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Abstract—Smart City is a key component in Internet of Things
(IoTs), so it has attracted much attention. The emergence of
Mobile Crowd Sensing (MCS) systems enables many smart city
applications. In an MCS system, sensing tasks are allocated
to a number of mobile users. As a result, the sensing related
context of each mobile user plays a significant role on service
quality. However, some important sensing context is ignored in
the literature. This motivates us to propose a Context-aware
Multi-Armed Bandit (C-MAB) incentive mechanism to facilitate
quality-based worker selection in an MCS system. We evaluate
a worker’s service quality by its context (i.e., extrinsic ability
and intrinsic ability) and cost. Based on our proposed C-MAB
incentive mechanism and quality evaluation design, we develop
a Modified Thompson Sampling Worker Selection (MTS-WS)
algorithm to select workers in a reinforcement learning manner.
MTS-WS is able to choose effective workers because it can
maintain accurate worker quality information by updating evalu-
ation parameters according to the status of task accomplishment.
We theoretically prove that our C-MAB incentive mechanism is
selection efficient, computationally efficient, individually rational,
and truthful. Finally, we evaluate our MTS-WS algorithm on
simulated and real-world datasets in comparison with some other
classic algorithms. Our evaluation results demonstrate that MTS-
WS achieves the highest cumulative utility of the requester and
social welfare.

Index Terms—participant selection, mobile crowd sensing,
multi-armed bandit

I. INTRODUCTION

Mobile Crowd Sensing (MCS) is emerging as an attractive
paradigm for accomplishing complicated tasks by tapping into
the power of a large number of contributors (i.e., workers or
pariticipants) [1], [2]. Example of these tasks include urban
traffic information mapping [3], [4], parking lot searching [5],
massive dataset labelling [6], and health care provisioning
[7]. Recent advances in mobile computing technologies and
Internet of Things (IoTs) technologies enable us to place more
built-in sensors and wireless communication modules into a
smart device or IoT device. As a result, MCS is expected to
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inspire more novel applications (especially smart city appli-
cations) and greatly enhance the quality of our daily lives in
various aspects. However, there still are many challenges that
need to be addressed so as to meet this expectation.

One of the fundamental challenges for an MCS system is
the design of its incentive mechanism. An effective incen-
tive mechanism needs to enable the crowd sensing requester
to select high-quality workers with reasonable expenses in
order to complete sensing tasks successfully. Thus, worker
selection becomes one of key issues in designing an incen-
tive mechanism. Many existing works formulate the worker
selection problem as an optimization problem, and attempt
to strike a balance among constraints such as sensing cost,
task coverage, energy efficiency, or user privacy [8]–[13].
Under these constraints, workers are selected based on their
context information (i.e., extrinsic ability) that typically in-
cludes location, buffer size, and battery power [14]–[17]. How-
ever, workers’ personal characteristics (i.e., intrinsic ability)
such as qualifications and interests are often ignored in the
worker selection process. These characteristics can also have
considerable impacts on service quality. Therefore, it is of
great significance to extend the concept of context information
to include both extrinsic and intrinsic abilities into worker
selection consideration.

Since we propose workers’ extrinsic and intrinsic abilities
in the selection process, we need to design a novel context-
aware selection algorithm based on our new worker ability
model. Our algorithm design is inspired by the Multi-Armed
Bandit (MAB) problem, which refers to the scenario where a
gambler is faced with a number of slot machines (i.e., multi-
armed bandits). Each bandit provides a random reward from a
probability distribution specific to that machine. The gambler’s
goal is to maximize the sum of rewards earned through a
sequence of selected lever pulls. Initially, the gambler has to
explore, and thus, may choose seemingly suboptimal arms to
gather information. The gathered information is exploited to
refine the expected rewards of these arms’ and in turn improve
long-term rewards [18]. The fundamental challenge in MAB is
how to strike a balance between exploration and exploitation.

The MAB problem is similar to our worker selection
problem in that the requester (like the gambler) also needs to
choose a number of high-quality workers (like the bandits) in
a certain sequence so as to successfully complete sensing tasks
under budgetary constraints. Traditionally, Thompson Sam-
pling (TS) has been used to solve the MAB problem. However,
classical TS [19] assumes each arm follows a distribution with
a fixed parameter. Nonetheless, a worker’s context information
(especially its extrinsic ability) changes over time in an MCS
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system, for which classical TS cannot be applied directly in
our scenario. This presents another challenge that how to
update the evaluations of workers for the worker selection
problem. Reinforcement learning is one of the most active
research areas in artificial intelligence. This computational
approach can learn whereby an agent tries to maximize the
total amount of reward it receives when interacting with a
complex, uncertain environment. Thus, reinforcement learning
methods have the advantages of handling highly dynamic
context of workers.

Motivated by the aforementioned challenges, we propose an
effective Context-aware MAB (C-MAB) incentive mechanism
that enables the requester to choose a group of workers
with high quality-price ratio to execute sensing tasks, and
guarantees the utility and truthfulness of the workers. In our
proposed C-MAB mechanism, workers’ service quality are
estimated by combining their extrinsic ability and intrinsic
abilities. Next, we design an online worker selection algorithm,
termed as Modified Thompson Sampling Worker Selection
(MTS-WS), which combines classical TS with reinforcement
learning. MTS-WS selects workers by updating the evaluation
parameters of workers according to their status of accomplish-
ment. The main contributions of this paper are as follows:
• We take workers’ extrinsic and intrinsic abilities into

worker selection consideration, and update the evalua-
tion parameters of workers according to their status of
accomplishment in a reinforcement learning way.

• We investigate the relationships between these two types
of abilities and workers’ service quality, and build a novel
worker ability model.

• We formulate the worker selection problem as a novel
MAB problem and propose a context-aware MAB incen-
tive mechanism.

• We design an online MTS-WS algorithm for our C-MAB
incentive mechanism. MTS-WS selects workers based
on their service quality effectively in a reinforcement
learning manner. We theoretically prove that MTS-WS
possesses many desirable properties, including selection
efficiency, computational efficiency, individual rationality,
as well as truthfulness.

The remainder of the paper is organized as follows. We
present related work in Section II. In Section III and Sec-
tion IV, we introduce our system model and formulate the
online worker selection problem. In Section V, we propose
our algorithm based on Thompson Sampling and theoretically
prove that our mechanism is selection efficient, individually
rational, truthful and computationally efficient. In Section VI,
we study features and present our performance evaluation
results. Finally, we draw our conclusion in Section VII.

II. RELATED WORK
In this section, we present our investigation on worker

selection problems in MCS. Since our incentive mechanism is
based on MAB model, we also investigate MAB algorithms.

A. Worker Selection in MCS
The popularity of online MCS systems drove the emergence

of frameworks, platforms and incentive mechanisms [20]–[24].

Similar to many existing studies, TaskMe [25] and Crowd-
Tasker [10] were built on a central service entity, which was
called a platform, to collect information of both requesters and
workers. The platform chose suitable workers and assigned
tasks to achieve an optimal global utility. In our C-MAB
incentive mechanism, a requester can contact workers directly
through cellular or Wi-Fi connections without such a platform.
This self-organized fashion can provide a rapid response policy
that requesters proactively recruit workers for newly created
tasks instead of posting the tasks online and passively wait for
the workers to participate.

Recently, many researchers paid attention to service quality
control in worker selection. Jin et al. [26] combined quality
information with a reverse combinatorial auction in their in-
centive mechanism design. Wen et al. [27] proposed a quality-
driven auction based incentive mechanism, where the worker
was paid off based on the quality of sensed data instead of
working time. However, they did not give specifics on how to
measure work quality. To address this problem, Liu et al. [28]
designed a context-aware data quality estimation scheme with
a context-quality classifier to guide user recruitment. Another
quality estimation measure was proposed based on a two-
dimensional trust model in [29]. However, neither of these
two works considered updating quality estimation according
to task accomplishment status.

Our proposed C-MAB incentive mechanism differs from
the existing designs in two main aspects: i) C-MAB extends
the context information to include both extrinsic and intrinsic
abilities, and employs them to estimate a worker’s service
quality; and, ii) C-MAB constantly updates the evaluation
parameters of a worker’s service quality of according to the
status of task accomplishment.

B. MAB Algorithms

The fundamental challenge in multi-armed bandit problems
is the need for balancing exploration and exploitation. The
context-free K-armed bandit problem has been studied by
statisticians for a long time [30]–[32]. One of the simplest
and most straightforward algorithms was ε-greedy [33]. In
each time round, ε-greedy first estimated the average payoff
of each arm according to the historical data. Then, it selected
the arm who had the highest payoff estimate with probability
1 − ε, and selected another arm with ε. In contrast to the
unguided exploration strategy adopted by ε-greedy, another
class of algorithm was generally known as Upper Confidence
Bound (UCB) algorithm [34]–[36], which estimated the mean
payoff of each arm and corresponding confidence interval.
Subsequently, the arm that achieved the highest upper con-
fidence bound was selected. Although context-free K-armed
bandits were extensively studied, the more general contextual
bandit problem remained unsolved. The EXP4 algorithm [37]
used an exponential weighting technique to achieve consid-
erable rewards, but the computational complexity may grow
exponentially with increasing number of features. Another
general contextual bandit algorithm was the epoch-greedy
algorithm [38], which was similar to ε-greedy with shrinking
ε. This algorithm was computationally efficient given an oracle
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optimizer, but had a weaker regret guarantee. Compared to ε-
greedy, UCB and EXP4, our MTS-WS algorithm can achieve
both computational efficiency and bounded regret.

Combinatorial multi-armed bandit problem also has become
an active research area [39], [40], where simple arms with un-
known distributions form super arms. In each selection round,
a super arm is played and the outcomes are observed, which
helps the selections of super arms in future rounds. There are
also some modified algorithms based on Thompson Sampling
designed for this problem [41].Different from combinatorial
multi-armed bandit problem, in crowd sensing scenario, selec-
tion mechanisms should focus on each participant rather than
combinations of participants. It is unnecessary to explore all
combinations of participants. In addition, participants are all
independent from each other, which means an execution result
of a participant does not affect others’ execution results. Thus,
it is also unnecessary to share the execution results of one
group with another group. Our proposed C-MAB mechanism
can fit crowd sensing scenarios better.

Context-aware multi-armed bandit problem is another re-
search point and several related models have been applied
into crowd sensing systems. [42] defined a framework for
online spatial task assignment based on a contextual bandit
algorithm. [43] proposed an algorithm called bounded ε-first
based on multi-armed bandit model to promote efficiency of
crowdsourcing systems. [44] addressed the task assignment in
crowdsourcing by the proposed bandit-based task assignment
method with a least confidence strategy. Compared to these
works, C-MAB has a stronger scalability for heterogeneous
sensing tasks as requesters can define favourable assessment
parameters of participants’ expertise.

III. SYSTEM MODEL

The MCS system model considered in this paper con-
sists of a requester and n workers (represented by W =
{w1, w2, . . . , wn}). Workers can execute a set of sensing tasks
denoted as T = {τ1, τ2, . . . }. We assume that the requester
publishes tasks and collects results in a self-organized manner.
Lastly, the requester contacts workers through cellular or Wi-
Fi connections.

A. Overall Flow

At first, the requester publishes a sensing task and sends
it to surrounding mobile users. Then some mobile users send
their context information and bids to the requester and take
part in the task as workers. After the requester estimates the
service quality of all workers, one of the three following cases
may happen:

Case 1: If the requester finds a worker (e.g., Worker1 in
Fig. 1) that is not suitable for a task, it does nothing on the
worker.

Case 2: If the requester finds a worker (e.g., Worker2 in
Fig. 1) that is suitable for a task, it sends an allocation request
to the worker. If the worker fails to finish the task, it cannot
get a payment.

Case 3: If the requester finds a worker (e.g., Worker3 in
Fig. 1) that is suitable for a task, it sends an allocation request
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Fig. 1: Three cases of the interactions between a requester and
a worker.

to the worker. When the worker finishes the task successfully
and submits the result, the requester rewards a payment to the
worker.

If the requester does not collect enough results, it repeats the
worker selection procedure until enough results are collected
or the sensing task expires.

B. Task Model

In this paper, a sensing task is associated with a set of
attributes including Type, Description, Amount, and maxTime.
• Type: The kind of the task such as information collecting

or target finding.
• Description: A brief description of the task in a textual

form.
• Amount: The number of results that the requester needs

for the task.
• MaxTime: The maximum allowed time within which the

requester needs to collect the required amount of results.
Once a requester decides to launch a sensing task, it sends

information of these attributes to surrounding mobile users.

C. Worker Ability Model

A worker’s performance is mainly determined by two types
of abilities: i) extrinsic ability, and ii) intrinsic ability. The
former is decided by a worker’s current situation such as
location, moving speed, the distance between the worker and
task, and the remaining battery power of the sensing device.
Typically, the extrinsic ability is called dynamic context as
it changes with time. The latter is decided by a worker’s
personal characteristics such as its qualifications and interests
for certain type of tasks. Contrary to the extrinsic ability,
the intrinsic ability is called static context because it reflects
personal qualifications and traits which can always remain
steady for a period of time.
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Note that it is important that the requester chooses a worker
by examining both dynamic and static context information
according to the attributes of the sensing task. For example,
the requester publishes a target finding task to a number of
mobile users. A worker that is close to the target may be a
good candidate. However, if the worker is not interested in a
target finding task, it may lead to the failure of this task.

We denote the dynamic context of worker wi at time t by
a 1×K vector Ci(t) = [ci1(t), ci2(t), . . . , ciK (t)], where ciK
denotes the K-th feature. As different features have different
effects on tasks, we formulate the effect as a K×1 vector Zj =

[zj1 , zj2 , . . . , zjK ]
T , where zjK is the parameter to measure

the importance of the K-th feature in task τj . Therefore, the
extrinsic ability of a worker wi with respect to task τj at time
t is given as follows:

qi,j(t) = Ci(t) · Zj =
K∑

k=1

cik(t) · zjk . (1)

It is worth mentioning that this general model fits a variety
of MCS tasks. For example, for a location-aware sensing task,
the distance between the worker and task location is more
important than other features. While, for a photo or voice
collecting task, the storage size of the worker’s sensing device
is more important, as it allows to take high-definition pictures
or sound tracks. We will explore how to set the optimal feature
parameters according to a task type in our future work.

Since a worker’s intrinsic ability is determined by its
personal characteristics, it is difficult to measure directly.
Instead, we use other information to estimate the intrinsic
ability. Specifically, we denote ri,j ∈ {0, 1} as the execution
results of wi. If wi finishes the task τj successfully then
ri,j = 1, otherwise ri,j = 0. In this paper, we focus on
fully completions of tasks, as most of mobile computing
tasks are relatively simple or highly integrated that cannot
be partitioned. For example, for a target finding task, the
execution result only can be “find” or “not find”. And for
a noise collecting task, the execution result only can be
“have collected” or “can not collect”. For a certain sensing
task, a participant has a probability of finishing it because of
various factors. Therefore, we suppose ri,j follows a Bernoulli
distribution B(µi) with µi [19]. We can use the mean µi of
ri,j to reflect the intrinsic ability of wi.

D. Utility Model

Assume that a sensing task τj needs m pieces of results.
The requester sets vj as the value of each piece. Once worker
wi finishes a task successfully, it gets a payment pi,j . Then
the utility of the requester Urequester is defined as follows

Urequester = mvj −
n∑

i=1

ri,jpi,j . (2)

Generally, a worker’s cost is the same as its bid bi. Thus,
the utility of each worker Uwi

is defined as

Uwi
= ri,j(pi,j − bi,j). (3)

Subsequently, the social welfare Usocial can be defined as

Usocial = Urequester +
n∑

i=1

Uwi

= mvj −
n∑

i=1

ri,jbi,j .

(4)

Since we consider the problem for an arbitrary task, task
index j is omitted in all variables for simplicity in the
following sections. For example, qi(t), bi, ri and pi is short
for qi,j(t), bi,j , ri,j and pi,j . Key notations used in this paper
are listed in Table I.

TABLE I: notation used

Notation Description
n Number of workers
m Number of required results of task
v Value of each copy of result

wi, τj i-th worker and j-th task
Ci(t) Context vector of wi at time t
Zj Importance vector of context under task τj
qi(t) Extrinsic ability of wi at time t
ri Execution result of wi at time t
µi The mean of ri

αi, βi Parameters of Beta distribution
bi, b̂i Actual and dummy bid of wi

pi, p̂i Payment of bid bi and b̂i by wi

Qi(t) Service quality of wi at time t
W Worker set
Ws Winning worker set
W∗ Optimal worker set
hi The historical record of wi

B,P,H The set of all bids, payments and history
T The time limitation of a task

IV. PROBLEM FORMULATION

In this section, we formally introduce the online worker
selection problem and discuss the design objectives of our
proposed incentive mechanism.

A. Online Worker Selection Problem

On one hand, we observe that based on specific context,
workers with high-quality service should be selected with high
probability through an online evaluation. On the other hand,
the extrinsic ability of each worker varies significantly over
time. Based on these two reasons, we formulate the online
worker selection problem as a context-aware MAB problem.
In the process of worker selection, the requester chooses a
worker strategically which is comparable to pulling the lever
of an armed bandit. The execution results provided by the
chosen worker is regarded as the reward of the chosen bandit.

In a MAB problem, the player wants to maximize cumula-
tive rewards. Similarly, the requester in MCS systems wants to
maximize profits while cutting down expenses. As µi indicates
the intrinsic ability of wi and belongs to (0, 1), we use µiqi(t)
to represent the working ability of wi. Then we define a service
quality concept by jointly taking a worker’s extrinsic ability,
intrinsic ability and its bid into consideration as

Qi(t) =
µiqi(t)

bi
. (5)
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Therefore, our policy for online worker selection problem
is to find the optimal worker set W which maximizes the sum
of workers’ service qualities, i.e.,

W , arg max
Ws

m∑
l=1

Qsl(tsl), (6)

where Ws = {ws1 , ws2 , . . . , wsm} is the winning worker set
constructed by our MTS-WS algorithm. tsl represents the time
when worker wsl is chosen and Qsl(tsl) represents the service
quality of wsl .

B. Design Objectives

In this paper, we aim to ensure that our worker selection
policy has the following advantageous properties.

We denote W∗ = {w∗1 , w∗2 , . . . , w∗m} as the optimal
worker set. Both W∗ and Ws are multiset and have m
elements. Then we can define the regret as the difference of
service quality between W∗ and Ws.

regret =
m∑

u=1

(
µ∗uq∗u
b∗u

− µsuqsu
bsu

). (7)

Definition 1. (Selection efficiency): Mechanism M is selection
efficient if its regret is bounded.

Definition 2. (Computational efficiency): Mechanism M is
computationally efficient if it can be executed within polyno-
mial time.

Definition 3. (Individual Rationality): Mechanism M is indi-
vidually rational if for each worker, its utility is non-negative
when reporting its true bid. Formally,

Uwi
≥ 0, ∀wi ∈W. (8)

Definition 4. (Truthfulness): Mechanism M is truthful if and
only if bidding bi is the dominant strategy for each worker wi.
Formally

pi − bi ≥ p̂i − b̂i, ∀wi ∈W, (9)

where b̂i is a dummy bid of wi which is not equal to its cost.
And p̂i is the payment if a worker claims b̂i.

V. C-MAB INCENTIVE MECHANISM

In this section, we present a worker selection algorithm
based on Thompson Sampling for our crowd sensing model.
We also prove that our algorithm is selection efficient, indi-
vidually rational, computationally efficient, and truthful.

A. MTS-WS Algorithm

1) Probabilistic Model: Our work selection policy attempts
to find a group of mobile users with high service qualities.
In previous sections, we assume that ri follows a Bernoulli
distribution B(µi). In this distribution, µi is a fixed but
unknown parameter for worker wi. In order to maximize
workers’ service qualities, we need to predict µi at first.
According to [19], we assume µi follows a Beta distribution
Beta(αi + 1, βi + 1). Beta(αi + 1, βi + 1) is the prior
distribution of µi which indicates the subjective cognition

of µi under historical information or common sense. For
example, if a worker wi has executed sensing tasks for 10
times and there are 6 times finished and 4 times failed, the
mean of ri respected to the 10 times execution is 0.6. Then
we can conjecture the real value of µi approaches 0.6.

Based on the definition of prior distribution, we can calcu-
late αi and βi according to historical execution information of
wi. Specifically, αi is the frequency that the worker wi finishes
the task successfully and βi is the frequency that the worker
wi fails. Therefore, once we get an execution result ri of wi,
we can update αi and βi by the following formulae:

αi ← αi + 1, when ri = 1;

βi ← βi + 1, when ri = 0.
(10)

For convenience, we suppose each worker wi maintains a
historical record hi which contains µi, αi and βi. Note that
for workers without historical results, we initialize αi = 0 and
βi = 0.

Now it is easy to understand the basic idea of our worker
selection algorithm based on TS. For each worker, first we
get αi and βi to construct the prior distribution Beta(αi +
1, βi + 1) according to historical records. Then we sample µi

from the prior distribution to calculate Qi(t). After we select
workers whose Qi(t) is high and observe their execution ri,
their αi and βi are updated for next usage. This reinforcement
learning manner maintains a balance between the exploration
and exploitation of µi.

Pr(ri = x) = Pr(ri = x|µi) · Pr(µi|αi, βi). (11)

Equation (11) demonstrates how to calculate the probability
of ri = x(x ∈ {0, 1}). Combined equation (10) and equation
(11), we can see that MTS-WS is reasonable. If ri = 0,
the mean of µi which is αi/(αi + βi) decreases. Then the
probability that µi samples a large value decreases. In another
word, the probability that wi is chosen next time decreases.
If ri = 1, the mean of µi increases. Then the probability
that wi is chosen next time increases. No matter ri = 0 or

ri = 1, the variance of µi which is
αiβi

(αi + βi)
2
(αi + βi + 1)

decreases. This corresponds to the fact that as the number of
experiments increases, the variance decreases.

Algorithm 1: Preprocessing
1: input W , H;
2: for all wi in W do
3: if bi > v then
4: W ←W\wi;
5: end if
6: end for
7: for all wi in W do
8: if hi is ∅ then
9: αi ← 0, βi ← 0;

10: end if
11: end for
12: return W ;
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Algorithm 2: Worker Selection
1: input W , H , B;
2: t← 0;
3: s← m;
4: while s 6= 0 and t < T do
5: for all wi in W do
6: sample µi ∼ Beta(αi + 1, βi + 1);

7: Qi(t)←
µiqi(t)

bi
;

8: end for
9: W ′ ←W ;

10: for j ← 1 to s do
11: w′s ← arg maxwi∈W ′ Qi(t);
12: W ′ ←W ′\w′s;
13: W ′s ←W ′s ∪ w′s;
14: end for
15: observe results;
16: for all wi in W ′s do
17: if ri = 1 then
18: Ws ←Ws ] wi;
19: s← s− 1;
20: αi ← αi + 1;
21: end if
22: if ri = 0 then
23: βi ← βi + 1;
24: end if
25: end for
26: Pricing;
27: t← t+ 1;
28: end while
29: record αi and βi into hi;
30: return Ws, P , H;

2) Complete Algorithm: Now we present MTS-WS in
details. Algorithm 1 is the preprocessing of MTS-WS. We first
remove those workers whose bid is higher than the task value
(Line 3 − 4). Then we check the historical records of each
worker. If a worker wi has no historical record, we initialize
αi, and βi for it (Line 8− 9).

After preprocessing, we select workers according to Algo-
rithm 2. We first sample µi from Beta(αi + 1, βi + 1) and
calculate Qi(t) for each wi (Line 6−7). Then we sort workers
by Qi(t) in a non-increasing order and select the top s workers
(Line 11−13). These workers execute sensing tasks and return
results (Line 15). If a worker finish the task successfully, it
becomes a winner and is added into a multiset Ws (Line
17−18). Then the two parameters αi, and βi of these s workers
are updated and recorded into hi (Line 20, 23, 29). If there are
some workers who do not finish the task, we select workers
again until we collect enough copies of task results or run out
of the valid time (Line 4). At last we obtain a winning worker
set Ws or the task fails. The time complexity for algorithm 2
is O(nT ). We adopt the main idea of reinforcement learning
in the process. Reinforcement learning regards learning as a
process of tentative evaluation. The agent chooses an action
for the environment and the environment changes state after

accepting the action. At the same time, an enhanced signal
(a reward or punishment) is sent to the agent. If an certain
action of the agent leads to a positive reward, then the trend
of generating this action will be strengthened. In our C-
MAB mechanism, the requester is similar to the agent in
reinforcement learning, and selecting an arbitrary participant
is like an action. When the requester selects a participants, he
takes an action. If the selected participant successfully finishes
a sensing task, the requester gets a sensing result as a reward,
then the µi of this participant increasees which means the
trend of selecting this participant is strengthened. The selection
action not only affects the immediate enhancement value, but
also affects the selection at next moment and the final result.

After obtaining the winning workers in one selection round
of Algorithm 2, we need to determine their payments. In
algorithm 3, we first take the maximum service quality among
the remaining worker set W ′ as a reference value Qre(t) (Line

2). Then we set
µiqi(t)

Qi(t)
as the payment for wi if

µiqi(t)

Qi(t)
is

smaller than the task value v (Line 4 − 5). Else we set v as
its payment (Line 7). This pricing policy can guarantee each
worker’s individual rationality.

B. Analysis of MTS-WS

We now analyze the performance of our proposed MTS-WS.

Lemma 1. MTS-WS is selection efficient.

Proof. Let µ∗i = maxµi and ∆i = µ∗−µi. ki(t) denotes the
number of times that the worker wi has been chosen before
time t .

q

b
is a constant which can be calculated by approximate

methods. Then according to the study of Agrawal et al. [19],
the expected total regret in time T is given by

E[

T∑
t=1

regret] = E[

T∑
t=1

(

m∑
u=1

µ∗u ·
q∗u
b∗u
− µsu ·

qsu
bsu

)]

≤ q

b
E[

T∑
t=1

(
m∑

u=1

(µ∗u − µsu))]

=
q

b
·
mn∑
i=2

∆i · E[
T∑

t=1

ki(t)]

≤ O(
mn∑
i=2

1

∆2
i

2

lnT ).

(12)

From formula (12), we can conclude that when time T
increases, cumulative regret’s growth rate becomes lower and

lower (because the derivative of lnx is
1

x
), which reflects the

learning procedure of Thompson sampling.

Lemma 2. MTS-WS is computationally efficient.

Proof. Line 5−7 in algorithm 2 samples µi for each work with
a loop. At each t, we select workers that are first s-th largest
with respect to Qi(t). This procedure can be implemented
by well known linear time selection algorithm whose time
complexity is O(n). After observing selected workers’ results,
we update parameters for each worker according to the result.
The time restraint t < T ensures that our algorithm would not
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Algorithm 3: Pricing
1: input Ws, W ′;
2: Qre(t)← arg maxwi∈W ′ Qi(t)
3: for all wsi in Ws do

4: if
µiqi(t)

Qre(t)
> v then

5: psi ← v;
6: else
7: psi ←

µiqi(t)

Qre(t)
;

8: end if
9: end for

10: return P ;

be trapped in endless loop. As a result, the selecting step is
executed no more than T steps. Therefore, the time complexity
for MTS-WS is O(nT ).

Lemma 3. MTS-WS is individually rational.

Proof. In the pricing step, we first calculate the maximum
service quality in the remaining worker set W ′ as a reference
value Qre(t). Then each winning worker’s payment is equal

to
µiqi(t)

Qre(t)
or v. Since Qi(t) > Qre(t) and bi ≤ v, the utility

of worker i satisfies that

Uwi
= pi − bi =

µiqi(t)

Qre(t)
− bi

=
1

bi
· ( Qi(t)

Qre(t)
− 1) > 0

(13)

or
Uwi = pi − bi = v − bi > 0. (14)

Lemma 4. MTS-WS is truthful.

Proof. A worker may attempt to get a higher utility by lying
about its bid. We denote b̂i as a dummy bid of wi, and q̂i
as the payment if wi claim b̂i. Note that b̂i can be higher
or lower than bi. We assume the winning worker set is
Ws = {ws1 , ws2 , . . . , wsm}, and the winning workers are
sorted by their service quality Qsi (we omit t in the proof
for convenience) in an decreasing order. We denote wm−1 as
the first worker whose service quality is smaller than wsm .

Case 1: If wi cannot be chosen with bi, which means
µiqi
bi

<
µsmqsm
bsm

,

it changes its bid and there will exist three situations:
Case 1.1: If wi increases its bid (b̂i > bi), then its service

quality will become lower and it also cannot be chosen, thus
its utility will maintain zero.

Case 1.2: If wi decreases its bid, which makes
µiqi

µsmqsmbsm
< b̂i < bi,

the service quality of wi will be smaller than the service
quality of wsm . Then wi also cannot be chosen and maintains
zero utility.

Case 1.3: If wi decreases its bid, which makes

b̂i >
µiqi

µsmqsmbsm
,

the service quality of wi will be bigger than the service quality
of wsm . Then wi can be chosen. Its payment satisfies

p̂i =
µiqibsm
µsmqsm

.

However,
µiqi
bi

<
µsmqsm
bsm

.

Thus its utility is

Uwi = p̂i − bi =
µiqibsm
µsmqsm

− bi < 0.

Case 2: If wi can be chosen with bi, which means
µiqi
bi

>
µsmqsm
bsm

,

it changes its bid and there will exist three situations:
Case 2.1: If wi decreases its bid (b̂i < bi), then wi also can

be chosen. But according to the pricing algorithm, when µi

and qi of wi do not change, its payment satisfies

q̂i =
µiqibm−1
µm−1qm−1

= qi.

Thus the utility of wi will not change.
Case 2.2: If wi increases its bid, which makes

b̂i >
µiqi

µsmqsmbsm
,

the service quality of wi will be smaller than the service
quality of wsm . Then wi cannot be chosen with b̂i. Thus its
utility will become zero.

Case 2.3: If wi increases its bid, which makes

bi < b̂i <
µiqi

µsmqsmbsm
,

the service quality of wi will be bigger than the service quality
of wsm . Then wi can be chosen and its payment is

q̂i =
µiqibm−1
µm−1qm−1

= qi.

Thus the utility of wi will not change.

In summary, based on the above lemmas, we can conclude
the following theorem.

Theorem 1. MTS-WS is selection efficient, computationally
efficient, individually rational and truthful.

VI. PERFORMANCE EVALUATION

In this section, we provide a detailed description of our
experimental configuration and results. We first introduce the
three baseline methods for the evaluation of MTS-WS. Then,
we explain the evaluation setup and results on simulated data
and MIT Reality data [45].
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Fig. 2: Comparison of requester’s cumulative utility on simu-
lated data.

A. Baseline Methods

The three baseline methods are ε-greedy, Upper Confidence
Bound (UCB), and Random Selection. The first two baseline
methods are designed for the classical MAB problem. As a
result, we need to make minor modifications to fit our settings.
• ε-greedy: Its original design selects the worker who has

the highest service quality with the probability of 1 − ε
and selects another worker randomly with the probability
of ε. In our evaluation study, we sort workers by Qi(t) in
an increasing order, and select the top m(1− ε) workers.
Then, we randomly select mε workers.

• UCB: It selects workers based on the upper confidence
bound of the rewards. The original UCB selects the

worker whose
αi

αi + βi
· qi
bi

+ d

√
qi(t)

2

αi + βi
is the largest.

Here, we sort workers by
αi

αi + βi
· qi
bi

+ d

√
qi(t)

2

αi + βi
in

an increasing order, and select the top m workers.
• Random Selection: It selects workers randomly.

B. Evaluation on Simulated Data

We first carry out the evaluation study on simulated data.
We generate 600 tasks and their values range from 130 to
150. There are 100 workers in total (n = 100) whose bids
range from 10 to 140. Each worker’s extrinsic ability is in
the range of 1 to 15. Each task needs 20 pieces of results
(m = 20), and maxTime T = 10. We run evaluation under
the four different algorithms. Then, we record the cumulative
utility of the requester and the cumulative social welfare for
each algorithm.

Fig. 2 shows the results in terms of the cumulative util-
ity of the requester. As the number of tasks increases, the
cumulative utilities of the requester increase under all four
algorithms. This means the requester can benefit from workers’
participation in MCS. Note that MTS-WS achieves the highest
cumulative utility of the requester among all four algorithms.

Fig. 3 shows the cumulative social welfare. Typically, social
welfare can be regarded as the income for all participants
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Fig. 3: Comparison of cumulative social welfare on simulated
data.

in our C-MAB model. From the figure, we can see that the
growth trends of social welfare are similar to those of the re-
quester’s utility. MTS-WS also achieves the highest cumulative
social welfare compared with the other three algorithms.

C. Evaluation on MIT Reality Data

Our real-world dataset comes from MIT Reality [45]. It
includes data of 100 mobile users from September 2004
to June 2005, including communication records, cell tower
ID, Bluetooth discovery records of participants and etc. We
select 80 mobile users among the participants and use the
data between 09/01/2004 and 12/19/2004 for our evaluation
study. We randomly generate several sensing tasks, including
Amount and MaxTime. We also randomly generate bids for all
workers. If a worker successfully make a call within MaxTime,
we consider he/she finishes the task successfully. So the prob-
ability of making calls successfully during a period of time is
used to be µi of the corresponding worker. The communication
records, cellular tower IDs and Bluetooth discovery records in
MIT Reality are used to construct a worker’s dynamic context.
The dynamic context includes the following features:

TABLE II: MTS-WS with different context

algorithm name features combination
TS-WS-1 centrality + activity scope
TS-WS-2 centrality + encounter level
TS-WS-3 activity scope + encounter level
TS-WS-4 centrality + activity scope + encounter level

• Centrality: we use centrality to measure the influence of
a worker on the social network it is in. Here, we use the
number of different contact IDs (representing different
users) of wi during a selection round as its centrality. We
assume that the more contacts of a mobile user has, the
greater influence it has.

• Activity scope: A user has the potential to receive more
sensing tasks if it can move within a larger activity
scope. In MIT’s dataset, when a participant is within the
coverage of a cellular tower, it is connected and can be
localized. Thus, we use the number of different cellular
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Fig. 4: Comparison of requester’s
cumulative utility on simulated
data.
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social welfare on simulated data.
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Fig. 6: Requester’s cumulative util-
ity with different context on MIT
Reality.
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Fig. 7: Cumulative regret with dif-
ferent context on MIT Reality.
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cumulative utility on MIT Reality.
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Fig. 9: Comparison of cumulative
social welfare on MIT Reality.

tower IDs of wi during a selection round as its activity
scope.

• Encounter level: We use the number of different device
IDs discovered by the Bluetooth of wi during a selection
round as its encounter level.

We evaluate the performance of our MTS-WS algorithm
when different dynamic context information of a worker is
available. Table II shows the names of the MTS-WS algorithm
under specific context.

Figs. 4 and 5 show the influence of different dynamic
context on our MTS-WS algorithm. With different features,
MTS-WS chooses different groups of workers to execute
sensing tasks. We can see that MTS-WS-2 achieves the highest
cumulative utility of the requester and the lowest cumulative
regret. Hence, we choose the dynamic context used in MTS-
WS-2 for the following evaluations. In addition, Fig. 5 shows
the growth rates of regret become flat eventually, which
verifies that our MTS-WS is bounded.

Fig. 6 depicts the relationship between cumulative utility
and the mean of service quality of the 80 workers under the
MTS-WS-2 algorithm. In this figure, workers are sorted by
their mean of service qualities in an increasing order. It is clear
that workers with relatively high service quality can achieve
considerable utilities. And the workers with relatively low
service quality can hardly get any benefits. This phenomenon
exemplifies that workers with high service quality are more
frequently selected to execute tasks, while low quality ones

are not.
Figs. 7 and 8 show the cumulative utility of the requester

and the cumulative social welfare. The conclusion is similar
to the results in the simulated data scenarios. Our MTS-WS
achieves the highest cumulative utility of the requester and the
social warfare.

Fig. 9 shows the comparison of the cumulative social
welfare under different numbers of required results. In this
figure, workers are chosen to execute 100 sensing tasks. We
can see that our MTS-WS achieves the highest cumulative
social warfare no matter how many results are needed.

In summary, the simulation results show that: i) MTS-
WS algorithm can more accurately learn a worker’s service
quality by using the worker’s historical and current context
information; ii) When the context information changes, MTS-
WS can dynamically adapt to select the suitable workers; and,
iii) MTS-WS achieves the highest requester utility and the
social welfare compared to the other three algorithms.

VII. CONCLUSION

In this paper, we proposed a Context-aware Multi-Armed
Bandit incentive mechanism to facilitate quality-based worker
selection in an MCS system. We extended the context in-
formation of a worker to include both extrinsic and intrinsic
abilities so to more accurately evaluate the worker’s quality.
Based our proposed C-MAB and quality evaluation param-
eters, we developed a modified Thompson Sampling worker
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selection algorithm to select workers in a reinforcement learn-
ing manner. We theoretically proved that our C-MAB incentive
mechanism was selection efficient, computationally efficient,
individually rational, and truthful. Finally, we evaluated our
MTS-WS algorithm in comparison with some other classic
algorithms. Our evaluation results demonstrated that MTS-
WS achieved the highest cumulative utility of the requester
and social welfare. The proposed learning based MTS-WS can
further enable efficient MCS systems for a wide range of smart
city applications.
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