Scalable Processing of Contemporary
Semi-Structured Data on Commodity Parallel
Processors — A Compilation-based Approach

Lin Jiang, Xiaofan Sun, Umar Farooq, and Zhijia Zhao
University of California, Riverside
ljian006@ucr.edu,xsun042@ucr.edu,ufaro001@ucr.edu,zhijia@cs.ucr.edu

Abstract

JSON (JavaScript Object Notation) and its derivatives are
essential in the modern computing infrastructure. However,
existing software often fails to process such types of data in a
scalable way, mainly for two reasons: (i) the processing often
requires to build a memory-consuming parse tree; (ii) there
exist inherent dependences in processing the data stream,
preventing any data-level parallelization.

Facing the challenges, developers often have to construct
ad-hoc pre-parsers to split the data stream in order to reduce
the memory consumption and increase the data parallelism.
However, this strategy requires more programming efforts.
Moreover, the pre-parsing itself is non-trivial to parallelize,
thus introducing a new serial bottleneck.

To solve the dilemma, this work introduces a scalable yet
fully automatic solution — a compilation system, namely
JPStream, that compiles standard JSONPath queries into
parallel executables with bounded memory footprints. First,
JPStream adopts a stream processing design that combines
the querying and parsing into one pass, without generating
any in-memory parse tree. To achieve this, JPStream uses a
novel joint compilation technique that compiles the queries
and the JSON syntax together into a single automaton.

Furthermore, JPStream leverages the “enumerability” of
automaton to break the dependences and reason about the
transition rules to prune infeasible cases. It also features a
module that learns data constraints from the input data to
enhance the pruning. Evaluation on real-world JSON datasets
with standard JSONPath queries shows that JPStream can
reduce the memory consumption significantly, by up to 95%,
meanwhile achieving near-linear speedup on multicore and
manycore processors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS 19, April 13-17, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04...$15.00
https://doi.org/10.1145/3297858.3304008

CCS Concepts -+ Information systems — Query lan-
guages; Semi-structured data; - Theory of computation
— Grammars and context-free languages; « Software
and its engineering — Parsers; - Computer systems or-
ganization — Multicore architectures.

Keywords]JSON, semi-structured data, querying, parsing,
pushdown automata, parallelization, multicore

ACM Reference Format:

Lin Jiang, Xiaofan Sun, Umar Farooq, and Zhijia Zhao. 2019. Scal-
able Processing of Contemporary Semi-Structured Data on Com-
modity Parallel Processors — A Compilation-based Approach. In
2019 Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS °19), April 13-17, 2019, Providence, RI, USA.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3297858.
3304008

1 Introduction

JSON (JavaScript Object Notation) and its derivative data
types (such as NetJSON [34], GeoJSON [33], JSON-LD [35],
CoverageJSON [30], and etc.) form a family of contemporary
semi-structured data (herein referred to as JSON-family data
typesor simply JSON). Together, they play a fundamental role
in the modern computing infrastructure, ranging from cloud
computing [24, 45] and microservice architectures [29, 61],
to Internet of Things (IoT) [62] and NoSQL data stores [36,
43]. For example, major cloud providers, such as Azure [5],
AWS [3], Firebase [31], and Oracle Cloud [25], all support
JSON-based cloud services. Document data stores, such as
MongoDB [49] and CouchDB [21], are built on JSON data.

Not only the popularity, but also the volume of JSON data
grows quickly in recent years. For instance, the NASA Earth
Exchange (NEX) project yielded over 20 TB climate data
that is accessible from Amazon servers via JSON APIs [46].
Twitter produces tweets as a JSON data stream at a rate of 600
million per day [17]. Public data sources, like data.gov [8],
provide REST APIs to access a broad range of scientific data
primarily in JSON format, with sizes quickly increasing.

To efficiently process large-volume text data, recent work
proposes hardware-implemented automata, such as automata
processor [28], cache automata [59], and in-SRAM pushdown
automata [20]. Despite their promising results, they are not
yet readily available to the developers.

Queny:l $.routes[*].steps[2].loc

thread T, i
{"loc": { :
"lat":35.11, 1
"lng":-106.12 }, |
"steps": [:
{"loc": { 1
"lat":32.12, i

1

1

"1ng":-107.69 }},

thread T, {"loc": { <= maich or not?
"lat":31.27,

"lng":-126.89}},

by |

Figure 1. Challenge in Parallel JSON Data Processing?.

In comparison, this work focuses on the use of commodity
multicore and manycore processors to accelerate JSON data
processing, which, unfortunately, remains an open problem,
due to the following two challenges.

Challenge I - Preprocessing Costs. Traditional strategies
for processing semi-structured data require a full parsing
over the entire data stream before extracting information
(substructures of interests). This often creates a high memory
pressure for large data streams. For example, JSON-C [10],
a popular JSON parser requires 8GB memory to process a
1GB JSON stream. Even worse, loading a JSON file with
hundreds of megabytes can easily raise an out-of-memory
exception on CouchDB [21]. In addition to the high-memory
cost, preprocessing introduces significant yet unnecessary
delay as the substructures out of interests are also processed
anyway. These high costs of preprocessing greatly limit the
scalability of semi-structured data processing.

Challenge II - Inherent Dependences: Exposing effective
parallelism is key to the scalable data processing on parallel
computer architectures. Unfortunately, semi-structured data
processing exposes limited parallelism due to its inherently
nested structures. Figure 1 illustrates this challenge with a
piece of Google route data. Suppose the user is interested
in the location of the third step in each route, denoted as
a path expression $.routes[*].steps[2].loc. Except for
the first thread, all the other threads cannot determine if the
key loc satisfies the path conditions or not, due to the lack
of relevant contexts. In general, such nested structures of
the data serialize the processing of the whole JSON stream.

State of The Art. To cope with the preprocessing costs,
stream programming paradigms, such as the SAX (Simple
API for XML) model [38, 53], have been introduced. But, they
simply provide callback APIs for handling the basic tokens,
still requiring substantial programming efforts to design and
implement a particular processing task. A more promising
solution is to automatically generate deterministic automata
to process the data in a streaming fashion [32]. However, so
far, the automata are designed only for conventional XML. It
remains an open question how to construct the automata for

1Google route data is simplified and indented for better illustration.

stream processing JSON data, which follows quite different
syntactical structures (see Section 2).

As to parallelization, prior efforts propose to pre-scan the
data to find “good” boundaries for partitioning [47, 48, 63].
However, this strategy has several limitations. First, it adds
an extra pass over the entire data stream, which could be
expensive for large data streams; Second, the pre-scan itself
is a serial process; Third, despite the availability of “good”
boundaries, they may not separate the data evenly, leading
to potential load imbalance. At last, this strategy requires
developers to write the pre-scanner for in a specific JSON
structure, adding extra programming burden.

Recent work [39, 51] has shown the possibility to partition
an XML stream arbitrarily with aggressive parallelization
techniques, thus avoiding the pre-scan. However, due to
some unique features of JSON, these techniques suffer from
the path explosion problem (see Sections 2 and 4), failing to
bring performance benefits for parallel JSON processing.

Overview of This Work. To solve these problems, this work
proposes a compilation system, namely JPStream, that is
particularly designed for JSON-family data processing. For a
given set of JSONPath queries, JPStream can automatically
generate automata-based parallel executables with bounded
memory footprints for JSON data processing. We next briefly
describe the major components of JPStream.

o Streaming Compilation. The key to avoiding the expensive
preprocessing is to adopt stream processing. However,
this is non-trivial for JSON streams which are defined by
Context-Free Grammars (CFG). The processing needs to
perform both CFG parsing and query matching at the same
time. JPStream achieves this with a joint compilation. It
first compiles the queries (i.e., path expressions) and JSON
syntax into two separate automata. Unlike conventional
automata, these two automata are only partially defined.
JPStream then “hooks” them together to form a new one,
referred to as streaming automaton, which turns to be an
unconventional pushdown automaton with double stacks.
Encoded with both queries and JSON syntax, a streaming
automaton performs parsing and querying simultaneously
in a single pass (see Section 3).

o Parallelizing Compilation. Unlike the sequential automata
that only start from the beginning of an input stream,
the automata generated by JPStream can start from an
arbitrary position. This flexibility is enabled by a set of
parallelization techniques customized for JSON, including
state and stack element enumerations, query and syntax
stack feasibility analyses, and automata resetting. Together,
they eliminate the path explosion problem encountered by
the existing parallelization (see Section 4).

Runtime Optimization. At last, JPStream also features a
runtime that applies the hints (called data constraints)
learned from the training input data to further reduce the
costs of parallelization (see Section 5).

object == {}|{members}

members pair | pair,members
pair == key:value
array == []|[elements]
elements := value|value,elements
value := object|array|primitive

Figure 2. BNF Grammar of JSON.

We prototyped JPStream in C language and used Pthreads
for the generated code. Our evaluation using standard path
expressions and a diverse set of JSON data has shown that
JPStream-generated automata reduce the memory footprint
by up to 95% comparing to preprocessing-based methods and
scales with near-linear speedup on the commodity multicore
and manycore processors (see Section 6).

Contributions. This work makes a four-fold contribution:

e To our best knowledge, this work introduces the first
automata-based stream processing model for JSON
data, with a novel joint compilation technique.

o It offers a set of parallelization techniques customized
for JSON processing, making it possible to avoid the
path explosion problem.

o It designs a data constraints learning scheme that can
improve the parallelization efficiency at runtime.

e Finally, this work prototypes the proposed ideas and
evaluates the system comprehensively.

Next, we provide the necessary background for this work.

2 Background

This section introduces the basic concepts of JSON and its
processing, with a focus on its unique features comparing to
XML, and how these features complicates the parallelization.

Grammar-based JSON. Originated from JavaScript, JSON
has evolved into a language-independent data representation
with a formal context-free grammar (CFG) (see Figure 2). The
grammar follows the conventions of C-family languages,
making it an ideal data-exchange language cross platforms.
Note that JSON grammar is fundamentally different from
that of XML - a markup language based on tag pairs. Unlike
JSON with a rich syntax, XML is almost “grammar-less” -
as long as the tags are well paired, the data is considered to
be valid 2. As shown later, this “minimal grammar” feature
makes the design of XML stream processing model easier.
By contrast, CFG-based JSON requires a stream processing
model that can cope with CFG, plus the querying. In fact, this
needs a non-conventional automaton (an automaton with
double stacks) to process. Next, we introduce the two major
JSON structures: object and array and explain how they
could complicate the design of data-level parallelization.

2The XML grammar discussed here should not be confused with the user-
defined grammar for a specific set of XML data, such as DTD or XSD.

JSON Objects. A JSON object consists of zero or multiple
key:value pairs, enclosed by a pair of curly parentheses
(see Figure 2). For example, {"1at":35, "lng":-106}isa
loc object with two key-value pairs (i.e., the attributes). This
object-oriented design allows JSON to naturally fit with the
data types in most object-oriented languages.

Comparing to XML tags, JSON objects are more efficient
for encoding information. For example, XML needs a longer
string to encode the same information in the prior example:

<loc><lat>35</lat><lng>-106</1ng></loc>

Despite its conciseness, the syntax of JSON objects makes an
effective parallelization more challenging. Intuitively, when
an XML stream is partitioned, a pair of tags might be broken
into different chunks. However, an end tag, like </loc>, still
carries some context information - it was inside a loc. By
contrast, a JSON object ends anonymously, with simply a
right curly bracket }. As shown later in Section 4, lacking
the information of object names is a key reason causing
path explosion, a problem that can result in significantly high
parallelization overhead.

JSON Arrays. The other major JSON component is array. A
JSON array consists of an ordered list of values, embraced
by a pair of square brackets (see Figure 2). For example,
steps in Figure 1 is an array of loc objects.

Note that arrays are a new syntactical feature comparing
to tag-based XML. Moreover, JSON allows the elements in
an array to be objects or even arrays, creating nested
structures that are potentially interleaved. On one hand,
these new features make JSON more expressive than XML;
On the other hand, similar to the anonymous ending feature,
they complicate the parallelization. For example, in a broken
piece of JSON data, it might be hard to tell if an object is
under an array or an object, both of which can encapsulate
objects. This syntactical uncertainty is another important
reason for the path explosion problem (see Section 4).

In sum, JSON’s unique features make it a promising data
language that gradually replaces tag-based XML in many
domains [18, 58, 60]. Meanwhile, they also complicate the
design of stream processing and the parallelization.

Querying JSON Data. In the processing of JSON data, the
most basic queries are path expressions (a.k.a. JSONPath),
which identify the substructures of interest . JSONPath is
the key building block of more advanced processing schemes
(e.g., JSONiq [11]). As its name suggests, a path expression
defines specific “paths” from the root element of the JSON
data (an anonymous object or array) to the substructures
of interest. For example, $.routes[1]. steps specifies the
steps object under the second element of routes array. The
$ denotes the anonymous root element. Note that, unlike
the path expressions for XML data, array indexes must be
used in JSON path expressions for accessing array elements.
More details about JSONPath syntax can be found in [37].

3The counterpart for XML is XPath, which has the same expressiveness.

Figure 3. Illustration of Joint Compilation.

Next, we explain how JPStream uses path expressions and
the JSON syntax for the purpose of stream processing,.

3 Streaming Compilation

This section introduces the joint compilation technique that
generates stream processing code for JSON.

3.1 Idea of Joint Compilation

The basic idea of joint compilation is illustrated in Figure 3.
First, the queries and JSON syntax are compiled separately
into two automata: (i) a query automaton for matching query
results and (ii) a parsing automaton for recognizing the JSON
syntactical structure. Note that, different from conventional
automata, the query and parsing automata are only partially
defined, with some transition rules missing. For example,
the transition rules for handling an ending curly bracket }
or an ending square bracket] are undefined in the query
automaton. On the other hand, there are no concrete states
defined in the parsing automaton.

The partial definitions of both automata are designed on
purpose to facilitate the next compilation step — automata
hooking. Basically, the two partially defined automata are
“hooked” together in a way that a deterministic and complete
set of transition rules are created. The resulted automaton
is referred to as streaming automaton, which is capable of
performing parsing and querying simultaneously. Next, we
elaborate the generations of query and parsing automata,
and the automata hooking, respectively.

3.2 Path Expression Compilation

Given a set of path expressions, JPStream compiles them into
a single finite automaton with transitions partially defined.

The basic idea is inspired by a seminal work that designs
deterministic automata for XML querying [32]. We treat a
path expression as a regular expression, where a key in the
path expression is considered as a symbol in the regular
expression. For path expressions with predicates or logical
operators, we break them down into subqueries, then group
them into a set of regular expressions (also used in [51]). For
example, a query $.a[?(@.b]||@.c)].d is broken into four
subqueries $.a, $.a.b, $.a.c and $.a.d, then grouped into
a regular expression set {a,ab,ac,ad}. Following standard
algorithms [19], a deterministic finite automaton (DFA) is
generated for each regular expression. Then, the DFAs are
connected to form a single DFA, which can recognize the
matches for all the regular expressions. Formally, the resulted
finite automaton Mgyery is a 5-tuple:

others 3
any ‘mismatch state

Figure 4. Automaton for $.rountes[*].steps[2].1loc.

Mquery =(Q,2,8,%,F) (1)
where Q is the set of states, ¥ is the input alphabet, § is the
set of transition rules, sy is the initial state, and F is the set
of accept states. When the finite automaton transitions into
an accept state, a match for a subquery is found.

Two things worth to mention here:

o The transition rule set § is partially defined. In fact, it
only handles three kinds of input symbols: a key, an open
square bracket [, and a comma ,, despite the existence of
other symbols. The last two symbols are used for handling
array constraints, as we will explain shortly.

o The DFA matches the results of the subqueries, which may
still need to be merged and filtered to produce the final
output. In the earlier example, a is finally outputted only if
a match of b or c is found under a. Thus, there is another
pass over the matches of subqueries.

Array Constraints Handling. Since JSON supports array,
its path expressions must include array index constraints for
accessing array elements, such as steps[2], steps[2:4],
or steps[*]. To cope with these constraints, one option is
to encode them into the automaton generation process. A
trick for this is to reformat an array constraint with regular
expressions of comma ,, which separates array elements:

e A specific index range [m:n] * is reformatted to regular
expression [,{m,n}, where {m,n} indicates the comma
needs to be repeated m to n times.

o Similarly, the whole index range [*] is reformatted to
regular expression [, *, where * indicates comma can be
repeated any number of times.

Figure 4 shows the automaton generated for JSONPath
$.routes[*].steps[2].1loc. The states with shadows are
the states used for handling array indexes.

In practice, we can also augment the automaton with a
set of counters, each for an array index constraint appeared
in the path expressions. This solution adds extra condition
checks to the execution, but reduce the number of states.

3.3 JSON Syntax Compilation

To match the query results, it is required to recognize the
syntactical structures of JSON streams. As JSON is CFL, the
recognition requires a pushdown automaton.

4Negative indexes like [-5:] are not supported (requires backtracking).

[0bj-ST A({,*) = { [Ary-S1 A(L *) = [
[Keyl A(key,) — key [Obj-E] A}, e:{)— ¢
[Val-Obj-E]l A(3}, key:{) — ¢ [Elt-0bj-E] A} [:{) >
[Ary-E] A(J,e:[)—> ¢ [Val-Ary-E] A(l, key:[) — ¢
[Elt-Ary-E1 A(1, [:[) > L [Key-vall A(,,{) —{
[E1t-Pmt] A(primitive, [) — [[E1t] A(,,[)—L

[Val-Pmt] A(primitive, key) — ¢

Figure 5. Transition Rules of Parsing Automaton.

Stateless Parsing. Unlike the conventional CFG parsing that
tracks a parsing state to build the parse tree, our pushdown
automaton only needs to recognize the syntactical structures
(e.g., object, array, and key-value), without connecting
them into a tree. This critical difference makes a stateless
automaton sufficient for our purpose. Later, we will see this
“statelessness” is also important for the automata hooking.
A stateless pushdown automaton Myarsing is a 3-tuple:

Mparsing = (Z,T,A) (2)
where> ={{,},[1, ,,prim, and key }is the input alphabet, I
={{, [, and key } is the stack alphabet, and A is the transition
rule set (listed in Figure 5). Each rule follows a format of
A(c,s) — s’, where ¢, ¢ € X is the current input symbol,
and s is the stack content, which contains an ordered list of
symbols from the stack alphabet I'. Symbols in s are separated
by comma :. Note that, for conciseness, the rules in Figure 5
show at most two top elements in the stack. The arrow —
indicates a transition that changes the stack by performing
pop or push operations. In general, the transitions rules are
not difficult to follow. One detail worth to mention is that
the colon : in a key-value pair is treated as part of a key
token. For example, "steps": is recognized as a key.
So far, we have introduced the generations of both query
and parsing automata. Next, we explain how to hook them.

3.4 Automata Hooking

The basic idea is to use the parsing automaton to drive the
execution of query automaton, so that they can coordinate
to accomplish the parsing and querying tasks.

Transitions Rule Embedding. When parsing automaton
recognizes some JSON syntactical structures relevant to the
queries (i.e., key, [, and ,), it will feed them to the query
automaton to trigger state transitions. For this purpose, we
embed the transition rules of query automaton ¢ into three
transition rules of the parsing automaton: [Ary-S], [Key],
and [E1t], which handle the alphabet of query automaton.

Query State Recording. Note that the progress of query
matching may be lost when the processing moves to a lower
JSON structural level. For example, after a steps[] array is
processed, the automaton (see Figure 4) needs to return to the
state before it encounters the steps[]. However, the query
automaton itself is unable to memorize these older states.
We solve this by introducing another stack — query stack.
When the processing moves to a lower level (e.g., reading

[ObJ_S] A(q7 o= *) - (q’ *, {)
[Ary-S1 A(gq, [, % *) = (6(q. [), q. [)
[Keyl A(q, key, =,) = (5(q, key), g, key)
[Obj-E] A(q, }, & ¢:{) = (q ¢ ¢)
[Val-0bj-E]1 A(q, }, ¢, key:{) = (¢’, &, €)
[E1t-0bj-E]l A(g, }. % [:{) = (g, % [)
[Ary-E]l A(g,1,q,e:0) > (q, ¢ ¢)

[Val-Ary-E]l A(q,1,q : = key:[) = (¢, & ¢)
[Elt-Ary-E]1 A(q,1, ¢, [:[) = (¢, & [)
[Val-Pmt] A(g, primitive, ¢’, key) = (¢', €, €)
[Elt-Pmt] A(q, primitive, %, [) — (q, *, [)
[Key-vall Alg, ,, % {) = (g, {)
[Elt] A(‘L) I:) - (5(% 7)’ *, [)

Figure 6. Transition Rules of Streaming Automaton.

a [), the current query automaton state is pushed onto the
query stack. Correspondingly, a state is popped out of the
query stack and to serve as the current query state when the
processing returns to a higher level of JSON structure.

In this way, the parsing automaton coordinates with the
query automaton, executing like a single automaton. Here,
we refer to the hooked automaton as streaming automaton.
Formally, a streaming automaton is an 8-tuple:

Mstreaming = (Z» rq, I, A, 6, Q. 50, F) (3)

where the input alphabet X and syntax stack alphabet I's are
from the parsing automaton, the query stack alphabet I,
along with Q, sy, and F are from the query automaton, and
A is the transition rule set, embedded with the ones § from
the query automaton. Figure 6 lists the rules in the format:

(s',qs",ss") 4)

saying when the automaton is in state s, after reading the
symbol c, it will transition to state s’, meanwhile, the query
and syntax stacks gs and ss will be changed to ¢s’ and ss’
with pop/push operations, respectively.

A(s, ¢, gs,ss) —

Example. Figure 7 shows a streaming automaton execution.
The input is from Figure 1 and the query automaton is given
in Figure 4. For space limit, some transitions are omitted.

Initially, the automaton is in State 1 with both stacks empty.
After reading the first symbol {, rule [Obj-S] pushes { onto
the syntax stack without changing the state. For the next
symbol "routes":, rule [Key] pushes K and State 1 onto the
query and syntax stacks, respectively, then changes the state
to 2 (see Figure 4 for state transitions). Next, after reading
symbol [, rule [Ary-S] pushes the symbol and the current
state to the stacks again, then updates the state to 3. By
following the transition rules, this automaton processes the
remaining input symbols in a similar way. Once it reaches
state 8, an accept state, a match to the query is found. Finally,
after finishing the last symbol }, the automaton halts with
the query and syntax stacks both empty again.

However, the execution of a streaming automaton remains
sequential. Next, we explain the ways to parallelize it.

5 : —> state transition stack operation gs: query stack ss: syntax stack * : matched state K: key
=
g { “routes”: [{ “steps”: [PR PR 1oC”: wen] }] }
% 1 1 > 2 > 3 >3 —> 4 —> 5 6 e 7 e 8% e 3 —> 3 1 —> 1
@
£
[[[[
K K K K 71K
g, { { 40 {] 4| {] 40 ¢ 4] {] {
=3 [[[3|1 3|1 [3|1 [[
K 2 | K 2 | K 2 | K 2| K 2| K 2 | K 2| K 2 | K 2 | K
{ 114 114 114 114 114 114 119 114 114 { {
gs SS QS SS Qs SS QS SS QS SS QS SS QS SS qgs ss gs ss Qgs ss gs ss (s ss (s ss gs ss

Figure 7. An Example of Streaming Automaton Execution (input and query automaton are from Figures 1 and 4).

chunk 1

T~

chunk 2

=

chunk 3

=1

Phase |
(parallel processing)

Phase Il
(results merging)

Qmeratedl enu:’\erey enum.

final outputs

Figure 8. Two-Phase Parallelization.

4 Parallelizing Compilation

At a high level, the parallelization of a streaming automaton
execution follows two phases: (i) parallel processing and (ii)
results merging, as illustrated in Figure 8.

First, the data stream is partitioned into chunks (almost)
evenly °, with each chunk processed by a thread (running a
streaming automaton). After all threads finish, the results are
merged to form the final outputs. The main challenge comes
from the data dependences across the partitioned chunks
where some JSON structures (e.g., a JSON object or array)
might be broken into different chunks. In the following, we
will discuss the techniques for breaking the dependences,
analyze their costs, and more importantly, reduce the costs.

4.1 Breaking Dependences

As Figure 7 shows, the execution of a streaming automaton
involves a series of transitions, each of which depends on
the prior state and stacks. This can be symbolically reflected
by the transition rule structure in Equation 4. Formally, we
define state dependence and stack dependence as follows:

Definition 1. In a streaming automaton execution, suppose
T; and T; (i < j) are two arbitrary transitions. Based on the
transition rule structure in Equation 4, T; writes to state s
before T; reads from it, thus indicating a true dependence (i.e.,
read-after-write) between the two transitions. We refer to this
dependence as state dependence. Similarly, there also exist
true dependences on the two stacks qs and ss between the two
transitions, which we refer to as query stack dependence
and syntax stack dependence, respectively.

The lexer is adjusted to avoid breaking a token.

These three kinds of dependences serialize the execution
of a streaming automaton from the beginning to the end.
Next, we show how these dependences can be broken by
leveraging some “enumerability” properties of automata.

o Breaking State Dependences. Based on the definitions,
the number of states in a streaming automaton is finite.
Thus, we can enumerate all the states when the state is
unknown. For example, by enumerating all the 9 states in
Figure 4, we ensure the correct state is always covered.

Breaking Stack Dependences. Unlike state dependences,
it is much harder to break stack dependences as the stacks
can grow arbitrarily deep. Fortunately, we do not have to
know all the contents of the stacks at once. According to the
transition rules (see Figure 6), at most the top two elements
of the stacks are accessed when the automaton reads a
symbol. This property allows us to gradually enumerate
the stack contents on-demand. When a transition needs
to access an empty stack (due to the partitioning), we
enumerate symbols in the stack alphabet (i.e., I or).

For each enumerated case, we fork a new execution path.
That is, an enumeration causes an execution path to diverge
into multiple. If path divergence occurs frequently, the path
maintaining overhead may outweigh parallelization benefits.
We next show how fast the number of paths can grow.

Path Complexity Analysis. Suppose thread ¢; is assigned
to process chunk i and the number of paths is denoted as P.

At the beginning of chunk i, without knowing the state,
thread t; enumerates all the states. Thus the number of paths
becomes P = |Q|, where Q is the state set. Then, thread t;
reads the first symbol c. Based on the transition rules (see
Figure 6), if ¢ is {, [, or key (i.e., the first three rules), then
all the execution paths would proceed as normal. If ¢ is 3},
then there are three potential rules (i.e., the 4th-6th rules)
applicable. Which one is the actual depends on the stacks.
Unfortunately, the stacks are all empty at this moment. Thus,
thread t; needs to enumerate all the three cases, with the
assumptions that corresponding elements are in the stacks.
Furthermore, the 5th rule [Val-0bj-E] needs to reset the
current state with the top element of the query stack. Since
the query stack is empty, thread ¢; has to enumerate the

XML JSON
unmatched tag unmatched symbol
</loc> }

prior state state prior state

------- > [[
- 2mmmmmm- > 1
mismatch state -—— Zmmmmm > 2
| $.routes.steps.loc | """" > 3 4------- > 3
+» {0,1,2,4} 0 ==== +»{0,1,2,3,4}

(a) (b) ()
Figure 9. Query Stack Feasibility Inference: XML vs. JSON

query stack alphabet I, (i.e., |Ty| paths). Putting it together,
when c is }, each of the existing paths diverges into |I;| + 2
paths. Thus, we have P = |Q| - (|Ty| + 2). Similarly, we can
analyze the numbers of paths when ¢ equals other input
symbols. In fact, the worst case happens to the symbol],
where the number of paths P = |Q| - 3|I};|, because the query
stack is accessed in all the three potential rules. If this worst
situation keeps happening in the following processing of this
chunk, the number of paths would become P = |Q] - (3|Fq|)k,
where k is the number of unmatched]. As T, = Q, we have
the following conclusion:

Theorem 1. The worst-case path complexity in a parallel
streaming automaton execution is:

0G* - 101 - 1T,1%) = 0(3* - 10IF*) ()

where Q and T, are the input and query stack alphabets, and
k is the number of unmatched J.

There are two factors in Equation 5: O(3%) and O(|Q|**1).
Both are caused by data partitioning. The first factor is due
to the syntactical uncertainty (needed elements missing in
the syntax stack) and the second factor is due to the state
uncertainty (needed elements missing in the query stack).
Hereinafter, we refer to the two uncertainties as syntactical
complexity and state complexity, respectively.

Both complexities can cause the number of execution
paths to increase exponentially, which may cause the path
maintenance costs to surpass the parallelization benefits and
even run out of the main memory for a relatively small piece
of chunk. We refer to this issue as path explosion problem.

4.2 Feasible Paths Inference

In this section, we discuss a couple of solutions that could
help alleviate the path explosion problem by addressing the
state and syntactical complexities, respectively.

Query Stack Feasibility Inference. Recent work [39, 51]
has shown the possibility to leverage the state transitions
of query automaton to infer the (top) elements in the query
stack, for parallelizing XML’s automaton execution.

The basic idea of the inference is illustrated in Figures 9-(a)
and (b) using a simple query. When an unmatched end tag is
met (e.g., </loc>), we can infer the top element in the query
stack for each enumerated state. In fact, the top element is

the state before meeting the open tag <loc>. Based on the
structure of the query automaton, we can find all the possible
states that transition to an enumerated state after reading
<loc>. For example, only State 3 transitions to State 4 after
reading <loc>. After the inference, we can find there are five
execution paths left — the same as the number of states. In
fact, it is provable that the number of paths is bounded by a
constant (i.e., |Q|) with the query stack feasibility inference.
However, this approach fails to work effectively for the
parallelization of JSON data processing for two reasons:

o Syntactical Complexity. First, in the case of JSON, there
are two complexities causing exponential path growth:
state complexity and syntactical complexity. Query stack
feasibility inference might help address the first, but not
the second, which is not directly relevant to the states.
Thus, the path explosion problem remains unsolved.

e Anonymous Ending Symbol. Even for state complexity,
the above inference cannot reduce the complexity to the
linear level as in the case of XML. Because, unlike XML
where an end tag (e.g., </loc>) carries the tag name, a
JSON ending symbol (e.g., }) is anonymous, as shown in
Figure 9-(c). Without the key name, there would be more
states possibly serving as the prior state. For example, State
2 could transition to State 3 and State 1 could transition
to State 2 (see Figure 9-(c)). Despite they correspond to
different input symbols, they all have to be considered
to ensure the correctness. Consequently, the number of
execution paths increases from 5 to 8. This increase could
be accumulated as more unmatched symbols are met.

In sum, due to the special features of JSON, query stack
feasibility inference itself is insufficient for reducing the
costs of parallelization. Next, we present a JSON-customized
feasibility inference for the syntactical complexity.

Syntax Stack Feasibility Inference. With the partitioning,
the syntax stack may lack needed element(s) to determine
the next transition rule after reading a symbol. To address
this syntactical uncertainty, our idea is to infer the syntax
stack by looking ahead more input symbols. In fact, we have:

Theorem 2. By looking forward at most two input symbols,
the transition rule of a streaming automaton can be uniquely
determined without the knowledge of the syntax stack.

Theorem 2 can be proved with a brute-force enumeration.
For each symbol that may cause syntactical uncertainties (4
such symbols), we enumerate all the possible combinations
of its following two symbols, including the empty symbol ¢
(7% 7+ 7+ 1 =57 cases). Thus, there are 4 = 57 = 228 cases
overall. For each case, we run the streaming automaton on
the three symbols. If the automaton halts before finishing, the
case is infeasible; Otherwise, we record the correspondence
between the input symbols and the first transition rule to the
table. By exhaustively searching the correspondence space,
we ensure the coverage of all the feasible situations.

Table 1. Syntax Stack Feasibility Inference (* means any symbol).

[Input [Following Two Symbols [Syntax Stack [Rule]
3 }* or ,key *:key:{ [Val-0Obj-E]
} ,Lor,{orJ*xor,prim *:[:{ [E1t-Obj-E]
3 £or{* e{ [Obj-E]

] }* or ,key *:key: [[Val-Ary-E]
] ,Lor,{or]*xor,prim *:[:[[Elt-Ary-E]
] cor[* e[[Ary-E]
prim }* or ,key *:key [Val-Pmt]
prim | ,[or,{or Jxor ,prim *: [[Elt-Pmt]
s keyx *:{ [Key-Val]
, [* or {* or prim* *: [[E1t]

Table 1 shows our findings. The first two columns list
the input symbols that may cause syntactical uncertainty
and the potential following two symbols, respectively. The
last two columns show the contents that should be in the
syntax stack (instead of being empty) and the corresponding
transition rule that should be applied. With this technique,
we reduce the syntactical complexity from O(3%) to O(1).

4.3 Towards a Bounded Number of Paths

Though the syntactical complexity has been addressed in
Section 4.2, the number of paths may still grow exponentially
due to the state complexity, for which, the existing query
stack feasibility inference fails due to the anonymous ending
symbol property of JSON (Section 4.2). In this section, we
discuss a new strategy to bound the number of paths.

On-demand Automata Resetting. The basic strategy is to
reset a parallel streaming automaton once it fails to uniquely
determine the next possible transition.

Recall the reason that an enumerated execution path may
diverge is the lack of needed elements from the query and/or
syntax stack(s) when reading certain input symbol. Here, we
refer to such a symbol as an unmatched symbol. When an
unmatched symbol is met, we can apply the query and syntax
stack feasibility inferences from Section 4.2. If they fail to
uniquely determine the next transition, we will first skip the
symbol, then reset the streaming automaton, which includes
re-enumerating all the states as the current and emptying the
stacks, just like processing a fresh new chunk. This strategy
may leave some unmatched symbols unprocessed, for which
the processing is postponed to the results merging phase. We
refer to this scheme as on-demand automata resetting. As an
execution path never diverge, on-demand automata resetting
bounds the number of execution paths by the number of
states |Q|, that is, P = O(]Q]).

Data Units. Essentially, automata resetting further breaks
the input chunks into even smaller pieces. To distinguish
them from the original partitioning, we refer to these smaller
pieces within a chunk as data units.

During the merging phase, the results of data units will be
merged, with the unmatched symbols in-between processed.
This may add extra costs to the merging phase, depending

on the number of data units. According to our evaluation,
the number of data units in a chunk is quite manageable,
resulting in only marginal merging costs.

4.4 Results Merging

First, during the parallel processing, for each data unit i,
there is a mapping maintained:

Mi(M3) = Mg ©)

where M} is a possible starting configuration of unit i’s
streaming automaton and M is the corresponding ending
configuration. The temporarily matched results are recorded
separately for each starting configuration. After the parallel
processing, the correct starting configuration of each unit
can be identified one by one. For example, with the (always
correct) ending configuration of the first data unit, a (serial)
streaming automaton can further process the unmatched
symbols between the first and second data units (if any).
After that, the configuration of the automaton would be the
correct starting configuration for the second data unit. In
this way, we merge all the data units (along with unmatched
symbols). During the units merging, the matched results
on the correct path are separated as the actual matches of
subqueries. Finally, the matches of subqueries are merged
and filtered to produce the final outputs (see Section 3.2).

Input Errors. Sometimes, a JSON data stream may contain
syntactical errors, which may alter the transitions of parallel
streaming automata. However, since the merging of results
is performed sequentially, we can still ensure the detections
of all syntactical errors during the merging phase.

5 Runtime Optimization

The prior section leverages the transition rules and local
input symbols to reduce the number of enumerated paths.
In this section, we exploit the data properties to further
prune paths °. The intuition is that the elements in JSON
data streams often follow some patterns. For instance, in
Figure 1, steps is always under routes, while loc could be
under routes or steps. We refer to these casual relations
among JSON objects and arrays as data constraints.
Knowing the data constraints may help further prune the
paths. Consider the serial automaton execution in Figure 7
(w/ input in Figure 1). We can record the correspondence
between the current state and the next input symbol. As
shown in Table 2, there is only a subset of states actually
happened to encounter a specific key or a [. For example,
the second row says when the automaton meets steps, it is
always at State 3. By feeding such information to the query
stack feasibility inference, the enumerated paths could be
further pruned. Note that, only key and [appear in Table 2,
because, with automata resetting, the path enumeration can
only happen before key, [, or {, so other symbols are not

%Similar properties are also exploited in XML data [39].

Table 2. Example Data Constraints Hash Table

Input Symbol Feasible States (Paths)

"routes": {1}
"steps": {3}
"loc": {5,6,7}
"lat": {o}
"lng": {0}
L {2,4}

recorded. Symbol { is removed from the table as every state
might meet it, failing to provide any useful constraints.

However, this observation-based optimization is not safe
when the actual input does not follow the same “pattern”
as the one used for collecting the data constraints. As a
result, the correct path may be pruned. For example, suppose
in the actual input, 1at and 1ng appear under the routes,
then using the feasible State 0 in Table 2 could be incorrect.
Therefore, to ensure the correctness, we also need some
correctness checking and reprocessing mechanisms.

Based on the above discussion, we provide JPStream an
offline data constraint learner and an online component for
constraint integration. The learner takes training inputs from
the users to build symbol-state correspondences, which are
then exported as a hash table. The integration part tracks
the uses of query stack feasibility inference and automaton
resetting events during a parallel automaton execution. Once
observed, the integration component uses the current symbol
to query the hash table to get the feasible states. Then, it takes
an intersection between the returned states and the existing
state set. Later, in the results merging phase, the integration
component verifies if the correct state was covered. If not, it
will reprocess the incorrectly interpreted unit, but never go
beyond a unit, thanks to the automaton resetting.

6 Evaluation

This section evaluates the automata generated by JPStream.

6.1 Implementation

We prototyped JPStream in C language and used Pthread for
the parallel implementation of streaming automata. JPStream
supports the standard JSONPath queries [37].

Given a JSONPath query, JPStream first parses it into an
abstract syntax tree (AST) that facilitates the generation of
the query automaton. For less number of states, JPStream
uses counters for handling array index constraints instead
of state transitions (see Section 3.2). JPStream then hooks
the query automaton to the pre-compiled parsing automaton
to form a serial streaming automaton. For the parallelizing
compilation, JPStream adopts a double-tree data structure to
reduce the path maintenance costs [39, 51]. It implements the
syntax stack feasibility inference (Section 4.2) and supports
the on-demand automata resetting scheme (Section 4.3). In
addition, JPStream also features an offline data constraint
learner that takes additional training inputs to learn the data

constraints, and a runtime integration module to apply the
constraints (Section 5). To provide a bounded the memory
footprint, JPStream uses a threshold to limit the maximum
size of data loaded each time. When a data stream is larger
than the threshold, JPStream performs multiple load-process
cycles. The default value of this threshold is set to 250MB.

6.2 Methodology

We compare the automata generated by JPStream with the
state-of-the-art methods for parallel semi-structured data
processing and also a group of state-of-the-practice JSON
tools, in terms of performance and memory usage.

Table 3. Methods in Evaluation.

l Abbr. [Methods]
XMLStream | An adoption from parallel XML processor [39, 51]
JsonSurfer A manually crafted tool for streaming JsonPath [15]
JSON-C An open-source JSON parser in C [10]

Jackson-JSON | An open-source JSON parser in Java [12]

RapidJSON | A JSON parser in C++ from Tencent [14]
FastJSON A parsing-based JSON tool in Java from Alibaba [4]
JPStreamNR | Non-restartable JPStream automata
JPStreamR Restartable JPStream automata
JPStreamR+ | JPStreamR with data constraints learning

Methods. Table 3 lists the methods used in our evaluation.
XMLStream [39, 51] is a parallelization solution recently
developed for XML data processing. Note that this solution
cannot be directly applied to JSON data due to the syntax
differences (see Section 2). Here, we ported their ideas to the
JSON data processing. JsonSurfer [15], as far as we know, is
the only stream processing implementation for JSONPath
querying. Note that it is not based on automata. As it is
Java implemented, for a fair comparison with our C-based
automata, we also rewrote JsonSurfer in C. For parsing-based
JSON processing, many tools exist. We pick JSON-C [10],
Jackson-JSON [12], RapidJSON [14], and FastJSON [4] for
their popularities and industrial supports. For Jackson-JSON
and FastJSON, since they are implemented in Java, we first
warmed up the JVM before measuring their performance,
for their best results. As to our methods, we evaluated three
versions of JPStream: (i) the one with automata resetting
disabled; (ii) the one with automata resetting; and (iii) the one
with both automata resetting and data constraints learning.

Platforms. All experiments run on two servers. The first one
is a 16-core machine equipped with two Intel 2.10 GHz Xeon
EE5-2620 v4 processors and 64 GB of RAM. The second server
is a 64-core machine equipped with Intel Xeon Phi 7210
processors and 96 GB of RAM. Both servers run on CentOS
7 and are installed with GCC 4.8.5. In the following, we refer
to the two servers as Xeon and Xeon-Phi. All programs are
compiled with 03 optimization. The timing results reported
are the average of 10 repetitive runs. All CPUs are warmed up
before evaluation. We do not report 95% confidence interval
of the average when the variation is not significant.

Table 4. JSONPath queries. #sub shows the number of sub-queries in each query structure.

[Query | Data [Query structure

[#sub | #matches || Query [Data [Query structure

[#sub | #matches |

BB1 BB $.pd.shl[1:5].sel[1:2] | 1 95 TT2 TT $[*].gs.en.um.[*].nm | 1 9,580

BB3 BB | $.p.st 1 0 NSPL2 | NSPL | $.dt[20:200:2][}] 1 3,913

TT1 | TT | $[]uris 1 312,460 UHD1 | UHD | $.dt[10:1000][:] 1 19,820

[Query [Data [Query structure [#sub | # matches |

BB2 BB $.pd[2(@.s]|@.pid|@.nm||@.s1]|@.tp]|@.sd[|@.nw)].cp[1:2].id 9 459,333
TT3 TT $[*].qs* me[?(@.1d&&@.ids&& @.idc&& @ mu&&@.mh&&@.ud&&@.url&&(@.eu||@.tp))] .szlg.w | 9 32,750
NSPL1 | NSPL | $.mt*co[?(@.id||@.fg]@.dtn||@.cc.lg)].nm 6 44
AIL1 AIL $.fe[?(@.tp&&(@.1d||@.gn)].pp.nm 5 21,546
AIL2 AIL $.fe[1:7].fm.cd[:][:][10:20][:] 1 2,088
GMD1 | GMD | $[-15:].rt[?@.cr].bd*1t 4 28
GMD2 | GMD | $[*].rt[?(@.bd||@.cr].le[?@.sa].st[0:3].dt.v] 6 17,147
UHD2 | UHD | $.mt.vico[?(@.1d&&@.nm&&@.dtn)].cc.tp[1:120].it 6 169

Table 5. Dataset Statistics.

[Data | #objects | #arrays [#key-value | #primitive | depth |
BB | 1,916,574 4,882,921 40,763,630 | 35,880,709 4
TT | 2,898,910 4,197,990 31,472,660 | 30,910,730 7
NSPL 613 3,509,815 1,669 84,235,938 7

AIL 64,675 46,858,734 905,058 93,395,898 3
GMD | 10,357,445 43,943 29,034,886 | 21,051,619 9
UHD 262 1,511,234 719 30,224,745 8

Datasets. Table 5 summarizes the statistics of JSON datasets
used in our evaluation, including Best Buy product dataset [2],
Twitter global tweet stream [16], National Statistics Post
Code Lookup (NSPL) dataset for the United Kingdom [13],
Indigenous Land Use Agreements dataset [9], Google Maps
Directions dataset [6], and Washington State Department of
Health dataset [7]. The training datasets for JPStreamR+ are
extracted from the first 1% of the testing inputs.

Query Sets. Table 4 shows our evaluated queries. It covers
all the basic types of JSONPath queries that are commonly
used [37]. The rightmost two columns record the numbers
of subqueries and matches in each query, respectively.

6.3 Comparison with Existing Methods

Note that, due to the inherent dependences, all the existing
methods only execute sequentially, except for XMLStream.
This set of experiments were executed on Xeon.

Comparison with Streaming Methods. Figure 10 reports
the execution time of stream processing methods. First, we
notice XMLStream runs out of memory for all the queries.
Because it does not address the syntactical complexity (see
Section 4.2), leading to exponential path growth that quickly
consumes all the machine memory (64GB).

JsonSurfer successfully processed all the queries, but its
performance is limited by the serial execution. Single-thread
JPStreamR outperforms JsonSurfer, thanks to its use of a
query automaton. By contrast, JsonSurfer uses the parsing
stack to match queries, which may examine deeper in the
stack for a complete comparison. This is especially inefficient
for queries with .. wildcard, such as TT1 and NSPL1. As
indicated by Figure 10, the gaps in these two cases are even
larger. On top of that, when using all the 16 cores, JPStreamR
outperforms JsonSurfer by an order of magnitude.

JPStreamR (T=16)

— 2%
21 4
18 4
15 4
12
9

BJPStreamR (T=1) BJsonSurfer B XMLStream (T=16)
OoM

7
ERENES

Execution Time (s]

6
3
0

BB1 m NSPL1 AlL1 GMD1 UHD1 Geo

Figure 10. Performance of Streaming-based Methods™.

*The original JsonSurfer only supports a subset of queries. For the supported ones,
its performance is 1-1.45X faster than JPStreamR (T=1), after the JVM warmup.

40
W Parsing & Queryin,
30 g ying

20

10 %

Execution Time(s)

TT i
V7722222222

BB #

CEERN\
TT(20) §
BB3 WA
T %
BB
7
o

BB %

BB(20) NN
TT(20) 77N

BB(20) %A

BB(20) §
BB3

JPStrmR (1) JPStrmR(16) FastJSON RapidIN Jackson JSON-C

Figure 11. Comparison with Parsing-based Methods (Time).

Comparison with Parsing-based Methods. In Figure 11,
JPStreamR is compared against four parsing-based methods.
TT(20) and BB(20) are two query sets, each with 20 queries.
For JSON tools without querying supports, we simply report
their parsing time. Most parsers finish the parsing of our
datasets within 10 secs, except for JSON-C (took over 30 secs).
In comparison, single-threaded JPStreamR spent a little more
than 10 secs, comparable to other JSON tools. On top of that,
JPStreamR also finishes the querying at the same time, while
Fast]JSON needs two separate phases. The total processing
time of FastJSON surpasses JPStreamR in our evaluated cases.
When all the 16 threads are used, JPStreamR outperforms all
the evaluated parsing-based methods significantly.

Besides performance, JPStreamR also shows advantages
in the memory footprint, as indicated in Figure 12. Thanks
to its stream processing model, JPStreamR saves up to 95% of
memory consumption. In fact, unlike the other JSON tools
that consume more memory for larger inputs, the memory
footprint of JPStreamR is bounded.

[N
o
=~

Memory (MB)
N Y [)} [o]
o =~ ~ ~ Py
| |
<
— :
3
- g
] g
s
TT
BB N
TT —
BB I

TT(20) 1
BB(20) 1
BB3 |
TT(20) 1
BB(20) 1
BB3 |

JPStrmR (1) JPStrmR(16) FastJSON RapidJN Jackson JSON-C

Figure 12. Comparison with Parsing-based (Memory).

6.4 Performance of Parallel Execution

Since the only other parallel method, XMLStream, runs out of
memory in all the tested cases, we mainly focus on the three
versions of JPStream-generated automata in this section.

Speedup. Figure 13 reports the speedups of parallel automata
executions over the serial one. Among the three versions,
JPStreamR+ yields the best speedup for all evaluated queries,
thanks to its data constraint learning. On average, it achieves
12.1X on 16-core Xeon and 53.1X on 64-core Xeon Phi. For
the other two versions, JPStreamR performs better in general,
for its on-demand automata resetting scheme.

To get deeper insights, we also examined the number of
execution paths, the costs of results merging, and the costs
of using the data constraint integration.

Number of Execution Paths. The more paths a parallel
streaming automaton needs to maintain, the less benefits
it brings. Table 6 reports the statistics about the number
of execution paths. The “avg” columns show the average
number of paths to maintain by a streaming automaton. As
the last row (i.e., “Geo”) shows, JPStreamNR maintains 2.29
paths on average across all the tested cases. In comparison,
JPStreamR maintains 1.88 paths and JPStreamR+ maintains
only 1.15 paths. These statistics largely echo the performance
differences among the three versions of JPStream. The “max”
columns show the maximum number of paths to maintain.
We can see JPStreamNR maintains up to 119 paths. For the
same case, JPStreamR+ only maintain 3 paths, due to the
path pruning enabled by data constraint integration.

Table 6. Number of Execution Paths (Xeon Phi)

JPStreamNR JPStreamR | JPStreamR+
Query | avg. max | avg. | max | avg. | max
BB1 6.02 16.0 3.70 8.0 1.01 2.0
BB2 | 11.46 37.0 6.45 15.0 1.01 3.0
TT1 4.45 119.0 | 2.53 7.0 141 3.0
TT2 3.76 42.0 1.89 7.0 1.16 4.0
NSPL1 1.15 6.0 1.15 6.0 1.11 4.0
NSPL2 1.35 15.0 1.35 15.0 1.07 3.0
AIL1 1.75 25.0 1.74 10.0 1.19 3.0
AIL2 2.26 28.0 2.25 11.0 1.65 5.0
GMD1 1.07 23.0 1.06 | 10.0 | 1.01 2.0
GMD2 1.27 44.0 1.24 15.0 1.01 2.0
UHD1 1.26 6.0 1.26 6.0 1.13 3.0
UHD2 1.70 15.0 1.70 15.0 1.17 3.0
Geo 2.29 22.5 1.88 9.8 1.15 3.0

Table 7. Costs of Results Merging

[Dataset [#Chunks | #Units [Chunk | Chunk+Unit |

BB 64 146 | 0.004% 0.004%
= | TT 64 176 | 0.005% 0.006%
& | NSPL 64 116 | 0.001% 0.001%
g | AL 64 292 | 0.003% 0.004%
% | GMD 64 317 | 0.001% 0.002%

UHD 64 64 | 0.002% 0.002%

Geo 64 185 | 0.002% 0.003%

Table 8. Path Coverage Accuracy and Reprocessing Cost

[Query [Acc. | Cost [Query | Acc. | Cost |

BB1 | 97.62% | 0.13% | _ | BB1 | 95.21% | 0.52%
o | BB2 | 97.62% | 0.08% | &£ | BB2 | 97.26% | 0.26%
S| TT1 | 92.86% | 0.14% | & | TT1 | 96.59% | 0.55%
X | TT2 | 95.24% | 0.13% § TT2 | 97.73% | 0.56%
TT3 | 92.86% | 0.13% TT3 | 95.45% | 0.79%

Results Merging Costs. Table 7 reports the merging costs.
First, the costs are consistently less than 0.001% in all the
tested cases. Second, units merging does not add extra costs
significantly comparing to the chunk merging, thanks to the
relatively small number of units (3rd column).

Costs of Online Constraints Integration. In principle, the
online data constraints integration is a double-edged sword,
as it may eliminate a correct path due to the discrepancy
between the training and testing inputs. For this reason, we
examine the accuracy of covering the correct execution path
and the cost of reprocessing if the correct one is missed.
The results are reported in Table 8. The queries that are not
shown have 100% accuracies. The results indicate, by using
the first 1% of the testing inputs as the training ones, for
most test cases, JPStreamR+ successfully covered the correct
paths. For the ones that it misses, the accuracy is beyond
90%, with reprocessing costs consistently less than 1%.

Table 9. Scalability over Data Size on Xeon

[Data Size [Exe. Time (1 core) [Exe. Time (16 cores) | Speedup |

250 MB 3.022 s 0.245 s 12.335
1GB 11371 s 0.900 s 12.636
4GB 46.573 s 3.619s 12.868
16 GB 192.829 s 14.829 s 13.003

6.5 Scalability

Scalability over Number of Cores. Figure 14 presents the
speedup curves of JPStream on Xeon-Phi. In general, all three
versions exhibit linear speedup increase up to 64 cores, with
different increasing rates. For JPStreamNR, the curve is less
smooth, because the number of execution paths could vary
significantly under different partitions. For the other two,
the automaton resetting largely limits the maximal number
of execution paths, yielding smoother curves.

Scalability over Input Sizes. Table 9 reports the speedup of
JPStreamR+ with different data-size thresholds on Xeon. The
results indicate that, in general, there is a tradeoff between
the memory footprint and the performance gain.

OJPStreamNR E1JPStreamR ~ ® JPStreamR+ 121

Speedup (20 cores)
ONPAEODOONH~O

Xeon (16 cores)

OJPStreamNR E1JPStreamR mJPStreamR+

432 1\ 53.1

Xeon Phi (64 cores)

Figure 13. Speedups of JPStream-generated Automata on Xeon and Xeon Phi Servers.

—+—JPStreamNR =#=JPStreamR —#&—JPStreamR+
60
50

40 it
20 el

20 4
10 4

0 T T T T
0 10 20 30 40 50 60

Number of Cores

Speedup(64 cores)

Figure 14. Scalability over Number of Cores on Xeon-Phi

7 Related Work

Semi-structured Data Processing. A large body of prior
work focuses on the expressiveness of semi-structured data
querying and the efficiency of executing concurrent queries,
especially for XML data. For evaluating XML path queries,
representative methods include automata-based [32, 63],
array-based [40], and stack-based algorithms [26]. Among
them, a seminal idea by Green and others is to combine a set
of XPath expressions into a DFA to improve the evaluation
efficiency [32], which influences many others, including two
widely used XML tools, Y-filter [27], XMLTK [22], as well as
JPStream, though ours is for JSON data processing.

Unlike XML with well-developed streaming computation
models, most JSON tools [4, 10, 12, 14] rely on parsing the
whole data stream to extract information. JsonSurfer [15]
is the only stream processing tool for JSON that we are
aware of, but it runs less efficiently for the lack of automata.
Barenghi and others [23] use operator precedence grammars
(OPG) for parallel JSON parsing, without querying support.
Unlike others, MISON [42] exploits bitwise parallelism with
SIMD supports. It pre-constructs structural indexes for JSON
data to speed up the querying. But the index construction can
only execute sequentially due to dependences, thus cannot
scale on multicore machines. Parabix [44] also uses bitwise
parallelism to accelerate XML parsing, but not querying.
Palkar and others apply filters [54] on the raw JSON byte
stream before querying the data to accelerate the processing.
Pavlopoulou and others [55] rewrite JSONiq queries into
XQuery to leverage an existing XML framework (Apache
VXQuery [1]) to support parallel processing of multiple JSON
data streams, rather than a single stream.

Parallel Finite Automata. Finite automata (a.k.a. FSMs) are
difficult to parallelize. A traditional parallelization is to use
prefix-sum [41], which is also based state enumeration. An
implementation of this method [50] has been optimized for
SIMD instructions. Speculative parallelization of FSMs has
also been exploited [56, 57, 64, 65] by breaking the transition
dependences with state predictions. Though providing useful
insights, the above work cannot be directly applied to the
parallelization of semi-structured data processing, which
essentially requires the use of stack-based automata.

Some recent work introduces parallel pushdown automata
for processing XML data, such as PP-Transducer [51] and
GAP [39]. They share some high-level ideas with JPStream.
However, they suffer from the path explosion problem when
ported to JSON. AT-GIS [52] is a recent work for parallel
processing GeoJSON, a derivative of JSON. However, its
applicability to the generic JSON remains unclear.

8 Conclusion

This work addresses the challenges in scalable JSON-family
data processing with a compilation system, called JPStream.
JPStream automatically generates parallel executables with
low-memory footprints for JSON data processing. At its core
is the design of a streaming computation model and a set of
customized parallelization techniques. The model is enabled
by a joint compilation idea that combines the queries and
JSON syntax into a unified automaton. The parallelization
leverages a syntactical feasibility inference, an on-demand
automaton resetting scheme, and a data constraint learner
to address the path explosion raised by the unique features
of JSON. Finally, evaluation confirms the effectiveness of
JPStream in generating highly scalable automata executables
with bounded memory footprints, showing superiority over
the state-of-the-art methods and existing JSON solutions in
terms of performance and memory consumption.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their time and comments. This material is based upon the
work supported in part by National Science Foundation (NSF)
Grants No. 1565928 and 1751392, and Hellman Foundation.

References

[1] Apache VXQuery. https://vxquery.apache.org/.

[2] Best Buy developer APL https://bestbuyapis.github.io/api-
documentation/. Retrieved: 2018-07-01.

[3] Best practices for reading JSON data. https://docs.aws.amazon.com/
athena/latest/ug/. Retrieved: 2018-07-01.

[4] A fast JSON parser/generator for Java. https://github.com/alibaba/
fastjson/. Retrieved: 2018-07-01.

[5] Getting started with JSON features in Azure SQL database.
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-
json-features. Retrieved: 2018-07-01.

[6] Google Map directions APL https://developers.google.com/maps/
documentation/directions/start/. Retrieved: 2018-07-01.

[7] Health care provider credential data. https://data.wa.gov/api/views/
qxh8-f4bd/. Retrieved: 2018-07-01.

[8] The home of the U.S. government’s open data. https://www.data.gov/.
Retrieved: 2018-07-01.

[9] Indigenous land use agreements. https://data.gov.au/dataset/
indigenous-land-use-agreements-registered-or-in-notification/. Re-
trieved: 2018-07-01.

[10] JSON-C - a JSON implementation in C. https://github.com/json-c/
json-c. Retrieved: 2018-07-01.

[11] JSONig: The JSON query language. http://jsoniq.org/. Retrieved: 2018-
07-01.

[12] Main portal page for the Jackson project. https://github.com/
FasterXML/jackson/. Retrieved: 2018-07-01.

[13] National statistics postcode lookup UK. https://data.gov.uk/dataset/
national-statistics-postcode-lookup-uk/. Retrieved: 2018-07-01.

[14] RapidJSON. http://rapidjson.org/. Retrieved: 2018-07-01.

[15] A streaming JsonPath processor in Java. https://github.com/jsurfer/
JsonSurfer/. Retrieved: 2018-07-01.

[16] Twitter developer API. https://developer.twitter.com/en/docs/. Re-
trieved: 2018-07-01.

[17] Twitter usage statistics. http://www.internetlivestats.com/twitter-
statistics/. Retrieved: 2018-07-01.

[18] Why JSON will continue to push XML out of the picture.
https://www.ctl.io/developers/blog/post/why-json-will-continue-to-
push-xml-out-of-the-picture. Retrieved: 2018-07-01.

[19] Alfred V Aho. Compilers: principles, techniques and tools (for Anna
University), 2/e. Pearson Education India, 2003.

[20] Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi,
Kevin Skadron, Westley Weimer, and Reetuparna Das. ASPEN: A scal-
able In-SRAM architecture for pushdown automata. In Proceedings of
the 51th Annual IEEE/ACM International Symposium on Microarchitec-
ture. ACM, 2018.

[21] Apache Fundation. Apache CouchDB. http://couchdb.apache.org/.
Retrieved: 2018-07-01.

[22] Iliana Avila-Campillo, Todd J Green, Ashish Gupta, Makoto Onizuka,

Demian Raven, and Dan Suciu. Xmltk: An xml toolkit for scalable xml

stream processing. 2002.

Alessandro Barenghi, Stefano Crespi-Reghizzi, Dino Mandrioli, Feder-

ica Panella, and Matteo Pradella. Parallel parsing made practical. Sci.

Comput. Program., 112:195-226, 2015.

[24] Roy H. Campbell and Reza Farivar. Cloud computing applications,

part 1: Cloud systems and infrastructure. https://www.coursera.org/

learn/cloud-applications-part1. Retrieved: 2018-07-01.

Arijit Chakraborty. An introduction to REST and JSON. https://blogs.

oracle.com/cloud-platform/an-introduction-to-rest-and-json. Re-

trieved: 2018-07-01.

Songting Chen, Hua-Gang Li, Jun’ichi Tatemura, Wang-Pin Hsiung,

[23

—

[25

[

[26

—

Divyakant Agrawal, and K. Selcuk Candan. Twig2 stack: Bottom-up
processing of generalized-tree-pattern queries over XML documents.
In Proceedings of the 32nd International Conference on Very Large Data
Bases, Seoul, Korea, September 12-15, 2006, pages 283-294, 2006.

[27]

[28]

[29]

[30]
[31]

[32]

[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Yanlei Diao, Peter M. Fischer, Michael J. Franklin, and Raymond To.
Yfilter: Efficient and scalable filtering of XML documents. In Proceed-
ings of the 18th International Conference on Data Engineering, San Jose,
CA, USA, February 26 - March 1, 2002, pages 341-342, 2002.

Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal,
and Harold Noyes. An efficient and scalable semiconductor architec-
ture for parallel automata processing. IEEE Transactions on Parallel
and Distributed Systems, 25(12):3088-3098, 2014.

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Mi-
croservices: yesterday, today, and tomorrow. In Present and Ulterior
Software Engineering, pages 195-216. Springer, 2017.

W3C Editor. Overview of the CoverageJSON format. https://w3c.
github.io/sdw/coverage-json/. Retrieved: 2018-07-01.

Chris Esplin. Firebase data modeling. https://howtofirebase.com/
firebase-data-modeling-939585ade7f4. Retrieved: 2018-07-01.

Todd J Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. Pro-
cessing xml streams with deterministic automata. In International
Conference on Database Theory, pages 173-189. Springer, 2003.
GeoJSON Working Group. The GeoJSON specification (RFC 7946).
http://geojson.org/. Retrieved: 2018-07-01.

Netork Working Group. NetJSON: data interchange format for net-
works. http://netjson.org/rfc.html. Retrieved: 2018-07-01.

W3C JSON-LD Community Group. JSON for linking data. https:
//json-ld.org/. Retrieved: 2018-07-01.

Venkat N Gudivada, Dhana Rao, and Vijay V Raghavan. NoSQL sys-
tems for big data management. In Services (SERVICES), 2014 IEEE World
Congress on, pages 190-197. IEEE, 2014.

Stefan Gossner. JSONPath - XPath for JSON. http://goessner.net/
articles/JsonPath/. Retrieved: 2018-07-01.

IBM. XML-SAX (parse an XML document). https://www.ibm.com/
support/knowledgecenter/en/ssw_ibm_i_73/rzasd/zzxmlsa.htm. Re-
trieved: 2018-07-01.

Lin Jiang and Zhijia Zhao. Grammar-aware parallelization for scalable
XPath querying. In Proceedings of the 22Nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 17, pages
371-383. ACM, 2017.

Vanja Josifovski, Marcus Fontoura, and Attila Barta. Querying XML
streams. VLDB 7., 14(2):197-210, 2005.

Richard E. Ladner and Michael J. Fischer. Parallel prefix computation.
3. ACM, 27(4):831-838, 1980.

Yinan Li, Nikos R. Katsipoulakis, Badrish Chandramouli, Jonathan
Goldstein, and Donald Kossmann. Mison: A fast JSON parser for data
analytics. PVLDB, 10(10):1118-1129, 2017.

Yishan Li and Sathiamoorthy Manoharan. A performance comparison
of SQL and NoSQL databases. In Communications, computers and
signal processing (PACRIM), 2013 IEEE pacific rim conference on, pages
15-19. IEEE, 2013.

Dan Lin, Nigel Medforth, Kenneth S. Herdy, Arrvindh Shriraman, and
Robert D. Cameron. Parabix: Boosting the efficiency of text processing
on commodity processors. In 18th IEEE International Symposium on
High Performance Computer Architecture, HPCA 2012, New Orleans, LA,
USA, 25-29 February, 2012, pages 373-384, 2012.

Logicworks. The future of AWS’ cloud: Infrastructure as an applica-
tion. https://www.cloudcomputing-news.net/news/2016/jun/02/the-
future-of-aws-cloud-infrastructure-as-an-application/. Retrieved:
2018-07-01.

Isaac Lopez. Amazon hosting 20 TB of climate data.
https://www.datanami.com/2013/11/12/amazon_hosting_20_
tb_of_open_climate_data/. Retrieved: 2018-07-01.

Wei Lu, Kenneth Chiu, and Yinfei Pan. A parallel approach to XML
parsing. In 7th IEEE/ACM International Conference on Grid Computing
(GRID 2006), September 28-29, 2006, Barcelona, Spain, Proceedings, pages
223-230, 2006.

[48] Wei Lu and Dennis Gannon. Parallel XML processing by work steal-

ing. In Proceedings of the 2007 workshop on Service-oriented computing
performance: aspects, issues, and approaches, pages 31-38. ACM, 2007.
MongoDB. MongoDB extended JSON. https://docs.mongodb.com/
manual/reference/mongodb-extended-json/. Retrieved: 2018-07-01.
Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-
parallel finite-state machines. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA,
March 1-5, 2014, pages 529-542, 2014.

Peter Ogden, David Thomas, and Peter Pietzuch. Scalable XML query
processing using parallel pushdown transducers. Proceedings of the
VLDB Endowment, 6(14):1738-1749, 2013.

Peter Ogden, David B. Thomas, and Peter R. Pietzuch. AT-GIS: highly
parallel spatial query processing with associative transducers. In
Proceedings of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July
01, 2016, pages 1041-1054, 2016.

Oracle. Parsing an XML file using SAX. https://docs.oracle.com/javase/
tutorial/jaxp/sax/parsing.html. Retrieved: 2018-07-01.

Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. Filter
before you parse: Faster analytics on raw data with sparser. Proceedings
of the VLDB Endowment, 11(11):1576-1589, 2018.

Christina Pavlopoulou, E. Preston Carman Jr., Till Westmann, Michael J.
Carey, and Vassilis J. Tsotras. A parallel and scalable processor for
JSON data. In Proceedings of the 21th International Conference on
Extending Database Technology, EDBT 2018, Vienna, Austria, March
26-29, 2018., pages 576-587, 2018.

[56] Jungiao Qiu, Zhijia Zhao, and Bin Ren. Microspec: Speculation-centric

fine-grained parallelization for fsm computations. In Parallel Architec-
ture and Compilation Techniques (PACT), 2016 International Conference
on, pages 221-233. IEEE, 2016.

[57] Jungiao Qiu, Zhijia Zhao, Bo Wu, Abhinav Vishnu, and Shuaiwen Leon

Song. Enabling scalability-sensitive speculative parallelization for

fsm computations. In Proceedings of the International Conference on
Supercomputing, page 2. ACM, 2017.

Sqlizer. A brief history of JSON. https://blog.sqlizer.io/posts/json-
history/. Retrieved: 2018-07-01.

Arun Subramaniyan, Jingcheng Wang, Ezhil RM Balasubramanian,
David Blaauw, Dennis Sylvester, and Reetuparna Das. Cache automa-
ton. In Proceedings of the 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 259-272. ACM, 2017.
TwoBitHistory. The rise and rise of JSON. https://twobithistory.org/
2017/09/21/the-rise-and-rise-of-json.html. Retrieved: 2018-07-01.
Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano,
Lorena Salamanca, Rubby Casallas, and Santiago Gil. Evaluating
the monolithic and the microservice architecture pattern to deploy
web applications in the cloud. In Computing Colombian Conference
(10CCC), 2015 10th, pages 583-590. IEEE, 2015.

Philipp Wehner, Christina Piberger, and Diana Gohringer. Using
JSON to manage communication between services in the internet
of things. In Reconfigurable and Communication-Centric Systems-on-
Chip (ReCoSoC), 2014 9th International Symposium on, pages 1-4. IEEE,
2014.

Ying Zhang, Yinfei Pan, and Kenneth Chiu. A parallel xpath engine
based on concurrent NFA execution. In 16th IEEE International Con-
ference on Parallel and Distributed Systems, ICPADS 2010, Shanghai,
China, December 8-10, 2010, pages 314-321, 2010.

Zhijia Zhao and Xipeng Shen. On-the-fly principled speculation for
FSM parallelization. In Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS 15, Istanbul, Turkey, March 14-18, 2015, pages
619-630, 2015.

Zhijia Zhao, Bo Wu, and Xipeng Shen. Challenging the embarrass-

ingly sequential: parallelizing finite state machine-based computations
through principled speculation. In ACM SIGARCH Computer Architec-

ture News, volume 42, pages 543-558. ACM, 2014.

