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Abstract

Deep generative models have shown success in automat-
ically synthesizing missing image regions using surround-
ing context. However, users cannot directly decide what
content to synthesize with such approaches.We propose an
end-to-end network for image inpainting that uses a differ-
ent image to guide the synthesis of new content to fill the
hole. A key challenge addressed by our approach is synthe-
sizing new content in regions where the guidance image and
the context of the original image are inconsistent. We con-
duct four studies that demonstrate our method yields more
realistic image inpainting results over seven baselines.

1. Introduction
People often wish to replace undesired content from their

photos with a plausibly realistic alternative. For example, a
visitor spends a long time trying to capture a picture of the
Leaning Tower of Pisa but a passerby occludes the tower
in the captured photo. It is often desirable to remove the
passerby from the photo. In another case, a digital artist
may wish to show Denver with a beach by replacing part of
the photo with a beach from San Diego. These tasks involve
removal of undesired regions followed by automated image
inpainting (also called image completion and hole filling),
the task of filling in the lost part of an image. Automated
image inpainting is an established computer vision problem
with many valuable applications [16, 37, 6, 9, 38, 27, 45].

Numerous image inpainting solutions have been pro-
posed. One line of work involves cutting and pasting a se-
mantically similar patch and then blending it with the im-
age [16, 37]. Unfortunately, such methods typically gener-
ate unrealistic results when the pasted content differs from
the context of the image; e.g., as exemplified in Figure 1
(see yellow bounding boxes on images). Another set of
methods automatically synthesize missing image regions
using surrounding context [11, 10, 24, 6, 9, 38, 28, 40].
With such approaches, users may receive realistic looking
results, however a user cannot control what content is syn-
thesized in the hole. An open challenge is how to produce a

Figure 1. We propose a method for automatically filling a hole
in an image. It takes an original image with a hole (e.g., the red
bounding box of the road in the original image) paired with a guid-
ance image and outputs an image inpainting result. As shown, dif-
ferent guidance images (row 1) lead to diverse image inpainting
results (row 2). We also show results from a naive approach which
cuts and pastes the guidance image content into the hole as is (row
3). As observed, a key challenge is synthesizing new content for
the inconsistent regions in the transition between the original im-
age and the guidance image (see yellow bounding boxes).

realistic looking image inpainting result while enabling the
user to control what content fills the hole.

We propose an image inpainting method to overcome the
limitations discussed above. Our key idea is to use another
image to “guide” the synthesis process within a deep learn-
ing framework. This empowers a user to control the re-
sult, as illustrated in Figure 1. Given an original image and
a region to remove, we show different “guidance images”
(top row) and results from our method (middle row). The
key difficulty is successfully evolving the content of a guid-
ance image to match the context of the original image, as
illustrated by the results of a naive cut-and-paste method
(bottom row). The transition between the original image
and pasted content often has inconsistent regions (shown in
yellow bounding boxes on images). Our main contribution
is an end-to-end neural architecture that, given a guidance
image, leverages the guidance image to fill the hole while
identifying inconsistent regions and then synthesizing new



content to match those regions with the image context.
We explore three questions when evaluating our pro-

posed inpainting approach: 1) how well does our approach
recover true pixel values in the hole?, 2) how often does our
approach synthesize images that people think are real? and
3) how often do people perceive our results as more realistic
than alternative methods? Our experiments demonstrate our
approach is effective in capturing true pixel values with an
image restoration task and show humans perceive that our
approach synthesizes more realistic hole-fillings than seven
alternative approaches.

2. Related Work
Image Inpainting: Existing inpainting methods fall into
two groups.

One group relies only on image context to fill holes.
Classical approaches use diffusion to propagate isophotes
from the surrounding context to the hole [3, 27] or apply
texture synthesis to extend texture from surrounding regions
to the holes [11, 10, 2, 24, 6, 9, 38]. However, such methods
cannot capture the semantics of the image. More recently,
deep neural networks were introduced to regress from sur-
rounding context to missing pixel values [28, 41, 18, 40, 42]
or model the distribution of possible outputs by random
sampling [44]. However, these approaches do not give users
the control on what should be synthesized.

The other group relies on other images to fill the hole.
Scene completion involves finding a semantically simi-
lar patch from a database of millions of images and then
cutting, pasting, and blending it with the original im-
age [16]. Internet-based inpainting improves the seman-
tic similarity in nearest neighbor search by using a web
engine [37, 45]. While such approaches often can trans-
fer structure and high-frequency details from the guidance
image to the hole, results often have inconsistent regions
where the pasted/blended content fails to match the con-
text. Unlike these methods, our approach can synthesize
new content to resolve such inconsistencies.
Image Harmonization: Image harmonization methods ad-
just low-level appearances of foreground and background
regions to make them compatible when generating realis-
tic composite images [34, 35, 30, 31, 29, 36]. For exam-
ple, blending transfers content from the guidance image to
the source image and interpolates the error in the transition
region to address color inconsistencies [29]. Image meld-
ing uses patch-based synthesis to resolve texture inconsis-
tencies when transferring content from the guidance image
to the source image [7]. Unlike prior work, our approach
synthesizes new consistent content in the transition region
using an end-to-end deep neural network. Experiments
demonstrate the advantage of our system over relying on
existing top-performing harmonization methods [29, 36, 7].
Style Transfer: Image style transfer combines the high-

level content of one image with the low-level style of an-
other [13, 21, 14, 12]. While our approach similarly com-
bines information from two images, our approach differs
from style transfer because it inserts high-level features of
the guidance patch directly into the high-level feature map
of the incomplete image to synthesize a consistent image.
Rather than try to transfer low-level style from one image
to another, our aim is to retain the high-level content of the
guidance image when synthesizing content.

3. Methods
Our inpainting approach is embedded in a larger system.

For completeness, we provide a system overview in Sec-
tion 3.1. We then describe the key novel component of our
system in detail in Sections 3.2 and 3.3.

3.1. System Overview

Our system consists of three steps. Given an image, the
first step is identifying a region of the image to remove.
Next, a guidance image is chosen, either manually from
a user or automatically from an intelligent image retrieval
system. Our implementations for these two steps are de-
scribed in the experimental section (Section 4.2). The final
step is creating an image inpainting result, given an incom-
plete image (i.e., original image with the user-defined re-
gion removed) and guidance image. This final step is where
the key novelty of our work lies, and we describe our im-
plementation for this step in the remainder of this section.

3.2. Image Inpainting Framework

An overview of our deep learning framework is shown
in Figure 2. It takes as input an incomplete image and guid-
ance image, and applies two modules sequentially to gen-
erate an image inpainting result. The first module, which
we call “Localization Network”, identifies a patch in the
guidance image to use to replace the hole in the incomplete
image. The second module, which we call “Synthesis Net-
work”, synthesizes new content to fit within the image con-
text, informed by the guidance image patch. We describe
here the design of this deep learning framework and discuss
in the next section how we train it (Section 3.3).

3.2.1 Localization Network

This network is a spatial transformer [20] designed to iden-
tify an image patch from the guidance image to use to fill
the hole in the incomplete image. It consists of two mod-
ules. The first module is a CNN, derived from the VGG
architecture [33], that takes as input an incomplete image,
guidance image, and binary mask indicating the hole1 and
outputs the affine transformation parameters that will be
used to transform the guidance image. The CNN contains

1Each input image is of size 224× 224.



Figure 2. Our proposed inpainting framework includes a 1) localization network which locates the best fitting patch in the guidance image
and aligns it with the hole and 2) synthesis network which encodes both the incomplete image and the aligned guidance image to synthesize
a reasonable patch to fill the hole. (Best viewed in color.)

13 convolution layers for computing a spatial feature repre-
sentation of 7 × 7 × 512 dimensionality, followed by three
fully connected layers to predict the six parameters of affine
transformation. The second module is a differentiable im-
age sampler that transforms the guidance image based on
the predicted transformation parameters. It samples the in-
put using a sampling grid to transform the guidance image.
Once completed, the patch at the corresponding location in
the transformed guidance image is used as the source for
filling the hole. In other words, the guidance patch that in-
forms the image synthesis process is aligned with the hole
in the incomplete image (e.g., see red box in Figure 2).

3.2.2 Synthesis Network

We design a synthesis network that automatically decides
which high-level features from the guidance patch to use,
locates inconsistencies between the guidance patch and in-
complete image, and synthesizes new content to clean-
up the inconsistencies. Figure 2 provides an overview of
the network architecture. As shown, we use an encoder-
decoder CNN. The encoder combines information from
three branches that encode the (1) incomplete image (con-
text branch), (2) aligned guidance image (guidance branch),
and (3) inconsistent regions between the guidance patch and
context of the incomplete image (attention branch). The
decoder converts the encoded feature representation into a
hole filling. Skip-layer connections [32] are used to pre-
serve details that may be lost due to the bottleneck (i.e.,
small number of neurons) in the encoder-decoder pipeline.
We describe below the technical details of this network.

Attention Branch: This branch computes a spatial atten-
tion map that indicates to what extent each pixel in the

aligned guidance image is consistent with the surrounding
context of the incomplete image. It takes as input a con-
catenation of the incomplete image, aligned guidance im-
age, and binary mask indicating the hole. Its architecture
is a fully convolutional network, following the VGG archi-
tecture until conv3 3, with an additional convolutional layer
and then finally a sigmoid layer that outputs 1-channel fea-
ture map. This branch controls to what extent to preserve
the original content of the guidance patch when synthesiz-
ing new content. Note that even in areas where the network
is directed to use the original content, it still often must ad-
just the patch appearance to match the surrounding context.

Context Branch: This branch compresses the incomplete
image concatenated with the binary mask indicating the
hole into a high level feature representation. Its architec-
ture is a fully convolutional network, following the VGG
architecture until conv3 3, and so includes six convolutional
layers. It outputs a 56× 56× 256 dimensional feature.

Guidance Branch: This branch compresses the aligned
guidance image into a high level feature representation. We
choose a pretrained VGG on ImageNet until conv3 3 to en-
code the high-level semantic features for the visual recogni-
tion task. The output feature dimension matches that of the
context branch.

Decoder: This branch takes as input the result from mul-
tiplying the guidance branch with the attention branch and
then adding that result to the context branch. Consequently,
the input highlights which regions from the guidance patch
to preserve versus synthesize when fusing it with the con-
text of the incomplete image. The decoder architecture uses



the conv3 3 to fc7 layer from the VGG architecture to ex-
tract a 4096 feature dimension. This compact representation
then goes through a series of bilinear upsampling followed
by convolution to generate an image of the original image
size. Finally, a tanh layer is used to constrain the output im-
age that shows a realistic hole filling to a normalized range.

Skip-layer Connections: Our motivation for this compo-
nent is to retain details that otherwise would be lost be-
cause of the bottleneck (i.e., small number of neurons) in
the encoder-decoder pipeline. We introduce a skip-layer
connection [32] that concatenates the conv1 2 and conv2 2
feature maps in the guidance branch with the corresponding
symmetric feature maps in the decoder and skip-layer con-
nections within the decoder. These connections at different
layers provide different levels of abstraction.

3.3. Image Inpainting Training

A key challenge for our proposed guided image inpaint-
ing problem is there is no clear way to generate the ground
truth needed to train a solution. Inspired by prior work that
shows models trained on synthetic data can generalize well
to real images [4, 39], we propose a process to create syn-
thetic training data for our problem. The idea of our ap-
proach is to use a corrupted patch of the original image as
the guidance image in order to have the ground truth needed
for training. If a method worked perfectly, then given the in-
complete original image and corrupted patch of the original
image, it would perfectly reconstruct the original image. We
will show in our experiments that our system generalizes
well in real scenarios when the guidance image is a real,
different image from the original image (Sections 4.2 and
4.3), despite training with corrupted patches of the original
images as the guidance images. We describe below our pro-
cess for creating synthetic training data and the loss func-
tions for training the localization and synthesis networks.

3.3.1 Training Data Generation

We create each training example by randomly cropping out
a patch on the original image, corrupting the patch (as de-
scribed below), adding irrelevant content to its boundary
(as described below), and then pasting the enlarged cor-
rupted patch back into the original image for use as the guid-
ance image. This four-step process is illustrated in Figure
3. Note that the hole in the original image needing to be
filled matches the size of the enlarged patch. This process
ensures that we both have the ground truth inpainting re-
sult and we have inconsistent regions between the guidance
patch and incomplete image (i.e., irrelevant content) that the
synthesis network will need to modify to match the ground
truth. Also note that the location of the corrupted patch in
the guidance image is not fixed. This ensures the localiza-
tion network will need to be able to find the location of the
guidance patch.

Figure 3. Shown is an example illustrating our process for gener-
ating synthetic training data. After identifying the hole to remove
from the original image (green bounding box) and the patch of the
original image to corrupt (red bounding box), our process creates
an image containing both corrupted original content (inside red
bounding box) and content irrelevant to the original image (gap
between red and green bounding boxes).

To corrupt the patch that is cropped from the original
image, we first insert it into a random location in another
random image (which we call the target image), as shown
in step 2 in Figure 3. Then, we apply Poisson Blending [29]
to corrupt its appearance, as shown in step 3 in Figure 3 (see
red rectangle).

To add irrelevant content to the corrupted patch, we add
content from the target image, as illustrated by the region
between the red and green rectangles in Figure 3. We use
different gap widths between the patch (red rectangle) and
hole size (green rectangle) so that the synthesis network
cannot inadvertently learn biases for where to transfer ex-
isting content in the guidance patch and where to synthe-
size new content. Specficially, the corrupted patch and hole
sizes are randomly sampled in the ranges [80× 80, 96× 96]
and [96× 96, 128× 128] respectively.

Given a large synthetic dataset created as described
above, the expectation is that our method trained in a su-
pervised manner will learn to find the guidance patch using
the localization network and synthesize the content of the
original patch of the image using the synthesis network.

3.3.2 Image Synthesis Loss

We describe here the loss function we use to train our syn-
thesis network. The choice of loss function is important
because the problem is underconstrained. Recent work
[21, 8, 25] has shown perceptual loss computed on fea-
ture representations of a visual perception network can be
used to generate high-quality images. Generative Adver-
sarial Networks (GANs) [15] are shown to be successful in
image generation as an adaptive loss [28, 19, 25]. Conse-
quently, we combine a perceptual loss computed on a visual
perception network φ together with an adversarial loss to
train the synthesis network:

lg(G) =
1

N

∑
(Ĩ,Iguide)

lφperc(I, IG) + λadvladv(IG)

IG = G(Ĩ , Iguide)

The number of training pairs is N . We use I to denote the
ground truth and Ĩ for the corresponding incomplete image



with the user defined region removed. Iguide is a guidance
image. The perceptual loss guides the image synthesis to
match the ground truth, while the adversarial loss encour-
ages the network to favor image generation that resides on
the natural image manifold.

Perceptual Loss: We compute the perceptual loss on
multiple layers of a visual perception network φ. Our in-
tention is that matching both high-level and low-level repre-
sentations guides the synthesis network to learn both global
structure and fine-grained details [5]. Let φj(x) be the fea-
ture map of the jth layer of a pretrained network φ given
input image x. φj(x) has shape of Cj ×Hj ×Wj . Suppose
the completed image by our network is Î = G(Ĩ , Iguide).
The perceptual loss is defined as follows:

lφperc(I, Î) =
∑
j

λj
Cj ×Hj ×Wj

||φj(I)− φj(Î)||22

The hyperparameters λj balance the contribution of each
layer j to the perceptual loss. For layers φj we use conv1 2,
conv2 2, conv3 3, conv4 3, conv5 3 in VGG-16. λj are up-
dated to normalize the expected contribution of each layer
in a certain number of iterations.

Adversarial Loss: Following [15] we train a discrim-
inator network D to distinguish synthesized images from
natural images. We alternately optimize D and a generator
G to solve the following min-max problem:

min
G

max
D

I∼pdata(I)[logD(I)] +Î∼pG(Î) [log(1−D(Î))]

With this formulation, the generator G is trained to fool
the differentiable discriminatorD, creating solutions highly
similar to natural images.

The discriminator D, following [18], has two critics: a
global one and a local one. The global critics takes as in-
put the whole completed image to judge global consistency
of a scene while the local critics only takes a patch cen-
tered around the completed region to encourage local con-
sistency with the surrounding area. When training the gen-
erator, the adversarial loss ladv(Î) is defined based on the
real/fake probability of the discriminator D as:

ladv(Î) = − logD(Î)

3.3.3 Localization Loss

We now describe the loss function we use to train our lo-
calization network. Although the spatial transformer has a
differentiable image sampler, the function of image synthe-
sis with respect to the transformation parameters does not
have a good shape that is easy to be optimized. To make the
network trainable, we add a loss directly on the predicted
transformation parameters (we call it localization loss).

Let M be the number of points sampled in the guidance
image, xi(I) be the vector representing the homogeneous
coordinate of the i-th sampled point, T (I) be the ground
truth affine transformation matrix for image I (known when
creating the dataset), and T̄ (I) be the estimated transfor-
mation matrix. We define the localization loss lloc as the
average of Euclidean distances between estimated point po-
sitions after transformation and their corresponding ground
truth locations:

lloc(T̄ ) =
1

MN

∑
I

M∑
i=1

||T̄ (I)xi(I)− T (I)xi(I)||22

We encourage the estimated transformation matrix to be
close to the ground truth transformation by minimizing the
localization loss.

3.3.4 Implementation

We create the synthetic dataset from ADE20K [43]. There
are 20, 210 images in the training set of ADE20K and 2000
in the validation set. For each image in the training set, we
generate 50 pairs of incomplete image and guidance image,
resulting in 1, 010, 500 pairs for training. The localization
network and synthesis network are trained separately with
localization loss and synthesis loss. Training them jointly
is undesirable since this leads the synthesis network to blur
the image generation to accommodate localization errors.

For training CNNs, we use Tensorflow [1] framework.
We choose Adam [23] as the optimization method. We fix
the parameters of Adam as β1 = 0.5 and β2 = 0.999. The
initial learning rate in Adam is set to lr = 0.0002.

We use a weighted sum of perceptual loss and adversar-
ial loss to train the generator. The weight of adversarial loss
is λadv = 2. M = 8 points are sampled in each image to
compute the localization loss. We train the synthesis net-
work for 1, 918, 000 iterations with batch size equal to 2. It
takes roughly two weeks to train on NVIDIA GeForce GTX
1080 GPU. The localization network is trained for 841, 000
iterations, which takes an extra 5 days.

4. Evaluation
We now describe our studies to evaluate the power of

our localization and synthesis network in localizing fitting
patches and synthesizing realistic images. We address the
following research questions:
• How well does our model capture true pixel values in

the missing region?
• How often does our method synthesize realistic images

that humans cannot distinguish from natural images?
• How often is our synthesis preferred to baselines?

We conduct four experiments to address these questions,
evaluating synthesis and localization separately. In Sec-



tion 4.1, we measure how well our synthesis network re-
stores true pixel values of the original patch given a cor-
rupted one as guidance. Section 4.2 demonstrates the ef-
fectiveness of our synthesis network to synthesize images
that people mistakenly perceive as real. In Section 4.3, we
conduct pairwise comparisons between our synthesis and
baselines to measure how often our results are preferred to
alternative methods. In Section 4.4, we perform pairwise
comparisons between our localization and Local Context
Matching [16] to investigate which localization method re-
sults in more realistic synthesis.

4.1. Image Restoration

Baselines: We compare our synthesis network to seven re-
lated baselines across five types of methods. We use the
code provided by the authors.

• Texture synthesis: Content-Aware-Fill (CAF) using
PatchMatch [2].
• Deep Generative Models: We evaluate three methods

for this type of approach. We use Context Encoder
(CE) [28], where we retrain it with l2 and adversarial
loss on ADE20K [43]. We also use High-Resolution
Image Inpainting (HR) [40] and Globally and Locally
Consistent Image Completion (GLCIC) [18].
• Harmonization: Deep Harmonization (DH) [36].
• Blending: Poisson Blending (PB) [29].
• Melding: Image Melding (IM) [7].

CAF, CE, HR and GLCIC hallucinate the missing region
from the context without guidance. DH, PB, IM and our
method use a corrupted patch from the original image as
guidance. The latter four approaches have access to addi-
tional guidance images that are not available to the former
four approaches. We compare to both classes of algorithm
for a comprehensive evaluation.
Dataset: We evaluate on our synthetic test set, consisting of
2000 images with random holes derived from ADE20K val-
idation set. The guidance patch is corrupted from the orig-
inal patch, with a gap filled with unrelated content near the
boundary. To evaluate the synthesis network exclusively,
we assume ground truth localization, aligning the guidance
patch with the hole perfectly.
Evaluation Method: We evaluate the restoration by
measuring pixelwise distance between the prediction and
ground truth using three metrics: L1 Loss, L2 Loss and
PSNR (Peak Signal to Noise Ratio).
Results: Results are shown in Table 1. As observed, our
synthesis network consistently offers significant gains over
baselines for all three metrics. Our synthesis method de-
creases the error by 5.34% and 1.93% in terms of Mean
L1 Loss and Mean L2 Loss compared to the best baseline,
achieving 6.89% and 1.11% respectively. We also out-
perform the best baseline by 4.13dB in PSNR, achieving

20.68dB. Interestingly, our results show that methods that
hallucinate results without guidance (CE, HR, GLCIC) per-
form similarly to those that have guidance (PB, IM). This
highlights both the effectiveness of the methods and the dif-
ficulty in properly leveraging the information in a corrupted
patch. The results reveal our method is able to effectively
utilize this corrupted information. We attribute the success
in this task to the nature of our approach: it can transfer
the structure of the guidance image with color and appear-
ance adjusted and synthesize appropriate new content when
necessary (fill the gap with irrelevant content in this case).

Method Mean L1 Mean L2 PSNR
CAF[2] 15.43% 5.09% 14.38dB
CE[28] 12.91% 3.21% 15.91dB
HR[40] 13.05% 3.29% 15.83dB

GLCIC[18] 13.28% 3.47% 15.56dB
PB[29] 13.63% 3.28% 15.41dB
IM[7] 12.23% 3.04% 16.55dB

DH[36] 18.87% 6.02% 12.73dB
Ours 6.89% 1.11% 20.68dB

Table 1. Results of our method and seven baselines with respect
to three metrics for the image restoration task. Smaller Mean L1
values, smaller Mean L2, and larger PSNR values indicate better
performance. (% in the table is included to facilitate reading).

4.2. Absolute Realism

In this section, we show people a random image from a
mixed dataset of real and synthesized images and ask them
to guess whether the shown image is real or fake. We bal-
ance the number of real and fake images to avoid a strong
real/fake prior. We investigate using a guidance image that
is a different real image from the original image to address
the common use case scenario of replacing content in an
image with content from another image.

To recruit people for our human perception task, we em-
ploy crowd workers on Amazon Mechanical Turk (AMT).
We show each image for four seconds to give people suf-
ficient time to determine its realism. Our choice of this
time period is motivated in part by the work of Joubert
et al. [22], which showed humans can understand scenes
and complete simple tasks such as categorizing man-made
and natural scenes with high accuracy (both around 96%) in
around 390ms.
Implementation: We implement the components in Sec-
tion 3.1 as follows.

We use a rectangular hole to remove content from
the original image, since bounding boxes are an efficient,
commonly-used approach to annotate images. We simulate
a user who wants to remove an object or part of a scene
by using a ground truth semantic segmentation to select the
region to remove and fitting a bounding box around it.



Method NI CE[28] HR[40] CAF[2] PB[29] DH[36] GLCIC[18] IM[7] Ours
Retrieval (a) 97.7% 10.0% 14.0% 31.0% 18.0% 23.0% 14.0% 23.0% 33.0%
Retrieval (b) 97.7% 22.0% 15.0% 16.0% 20.0% 22.0% 12.0% 27.0% 36.0%

Table 2. User study results showing the perceived absolute realism of synthesized images. The numbers in the table are the percentage
of images deemed to be real. NI refers to natural images. Retrieval (a) uses the full original image to retrieve the guidance image while
Retrieval (b) uses the incomplete image with its hole filled by CAF [2] to retrive the guidance image from a large database.

Method HR[40] PB[29] DH[36] CAF[2] CE[28] IM[7] GLCIC[18]
Retrieval (a) 76% 76% 71% 70% 70% 67% 66%
Retrieval (b) 71% 73% 72% 70% 73% 67% 70%

Table 3. Shown are results from our relative realism study. Each cell lists the percentage of pairs in which synthesized images by our
approach are rated more realistic than the corresponding baseline in human perception experiments. Chance is at 50% result.

For a guidance image, we are motivated to efficiently
find an image that is semantically similar to the original im-
age. We follow the work of Heo et al. [17] to retrieve nearest
neighbors in a large dataset. We examine two retrieval sce-
narios: using (a) the full original image or (b) the incom-
plete image with its hole filled by Content-Aware-Fill [2].
We will report results for Retrieval (a) and (b) separately.
In Retrieval (a), we assume access to the full image because
the hole often comes from replacing part of the original im-
age. In Retrieval (b) we remove the original content in the
hole to prevent it from biasing the retrieval.
Baselines: We use the seven baselines used in Section 4.1.
Dataset: We use images in ADE20K validation set as origi-
nal images and retrieve guidance images in MSCOCO [26].
To evaluate synthesis separately, we use Local Context
Matching (LCM) [16] as localization for all the synthe-
sis methods. LCM [16] minimizes pixelwise SSD error in
the local context. We randomly sample 100 images to go
through our synthesis network and all the baselines. In-
painting results from all the methods are mixed together
with 300 real images from ADE20K validation set to bal-
ance the number of real and fake images.
Evaluation Method: We measure absolute realism of the
synthesized images by the fraction of images deemed to be
real in the AMT study.
Results: As shown in Table 2, although still far from natural
image quality, 33% and 36% of the synthesized images by
our approach are deemed to be real with Retrieval (a) and
(b) respectively. It outperforms all baselines significantly
except for only slightly beating Content-Aware-Fill(CAF)
in Retrieval (a). We will show in Section 4.3 that our syn-
thesized images are rated to be more realistic than Content-
Aware-Fill in a more careful pairwise comparison. Methods
that hallucinate results without guidance (CE, HR, GLCIC)
do not perform well in this experiment. One of the reasons
is that the holes are generally large and it is challenging for
these methods to hallucinate a large region. Despite our
synthesis network being trained on a synthetic dataset, our

results show it can generalize well to real images.

4.3. Relative Realism

We next investigate how often the generated images by
our synthesis network are considered to be more realis-
tic than those created by baselines. We conduct pairwise
comparisons between our method and all the baselines in
the aforementioned absolute realism study. Each pair con-
tains two images synthesized by our synthesis network and
a baseline for the same incomplete image using the same
guidance image. The users are asked to select the more re-
alistic image after they are shown a pair side-by-side for an
unlimited time.
Implementation: We use the same implementation as in
Section 4.2.
Baselines: We use the seven baselines used in Section 4.2.
Dataset: We use the same dataset as in Section 4.2.
Evaluation Method: We compute the relative realism by
the percentage of pairs in which our synthesized images are
considered to be more realistic by people (i.e., AMT crowd
workers) than the baselines.
Results: As shown in Table 3, people rate our synthesized
images more realistic than baselines for at least 66% of test
images. For example, our results are more realistic than
Content-Aware-Fill, which is the best baseline in the abso-
lute realism experiment for 70% of images (using Retrieval
method (a) to find a guidance image). These results reveal
greater improvements of our synthesis over baselines than
is evident from the absolute realism study. Our results are
similar whether using Retrieval method (a) or (b) to choose
a guidance image.

We show qualitative results from our results and the
baselines in Figure 4. As observed, our synthesis network
generates more realistic hole-fillings that transfer both high-
level structure and necessary fine-grained details from the
guidance image, while maintaining consistency with the
context of the original image. Our approach can also syn-
thesize diverse inpainting results, as shown in Figure 1.



Figure 4. Visual comparison of inpainting results by different
methods. Compared to methods that do not use guidance images
(CAF [2], CE [28], GLCIC [18] and HR [40]), our results look
more realistic by transferring matching content of the guidance
image to the hole. Compared to the baselines that use guidance
images (PB [29], DH [36] and IM [7]), our approach is better at
avoiding artifacts along the boundaries of the hole by synthesizing
new content for inconsistent regions.

4.4. Localization

While the previous sections evaluate the synthesis, we
evaluate in this section our localization method with an ab-

lation study. We use our synthesis network to fill in holes
for all localization methods. To draw a direct comparison
between our method and baselines, we conduct a relative
realism user study. Each pair that is compared contains in-
painting results for the same incomplete image and guid-
ance image, but using different localization methods. Peo-
ple are asked to choose the more realistic image after the
two images are shown side-by-side for an unlimited time.
Baseline: We compare to Local Context Matching [16],
which minimizes pixelwise SSD error in Lab color space.
It has no knowledge of global structure or semantics.
Dataset: We use images in the validation set of ADE20K
as incomplete images and use the full images to retrieve
semantically similar images as guidance from MSCOCO.
We randomly sample 50 images in ADE20K for evaluation,
each with 10 retrieved neighbors in MSCOCO as guidance
images. Thus, each hole has 10 different hole-fillings. It
is more robust to retrieve multiple guidance images than a
single one to evaluate localization because it is possible that
the guidance image does not contain a good matching patch
for hole filling. There are 500 relative comparisons.
Evaluation Method: We use the same approach as in Sec-
tion 4.3.
Results: The synthesized images based on our localization
is rated to be more realistic than Local Context Matching in
53.8% of all the pairwise comparisons. We conjecture that
the gain comes from consideration of global structure. Our
localization network processes the whole image while Local
Context Matching only takes into account local information
in the context. The gain is relatively small probably be-
cause the distribution of features for localization in the syn-
thetic images is different from that in natural images. The
localization network trained on the synthetic dataset does
not generalize as well to natural images.

5. Conclusion

We introduce an end-to-end inpainting model to local-
ize a matching patch in the guidance image and transfer its
content to the hole followed by synthesizing a realistic hole-
filling. We conduct four studies to evaluate the power of our
approach in localizing fitting patches and synthesizing real-
istic images. Despite training on a synthetic dataset, our
synthesis network generalizes well to natural images. The
human perceptual experiments show that our approach syn-
thesizes more realistic images than all the baselines.
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