
Scalable Processing of Contemporary
Semi-Structured Data on Commodity Parallel
Processors – A Compilation-based Approach

Lin Jiang, Xiaofan Sun, Umar Farooq, and Zhijia Zhao
University of California, Riverside

ljian006@ucr.edu,xsun042@ucr.edu,ufaro001@ucr.edu,zhijia@cs.ucr.edu

Abstract

JSON (JavaScript Object Notation) and its derivatives are
essential in the modern computing infrastructure. However,
existing software often fails to process such types of data in a
scalable way, mainly for two reasons: (i) the processing often
requires to build a memory-consuming parse tree; (ii) there
exist inherent dependences in processing the data stream,
preventing any data-level parallelization.

Facing the challenges, developers often have to construct
ad-hoc pre-parsers to split the data stream in order to reduce
the memory consumption and increase the data parallelism.
However, this strategy requires more programming efforts.
Moreover, the pre-parsing itself is non-trivial to parallelize,
thus introducing a new serial bottleneck.

To solve the dilemma, this work introduces a scalable yet
fully automatic solution ś a compilation system, namely
JPStream, that compiles standard JSONPath queries into
parallel executables with bounded memory footprints. First,
JPStream adopts a stream processing design that combines
the querying and parsing into one pass, without generating
any in-memory parse tree. To achieve this, JPStream uses a
novel joint compilation technique that compiles the queries
and the JSON syntax together into a single automaton.
Furthermore, JPStream leverages the łenumerabilityž of

automaton to break the dependences and reason about the
transition rules to prune infeasible cases. It also features a
module that learns data constraints from the input data to
enhance the pruning. Evaluation on real-world JSON datasets
with standard JSONPath queries shows that JPStream can
reduce the memory consumption significantly, by up to 95%,
meanwhile achieving near-linear speedup on multicore and
manycore processors.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS ’19, April 13ś17, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00

https://doi.org/10.1145/3297858.3304008

CCS Concepts · Information systems → Query lan-

guages; Semi-structured data; ·Theory of computation

→ Grammars and context-free languages; · Software

and its engineering→Parsers; ·Computer systems or-

ganization→ Multicore architectures.

Keywords JSON, semi-structured data, querying, parsing,
pushdown automata, parallelization, multicore

ACM Reference Format:

Lin Jiang, Xiaofan Sun, Umar Farooq, and Zhijia Zhao. 2019. Scal-

able Processing of Contemporary Semi-Structured Data on Com-

modity Parallel Processors ś A Compilation-based Approach. In

2019 Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS ’19), April 13ś17, 2019, Providence, RI, USA.

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3297858.

3304008

1 Introduction

JSON (JavaScript Object Notation) and its derivative data
types (such as NetJSON [34], GeoJSON [33], JSON-LD [35],
CoverageJSON [30], and etc.) form a family of contemporary
semi-structured data (herein referred to as JSON-family data

types or simply JSON). Together, they play a fundamental role
in the modern computing infrastructure, ranging from cloud
computing [24, 45] and microservice architectures [29, 61],
to Internet of Things (IoT) [62] and NoSQL data stores [36,
43]. For example, major cloud providers, such as Azure [5],
AWS [3], Firebase [31], and Oracle Cloud [25], all support
JSON-based cloud services. Document data stores, such as
MongoDB [49] and CouchDB [21], are built on JSON data.

Not only the popularity, but also the volume of JSON data
grows quickly in recent years. For instance, the NASA Earth
Exchange (NEX) project yielded over 20 TB climate data
that is accessible from Amazon servers via JSON APIs [46].
Twitter produces tweets as a JSON data stream at a rate of 600
million per day [17]. Public data sources, like data.gov [8],
provide REST APIs to access a broad range of scientific data
primarily in JSON format, with sizes quickly increasing.

To efficiently process large-volume text data, recent work
proposes hardware-implemented automata, such as automata
processor [28], cache automata [59], and in-SRAMpushdown
automata [20]. Despite their promising results, they are not
yet readily available to the developers.

object ::= {} | {members}

members ::= pair | pair,members

pair ::= key:value

array ::= [] | [elements]

elements ::= value | value,elements

value := object | array | primitive

Figure 2. BNF Grammar of JSON.

We prototyped JPStream in C language and used Pthreads
for the generated code. Our evaluation using standard path
expressions and a diverse set of JSON data has shown that
JPStream-generated automata reduce the memory footprint
by up to 95% comparing to preprocessing-based methods and
scales with near-linear speedup on the commodity multicore
and manycore processors (see Section 6).

Contributions. This work makes a four-fold contribution:

• To our best knowledge, this work introduces the first
automata-based stream processing model for JSON
data, with a novel joint compilation technique.

• It offers a set of parallelization techniques customized
for JSON processing, making it possible to avoid the
path explosion problem.

• It designs a data constraints learning scheme that can
improve the parallelization efficiency at runtime.

• Finally, this work prototypes the proposed ideas and
evaluates the system comprehensively.

Next, we provide the necessary background for this work.

2 Background

This section introduces the basic concepts of JSON and its
processing, with a focus on its unique features comparing to
XML, and how these features complicates the parallelization.

Grammar-based JSON. Originated from JavaScript, JSON
has evolved into a language-independent data representation
with a formal context-free grammar (CFG) (see Figure 2). The
grammar follows the conventions of C-family languages,
making it an ideal data-exchange language cross platforms.

Note that JSON grammar is fundamentally different from
that of XML ś a markup language based on tag pairs. Unlike
JSON with a rich syntax, XML is almost łgrammar-lessž ś
as long as the tags are well paired, the data is considered to
be valid 2. As shown later, this łminimal grammarž feature
makes the design of XML stream processing model easier.
By contrast, CFG-based JSON requires a stream processing
model that can cope with CFG, plus the querying. In fact, this
needs a non-conventional automaton (an automaton with
double stacks) to process. Next, we introduce the two major
JSON structures: object and array and explain how they
could complicate the design of data-level parallelization.

2The XML grammar discussed here should not be confused with the user-

defined grammar for a specific set of XML data, such as DTD or XSD.

JSON Objects. A JSON object consists of zero or multiple
key:value pairs, enclosed by a pair of curly parentheses
(see Figure 2). For example, {"lat":35, "lng":-106} is a
loc object with two key-value pairs (i.e., the attributes). This
object-oriented design allows JSON to naturally fit with the
data types in most object-oriented languages.
Comparing to XML tags, JSON objects are more efficient

for encoding information. For example, XML needs a longer
string to encode the same information in the prior example:

<loc><lat>35</lat><lng>-106</lng></loc>

Despite its conciseness, the syntax of JSON objects makes an
effective parallelization more challenging. Intuitively, when
an XML stream is partitioned, a pair of tags might be broken
into different chunks. However, an end tag, like </loc>, still
carries some context information ś it was inside a loc. By
contrast, a JSON object ends anonymously, with simply a
right curly bracket }. As shown later in Section 4, lacking
the information of object names is a key reason causing
path explosion, a problem that can result in significantly high
parallelization overhead.

JSON Arrays. The other major JSON component is array. A
JSON array consists of an ordered list of values, embraced
by a pair of square brackets (see Figure 2). For example,
steps in Figure 1 is an array of loc objects.

Note that arrays are a new syntactical feature comparing
to tag-based XML. Moreover, JSON allows the elements in
an array to be objects or even arrays, creating nested
structures that are potentially interleaved. On one hand,
these new features make JSON more expressive than XML;
On the other hand, similar to the anonymous ending feature,
they complicate the parallelization. For example, in a broken
piece of JSON data, it might be hard to tell if an object is
under an array or an object, both of which can encapsulate
objects. This syntactical uncertainty is another important
reason for the path explosion problem (see Section 4).

In sum, JSON’s unique features make it a promising data
language that gradually replaces tag-based XML in many
domains [18, 58, 60]. Meanwhile, they also complicate the
design of stream processing and the parallelization.

Querying JSON Data. In the processing of JSON data, the
most basic queries are path expressions (a.k.a. JSONPath),
which identify the substructures of interest 3. JSONPath is
the key building block of more advanced processing schemes
(e.g., JSONiq [11]). As its name suggests, a path expression
defines specific łpathsž from the root element of the JSON
data (an anonymous object or array) to the substructures
of interest. For example, $.routes[1].steps specifies the
steps object under the second element of routes array. The
$ denotes the anonymous root element. Note that, unlike
the path expressions for XML data, array indexes must be
used in JSON path expressions for accessing array elements.
More details about JSONPath syntax can be found in [37].

3The counterpart for XML is XPath, which has the same expressiveness.

[Obj-S] ∆({, ∗) → { [Ary-S] ∆([, ∗) → [

[Key] ∆(key, ∗) → key [Obj-E] ∆(}, ε : {) → ε

[Val-Obj-E] ∆(}, key:{) → ε [Elt-Obj-E] ∆(}, [:{) → [

[Ary-E] ∆(], ε : [) → ε [Val-Ary-E] ∆(], key:[) → ε

[Elt-Ary-E] ∆(], [:[) → [[Key-Val] ∆(,, {) → {

[Elt-Pmt] ∆(primitive, [) → [[Elt] ∆(,, [) → [

[Val-Pmt] ∆(primitive, key) → ε

Figure 5. Transition Rules of Parsing Automaton.

Stateless Parsing. Unlike the conventional CFG parsing that
tracks a parsing state to build the parse tree, our pushdown
automaton only needs to recognize the syntactical structures
(e.g., object, array, and key-value), without connecting
them into a tree. This critical difference makes a stateless

automaton sufficient for our purpose. Later, we will see this
łstatelessnessž is also important for the automata hooking.

A stateless pushdown automatonMparsinд is a 3-tuple:

Mparsinд = (Σ, Γ,∆) (2)

where Σ = { {, }, [], ,, prim, and key } is the input alphabet, Γ
= { {, [, and key } is the stack alphabet, and ∆ is the transition
rule set (listed in Figure 5). Each rule follows a format of
∆(c, s) → s ′, where c , c ∈ Σ is the current input symbol,
and s is the stack content, which contains an ordered list of
symbols from the stack alphabet Γ. Symbols in s are separated
by comma :. Note that, for conciseness, the rules in Figure 5
show at most two top elements in the stack. The arrow→
indicates a transition that changes the stack by performing
pop or push operations. In general, the transitions rules are
not difficult to follow. One detail worth to mention is that
the colon : in a key-value pair is treated as part of a key

token. For example, "steps": is recognized as a key.
So far, we have introduced the generations of both query

and parsing automata. Next, we explain how to hook them.

3.4 Automata Hooking

The basic idea is to use the parsing automaton to drive the
execution of query automaton, so that they can coordinate
to accomplish the parsing and querying tasks.

Transitions Rule Embedding. When parsing automaton
recognizes some JSON syntactical structures relevant to the
queries (i.e., key, [, and ,), it will feed them to the query
automaton to trigger state transitions. For this purpose, we
embed the transition rules of query automaton δ into three
transition rules of the parsing automaton: [Ary-S], [Key],
and [Elt], which handle the alphabet of query automaton.

Query State Recording. Note that the progress of query
matching may be lost when the processing moves to a lower
JSON structural level. For example, after a steps[] array is
processed, the automaton (see Figure 4) needs to return to the
state before it encounters the steps[]. However, the query
automaton itself is unable to memorize these older states.
We solve this by introducing another stack ś query stack.
When the processing moves to a lower level (e.g., reading

[Obj-S] ∆(q, {, ∗, ∗) → (q, ∗, {)

[Ary-S] ∆(q, [, ∗, ∗) → (δ (q, [), q, [)

[Key] ∆(q, key, ∗, ∗) → (δ (q, key), q, key)

[Obj-E] ∆(q, }, ε, ε : {) → (q, ε, ε)

[Val-Obj-E] ∆(q, }, q′, key:{) → (q′, ε, ε)

[Elt-Obj-E] ∆(q, }, ∗, [:{) → (q, ∗, [)

[Ary-E] ∆(q,], q′, ε : [) → (q′, ε, ε)

[Val-Ary-E] ∆(q,], q′ : ∗, key:[) → (q′, ε, ε)

[Elt-Ary-E] ∆(q,], q′, [:[) → (q′, ε, [)

[Val-Pmt] ∆(q, primitive, q′, key) → (q′, ε, ε)

[Elt-Pmt] ∆(q, primitive, ∗, [) → (q, ∗, [)

[Key-Val] ∆(q, ,, ∗, {) → (q, ∗, {)

[Elt] ∆(q, ,, ∗, [) → (δ (q, ,), ∗, [)

Figure 6. Transition Rules of Streaming Automaton.

a [), the current query automaton state is pushed onto the
query stack. Correspondingly, a state is popped out of the
query stack and to serve as the current query state when the
processing returns to a higher level of JSON structure.
In this way, the parsing automaton coordinates with the

query automaton, executing like a single automaton. Here,
we refer to the hooked automaton as streaming automaton.
Formally, a streaming automaton is an 8-tuple:

Mstr eaminд = (Σ, Γq , Γs ,∆,δ ,Q, s0, F) (3)

where the input alphabet Σ and syntax stack alphabet Γs are
from the parsing automaton, the query stack alphabet Γq ,
along with Q , s0, and F are from the query automaton, and
∆ is the transition rule set, embedded with the ones δ from
the query automaton. Figure 6 lists the rules in the format:

∆(s, c,qs, ss) → (s ′,qs ′, ss ′) (4)

saying when the automaton is in state s , after reading the
symbol c , it will transition to state s ′, meanwhile, the query
and syntax stacks qs and ss will be changed to qs ′ and ss ′

with pop/push operations, respectively.

Example. Figure 7 shows a streaming automaton execution.
The input is from Figure 1 and the query automaton is given
in Figure 4. For space limit, some transitions are omitted.

Initially, the automaton is in State 1with both stacks empty.
After reading the first symbol {, rule [Obj-S] pushes { onto
the syntax stack without changing the state. For the next
symbol "routes":, rule [Key] pushes K and State 1 onto the
query and syntax stacks, respectively, then changes the state
to 2 (see Figure 4 for state transitions). Next, after reading
symbol [, rule [Ary-S] pushes the symbol and the current
state to the stacks again, then updates the state to 3. By
following the transition rules, this automaton processes the
remaining input symbols in a similar way. Once it reaches
state 8, an accept state, a match to the query is found. Finally,
after finishing the last symbol }, the automaton halts with
the query and syntax stacks both empty again.

However, the execution of a streaming automaton remains
sequential. Next, we explain the ways to parallelize it.

Table 1. Syntax Stack Feasibility Inference (* means any symbol).

Input Following Two Symbols Syntax Stack Rule

} }* or ,key *:key:{ [Val-Obj-E]

} ,[or ,{ or]* or ,prim *:[:{ [Elt-Obj-E]

} ε or {* ε :{ [Obj-E]

] }* or ,key *:key:[[Val-Ary-E]

] ,[or ,{ or]* or ,prim *:[:[[Elt-Ary-E]

] ε or [* ε :[[Ary-E]

prim }* or ,key *:key [Val-Pmt]

prim ,[or ,{ or]* or ,prim *:[[Elt-Pmt]

, key* *:{ [Key-Val]

, [* or {* or prim* *:[[Elt]

Table 1 shows our findings. The first two columns list
the input symbols that may cause syntactical uncertainty
and the potential following two symbols, respectively. The
last two columns show the contents that should be in the
syntax stack (instead of being empty) and the corresponding
transition rule that should be applied. With this technique,
we reduce the syntactical complexity from O (3k) to O (1).

4.3 Towards a Bounded Number of Paths

Though the syntactical complexity has been addressed in
Section 4.2, the number of paths may still grow exponentially
due to the state complexity, for which, the existing query
stack feasibility inference fails due to the anonymous ending
symbol property of JSON (Section 4.2). In this section, we
discuss a new strategy to bound the number of paths.

On-demand Automata Resetting. The basic strategy is to
reset a parallel streaming automaton once it fails to uniquely
determine the next possible transition.

Recall the reason that an enumerated execution path may
diverge is the lack of needed elements from the query and/or
syntax stack(s) when reading certain input symbol. Here, we
refer to such a symbol as an unmatched symbol. When an
unmatched symbol is met, we can apply the query and syntax
stack feasibility inferences from Section 4.2. If they fail to
uniquely determine the next transition, we will first skip the
symbol, then reset the streaming automaton, which includes
re-enumerating all the states as the current and emptying the
stacks, just like processing a fresh new chunk. This strategy
may leave some unmatched symbols unprocessed, for which
the processing is postponed to the results merging phase. We
refer to this scheme as on-demand automata resetting. As an
execution path never diverge, on-demand automata resetting
bounds the number of execution paths by the number of
states |Q |, that is, P = O (|Q |).

Data Units. Essentially, automata resetting further breaks
the input chunks into even smaller pieces. To distinguish
them from the original partitioning, we refer to these smaller
pieces within a chunk as data units.

During the merging phase, the results of data units will be
merged, with the unmatched symbols in-between processed.
This may add extra costs to the merging phase, depending

on the number of data units. According to our evaluation,
the number of data units in a chunk is quite manageable,
resulting in only marginal merging costs.

4.4 Results Merging

First, during the parallel processing, for each data unit i ,
there is a mapping maintained:

Mi (M
s
j) = Me

j (6)

where Ms
j is a possible starting configuration of unit i’s

streaming automaton andMe
j is the corresponding ending

configuration. The temporarily matched results are recorded
separately for each starting configuration. After the parallel
processing, the correct starting configuration of each unit
can be identified one by one. For example, with the (always
correct) ending configuration of the first data unit, a (serial)
streaming automaton can further process the unmatched
symbols between the first and second data units (if any).
After that, the configuration of the automaton would be the
correct starting configuration for the second data unit. In
this way, we merge all the data units (along with unmatched
symbols). During the units merging, the matched results
on the correct path are separated as the actual matches of
subqueries. Finally, the matches of subqueries are merged
and filtered to produce the final outputs (see Section 3.2).

Input Errors. Sometimes, a JSON data stream may contain
syntactical errors, which may alter the transitions of parallel
streaming automata. However, since the merging of results
is performed sequentially, we can still ensure the detections
of all syntactical errors during the merging phase.

5 Runtime Optimization

The prior section leverages the transition rules and local
input symbols to reduce the number of enumerated paths.
In this section, we exploit the data properties to further
prune paths 6. The intuition is that the elements in JSON
data streams often follow some patterns. For instance, in
Figure 1, steps is always under routes, while loc could be
under routes or steps. We refer to these casual relations
among JSON objects and arrays as data constraints.

Knowing the data constraints may help further prune the
paths. Consider the serial automaton execution in Figure 7
(w/ input in Figure 1). We can record the correspondence
between the current state and the next input symbol. As
shown in Table 2, there is only a subset of states actually
happened to encounter a specific key or a [. For example,
the second row says when the automaton meets steps, it is
always at State 3. By feeding such information to the query
stack feasibility inference, the enumerated paths could be
further pruned. Note that, only key and [appear in Table 2,
because, with automata resetting, the path enumeration can
only happen before key, [, or {, so other symbols are not

6Similar properties are also exploited in XML data [39].

Table 2. Example Data Constraints Hash Table

Input Symbol Feasible States (Paths)

"routes": {1}

"steps": {3}

"loc": {5,6,7}

"lat": {0}

"lng": {0}

[{2,4}

recorded. Symbol { is removed from the table as every state
might meet it, failing to provide any useful constraints.

However, this observation-based optimization is not safe
when the actual input does not follow the same łpattern"
as the one used for collecting the data constraints. As a
result, the correct path may be pruned. For example, suppose
in the actual input, lat and lng appear under the routes,
then using the feasible State 0 in Table 2 could be incorrect.
Therefore, to ensure the correctness, we also need some
correctness checking and reprocessing mechanisms.
Based on the above discussion, we provide JPStream an

offline data constraint learner and an online component for
constraint integration. The learner takes training inputs from
the users to build symbol-state correspondences, which are
then exported as a hash table. The integration part tracks
the uses of query stack feasibility inference and automaton
resetting events during a parallel automaton execution. Once
observed, the integration component uses the current symbol
to query the hash table to get the feasible states. Then, it takes
an intersection between the returned states and the existing
state set. Later, in the results merging phase, the integration
component verifies if the correct state was covered. If not, it
will reprocess the incorrectly interpreted unit, but never go
beyond a unit, thanks to the automaton resetting.

6 Evaluation

This section evaluates the automata generated by JPStream.

6.1 Implementation

We prototyped JPStream in C language and used Pthread for
the parallel implementation of streaming automata. JPStream
supports the standard JSONPath queries [37].
Given a JSONPath query, JPStream first parses it into an

abstract syntax tree (AST) that facilitates the generation of
the query automaton. For less number of states, JPStream
uses counters for handling array index constraints instead
of state transitions (see Section 3.2). JPStream then hooks
the query automaton to the pre-compiled parsing automaton
to form a serial streaming automaton. For the parallelizing
compilation, JPStream adopts a double-tree data structure to
reduce the path maintenance costs [39, 51]. It implements the
syntax stack feasibility inference (Section 4.2) and supports
the on-demand automata resetting scheme (Section 4.3). In
addition, JPStream also features an offline data constraint
learner that takes additional training inputs to learn the data

constraints, and a runtime integration module to apply the
constraints (Section 5). To provide a bounded the memory
footprint, JPStream uses a threshold to limit the maximum
size of data loaded each time. When a data stream is larger
than the threshold, JPStream performs multiple load-process
cycles. The default value of this threshold is set to 250MB.

6.2 Methodology

We compare the automata generated by JPStream with the
state-of-the-art methods for parallel semi-structured data
processing and also a group of state-of-the-practice JSON
tools, in terms of performance and memory usage.

Table 3. Methods in Evaluation.

Abbr. Methods

XMLStream An adoption from parallel XML processor [39, 51]

JsonSurfer A manually crafted tool for streaming JsonPath [15]

JSON-C An open-source JSON parser in C [10]

Jackson-JSON An open-source JSON parser in Java [12]

RapidJSON A JSON parser in C++ from Tencent [14]

FastJSON A parsing-based JSON tool in Java from Alibaba [4]

JPStreamNR Non-restartable JPStream automata

JPStreamR Restartable JPStream automata

JPStreamR+ JPStreamR with data constraints learning

Methods. Table 3 lists the methods used in our evaluation.
XMLStream [39, 51] is a parallelization solution recently
developed for XML data processing. Note that this solution
cannot be directly applied to JSON data due to the syntax
differences (see Section 2). Here, we ported their ideas to the
JSON data processing. JsonSurfer [15], as far as we know, is
the only stream processing implementation for JSONPath
querying. Note that it is not based on automata. As it is
Java implemented, for a fair comparison with our C-based
automata, we also rewrote JsonSurfer in C. For parsing-based
JSON processing, many tools exist. We pick JSON-C [10],
Jackson-JSON [12], RapidJSON [14], and FastJSON [4] for
their popularities and industrial supports. For Jackson-JSON
and FastJSON, since they are implemented in Java, we first
warmed up the JVM before measuring their performance,
for their best results. As to our methods, we evaluated three
versions of JPStream: (i) the one with automata resetting
disabled; (ii) the one with automata resetting; and (iii) the one
with both automata resetting and data constraints learning.

Platforms. All experiments run on two servers. The first one
is a 16-core machine equipped with two Intel 2.10 GHz Xeon
EE5-2620 v4 processors and 64 GB of RAM. The second server
is a 64-core machine equipped with Intel Xeon Phi 7210
processors and 96 GB of RAM. Both servers run on CentOS
7 and are installed with GCC 4.8.5. In the following, we refer
to the two servers as Xeon and Xeon-Phi. All programs are
compiled with O3 optimization. The timing results reported
are the average of 10 repetitive runs. All CPUs are warmed up
before evaluation. We do not report 95% confidence interval
of the average when the variation is not significant.

References
[1] Apache VXQuery. https://vxquery.apache.org/.

[2] Best Buy developer API. https://bestbuyapis.github.io/api-

documentation/. Retrieved: 2018-07-01.

[3] Best practices for reading JSON data. https://docs.aws.amazon.com/

athena/latest/ug/. Retrieved: 2018-07-01.

[4] A fast JSON parser/generator for Java. https://github.com/alibaba/

fastjson/. Retrieved: 2018-07-01.

[5] Getting started with JSON features in Azure SQL database.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-

json-features. Retrieved: 2018-07-01.

[6] Google Map directions API. https://developers.google.com/maps/

documentation/directions/start/. Retrieved: 2018-07-01.

[7] Health care provider credential data. https://data.wa.gov/api/views/

qxh8-f4bd/. Retrieved: 2018-07-01.

[8] The home of the U.S. government’s open data. https://www.data.gov/.

Retrieved: 2018-07-01.

[9] Indigenous land use agreements. https://data.gov.au/dataset/

indigenous-land-use-agreements-registered-or-in-notification/. Re-

trieved: 2018-07-01.

[10] JSON-C - a JSON implementation in C. https://github.com/json-c/

json-c. Retrieved: 2018-07-01.

[11] JSONiq: The JSON query language. http://jsoniq.org/. Retrieved: 2018-

07-01.

[12] Main portal page for the Jackson project. https://github.com/

FasterXML/jackson/. Retrieved: 2018-07-01.

[13] National statistics postcode lookup UK. https://data.gov.uk/dataset/

national-statistics-postcode-lookup-uk/. Retrieved: 2018-07-01.

[14] RapidJSON. http://rapidjson.org/. Retrieved: 2018-07-01.

[15] A streaming JsonPath processor in Java. https://github.com/jsurfer/

JsonSurfer/. Retrieved: 2018-07-01.

[16] Twitter developer API. https://developer.twitter.com/en/docs/. Re-

trieved: 2018-07-01.

[17] Twitter usage statistics. http://www.internetlivestats.com/twitter-

statistics/. Retrieved: 2018-07-01.

[18] Why JSON will continue to push XML out of the picture.

https://www.ctl.io/developers/blog/post/why-json-will-continue-to-

push-xml-out-of-the-picture. Retrieved: 2018-07-01.

[19] Alfred V Aho. Compilers: principles, techniques and tools (for Anna

University), 2/e. Pearson Education India, 2003.

[20] Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi,

Kevin Skadron, Westley Weimer, and Reetuparna Das. ASPEN: A scal-

able In-SRAM architecture for pushdown automata. In Proceedings of

the 51th Annual IEEE/ACM International Symposium on Microarchitec-

ture. ACM, 2018.

[21] Apache Fundation. Apache CouchDB. http://couchdb.apache.org/.

Retrieved: 2018-07-01.

[22] Iliana Avila-Campillo, Todd J Green, Ashish Gupta, Makoto Onizuka,

Demian Raven, and Dan Suciu. Xmltk: An xml toolkit for scalable xml

stream processing. 2002.

[23] Alessandro Barenghi, Stefano Crespi-Reghizzi, Dino Mandrioli, Feder-

ica Panella, and Matteo Pradella. Parallel parsing made practical. Sci.

Comput. Program., 112:195ś226, 2015.

[24] Roy H. Campbell and Reza Farivar. Cloud computing applications,

part 1: Cloud systems and infrastructure. https://www.coursera.org/

learn/cloud-applications-part1. Retrieved: 2018-07-01.

[25] Arijit Chakraborty. An introduction to REST and JSON. https://blogs.

oracle.com/cloud-platform/an-introduction-to-rest-and-json. Re-

trieved: 2018-07-01.

[26] Songting Chen, Hua-Gang Li, Jun’ichi Tatemura, Wang-Pin Hsiung,

Divyakant Agrawal, and K. Selçuk Candan. Twig2stack: Bottom-up

processing of generalized-tree-pattern queries over XML documents.

In Proceedings of the 32nd International Conference on Very Large Data

Bases, Seoul, Korea, September 12-15, 2006, pages 283ś294, 2006.

[27] Yanlei Diao, Peter M. Fischer, Michael J. Franklin, and Raymond To.

Yfilter: Efficient and scalable filtering of XML documents. In Proceed-

ings of the 18th International Conference on Data Engineering, San Jose,

CA, USA, February 26 - March 1, 2002, pages 341ś342, 2002.

[28] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal,

and Harold Noyes. An efficient and scalable semiconductor architec-

ture for parallel automata processing. IEEE Transactions on Parallel

and Distributed Systems, 25(12):3088ś3098, 2014.

[29] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel

Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Mi-

croservices: yesterday, today, and tomorrow. In Present and Ulterior

Software Engineering, pages 195ś216. Springer, 2017.

[30] W3C Editor. Overview of the CoverageJSON format. https://w3c.

github.io/sdw/coverage-json/. Retrieved: 2018-07-01.

[31] Chris Esplin. Firebase data modeling. https://howtofirebase.com/

firebase-data-modeling-939585ade7f4. Retrieved: 2018-07-01.

[32] Todd J Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. Pro-

cessing xml streams with deterministic automata. In International

Conference on Database Theory, pages 173ś189. Springer, 2003.

[33] GeoJSON Working Group. The GeoJSON specification (RFC 7946).

http://geojson.org/. Retrieved: 2018-07-01.

[34] Netork Working Group. NetJSON: data interchange format for net-

works. http://netjson.org/rfc.html. Retrieved: 2018-07-01.

[35] W3C JSON-LD Community Group. JSON for linking data. https:

//json-ld.org/. Retrieved: 2018-07-01.

[36] Venkat N Gudivada, Dhana Rao, and Vijay V Raghavan. NoSQL sys-

tems for big data management. In Services (SERVICES), 2014 IEEEWorld

Congress on, pages 190ś197. IEEE, 2014.

[37] Stefan Gössner. JSONPath - XPath for JSON. http://goessner.net/

articles/JsonPath/. Retrieved: 2018-07-01.

[38] IBM. XML-SAX (parse an XML document). https://www.ibm.com/

support/knowledgecenter/en/ssw_ibm_i_73/rzasd/zzxmlsa.htm. Re-

trieved: 2018-07-01.

[39] Lin Jiang and Zhijia Zhao. Grammar-aware parallelization for scalable

XPath querying. In Proceedings of the 22Nd ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’17, pages

371ś383. ACM, 2017.

[40] Vanja Josifovski, Marcus Fontoura, and Attila Barta. Querying XML

streams. VLDB J., 14(2):197ś210, 2005.

[41] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation.

J. ACM, 27(4):831ś838, 1980.

[42] Yinan Li, Nikos R. Katsipoulakis, Badrish Chandramouli, Jonathan

Goldstein, and Donald Kossmann. Mison: A fast JSON parser for data

analytics. PVLDB, 10(10):1118ś1129, 2017.

[43] Yishan Li and Sathiamoorthy Manoharan. A performance comparison

of SQL and NoSQL databases. In Communications, computers and

signal processing (PACRIM), 2013 IEEE pacific rim conference on, pages

15ś19. IEEE, 2013.

[44] Dan Lin, Nigel Medforth, Kenneth S. Herdy, Arrvindh Shriraman, and

Robert D. Cameron. Parabix: Boosting the efficiency of text processing

on commodity processors. In 18th IEEE International Symposium on

High Performance Computer Architecture, HPCA 2012, New Orleans, LA,

USA, 25-29 February, 2012, pages 373ś384, 2012.

[45] Logicworks. The future of AWS’ cloud: Infrastructure as an applica-

tion. https://www.cloudcomputing-news.net/news/2016/jun/02/the-

future-of-aws-cloud-infrastructure-as-an-application/. Retrieved:

2018-07-01.

[46] Isaac Lopez. Amazon hosting 20 TB of climate data.

https://www.datanami.com/2013/11/12/amazon_hosting_20_

tb_of_open_climate_data/. Retrieved: 2018-07-01.

[47] Wei Lu, Kenneth Chiu, and Yinfei Pan. A parallel approach to XML

parsing. In 7th IEEE/ACM International Conference on Grid Computing

(GRID 2006), September 28-29, 2006, Barcelona, Spain, Proceedings, pages

223ś230, 2006.

[48] Wei Lu and Dennis Gannon. Parallel XML processing by work steal-

ing. In Proceedings of the 2007 workshop on Service-oriented computing

performance: aspects, issues, and approaches, pages 31ś38. ACM, 2007.

[49] MongoDB. MongoDB extended JSON. https://docs.mongodb.com/

manual/reference/mongodb-extended-json/. Retrieved: 2018-07-01.

[50] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-

parallel finite-state machines. InArchitectural Support for Programming

Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA,

March 1-5, 2014, pages 529ś542, 2014.

[51] Peter Ogden, David Thomas, and Peter Pietzuch. Scalable XML query

processing using parallel pushdown transducers. Proceedings of the

VLDB Endowment, 6(14):1738ś1749, 2013.

[52] Peter Ogden, David B. Thomas, and Peter R. Pietzuch. AT-GIS: highly

parallel spatial query processing with associative transducers. In

Proceedings of the 2016 International Conference on Management of

Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July

01, 2016, pages 1041ś1054, 2016.

[53] Oracle. Parsing an XML file using SAX. https://docs.oracle.com/javase/

tutorial/jaxp/sax/parsing.html. Retrieved: 2018-07-01.

[54] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. Filter

before you parse: Faster analytics on raw data with sparser. Proceedings

of the VLDB Endowment, 11(11):1576ś1589, 2018.

[55] Christina Pavlopoulou, E. Preston Carman Jr., TillWestmann,Michael J.

Carey, and Vassilis J. Tsotras. A parallel and scalable processor for

JSON data. In Proceedings of the 21th International Conference on

Extending Database Technology, EDBT 2018, Vienna, Austria, March

26-29, 2018., pages 576ś587, 2018.

[56] Junqiao Qiu, Zhijia Zhao, and Bin Ren. Microspec: Speculation-centric

fine-grained parallelization for fsm computations. In Parallel Architec-

ture and Compilation Techniques (PACT), 2016 International Conference

on, pages 221ś233. IEEE, 2016.

[57] Junqiao Qiu, Zhijia Zhao, BoWu, Abhinav Vishnu, and Shuaiwen Leon

Song. Enabling scalability-sensitive speculative parallelization for

fsm computations. In Proceedings of the International Conference on

Supercomputing, page 2. ACM, 2017.

[58] Sqlizer. A brief history of JSON. https://blog.sqlizer.io/posts/json-

history/. Retrieved: 2018-07-01.

[59] Arun Subramaniyan, Jingcheng Wang, Ezhil RM Balasubramanian,

David Blaauw, Dennis Sylvester, and Reetuparna Das. Cache automa-

ton. In Proceedings of the 50th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, pages 259ś272. ACM, 2017.

[60] TwoBitHistory. The rise and rise of JSON. https://twobithistory.org/

2017/09/21/the-rise-and-rise-of-json.html. Retrieved: 2018-07-01.

[61] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano,

Lorena Salamanca, Rubby Casallas, and Santiago Gil. Evaluating

the monolithic and the microservice architecture pattern to deploy

web applications in the cloud. In Computing Colombian Conference

(10CCC), 2015 10th, pages 583ś590. IEEE, 2015.

[62] Philipp Wehner, Christina Piberger, and Diana Gohringer. Using

JSON to manage communication between services in the internet

of things. In Reconfigurable and Communication-Centric Systems-on-

Chip (ReCoSoC), 2014 9th International Symposium on, pages 1ś4. IEEE,

2014.

[63] Ying Zhang, Yinfei Pan, and Kenneth Chiu. A parallel xpath engine

based on concurrent NFA execution. In 16th IEEE International Con-

ference on Parallel and Distributed Systems, ICPADS 2010, Shanghai,

China, December 8-10, 2010, pages 314ś321, 2010.

[64] Zhijia Zhao and Xipeng Shen. On-the-fly principled speculation for

FSM parallelization. In Proceedings of the Twentieth International Con-

ference on Architectural Support for Programming Languages and Oper-

ating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015, pages

619ś630, 2015.

[65] Zhijia Zhao, Bo Wu, and Xipeng Shen. Challenging the embarrass-

ingly sequential: parallelizing finite state machine-based computations
through principled speculation. In ACM SIGARCH Computer Architec-

ture News, volume 42, pages 543ś558. ACM, 2014.

