time.

Property 4: Given two pursuer positions on the same bar, the
one closer to the origin has a longer tracking time.

Property 5: 1f a pursuer moves on feasible ST contained in
7,5, it reaches an outer spiral.

The proof for Property 1 and Property 4 are given in the
Appendix. Property 2 follows from Property 1. Property 3 de-
fines the relative position of two spirals in terms of their radial
distance from the origin. Property 5 arises from the fact that
spirals in 7, have a positive curvature. Therefore, any feasi-
ble ST path followed by the pursuer will lead it to an outer
spiral in ,yijl—f' A formal proof of Property 5 is presented in the
Appendix.

From any point in the transition region, the pursuer can either
follow a C' or an ST. Property 4 and Property 5 imply that
following an ST € ', reduces the tracking time. The next
lemma shows that an ST path is optimal if the pursuer does not
lie on fyhff .

Lemma 3: If p(t1) € ~Yint U ;¢ the optimal path is ST

Proof: Consider a terminal S7" segment on a pursuer’s op-
timal path. Let the pursuer be located on a bar at time ¢; at
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Fig. 8. (a) Locus of the inflection points in the transition region in the

xr —y —t space, and the partition of the transition region on Sy,,.
(b) Projection of the inflection points and the partitions of the transition
region in the x — y plane.

Fig. 9. Evolution of the reachability set of the evader as the pursuer moves on
a straight line path reaching termination.

the beginning of the ST path. Let the ST path terminate or-
thogonally with the bar at time ¢,. Fig. 9 illustrates the evader’s
reachable disk and pursuer’s trajectory between ¢, and ¢,. Note
that the pursuer is on the bar at ¢; as well as ¢5.
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From Fig. 9, we can conclude that 7,(t1)sin6 = v, (t2 —
t1) where 6 = cos™! %5t — cos™' %5 Since sin(A - B) =
sin A cos B — cos Asin B, we obtam the following equation:

bt~ 1) _ R0 RE 28

Tp (tl ) R, R, R, R,

15)

Squaring both sides of (15) leads to the following quadratic
equation in ¢ /¢; after simplification:

A(%) +B< 1>+Oo

where A=’ + % — 20450057, B = —-28(8 — acos"),
C=3—a’and a = —j,siny—”‘t1 We ob-
tain that B? — 4AC = 4a (a — Bcosy)?, therefore, the roots
of (16) are as follows:

(16)

b _-BEVET-TAC -
o 24 a4+ 32 —2afcosy

a7)

This suggests that the first root provides the relation between ¢;
and t,. So we have

/82—042
"a2 + 52 —2aBcosy’

to =t (18)

Since rp‘z—’l’m >y >
fore, to in (18) is positive.

Next, we show that if the pursuer follows an ST path to termi-
nation from an initial point p(t) € 7, U yinr then w, () < 0,
and W, (t) > 0 in [t1,t2], which implies that the pursuer can
maintain visibility of the reachable set of the evader from ¢; to
to.

Since

we conclude that 5 > «. There-

w(t) = w’t and w > 0, W(t) > 0. From Fig. 9, we
Oy 1y (t2) v,y (t2)

r2(t) r2(ty)+02(ta—t)?
7, (t2) are functions of ¢, and are independent of ¢. Differenti-
ating with respect to time leads to the following:

[7“( 2) = 3(t2 — t)* 7]
(tQ*t) p}

In order to prove @, (t) < 0, we need to show that 77 (t,) —
3(ty — t)*v3 > 0. Substituting

can infer that w, (t) = where ¢, and

2ry (t2 ) (19)

W (t) = -

ry(t2) = /73 (1)

the prev10us statement is equivalent to 7 (t1) — 05 (ty — £1)* —
3(ty —t)*02 > 0= w)(t) < 0. Smcet>t1,1tls sufficient to
prove the followmg 1nequality:

— B2t — 11)?,

rp(t) > 2]

—1. 20
2171)251 t1 20

ra(ty)

— 40 (ty —11)” > 0=

Substituting the expression for £, from (18) into the right in-
equality above leads to the following quadratic inequality after

simplification:

4ty

m) > 0.

2n

1 o (R?
- )t 7_7
w(t1)> (t)+, (

We need to show that the above-mentioned inequality is satisfied
forr, > ri,¢.Since the left hand side of (21) is a convex function
of r,, the aforementioned statement is true if 7, is greater than
the larger of the two roots of the quadratic equation ((—2 +
\/§)vpt1 + - )) obtained by substituting the inequality in
(21) with an equallty Therefore, we need to show that

T]% (tl ) +2’L_)p <2t1 —

(=2 + V3)vyta + ( )<rmf (22)
1
From (28), (22) reduces to the following inequality:
2 1
o4V — <= (23)
wti/witt +4  wh

To show that the inequality in (23) holds, we compute the min-
imum value that the R.H.S can attain. Let s = wt; € (0, 00).
We need to find the minimum of F(s) = ,;\/% — L. Taking
derivative of F'(s) and setting it to zero, we obtain

dF (s* +4)3/?

2 — 452 -8
ar i —0=s=1/2V5+2. (24
— (2T 1 =5 V5 +2. (24)

Since Cé—f <0 for 0<s<12V5+2, and ‘% >0 for s >
V/2v/5 + 2, we obtain the min F(s) ~ —0.15 > —2 + /3 at

s = 1/2v/5 + 2. Therefore, inequality (23) holds for all points
after the inflection point. This proves the lemma. |

Corollary 1: If the pursuer cannot reach S* (the star region),
the last segment in the optimal trajectory cannot be C.

Proof: If the game terminates on a C' curve, the pursuer has
to be on the BUP at termination. From Property 1, there exists
an interval of time just before termination for which the pursuer
lies in 7,7, . Lemma 3 states that the pursuer should follow an
ST to terminate the game from such a point. ]

Proof of Proposition 2: From Lemma 3, we can conclude
that the optimal path from any point on i, U ;, ; is ST". More-
over, from Lemma 2, we can conclude that if the optimal tra-
jectory starting from any point on the x — y plane reaches the
transition region on an S path, it must switch to a spiral in the
transition region else the optimal path will contain an ST * ST
path, which is not allowable according to Lemma 1. Addition-
ally, from Lemma 3 and Property 5, we can conclude that from
apointin the v,';, a C curve to i, followed by an ST curve is
a candidate optimal trajectory. Therefore, we can conclude that
the optimal path from any point in the transition region belongs
to the family {C' — ST, ST'}. Moreover, from Property 4 and
Property 5, the point at which it transitions from C' to ST should
lie in ~y, ; U it for a €' — ST path to be optimal.

From Proposition 2, we obtain a partition of transition region
(based on the pursuer’s strategy) in Fig. 10(b). The green curve
separates Region 1 into two parts. In the lower part, the optimal
strategy for the pursuer is to stay on the spiral until the green
curve. In the upper part, the pursuer should move on a straight
line orthogonal to the terminal line (toward point M).
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Fig. 10. Partition of the transition region based on optimal strategy of the
pursuer. Initially, the optimal strategy of the pursuer is to stay on the spiral (C').
Once it crosses a critical curve yg 7, its optimal strategy is to move on a straight
line (ST') to termination.

VI. STRATEGY FROM THE BEGINNING OF THE GAME

In this section, we present an algorithm to generate optimal
paths for the pursuer from ¢ = 0, i.e., when the pursuer lies on the
x — y plane. As mentioned in Section IV, the complete solution
to the problem involves solving the reachability problem to
the star region and the optimal trajectory to termination. First,
we solve the reachability problem by computing the backward
reachable sets [64] from the x — ¢ plane to the x — y plane.
To compute the backward reachable sets, the algorithm first
checks if the x-axis is reachable by the pursuer. This can be
done by computing the intersection of the x-axis and the circle
centered at the pursuer’s initial position with radius v, T". If they
do not intersect, the pursuer cannot reach the star region. If
the intersection exists, then all points on the x-axis that lie in
the circle are candidate terminal positions of the pursuer. The
algorithm finds a path to S* by searching for a feasible ST’
path from the initial position of the pursuer to these terminal
positions.

Next, we compute the optimal trajectory for the remaining
points on the x — y plane by investigating the intersection of
Sy, and Sh,,. Finding the optimal trajectory to termination is
based on computing the intersection between the reachable set
of the pursuer in the x — y plane, and the terminal manifold.
Depending on the partition of the terminal manifold in which
the intersection points lie, we determine the strategy of the pur-
suer from the beginning of the game until termination. Based
on the results of the analysis in the previous section, we can
conclude that the candidate optimal trajectories for the pur-
suer are {ST,C — ST,ST — C — ST}. The following steps
summarize the order in which the candidates are checked in
order to compute the optimal trajectory.

1) If afeasible orthogonal straight line exists then it is the op-
timal strategy, where orthogonality refers to the property
obtained in Proposition 1.

2) If the reachable cone of the pursuer intersects with the
capture region, then the pursuer can follow the path ST —
C to reach the star region.

IEEE TRANSACTIONS ON ROBOTICS

Algorithm 1: Pursuer’s Strategy for Evader in the Second
Quadrant.

1: Note: all strategies considered must maintain visibility

by default.

2: LetT = |y.(0)|/?. and obtain Region 2.
3: if y,(0 >=0) then
4:  Strategy leftarrow Shortest ST to S*.
5:  return Strategy.
6
7
8

: end if
. if py lies in Region 2 then
Strategy «— C.
9:  return Strategy
10: end if
11: if there exists a ST to S* then
12:  Strategy < ST to S*
13: else if there exists a ST" orthogonal to some [;, with

t < T then
14:  Strategy < ST L [, for less than T'
15: else
16:  if there exists a ST — C' — ST to S* then
17: Strategy < ST — C' — ST to S*.
18:  else
19: Strategy «— ST — C — ST for less than 7.
20:  endif
21: end if

22: return Strategy

3) If conditions in 1) and 2) are not satisfied, the optimal path
is ST — C — ST.The ST path that reaches the innermost
spiral in the transition region is the initial segment of
the optimal path. After the pursuer reaches the transition
region, it follows the spiral, and subsequently, transitions
to an ST path at the first instant at which it becomes
feasible.

Algorithm 1 presents the complete procedure of finding a
partition of the x — y plane based on the trajectory followed by
the pursuer. Fig. 11(b) shows the partition of the x — y plane
based on the trajectory followed by the pursuer, and the instan-
taneous vector field generated by the corresponding strategy
with a = 0.6. The evader’s initial position is represented by the
red dot. The black curves represent the boundary of Region 1.
Fig. 11(a) shows the partition of the x —y plane based on
the outcome. The pursuer wins the game from an initial po-
sition if it succeeds in reaching the star region while ensuring
R(t) € V(p(t)). If the pursuer cannot ensure the aforemen-
tioned outcome from an initial position, then it belongs to the
winning region of the evader.

A. Evader-Based Partitions in Other Quadrants

In the previous section, we analyzed the tracking problem for
an initial position of the evader in the second quadrant. In this
section, we present the evader-based partition for the remaining
initial positions of the evader. For an initial evader position in the
second quadrant, the game can terminate in two ways. (i) The
evader can break the LOS with the pursuer around the corner.
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Fig. 11.  Partition of the workspace around a corner based on the winner of
the game and the optimal strategy of the pursuer when the evader initially lies
in the second quadrant (¢, (0) = ZT”). The black curve denotes the boundary
of the transition region. (a) Winner-based partition. (b) Strategy-based partition
and vector field.

(ii) The evader can reach the corner before the pursuer reaches
the star region, and immediately break LOS by moving along
the edge not visible to the pursuer. Fig. 12(b) shows an initial
evader position (e) in the first quadrant. Let 7" denote the time
it takes for R(t) to touch the corner. An important difference in
this scenario from the one in which the evader is in the second
quadrant is that the terminal position of the bar /7 is not aligned
with the star region. Therefore, the pursuer might be able to
maintain visibility of R(¢) until time 7" without reaching the
star region in which case the evader will follow the strategy (ii)
to terminate the game. The region enclosed between /7 and the
x-axis is the set of such terminal positions of the pursuer. Lines
26-32 perform the aforementioned check in Algorithm 2 that
summarizes the procedure for any evader position in the first
quadrant.

Fig. 13(a) shows the partition of the plane based on the winner
for aninitial position of the evader in the first quadrant. Fig. 13(b)
shows the partition of the plane based on the strategy of the
pursuer. Fig. 14(a) and (b) present the winning partition and the
strategy of the pursuer for an initial position of the evader in the
star region.

We observe that in Fig. 11(b), region for ST — C' — ST for
T does not exist, whereas in Figs. 13(b) and 14(b), there is

Algorithm 2: Pursuer’s Strategy for Evader in the First
Quadrant.

1: Note: all strategies considered must maintain visibility
by default.
2: LetT = R, /v, and obtain Region 2.
if py lies in the same half-space as e, separated by [y
then
Strategy «— Shortest ST to S*.
return Strategy.
end if
if py lies in Region 2 then
Strategy «— C.
9:  return Strategy
10: end if
11: if there exists a ST to [ then
12:  Strategy «— ST to lp
13: else if there exists a ST orthogonal to some [;, with
t < T then
14:  Strategy < ST L I; for less than T’
15:  return Strategy

(O8]

AN A

16: else

17:  if there exists a ST — C' — ST to S* then

18: Strategy «— ST — C' — ST to S*.

19:  else if there exists a ST — C — ST to I7 then
20: Strategy «— ST — C' — ST for time T'.

21:  else

22: Strategy «— ST — C — ST for less than T'.
23:  endif

24:  return Strategy

25: end if

26: if Strategy = ST to I; then
27:  if there exists a ST to S* then

28: Strategy < ST to S*.

29:  else if there exists a ST — C' — ST to S* then
30: Strategy «— ST — C' — ST to S*.

31:  endif

32: end if

33: return Strategy

a tiny region of ST — C' — ST for T between the other two
ST — C' — ST regions. There are two Region 1 in Figs. 13(b)
and 14(b), since the evader can escape by either moving in the
clockwise direction or counter-clockwise direction based on the
pursuer’s position. In C' (green) regions, the pursuer has more
than one strategy to reach the star region and track the evader
forever. So “optimal strategy” cannot be defined in terms of
tracking time. Therefore, we only present a feasible strategy for
the region. The green region is the projection of the pursuer-win
region of the red surface on the zy-plane. If the pursuer initially
lies in this region, it can follow a simple strategy: wait for the
bar to reach it and get on the red surface, then it follows the
strategy we obtained for the pursuer-win region of the surface.
In other words, if the pursuer lies in Region 2, it can follow the
spiral to the star region (C'). Similarly, in all pursue-win regions,
strategies we provide are feasible ones for the pursuer to reach
S* (the star region).
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Fig. 12. Reachability set for two different initial positions of the evader.

(a) If the evader is initially located in the third quadrant, the reachability set first
touches the edge of the obstacle as time progresses. (b) If the evader is initially
located in the second quadrant, the reachability set first touches the corner of
the obstacle as time progresses.
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Fig. 13.  Partition of the workspace around a corner based on the winner of
the game and the optimal strategy of the pursuer when the evader initially lies
in the first quadrant (¢, (0) = % ). The black curve denotes the boundary of the
transition region. (a) Winner-based partition. (b) Strategy-based partition and
vector field.

B. Discussion

In the previous section, we have addressed a target-tracking
problem around a corner. In this section, we compare the results
in this paper with previously known solutions to variations of
the problem formulation under consideration in this paper.

The optimal control policy of the players in a game depends
on the information available to the players. Fig. 15 shows the
evader-based partition for an observer with knowledge about
the current velocity of the target [11]. In this paper, we as-
sume that the observer has knowledge about the current position
of the target. This changes the nature of the optimal solutions
and the partitions as is evident from Figs. 11(b) and 15. For
example, the observer’s control policy in Region 4 explicitly
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Fig. 14. Partition of the workspace around a corner based on the winner of
the game and the optimal strategy of the pursuer when the evader initially lies
in the star region (S*). The black curve denotes the boundary of the transition
region. (a) Winner-based partition. (b) Strategy-based partition and vector field.
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3 Gp(D)=|de(D) |
(1)

ip()= ol lie( 1)

. W
5 ¢/)( 1= —1_,77((,)

Fig. 15. Evader-based partition around the corner and the corresponding
strategies of the pursuer around the corner.

depends on the current velocity of the target in Fig. 15. It is
easier to estimate the current position of a non-cooperative tar-
get than to estimate its instantaneous velocity. Therefore, the
problem formulation considered in this paper is a step closer to
reality. In spite of the differences in the observer’s optimal strat-
egy, the evader-win regions in both partitions (Region shaded
red in 11(a) and Region 1 in Fig. 15) bear some similarities.
We can show that the evader-win region in Fig. 15 is a subset
of the evader-win region in Fig. 11(a). Therefore, the algorithm
presented in [11] for computing the bounded polygonal region
that contains the pursuer-win region in an environment con-
taining multiple obstacles (called the U-set) also works for the
problem formulation in this paper.
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VII. CONCLUSION

In this paper, we addressed the path planning problem for
a mobile observer that tries to maintain an LOS with a mo-
bile target in an environment containing multiple obstacles. The
concept of dominant strategy reduces the game into an optimal
control problem. The mixed constraints posed by the obstacles
is solved by lifting the problem in space-time coordinates. We
showed that the optimal trajectories for the observer belongs to
the family {ST,C — ST, ST — C — ST'}. We presented a par-
tition of the workspace around the corner based on the optimal
trajectory of the observer.

Next, we provide some future directions of research.

1) Higher order motion models: The framework presented
in this paper is general, and can be applied to observers
with higher order motion models and non-holonomic
constraints. In [65], we have presented necessary condi-
tions for persistent tracking for an observer modeled as a
Dubins car, Reed—Shepp, and DDR. In the future, we will
build a potential-field-based planner from the vector fields
presented in this paper.

2) Multirobot motion planning: Multiple points of view add
extra information on the target resulting in a better esti-
mate of its position. The vector fields can be used to guide
a team of observers to track a team of targets. Since the
vector fields are generated by a single target, an allocation
problem arises among the observers in case of multiple
targets. Although, centralized [66] as well as decentral-
ized [67] approaches have been proposed for multirobot
allocation problems, their performance in dynamic sce-
narios is an important problem that needs to be addressed
in the future.

3) Discrete abstractions: An interesting direction of future
research is to design sequential [68] and hybrid controllers
[69] for the problem of target tracking. Previous efforts
have primarily focused on the problem of designing such
planners for a robot to reach a goal. There have been
some efforts in the past to design controllers for the search
problem [70]. In [71], we presented hybrid controllers for
multiple observers tracking a single target using event-
triggered strategies. In the future, we plan to design such
controllers for single/multiple observers using the concept
of pursuit fields.

Additionally, incorporating sensing constraints, for example,
limited FOV and limited range, would be some interesting future
directions. Finally, designing a potential-field-based planner that
can also account for the dimensions of the observer robot is
another future research direction.

APPENDIX
A. Proof of Property 1, Property 4, and Property 5

Proof of Property 1: In Fig. 8(b), the green curves represent
some spirals originating from ¢ = 0 plane in Region 1. ~i,¢
(black curve) represents the locus of the inflection points of
each spiral. We will obtain the mathematical expression of ~;,¢
as a function of ¢.

Fig. 16.  Tangential and radial velocity of the pursuer in the polar coordinates
attached to the corner.

Refer to Fig. 16. The heading angle of the pursuer h(t) is
given by the following expression:

”

— tan-! [ Y T
h(t) = tan <v§)> + 3 + ¢y

p

(25)

. . ro_ —9 t2 t Lo
Substituting v, = /v, —v,” and v, = w1, in (25), where w,,

is the angular velocity of the pursuer about the origin, leads to
the following equation:

52

— il % m
h(t) = tan ( 2 - 1) + 5 + o, (26)

wpTy

Using the facts that ¢, = w(t) on the spiral, and w'(t) =
ﬁ = w3t, we obtain the following expression for the
derivative of h(t) with respect to time:

h(t) = w (“’2,’°pt + 2) .

p

27

From (27), we can see that h(O) > 0, which implies that the cur-
vature of the spiral is positive in the beginning. Since v}, (t) — 0
near termination, /(t) is negative before termination, which im-
plies that the spiral has a negative curvature before termination.
From the definition of inflection point (A(t) = 0), we obtain the
following expression for r:

29,
o= —r 28
P VW2 1 4 (28)

[ ]

Proof of Property 4: Consider two initial positions for the
pursuer, p;(t;) and po(t;) on the same bar such that
Tp, (t1) < 7p, (t1). Let 41 (t) and ~»2(t) be the trajectory
for the pursuer when it follows the differential equations
by (t) = w(t), 7p(t) = —\/@g (t) — r2(t)w?(f) with initial
condition p; (¢;) and po (¢; ), respectively. The differential equa-
tions govern the evolution of the pursuer’s trajectories from the
two initial conditions when it maintains the same angular speed
(w(t)) and total speed (7, (t)) on both of them. From Cauchy—
Lipschtiz theorem [63], the differential equation has a unique
solution for each initial condition. Therefore, r,, () < 7}, (%)
for all t > ¢;. Let t5 denote the time at which 7, (¢) terminates
= 1y, (t2)dp (t2) = U,. Since 7y, (t2) < 1y, (t2), the tangential
velocity 7, (t2)¢, (ta) < 7, (t2)¢, (ta) = T,. Therefore, if the
pursuer follows -, it can avoid termination at ¢, since the
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Fig. 17.  Possible trajectories of a pursuer initially located at p(¢; ) which lies
on a spiral ¢; . For any path other than C', the pursuer would eventually land up
on an outer spiral.

tangential component of its velocity is less than v, and hence,
track for a longer time. |

Proof of Property 5: Refer to Fig. 17. O is the origin/corner.
Initially, the pursuer is located at p(¢;) that lies on spiral ¢;.
When the pursuer moves on the spiral, it matches its tangential
velocity with the rotating bar [}, and moves radially inward with
the maximum possible speed (toward the origin while maintain-
ing amaximum speed of 7,,). Any other trajectory for the pursuer
on the spiral that can maintain visibility has a smaller radial ve-
locity toward the origin. Therefore, for any other trajectory, the
angle between the pursuer’s heading and the bar at £; must be
greater than 0, which is the angle between its heading on the
spiral and the bar. If the pursuer moves on a straight line path
(blue line in the figure) from ¢, then spiral ¢; “swings” to the
left of the straight line path due to its positive curvature in ;..
Therefore, when they arrive on the same bar at ¢5, the straight
line path will end on spiral ¢y at p/(t2), which is farther from
the origin than p(¢2) on ¢;. [ |

B. Inactive Boundary Constraints'

Here, we analyze the problem when the boundary constraint is
inactive (i.e., 4 = 0). The corresponding Hamiltonian function
is as follows:

Ve . p3
H: 71 —_— — S —
+m Rz ~ 5.0 + uo < P2 SInuy + s CcOS ul)
(29)
S S — ﬁﬂﬂ up cos(uy + a)
1 Rz — (’t_}et)Q :C% 2 2 1
(30)
where sina = \/’2’—’ Since uy € [0,27), cos(u; + «) can
e

take any value in the range [—1, 1]. Therefore, u} is given by

!'The analysis in Appendix B has appeared in part in [62].
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the following expression:

0 if cos(uy +a) >0
uy = < any value in [0,1] if cos(u; +a) =0 .  (31)
0N if cos(u; +a) <0

From (31), we can conclude that the optimal value of us that
minimizes the Hamiltonian (and the product us cos(u; + «)) is
uy = v,. Moreover, u; that minimizes the Hamiltonian is given
by the following expression:

aH * — * * 'Dp 3 * O
— = —p5T, cosuj — py— sinu] =
aul up=uj (t) 56;
= tanu] = —p—fa:;‘ (32)
b3

Next, we show that the optimal trajectory of the pursuer in free
space is a straight line. Let (x,,y,) denote the position of the
pursuer in Cartesian coordinates. The equations of motion for
the pursuer in Cartesian coordinates is given as follows:

j?p = _Ep Sin(ul + 373)a yp = @P cos(u1 + 373). (33)

Differentiating both sides of (32) with respect to time leads to
the following:

*
* = p2
ul—'Up_

*

b3

2 3

0,
uj — - cos” uj. (34)
Ty

sin uj cos
Therefore, we obtain the following:

”

Uy +dy = %T)p sin(2uy) (% cosuj + % sin uf) =0.

3 2

The right-hand side equality comes from (32). Therefore,
uj + 3 is a constant and (z;(t),y,(t)) lies on a straight line
passing through the point (R, cos ¢,(0), R, sin¢,(0)) with
slope — cot(uj + 7). Therefore, the pursuer’s optimal strat-
egy when the boundary constraint is inactive is always a line
segment.

When boundary constraints are inactive, the Hamiltonian is
defined as in (30). The costate equation is thus given by the

following:

. OH

P =~ 5
% | u)

*

=01 =0, py=p—Scosuj, p;=0. (3
2

When boundary constraints are inactive, the pursuer’s trajec-
tory is a straight line. Consider the case when the game ends
with the pursuer moving on “ST.” From the equality termi-
nal condition in (6), we can obtain the following transversality
condition:

* [ g% ag * (4% *
p(t;) = ala(x (t3),t}) (36)
where a; # 0. Therefore, we obtain the following:

pi(ty) = ar, pa(ty) =0, p3(ty) = —u

= pi(t) = a1, p3(t) = —on.
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Termination on ST'.

Fig. 18.

Substituting p3 (t}) = 0 into (32), we obtain uj (t}) = 0. So the
pursuer’s velocity only has a tangential component (U;) at termi-
nation. Moreover, since the pursuer is on the bar at termination,
vy (t}) is orthogonal to the terminal bar. Since we did not in-
clude the inequality terminal condition (7) in the transversality
condition, we will now check that it is satisfied whenever (6) is
satisfied at termination. Fig. 18 illustrates the pursuer’s trajec-
tory and the evader’s reachable disk when the game ends with
inactive boundary constraints.

From AQOeyB’ and AOpyC in Fig. 18, we obtain the
following relations:

’Uetf B N _ ~
T-tr ¢ (de(ty) — ¢c(0))
ZP { = tan(e, (t7) — ¢,(0)).

x5 (t})

Since ¢ (t}) — ¢, (t7) = 7 and ¢.(0) — ¢, (0) < 7, we obtain
Ge(t7) — 0c(0) > ¢, (t}) — ¢, (0). Therefore

Ve Up

- (37)
R — (vety)> T2

which is the same as (7) given that uj = v, and uj(t}) = 0.

Therefore, we have proved that (7) is automatically satisfied

when (6) is satisfied.

Next, we want to solve for t;‘c when boundary constraints are
inactive. We obtain the following equation from the geometry
in Fig. 18:

_q Vet . 1 Upl}
— sin === 0:(0) + ¢,(0) = Agy (38)

sin R R,

where A¢y is a constant value. Solving for (38) leads to a unique
positive solution for ¢ as follows:

o R R, sin(Agy)
! \/R]%'DZ + R?02 — 2R. R, 0.1, cos(Ad¢y)

P

(39)

Therefore, the straight line trajectory orthogonal to the terminal
line is the unique optimal solution when boundary constrains
are inactive.

When boundary constraints are active, the pursuer moves on
the spiral. If the game ends on “C',” at termination, the pursuer’s
velocity is also orthogonal to the terminal bar. This is true due
to the fact that the pursuer cannot spare any speed in the radial
direction. So, it moves in the tangential direction with maximum
speed ¥,,. We summarize the above discussion in the following
proposition.

Proposition 3: The pursuer’s velocity is always orthogonal
to the bar at termination.
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