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Abstract
This work explores a variation of the art gallery problem in which a team of static and mobile guards track a mobile intruder
with unknown maximum speed. We consider the special case when the mobile guards are restricted to move along the
diagonals of a polygonal environment. First, we present an algorithm to identify candidate vertices in a polygon at which
either static guards can be placed or they can serve as an endpoint of the segment on which mobile guards move. Next, we
present a technique to partition the environment based on the triangulation of the environment, and allocate guards to each
partition to track the intruder. The allocation strategy leads to a classification of the mobile guards based on their task and
coordination requirements. Finally, we present a strategy to activate/deactivate static guards based on the speed of the intruder.
Simulation results are presented to validate the efficacy of the proposed techniques.

Keywords Target tracking · Mobile coverage · Sensor networks

1 Introduction

In the last two decades, there has been a widespread deploy-
ment of multi-robot systems as sensor platforms for gaining
situational awareness in military (Simon et al. 2004) as well
as civilian (Werner-Allen et al. 2006) applications. Robots
deployed in such scenarios are capable of autonomously
making decisions and taking actions with minimal human
intervention. Prior information regarding the exogenous pro-
cesses that effect the performance of such robotic systems
is an essential component of their decision-making process
(Theodoridis and Hu 2012). However, in reality, the sys-
tem normally does not have a complete knowledge about the
uncertainty in the environment, especially when adversaries
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are involved.Due to the sensitive nature of applications, a sys-
tem designer either uses a Bayesian approach (Ho and Lee
1964) to maximize the expected reward or a game-theoretic
approach (Başar and Bernhard 2008) to guarantee a min-
imum reward in such scenarios. In this work, we explore
a different direction, i.e., an adaptive approach to address
the challenge that arises due to incomplete information. To
be specific, we consider the problem of tracking a mobile
intruder in an environment with unknown maximum speed
using a team of static amd mobile sensors.

Tracking an extremely fast intruder inside a simple polyg-
onal environment requires covering the polygon for which
�n/3� static guards are sufficient (and sometimes neces-
sary) (O’Rourke 1987), where n denotes the number of
edges of the polygon. At low intruder speeds, Laguna et al.
(2016) proposes a tracking strategy [based on mobile cov-
erage (O’Rourke 1983)] for which �n/4� diagonal guards
are sufficient. Our current work generalizes the aforemen-
tioned results, and presents a strategy to track an intruder
with arbitrary speed without covering the entire environment
at all times. We leverage results on coverage using static and
mobile guards (O’Rourke 1983) to develop deployment and
activation strategy for a mixed team of static and mobile
sensors to track the mobile intruder. The deployment strat-
egy guarantees robustness to tracking performance in the
face of uncertainty (lack of knowledge to be precise) about
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the intruder’s maximum speed. Nevertheless, the activation
strategy for the sensors makes it adaptive to the intruder’s
instantaneous speed, thereby ensuring tracking without triv-
ially covering the environment at all times.

The contributions of this work are as follows: (1) To the
best of our knowledge, this is the first work that addresses
the problem of persistent tracking of an intruder without a
priori knowledge about its maximum speed. (2) We propose
a tracking strategy that is adaptive i.e., it takes into consid-
eration the instantaneous speed of the intruder to activate the
sensors.Although, there are severalworks in sensor networks
and control that address the problem of controlled sensing,
this is the first work that addresses controlled sensing in the
context of target tracking. (3) The problem of finding the
minimum number of sensors required to track an intruder is
NP-hard (Laguna and Bhattacharya 2017). To the best of our
knowledge, this is the first work that provides results on the
sufficient number of sensors required to track an intruder in
an environment without trivially covering it, thereby, reduc-
ing the bound from �n/3�.

The paper is organized as follows. Section 2 presents a
review of the related work. In Sect. 3, we present the problem
formulation. In Sect. 4, we present the deployment strategy
for the guards. In Sect. 5, we present a classification of the
guards, and their tracking strategy. In Sect. 6, we present
the activation strategy for the static guards. In Sect. 7, we
present the results of the proposed technique for two different
polygonal environments. Section 8 presents the conclusions
and future work.

2 Related work

Target tracking refers to the problem of planning collision-
free paths for a mobile sensor that tries to keep a mobile
target in its field-of-view. A detailed review regarding prior
work related to tracking is provided in Bhattacharya and
Hutchinson (2010) andBhattacharya andHutchinson (2011).
For multiple mobile observers, centralized (Mehmetcik and
Ozguner 2013) as well as decentralized techniques (Luke
et al. 2005) have been proposed to track a single target (Haus-
man et al. 2015; Williams and Sukhatme 2015) or a team
of targets (Murrieta-Cid et al. 2002; Zou and Bhattacharya
2015; Jung and Sukhatme 2002). In contradistinction to the
previous works, this paper assumes that an observer is either
static or restricted to move along a pre-specified path.

Without knowledge about the target’s current or future
actions, the tracking problem gives rise to a visibility-based
pursuit-evasion game. In the past, there have been several
efforts to obtain optimal strategies for the observer by formu-
lating the tracking problem as a game between the observer,
modeled as a pursuer, and the target, modeled as an evader
(Bhattacharya and Hutchinson 2010; Bhattacharya et al.

2014). A related problem that has adopted a similar approach
is that of target search. The objective of target search is
to deploy a team of mobile robots to locate a target inside
an environment (LaValle et al. 1997; Suzuki and Yamashita
1992). In case of multiple searchers, one tries to find the
minimum number of searchers required to capture a moving
target in a partitioned environment represented as a graph
(Megiddo et al. 1981; Isler et al. 2004). In contrast, our cur-
rent work assumes that the target is initially visible to at least
one observer, and the goal for the team of observers is to
ensure that it will be visible to at least one observer at all
times in the future.

In persistent long-term surveillance, an important chal-
lenge for a network designer is to balance the trade-off
between energy consumption of the network (Bhatti and Xu
2009) and its overall coverage (Howard et al. 2002). Energy
efficiency is an integral component in the design of sensor
networks to increase their average lifetime.A frequently used
approach to extend the average lifetime of a sensor network
is to schedule activation cycles of the individual sensors (He
and Chong 2006). For example, Tian and Georganas (2002)
proposes scheduling algorithms that randomly assign sensor
nodes tomultipleworking subsets, which alternately perform
the sensing tasks for monitoring a sensor field. In Deng et al.
(2005), authors propose a scheduling algorithm for clustered
sensor networks that deactivates nodes based on their rela-
tive distance to the cluster head to improve energy saving.
In addition to energy efficiency, scheduling schemes often
need to fulfill a secondary objective, for example, preserv-
ing the transmission range (Chen et al. 2007) or the sensing
coverage (Kumar et al. 2004) of the network. For a static
camera network, reducing the volume of data collected is
an important secondary objective since it lowers the over-
all latency of the network (Aghajan and Cavallaro 2009) by
reducing the communication and processing overheads. A
mobile camera network can alleviate this problem of data
deluge (Baraniuk 2011) by reducing the number of sensors
that need to be active. In this work, we consider a camera
network for a persistent target tracking problem. To achieve
our task while reducing the latency and energy consumption
of the network, a collaborative scheme between a team of
mobile sensors and a team of static sensors is proposed.

In this work, we leverage results from art gallery prob-
lems (Chvatal 1975). The art gallery problem originates from
a real-world problem of guarding an art gallery with a team
of guards who together can observe the whole gallery. For an
infinite speed intruder, the problem of persistently tracking it
reduces to a coverage problem. Results from the art-gallery
problem can be used to deploy static guards (O’Rourke 1987;
Hoffmann 1990) in a polygonal environment to ensure cov-
erage. However, for the case of an intruder with finite speed,
fewer guards may be sufficient to track it. In Laguna et al.
(2016) and Laguna and Bhattacharya (2017), we proposed a
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tracking strategy that deploys at most � n
4 � diagonal guards

in a simple polygon with n sides, and derived the maximum
speed of the intruder for which the tracking strategy works
for a fixed speed of the guards. All the aforementioned works
assume that the maximum speed of the intruder is known a
prioriwhich is a severe limitation since knowledge about the
adversary is limited in surveillance applications. In contrast,
this paper deals with the scenario when the guards do not
have any a priori knowledge about the maximum speed of
the intruder.

3 Problem formulation andmotivation

For a polygon P , a triangulation of P is defined as a (not
necessarily unique) partition of P into a set of disjoint trian-
gles such that the vertices of the triangles are vertices of P ,
and there is no intersection between any pair of edges of the
triangles. An edge of a triangle in the triangulation is called
a diagonal (O’Rourke 1983). The triangulation of a polygon
P can be represented as a planar graph G = G(P) called a
triangulation graph. V (G) (vertex set of G) corresponds to
the vertices of P , E(G) (edge set of G) corresponds to the
diagonals of the triangulation of P , and T (G) (triangle set of
G) corresponds to the faces1 of G. Clearly, there is a bijec-
tion between the set of vertices of P and V (G), and between
the set of diagonals of the triangulation of P and E(G). As a
result, we do not make a distinction between the following:
(1) vertices of P and the vertices in V (G) (2) diagonals of
the triangulation of P and the edges in E(G) (3) triangles of
the triangulation of P and the triangles in T (G). Let D be
the dual graph of G. Thus, each vertex in V (D) corresponds
to a triangle in T (G), and for each ei, j ∈ E(D), where
vi , v j ∈ V (D), there is a pair of triangles Ti , Tj ∈ T (G)

that share an edge. For any triangulation graph of a simple
polygon, the dual graph is a tree (Berg et al. 2008).

3.1 Problem formulation

Consider a closed environment that can be represented as a
simple n-gon (n edges/vertices) P with no holes. A mobile
intruder I lies inside the polygon. At a time t , I is located at
pI (t) ∈ P , and it moves at a speed vI (t) ∈ [0, vmax

I ], where
vmax
I denotes its maximum speed. We define Sg = Shg ∪ Svg

as a set of guards deployed in the environment, where Shg
and Svg denote the sets corresponding to mobile and vertex
guards respectively, and Shg ∩ Svg = ∅. We assume that each
gi ∈ Sg is equipped with an omni directional vision sensor
with infinite range. As a result, gi can see everything that
lies inside its visibility polygon (Berg et al. 2008). A region

1 In a triangulation graph all the faces are triangles.

inside the polygon is said to be covered by the guard if it lies
inside the visibility polygon of the guard. Next, we provide
a description of the static and mobile guards.

The static guards are located at the vertices of the polygon.
Each gi ∈ Svg is located at a vertex v ∈ V (G) and is always
static. For convenience and to remark the correspondence
between the vertex and the guard, we call vi to the vertex
where gi is located. Moreover, each gi ∈ Svg can either be in
an active mode (consuming power with its camera switched
on) or in sleep mode (negligible power consumption with its
camera switched off). gi is said to be activated (deactivated)
when it goes from the sleep mode to the active mode (active
mode to the sleep mode).

In this work, we consider mobile guards to be diagonal
guards (O’Rourke 1983) i.e., each gi ∈ Shg is constrained
to move along a diagonal hi ∈ E(G). The advantage of
considering diagonal guards is twofold: (i) It can be easily
implemented on a linearly actuated sliding camera system
(Durocher and Mehrabi 2013) (2) It allows us to leverage
results in mobile coverage (O’Rourke 1983). Two diagonal
guards do not share their paths, so for each gi , g j ∈ Shg with
i �= j , hi �= h j . The endpoints of hi are denoted by v j (i)
with j ∈ {1, 2}, and its length by li . Each gi ∈ Shg is assumed
to have a maximum speed 0 < vmax

g < ∞. Let r = vI /vg
denote the speed ratio. In contrast to the static/vertex guards,
the mobile guards are assumed to be always in an active
mode. Therefore, they are always ready to move.

A trivial solution to the problem of tracking is to cover the
entire environment with static guards at all times. However,
it might be possible to track the intruder with fewer guards
depending on its instantaneous speed. Therefore, the problem
is to develop a tracking strategy for the team of guards that
is adaptive to the instantaneous speed of the intruder. One
way to achieve this adaptation is to activate/deactivate guards
based on the instantaneous speed of the intruder. Since the
maximum speed of the intruder is not known to the guards,
they should be able to cover the environment in the worst
case scenario (as vI (t) −→ ∞).

Our proposed solution is to deploy a team of static and
diagonal guards to track the intruder. The motion control of
the diagonal guards, and the activation strategy of the static
guards depend on the instantaneous speed of the intruder.
Leveraging on ideas from mobile coverage in art gallery
problems, the diagonal guards can track the intruder at low
speeds (Laguna and Bhattacharya 2017) while the static
guards remain inactive. As the speed of the intruder increases
beyond a threshold (that can be computed from Laguna and
Bhattacharya (2017)), static guards are activated. For the
limiting case in which the speed of the intruder approaches
infinity, the diagonal guards stay at one end of the diago-
nal (i.e, become vertex guards), and all the guards cover the
entire environment.
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Fig. 1 a g1 and g2 are tracking I while g3 is a deactivated vertex guard.
b Activation of g3 to aid g1 and g2

Figure 1 illustrates an example to motivate our problem.
Figure 1a shows a triangulated polygon. Circles shaded in red
represent guards (g1 and g2), and the red segments represent
the diagonals allocated to the guards (h1 and h2, respec-
tively). The circle shaded in black denotes the intruder I .
The circle shaded in yellow is a vertex guard g3 in sleep
mode, which is located at endpoint v1(2) of h2. g1 and g2 are
sufficient to track the intruder at small values of vI . How-
ever, beyond a critical value of vI , g3 needs to be activated
to track the intruder since the maximum speed of g1 and g2
may not be sufficient to guarantee persistent tracking. This is
illustrated in Fig. 1b where we assume that a sufficiently fast
intruder can “hide” inside triangle T1. In that case, the inac-
tive vertex guard g3 is activated, from its location it covers
triangles T1, T2 and T3.

In the next section, we present a deployment strategy for
the guards.

4 Deployment of guards

FromO’Rourke (1987),we know that for every polygon there
exists a set of dominating vertices2 and dominating diago-
nals3 of size at most �n/3� and �n/4�, respectively. Placing
a static guard at the dominating vertices can provide static
coverage. On the other hand, placing a mobile guard on the
dominating diagonals can provide mobile coverage. The sets
of dominating vertices and dominating diagonals for a poly-
gon is not unique. In this section, we show that for every
polygon there exists a set Sc of at most �n/3� dominating
vertices which contains a subset of (at most �n/4�) vertices,
such that each one of the vertices of the subset is the endpoint
of a diagonal in a set of at most �n/4� dominating diagonals.
We call such a set Sc, a set of candidate vertices. A point to

2 A triangulation graph G is said to be dominated by a set of vertices
Sc if at least one vertex of each triangle in T (G) is a vertex in Sc.
3 A triangulation graph G is said to be dominated by a set of diagonals
Sh if at least one vertex of each triangle in T (G) is an endpoint of a
diagonal in Sh .

note here is that the set of at most �n/4� candidate vertices
Sc depends on the triangulation of P . As it was mentioned in
Sect. 3, the triangulation of a polygon might not be unique.
There are several methods to obtain a triangulation of a poly-
gon (O’Rourke 1987). Here we assume that the triangulation
is already given. The problem of selecting a “good” triangu-
lation that leads to a smaller number of candidate vertices is
a part of our future research.

We present the following results from O’Rourke (1987)
which are used to prove Lemma 1:

1. In any triangulation graph G of a simple polygon P with
n ≥ 10 edges it is always possible to find a diagonal
d ∈ E(G) that partitions P into P1 and P2 such that P1 is
the triangulation graph of a pentagon, hexagon, heptagon,
octagon or nonagon, which we call basic polygons.

2. Any triangulation graph of a pentagon, hexagon or hep-
tagon has one dominating diagonal.

3. Any triangulation graph of a nonagon has twodominating
diagonals, and in general every triangulation graph of a
polygon with n ≥ 5 vertices has a set of dominating
diagonals with size of at most �n/4�.

Remark 1 Lemma 1 and Theorem 1 prove the existence of
a set of at most � n

3 � dominating vertices of V (G), and a set
of dominating diagonals of size of at most � n

4 � such that
each diagonal in the set of dominating diagonals has a differ-
ent vertex in the set of dominating vertices as an endpoint.
In contrast, Theorem 1 in O’Rourke (1983) proves the exis-
tence of dominating diagonals in a polygon.Although, proofs
of Lemma 1 and Theorem 1 are inductive, the intermediate
steps are different from the proof of Theorem 1 in O’Rourke
(1983).

Lemma 1 For any given triangulation graph of a basic poly-
gon, there exists a set Sc of at most �n/3� dominating vertices
and a set Sh of at most �n/4� dominating diagonals, such
that an endpoint of each hi ∈ Sh is a vi ∈ Sc, and for each
hi , h j ∈ Sh, vi �= v j for i �= j . (There exists a set of candi-
date vertices).

Proof 1. For a pentagon, the proof of the lemma follows
from the proof of O’Rourke (1987) (Lemma 3.3, page
85) which states that there is always a vertex that can
dominate any triangulation graph of a pentagon, so it can
always be dominated by one diagonal guard with such a
vertex as an endpoint of its diagonal while the opposite
endpoint can be any other vertex of the triangulation.
Hence, |Sc| = |Sh | = 1 ≤ �5/3� = �5/4�.

2. Irrespective of the triangulation of the hexagon, it can
always be decomposed into a pentagon P1 and a triangle
T1 such that T1 can be dominated by a vertex v1 which
is an arbitrary vertex of T1. Therefore, a candidate vertex
v0 exists from which P1 can be dominated according to
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the case of a pentagon. We can always select a diagonal
with an endpoint at v0 and the other at one vertex of T1.
Thus, |Sc| ≤ 2 = �6/3� and |Sh | = 1 = �6/4�.

3. Regardless of its triangulation, a heptagon can always be
decomposed into a hexagon H1 and a triangle T1. Based
on the case of a hexagon, there are two candidate vertices
v0 and v1 from which H1 can be dominated. Since v1 can
be an arbitrary vertex, a vertex of T1 can always be chosen
to cover it. v1 is a candidate vertex on an arbitrary edge.
The diagonal is selected such that one of its endpoints is
v0, and its other endpoint is a vertex of T1. Thus, |Sc| ≤
2 = �7/3� and |Sh | = 1 = �7/4�.

4. Regardless of its triangulation, an octagon can always be
decomposed into a heptagon H2 and a triangle T1. Based
on the case of a heptagon, there are two candidate vertices
v0 and v1 from which H2 can be dominated. Since v1 can
be a vertex of an arbitrary edge of H2, one of the endpoints
of the edge shared by H2 and T1 can always be chosen
as a candidate vertex. One diagonal is selected such that
one of its endpoints is v0 and it dominates H2. If it cannot
dominate T1, any diagonal with v1 as an endpoint can be
chosen to dominate T1. Thus, |Sc| ≤ 2 = �8/3� and
|Sh | ≤ 2 = �8/4�.

5. Regardless of its triangulation, a nonagon can always be
decomposed into the triangulation graph of an octagon
O1 and a triangle T1. From the case of an octagon, there
are two candidate vertices v0 and v1 that dominate O1.
Hence, an additional guard v2 is required to cover T1.
Since v1 can be an arbitrary vertex of T1 which in turn
can be arbitrarily chosen to include any vertex of the
boundary of the nonagon, it follows that v1 can be arbi-
trarily placed, and the remaining triangulation subgraph
of the nonagon has two candidate vertices. A diagonal
incident4 to v2 can dominate at least two triangles of G.
The remaining subgraph of G is the triangulation graph
of a heptagon with two candidate vertices (v0 and v1),
and it can be dominated by a single diagonal guard with
an endpoint incident to v0 or v1 (the case of a heptagon).
Thus, |Sc| ≤ 3 = �9/3� and |Sh | ≤ 2 = �9/4�. 
�

Theorem 1 There is a set of candidate vertices for any tri-
angulation graph G of a polygon with n ≥ 5 vertices.

Proof Lemma 1 proves the statement of the theorem for 5 ≤
n ≤ 9. Therefore, we prove the theorem for the case when
n ≥ 10 using induction. Let us assume that the theorem holds
for any n′ < n and n ≥ 10. In O’Rourke (1987), it is shown
that a diagonal d that partitions G into two graphs G1 and
G2, where G1 contains k boundary edges with 4 ≤ k ≤ 8,
always exist. We consider each value of 4 < k ≤ 8:

4 A diagonal is said to be incident to a vertex if the vertex is an endpoint
of the diagonal.

1. k = 5:G1 has k+1 = 6 boundary edges including d. By
Lemma 1, G1 has two candidate vertices v0 and v1, with
v1 located arbitrarily. There is a dominating diagonalwith
v0 or v1 as an endpoint.G2 has n−k+1 = n−4 boundary
edges including d, and since v1 is arbitrary, it can be an
endpoint of the edge between G1 and G2. Hence, we
can always select v1 such that at least two triangles Ta
and Tb of G2 are incident to v1. Let Sv(Ta ∪ Tb) and
Se(Ta ∪ Tb) be the sets of vertices and edges of the union
of Ta and Tb respectively. A graph G0 can be constructed
such that V (G0) = V (G1) ∪ Sv(Ta ∪ Tb) and E(G0) =
E(G1)∪Se(Ta∪Tb) (we say that Ta and Tb were adjoined
toG1),G2 has now n−6 verticeswhich implies that it has
at most �n/3� − 2 candidate vertices. Thus, G0 together
with G2 has at most �n/3� candidate vertices.

2. k = 6: This is similar to the previous case, but G1 has
k + 1 = 7 boundary edges and v1 is the endpoint of an
arbitrary edge. G2 has n−k+1 = n−5 boundary edges
including d. Since v1 is the endpoint of an arbitrary edge,
it can belong to the edge between G1 and G2. Hence, v1
is selected such that it dominates at least one triangle of
G2. G0 is obtained by adjoining this triangle to G1, so
G2 has n−6 vertices. Therefore, it has at most �n/3�−2
candidate vertices. The result follows.

3. k = 7: G1 has k + 1 = 8 boundary edges. G2 has
n − 7+ 1 = n − 6 boundary edges. In O’Rourke (1983)
(Theorem 1,page 280) there are two cases: (1) the trian-
gulation graph of the octagon has a single dominating
diagonal. Therefore, v0 and v1 can be the endpoints of
the diagonal. G2 has n − 6 boundary edges. Hence, it
has �n/3 − 2� candidate vertices, and G has at most
�n/3� candidate vertices. (2) A graph G3 is obtained by
adjoining three triangles of the triangulation graph of the
octagon to G2. The remaining subgraph corresponds to
a pentagon. Since G3 has n − 4 + 1 = n − 3 vertices,
it has �n/3� − 1 candidate vertices. Therefore, G has at
most �n/3� candidate vertices since the triangulation of
the remaining pentagon has only one candidate vertex 1.

4. k = 8: G1 has k + 1 = 9 boundary edges, and by
Lemma 1, it has three candidate vertices v0, v1 and v2
that dominate G such that v2 is an arbitrary endpoint of
the edge between G1 and G2, and it is an endpoint of
one of the two dominating diagonals. v2 can be chosen
to cover at least two triangles of G2. G0 is obtained by
adjoining those two triangles to G1. Consequently, G2

has n − 9 boundary edges. Hence, G2 has �n/3� − 3
candidate vertices, it follows that G has at most �n/3�
candidate vertices.

It is guaranteed that for any simple polygon with n ≥ 10
vertices, there is always a diagonal d that partitions the
triangulation graph of the polygon such that the partition
corresponds to one of the aforementioned cases. Since for
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each one of such cases it was shown that there exists a set of
candidate vertices, and by Lemma 1 we know that the state-
ment is always true for 4 < n < 10, it follows that there is
a set of candidate vertices for any triangulation graph of a
simple polygon with n > 4 vertices. 
�

Algorithm 1 Guard Deployment
1: Input: G.
2: Output: Sh and Sc
3: Sd ← ∅ is the set of diagonals d
4: G ′ ← G
5: while G ′ has n ≥ 10 vertices do
6: find d that separates the triangulation of a minimal basic polygon

Gk from G ′
7: G ′ becomes the subgraph obtained by removing Gk excepting

the vertices of d
8: add d to SD
9: end while
10: create Gpol from G using the diagonals in Sd
11: while there is an unmarked vertex in Gpol do
12: vk ← unmarked vertex in Gpol with at most one unmarked

neighbor
13: Gk ← subgraph of G that corresponds to vk
14: sc ← appropriate candidate vertices of Gk
15: sh ← appropriate diagonals of Gk
16: add vertices of sc to Sc
17: add diagonals of sh to Sh
18: mark vk
19: end while

Theorem 1 proves the existence of a set of candidate ver-
tices Sc in V (G) (and the existence of the corresponding set
of dominating diagonals Sh). Based on the different cases of
the theorem and the existence of the diagonals that partition
G into subgraphs corresponding to basic polygons Algo-
rithm 1 is an exhaustive strategy to determine Sc and Sh .
Algorithm 1 iteratively partitions G into triangulation sub-
graphs of basic polygons, and for each one of those subgraphs
the sets of candidate vertices and dominating diagonals are
found exhaustively. At each iteration, Algorithm 1 searches a
diagonal d that separates a triangulation subgraph of a basic
polygon (denoted by Gp) such that there is no other diago-
nal in E(Gp) that can separate a subgraph of a smaller basic
polygon. The process is repeated until the remaining non-
partitioned subgraph has 9 vertices or less. The first while
cycle (Line 5) finds the diagonal d that partition G into trian-
gulation subgraphs that correspond to basic polygons. This
can be completed in O(n) time by traversing the dual graph
GD . Recall that |V (D)| = n − 2 and D is a tree. In Fig. 2a
a simple polygon is shown, it has n = 18 vertices and 16
triangles, the green segments represent the diagonals d1, d2
and d3 found by Algorithm 1. d1 separates the triangulation
graph of the hexagon that contains triangles T5, T6, T7 and T8.
d2 (along with d1) separates an hexagon containing T1, T2,
T3 and T4. Finally, d3 is found, which separates a heptagon

Fig. 2 a Simple polygon partitioned into triangulations of basic poly-
gons. b Corresponding dual graph

Fig. 3 aCandidate vertices anddominating diagonals.bCorresponding
graph Gpol

containing triangles T9, T10, T11, T12 and T13. The remain-
ing subgraph corresponds to a pentagon. Figure 2b shows the
corresponding dual graph, the blue vertices correspond to the
triangles of the hexagon separated by d1, the orange vertices
to the triangles separated by d2, and the green vertices to the
triangles separated by d3.

After the first while loop, a graph Gpol is created (line
10) such that each vertex v ∈ V (Gpol) corresponds to the
triangulation graph of each basic polygon Gk that was found
in line 6, where k stands for the kth basic polygon found,
and there is an edge e ∈ E(Gpol) only between vertices that
correspond to basic polygons that have a common edge. For
this step, D along with Sd can be used to identify in linear
time the triangles in T (G) that correspond to the basic poly-
gons of the partition, and consequently their subgraphs Gk .
This takes O(n) time. In Fig. 3b the graph Gpol that corre-
sponds to the example of Fig. 2 is shown, the blue and orange
vertices correspond to the hexagons found in the partition,
the green vertex corresponds to the heptagon and the black
vertex corresponds to the remaining pentagon. The second
while loop identifies the minimum set of vertices that can
cover the triangles in T (Gk) that are not already covered by
other candidate vertices (line 14). Finding Gk takes O(n)
time.

We are interested in the set of candidate vertices of Gk

and its corresponding set of dominating diagonals. Since the
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sets of candidate vertices and diagonals of neighboring sub-
graphs might have already been identified in the previous
steps by the algorithm, it is possible that some triangles in
Gk are already dominated either by candidate vertices or by
dominating diagonals. Therefore, to find the sets of candidate
vertices and dominating diagonals for Gk , instead of consid-
ering all the triangles in Gk , we only need to consider the
triangles in Gk that are not dominated by candidate vertices
and the triangles that are not dominated by dominating diag-
onals, respectively. Notice that an undominated triangle can
be “undominated by diagonals”, which means that there is
no dominating diagonal that dominates it, or can be “undom-
inated by vertices”, which means that there is no candidate
vertex dominating it. Thus,whenwe talk about candidate ver-
tices that can dominate undominated triangles we refer only
to triangles undominated by vertices. An equivalent state-
ment is made when referring to dominating diagonals and
undominated triangles. The set of candidate vertices must
ensure that no undominated triangles (by vertices) remain,
while the set of dominating diagonals must ensure that no
undominated triangles (by diagonals) remain. The set of can-
didate vertices of Gk is upper bounded by �|V (Gk)|/3� by
definition, and a subset of those vertices are endpoints of a set
at most �|V (Gk)|/4� dominating diagonals, where |V (Gk)|
is the number of vertices of Gk . From Theorem 1, we know
that such a pair of sets exist which implies that there is a
set of vertices in V (Gk) that meets the definition of a set
of candidate vertices. We consider the pairs of dominating
diagonals and candidate vertices for which the number of
dominating diagonals is minimum. In case of a tie among
the the pairs of such sets, we select the subsets for which the
corresponding number of candidate vertices is minimum. In
case of a tie, then we select the subsets of pairs for which the
set of dominating diagonals dominates the maximum num-
ber of undominated triangles (not in T (Gk)). In the case of a
tie, the pair of sets where the set of candidate vertices domi-
nates the maximum number of undominated triangles (not in
T (Gk)). Finally, if a tie still exists, the selection of the pair
of sets is arbitrary among the pairs of sets that qualify. The
number of combinations to be considered is determined by
the number of vertices in V (Gk). Thus, in the worst case,
which occurs when Gk is a nonagon �⇒ |V (Gk)| = 9 and
|E(Gk)| = 15. The algorithm then needs to try all the 135
combinations of pairs of edges of Gk (�9/4� = 2) and no
more than 84 combinations of groups of 3 vertices. For any
Gk with fewer vertices the number of combinations to check
is smaller. The number of combinations to check is fixed in
each case. Therefore, finding the candidate vertices for Gk

takes constant time.
Since |V (Gpol)| < n, the second while loop takes O(n)

time. It follows that the time complexity of the algorithm is
O(n2). The procedure tomark the visited vertices inV (Gpol)

ensures that at any time a triangulation subgraph is selected

by the algorithm to find its corresponding candidate vertices
and dominating diagonals, there is at most one neighboring
vertex in V (Gpol) that corresponds to a triangulation sub-
graph with non-dominated triangles. Once that Sh and Sc are
found, guards in Shg are deployed in the diagonals of Sh while
guards in Svg are deployed in the vertices of Sc that are not
associated to the diagonals in Sh .

In Fig. 3a, the red diagonals represent the dominating
diagonals, the red shaded circles correspond to the candi-
date vertices assigned to the dominating diagonals, and the
yellow shaded circle corresponds to the remaining candidate
vertex which is not associated to any diagonal. Starting with
the hexagon defined by triangles T8, T7, T6 and T5 there is
a single vertex from which all the triangles of the hexagon
can be covered (v1). Any diagonal with v1 as an endpoint
dominates the hexagon. However, the diagonal chosen is
the one that dominates more triangles (in the example it is
the diagonal that dominates T4 T9 and T10). Next, the algo-
rithm proceeds with the second hexagon, where v2 is found
and since any diagonal of the hexagon with v2 as an end-
point dominates the hexagon, the diagonal labeled as g2 was
arbitrarily selected. The algorithm proceeds with the triangu-
lation graph of the heptagon where two candidate vertices v3
andv4 are found, and also onediagonal incident to bothwhich
is able to dominate the triangles that are not already domi-
nated. Hence, Sc = {v1, v2, v3, v4} and Sh = {h1, h2, h3}.
Clearly, |Sc| < �18/3� and |Sh | < �18/4�. Finally, three
diagonal guards g1, g2 and g3 are deployed along h1,
h2 and h3 respectively, and a vertex guard g4 is located
at v4.

5 Tracking with diagonal guards

In this section we present a strategy for the mobile guards to
track the intruder. Let gi ∈ Shg , and let Tj (i) ⊂ T (G) be the
set of triangles incident to v j (i) with j ∈ {1, 2}. We say that
the set of trianglesT (i) = T1(i)∪T2(i) is “incident” tohi .We
define diM = rli as the “Maximum” distance that the intruder
can travel while gi moves across hi at maximum speed. The
triangles of T (G) can be classified in the following categories
based on the relative location of the diagonals of Sh (refer to
Fig. 4):

1. A triangle is called safe if it can be covered at any time
the intruder is inside it. They are illustrated as light blue
shaded triangles in Fig. 4. Trivially, a triangle such that
one or more of its edges is a diagonal in Sh , or a triangle
such that there is an active static guard located at any of
its vertices is a safe triangle. In Fig. 4, g3 is a static guard
located at the vertex represented as a red circle and all
the triangles that have such a vertex in common are safe
triangles.
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Fig. 4 Classification of triangles

2. A triangle is called unsafe if it is not a safe triangle and
there is only one diagonal guard that can cover it from
one of its endpoints. They are illustrated as orange shaded
triangles in Fig. 4.

3. A triangle is called regular if it is neither safe nor unsafe.
They are illustrated as unshaded triangles inFig. 4.Notice
that for each regular triangle there are at least two domi-
nating diagonals (red segments) incident to its vertices.

4. Safe Zone: A safe zone of a guard gi , denoted by A(i),
is the set of adjacent triangles which have hi as an edge.

5. Augmented Safe Zone: An augmented safe zone of a
guard gi , denotedby B(i) is the largest set of adjacent safe
triangles in T (i) such that A(i) ⊆ B(i). See Fig. 4, where
for each one of the diagonal guards there is an unsafe
zone. Notice that for guards g1 and g2, B(i) = A(i).

6. Unsafe Zone: An unsafe zone of an endpoint v j (i) of
hi ,is the set of unsafe triangles incident to v j (i) and it is
denoted by Uj (i). Also let U (i) = U1(i) ∪U2(i) be the
unsafe zone of gi .

Based on the above definitions, we can classify guards
into the following categories:

1. Type 0 Guards: A guard gi ∈ Sg is of type 0 if there is an
endpoint of hi such that all the triangles incident to such
endpoint are safe triangles. Hence, a gi does not require
to be located at one endpoint of its diagonal, so it can
just stay motionless at the opposite endpoint, labeled as
v1(i). An example of a Type 0 guard is g3 in Fig. 5.

2. Type 1 Guards: A guard gi (not of Type 0) is of Type 1
if it has an unsafe zone at one of the endpoints of hi , and
there are no regular triangles (incident to that endpoint)
adjacent to B(i). In such a case, we label such endpoint
as v1(i) (and we label v2(i) the opposite endpoint). We
define an unsafe region as R = ⋃

Tj∈U1(i) Tj . The bound-
ary between U1(i) and B(i) partitions the interior of P
into two sub polygons such that one of the regions of
the partition, denoted by PR contains R. We denote the
boundary that partitions P as an internal critical curve

Fig. 5 g1 is a Type 1 guard, g2 is a Type 2 guard, g3 is a Type 0 guard,
and g4 and g5 are Type 5 guards

S1int (i). Moreover, we define an external critical curve,
S1ext (i), as the curve inside P\PR such that the short-
est distance inside P between each point in S1ext (i) and
S1int (i) is equal to diM . Thus, the critical region C1(i) is
defined as the region inside P “enclosed” by S1int (i) and
S1ext (i). A more detailed definition of this type of guard
and its critical region is presented in Laguna et al. (2016).
Equation (1) represents the motion strategy of a type 1
guard. It gives the location of gi based on the location of
I when pI ∈ C1(i). Given the definition of S1ext (i) and
diM , the critical curves are used to trigger the motion of gi
such that gi starts moving from one endpoint of hi to the
other when I enters C1(i), and it is ensured that gi can
reach the opposite endpoint of hi at the same time that I
reaches the other critical curve bounding C1(i). A Type
1 guard g1 is illustrated in Fig. 5 along with its critical
curves S1int (1) and S1ext (1) shown as blue curves.

3. Type 2Guards: A guard gi ∈ Sg (not of Type 0 or Type 1)
is of Type 2 if all the neighboring guards5 that can cover
the regular triangles incident to one endpoint of hi have
their critical regions already defined. Such an endpoint is
then labeled as v1(i). In Fig. 5, g1 has its critical region
defined since it is a Type 1 guard. Moreover, since g1 is
the only neighbor of g2 that can cover a regular triangle
incident to one endpoint of the diagonal of g2, then g2
meets the definition of a Type 2 guard. Define R1(i) ⊂
T1(i) as the set of regular triangles incident to v1(i), and
define N1(i) as the set of all neighboring guards that
can cover triangles in R1(i). We define STj ⊂ N1(i) as
the set of guards that can cover Tj ∈ R1(i). Let Bj =
Tj ∩(

⋂
gl∈STj C1(l)). Notice that if Bj �= ∅ and pI ∈ Bj ,

gi is the only guard that can cover Bj . Let SB be the
region obtained from the union of the regions Bj and all
the unsafe triangles incident to v1(i).We define S1int (i) as
the boundary of SB . S1ext (i) and C1(i) are defined in the

5 We say that a guard gk ∈ Sg\{gi } is a neighbor of gi if T (i)∩T (k) �=
∅.
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Fig. 6 aThe presence of type 3 guardsmeans that a closed path between
regular triangles and diagonals of guards can be found in G. b Graph
that represents the recursive process of Algorithm 3. c The graph cannot
have a closed path

same manner that they are defined for Type 1 guards. In
Fig. 5, S1int (2) is the closed black curve inside the regular
triangle shared by g1 and g2, and S1ext (2) is shown as a
black curve inside P that maintains a constant distance
from S1int (2).

4. Type 3 Guards: A guard gi ∈ Sg is a type 3 guard if it is
not of Type 0,1 or 2. A distinctive characteristic of this
type is that there is at least one regular triangle incident
to each endpoint of hi and adjacent to B(i), and there is
at least a pair of neighbors without their critical regions
defined, which means that they also meet the definition
of a type 3 guard. Hence, we cannot determine all the
regions R that would define its internal critical curve.
Since meeting the definition of a Type 3 guard implies
the presence of another Type 3 guard that can cover a
shared regular triangle, the presence of Type 3 guards
implies the existence of a cyclic arrangement between
them and regular triangles as shown in Fig. 6a. Clearly,
there is an ambiguity in allocation for those regular trian-
gles since the region that must be assigned to gi cannot
be found as in the cases of Type 1 and Type 2 guards.
Thus, for Type 3 guards, we proceed by selecting one of
them (gi ) arbitrarily and then transforming all the regu-
lar triangles incident to one endpoint of its diagonal into
unsafe triangles. The selected endpoint is then labeled
as v1(i). This turns gi into a Type 1 guard, so a criti-
cal region for it can be obtained. Consequently, gi has
the task of covering all the triangles in T1(i). Since all
triangles in R1(i) are unsafe triangles that must be cov-
ered by gi , they are considered as “safe triangles” for
the neighboring guards. This change on the types of tri-
angles, transforms the types of the neighboring guards
(Type 3 neighboring guards may now meet the definition
of one of the other types, Type 2 guards may meet the

definition of Type 0 or Type 1 guards, and Type 1 guards
may become Type 0 guards). In Fig. 5, two Type 3 guards
g4 and g5 are illustrated. Triangles T3 and T4 are regular
triangles shared by both type 3 guards, so it is not possible
to obtain the internal critical curve of g4 and g5. Hence,
T4 is arbitrarily redefined as an unsafe triangle for g5 (and
consequently as a safe triangle for g4), that means that
it is assigned to g5. Hence, g5 meets the definition of a
Type 1 guard, and since T4 is considered a safe triangle
by g4, then it also meets the definition of a Type 1 guard.
The resulting critical curves are also illustrated.

5.1 Reactive strategy

Let pI ∈ C1(i) and let d1min(i) be the minimum distance
between pI and S1int (i). The following equation maps the
location of the intruder to obtain the location of a guard, pgi ,
along its diagonal:

pgi = pv1(i) + d1min(i)

diM
(pv2(i) − pv1(i)), (1)

where pv1(i) and pv2(i) are the coordinates of v1(i) and v2(i)
respectively. If pI /∈ C1(i), gi remains static at v1(i) or v2(i)
depending on its current location.

We present an important result that determines the condi-
tion under which non-safe (regular or unsafe) triangles can
be turned into safe triangles. We define Sg(T ) as the set of
diagonal guards that can cover T ∈ T (G).

Lemma 2 A non-safe triangle T is covered if and only if
⋂

gi∈Sg(T ) C1(i) ∩ T = ∅.
Proof ⇒ If T is covered, a guard is always present at its ver-
tex in case I lies inside it. If I lies inside the critical region
associated to a guard, the guard cannot lie on the vertex of
T . Therefore, the critical regions associated with the guards
cannot have a common intersection inside T since it is cov-
ered. ⇐ If

⋂
gi∈Sg(T ) C1(i) ∩ T = ∅, every point inside T

lies outside the critical region of at least one gi ∈ Sg(T ).
Therefore, T is covered. 
�

6 Activation of additional guards

In this section, we present a procedure to activate or deacti-
vate the guards to ensure tracking depending on the instanta-
neous value of r . Once Sh and Sc are defined and the critical
regions of the guards in Shg are obtained,wewant to determine
the number of activated guards based on vI . First, we intro-
duce some notation. Given T ∈ T (G), let V (T ) and E(T ) be
the sets of vertices and edges of T respectively. Sacv , Sinv ⊂ Svg
denote the sets of active and inactive vertex guards respec-
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tively. Shv ⊆ Sc is the set of candidate vertices associated to
the diagonals in Sh . Thus, |Sc| = |Shv | + |Sacv | + |Sinv |.

Algorithm 2 UpdateActiveGuards

1: Input: P ,G,r ,S′
T ,S

h
v ,S

in
v ,Shg ,S

ac
v

2: Output: Updated Sacv and Sinv
3: if r increased then
4: for each gi ∈ Sg compute C1(i)
5: S1T ← {T ∈ S′

T : condition of Lemma 2 fails }
6: while |S1T | > 0 do
7: Tc ← arbitrary T ∈ S1T
8: ActivateGuard(Tc,S′

T ,S
h
v ,S

in
v ,Shg )

9: update classification of guards in Shg
10: for each gi ∈ Shg compute C1(i)

11: S1T ← {T ∈ S′
T : condition of Lemma 2 fails }

12: end while
13: else if r decreased then
14: while S1T = ∅ and Sacv ! = ∅ do
15: g ← arbitrary gi ∈ Sacv
16: deactivate g
17: update classification of guards in Shg
18: for each gi ∈ Shg compute C1(i)

19: S1T ← {T ∈ S′
T : condition of Lemma 2 fails }

20: end while
21: activate g
22: end if

Algorithm 3 ActivateGuard
1: Input: Tc,S′

T ,S
h
g ,S

h
v ,S

in
v

2: Output: Updated S′
T , S

in
v

3: if Sinv ∩ V (Tc) �= ∅ then
4: vc ← arbitrary v ∈ Sinv ∩ V (Tc)
5: activate guard in vc
6: update classification of triangles
7: else
8: vc ← arbitrary v ∈ Shv ∩ V (Tc)
9: g ← gi ∈ Shg such that vc = v j (i)
10: Tc ← arbitrary Tc ∈ Tk(i) ∩ S′

T
11: ActivateGuard(Tc,S′

T ,S
h
v ,S

in
v ,Shg )

12: end if

Wedefine S′
T ⊂ T (G) as the set of non-safe triangles ofG.

Algorithm 2 shows the pseudocode to activate guards based
on the condition in Lemma 2. The input to this algorithm is
the polygon, the position of the guards, and the instantaneous
r . At every iteration, Algorithm 2 searches for a triangle that
cannot be covered (Lines 11 and 19) based on Lemma 2. If
such a triangle exists, Algorithm 3 searches for a guard in Sinv
to activate by the following recursive process. The algorithm
starts with a non-safe triangle Tc, if Sinv ∩ V (Tc) = ∅, then
it selects a gi ∈ Sg followed by a non-safe triangle at the
opposite endpoint of hi . For each non-safe triangle visited by
the algorithm we define a vertex a v ∈ V (Grec) and for each
gi used in the algorithm we define an edge v1v2 ∈ E(Grec).
Thus, a graph Grec is built (refer to Fig. 6b). Grec is a path

that ends at a vertex v that corresponds to a triangle Tc where
Sinv ∩ V (Tc) �= ∅.
Lemma 3 Algorithm 3 terminates in finite steps.

Proof The recursive procedure chooses a diagonal guard at
each step. If the algorithm does not terminate, it implies that
either |Shg | = ∞ (which is not possible), or a cycle exists
in Grec (refer to Fig. 6c). The latter cannot occur since the
existence of such a cycle implies the existence of Type 3
guards (refer to Fig. 6a). Since all Type 3 guards are converted
to Type 1 guards before the algorithm starts (discussed in
Sect. 5), Grec cannot have a cycle. 
�

At the end of each execution of Algorithm 3, at least
one non-safe triangle is converted into a safe triangle, and
this in turn reduces the area of

⋂
gi∈Sg(Tc) C1(i). Moreover,

since the number of non-safe triangles is finite, the number
of executions of Algorithm 3 is finite. After each iteration
of Algorithm 2, a non-safe triangle T gets converted to a
safe triangle, and there are no regions inside T that need to
be covered by any diagonal guard. This change “relieves”
the guards gi ∈ Sg(T ) of the responsibility of covering T .
Consequently, the critical regions C1(i) decrease their size.
Moreover, smaller critical regions C1(i) increase the chance
of the condition of Lemma 2 to be met. Finally, the following
lemma shows that Algorithm 2 terminates.

Algorithm 3, forces Lemma 2 to be satisfied for some
guards, tracking is guaranteed (maybe this needs to be proved
if the paper is self-contained), Lemma 4 proves that Algo-
rithm 2 calls Algorithm 3 (forces Lemma 2 to be satisfied)
any time that it is required so tracking is ensured for all the
guards, that implies correctness.

Lemma 4 Algorithm 2 guarantees that the triangle in which
the intruder is located is always covered by a guard regard-
less of vI .

Proof The proof is trivial for safe triangles since by defini-
tion, they are always covered when there is an intruder inside
them according to Lemma 2. For the case of non-safe trian-
gles, Algorithm2 activates vertex guards for the current value
of vI until the condition of Lemma 2 is true for all non-safe
triangles. Since Algorithm 3 terminates in finite steps, and
since after each iteration of Algorithm 3, a non-safe triangle
T gets converted to a safe triangle, Algorithm 3 terminates
after a finite number of steps. Since the condition of Lemma 2
is met by all the triangles after a finite number of iterations
of Algorithm 2, the result follows. 
�

7 Results

In this section, examples that illustrate the relation between
different values of r found through simulation and the num-
ber of active guards are presented. Figure 7a shows a simple
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Fig. 7 a Each static guard is labeled with the value of r that triggers its
activation. b The number of activated static guards increases as r grows
for examples 1 (red solid line) and 2 (dashed black line) (Color figure
online)

polygon with n = 19 vertices. The candidate vertices (from
Algorithm 1) are marked in red. Diagonal drawn in red rep-
resent the diagonal guards. |Sc| = 5 < �19/3� = 6 with
|Shg | = 3, Sacv = ∅ and |Sinv | = 2. g3 needs to cover trian-
gles 7 and 9 from each endpoint. When r > 0, the critical
region of g3 does not meet the condition of Lemma 2 in tri-
angle 9. As a result, Algorithm 2 activates the inactive guard
in triangle 9. Activated vertex guards are marked in yellow
with the corresponding r that triggers their activation. After
activation, triangles 9, 10, 15 and 16 become safe. It follows
that g3 meets the definition of a Type 0 guard covering trian-
gles 5, 6, 7 and 17 (so all of them become safe triangles). For
0 < r ≤ 0.8, |Shv ∪ Sacv | = 4. For r > 0.8, the condition of
Lemma 2 is violated in triangle 8 (the critical regions of g1

Fig. 8 Each static guard is labeled with the value of r that triggers its
activation

and g2 intersect in 8). Hence, Algorithm 2 finds the inactive
guard in triangle 8 and activates it, thereby, covering triangles
13, 14, 15, 16 and 8. Consequently, g1 and g2 become Type
0 covering the remaining triangles. The red plot in Fig. 7b
shows the variation in the number of active static guards as r
increases. For any r > 0.8, the total number of guards does
not change since the environment is completely covered at
that point. Persistent area coverage is achieved for any value
of r greater than 0.8 which implies that even if the intruder
has infinite speed the set of 3 diagonal guards and 2 vertex
guards suffices to keep track of I .

In Fig. 8, a simple polygonwith n = 48 vertices represent-
ing the environment is illustrated. |Sc| = 14 < �48/3� = 16
with |Shg | = 9, Sacv = ∅ and |Sinv | = 5. Since g5 needs
to cover triangles 39 and 42 from both endpoints, it meets
the definition of a Type 0 guard so it can cover triangles
39, 42, 40, 41, 44. These triangles along with other triangles
with a diagonal guard as an edge are safe triangles. g4 needs
to cover triangles 60 and 76 fromeach endpoint.When r > 0,
the critical region of g4 is such that it causes the condition of
Lemma 2 to be violated in triangle 60. Therefore, the inac-
tive guard in triangle 36 becomes active. After the activation,
triangles 37 and 36 become safe. It follows that g4 meets the
definition of a Type 0 guard covering triangles 31 and 32.

For 0 < r ≤ 0.29, |Sg ∪ Sacv | = 10. When r > 0.29, the
condition of Lemma 2 is not met in triangle 10. Hence, Algo-
rithm 2 finds the inactive guard in triangle 10 and activates
it, so it covers triangles 5, 10 and 9. Consequently, g7 and
g1 become Type 0. Therefore, g7 covers triangles 6, 7, 8 and
9. g1 covers triangles 1, 2, 3, 4 and 19, which causes g2 to
also become Type 0 covering triangles 14, 15, 16, 17 and 18.
For 0.29 < r ≤ 0.37, |Sg ∪ Sacv | = 11. Nevertheless, when
r > 0.37, the condition of Lemma 2 is not met in triangle
26. Hence, Algorithm 2 activates the inactive guard located
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at a vertex of triangle 26, so it covers triangles 25, 26 and 27.
g9 becomes Type 0 so it covers triangles 27, 28, 29 and 30.
Following the same procedure, the inactive guard located at
triangle 40 is activated when r > 0.92. When r > 1, the
condition of Lemma 2 is violated in triangle 24. Algorithm 2
does not find an inactive guard so it uses g8 to find a triangle
where there is an inactive guard that can be activated. The
inactive guard in triangle 12 is activated, and consequently,
g8 becomes a Type 0 covering triangles 13, 14, 15, 24 and
25. The dashed black plot in Fig. 7b shows the variation in
the number of active static guards as r increases. For any
r > 1, the total number of guards does not change since the
environment is completely covered at that point. As it has
been shown, the number of activated guards depends on r ,
so for low speed regimes of the intruder, not all guards need
to be activated, in contrast with the case of only static guards
where the total number of activated guards for both examples
would be 5 and 14 respectively regardless of r .

8 Conclusions

In this paper, we explored a problem in which a team of static
and mobile guards track a mobile intruder with unknown
maximum speed. We presented an algorithm to identify can-
didate vertices in a polygon that can serve as endpoints of
diagonal guards or as a seat for vertex guards. We presented
an activation strategy for the guards that is adaptive to the
instantaneous speed of the intruder. Simulation results for
two different environments illustrated the performance of the
proposed techniques.

As a part of the future work, the problem of selecting a
triangulation that leads to fewer active guards can be con-
sidered. Another direction of future work is to consider the
case when diagonal guards can be activated/deactivated in
order to further reduce the energy consumption of the entire
network. Finally, exploring the effect of coordination among
the intruders, and limited sensing and motion capabilities of
the guards on the tracking performance are relevant problems
for future work.
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