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PERTURBATIONS OF ELLIPTIC OPERATORS IN 1-SIDED
CHORD-ARC DOMAINS. PART I: SMALL AND LARGE
PERTURBATION FOR SYMMETRIC OPERATORS

JUAN CAVERO, STEVE HOFMANN, AND JOSE MARIA MARTELL

ABSTRACT. Let Q@ C R™", n > 2, be a l-sided chord-arc domain, that is, a domain
which satisfies interior Corkscrew and Harnack Chain conditions (these are respectively
scale-invariant /quantitative versions of the openness and path-connectedness), and whose
boundary 02 is n-dimensional Ahlfors regular. Consider Lo and L two real symmetric
divergence form elliptic operators and let wr,, wr be the associated elliptic measures. We
show that if wr, € Ax (o), where o = H”‘BQ, and L is a perturbation of Lo (in the sense
that the discrepancy between Lo and L satisfies certain Carleson measure condition), then
wr, € Aoso(0). Moreover, if L is a sufficiently small perturbation of Lo, then one can pre-
serve the reverse Holder classes, that is, if for some 1 < p < oo, one has wr, € RHy(0)
then wy, € RHy(0). Equivalently, if the Dirichlet problem with data in ) (o) is solvable
for Lo then so it is for L. These results can be seen as extensions of the perturbation the-
orems obtained by Dahlberg, Fefferman-Kenig-Pipher, and Milakis-Pipher-Toro in more
benign settings. As a consequence of our methods we can show that for any perturbation
of the Laplacian (or, more in general, of any elliptic symmetric operator with Lipschitz
coeflicients satisfying certain Carleson condition) if its elliptic measure belongs to Ao (o)
then necessarily Q is in fact an NTA domain (and hence chord-arc) and therefore its
boundary is uniformly rectifiable.
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1. INTRODUCTION AND MAIN RESULTS

In the last years there has been a renewed interest in understanding the behavior of the
harmonic measure, or more generally of elliptic measures, in very rough domains. Part of
the effort consisted of establishing a connection between the “regularity” of the boundary
of the domain, expressed in terms of some rectifiability, and the good behavior of the
harmonic or elliptic measures, written in terms of absolute continuity with respect to the
surface measure.

A 1-sided chord-arc domain © C R™, n > 2 is a set whose boundary 0 is n-
dimensional Ahlfors regular, and which satisfies interior Corkscrew and Harnack Chain
conditions (these are respectively scale-invariant/quantitative versions of the openness and
path-connectedness; see Definitions 2.1 and 2.2 below). The papers [HM3, HMU] show
that in the setting of 1-sided chord-arc domains, harmonic measure is in A, (o), where
o = H"|,, is the surface measure, if and only if JQ is uniformly rectifiable (a quantitative
version of rectifiability). It was shown later in [AHM™2] that under the same background
hypothesis, d€ is uniformly rectifiable if and only if €2 satisfies an exterior corkscrew con-
dition and hence ( is a chord-arc domain. All these together, and additionally, [AHM 2]
in conjunction with [DJ] or [Sem)], give a characterization of chord-arc domains, or a char-
acterization of the uniform rectifiability of the boundary, in terms of the membership of
harmonic measure to the class As(0). For other elliptic operators Lu = —div(AVu)
with variable coefficients it was shown recently in [HMT2] that the same characterization
holds provided A is locally Lipschitz and has appropriately controlled oscillation near the
boundary.

This paper is the first part of a series of two articles where we consider perturbation
of real elliptic operators in the setting of 1-sided chord-arc domains. Here we work with
symmetric operators and study perturbations that preserve the Ao (o) property. We extend
the work of [FKP, MPT1] (see also [HL], [HM2, HM1]) to the setting of 1-sided chord-arc
domains and show that if the disagreement between two elliptic symmetric matrices satisfies
certain Carleson measure condition then one of the associated elliptic measures is in Ax (o)
if and only if the other is in Ax (o). In other words, the property that the elliptic measure
belongs to A (o) is stable under Carleson measure type perturbations. As an immediate
consequence of this we can see that the above characterization of the fact that a domain
is chord-arc, or its boundary is uniformly rectifiable, extends to any perturbation of the
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Laplacian or more in general to any perturbation of the operators considered in [HMT2].
In particular, our result allows a characterization with operators whose coefficients are not
even continuous.

Our method to obtain the perturbation result differs from that in [FKP, MPT1], and
uses the so-called extrapolation of Carleson measures which originated in [LM] (see also
[HL, AHLT, AHM™*1]). We shall utilize this technique in the form developed in [HM2,
HMI1] (see also [HM3]). The method is a bootstrapping argument, based on the Corona
construction of Carleson [Car] and Carleson and Garnett [CG], that, roughly speaking,
allows one to reduce matters to the case in which the perturbation is small in some sawtooth
subdomains. In particular, in the course of the proof we are implicitly treating the case
in which the perturbation is small, and this allows us to fine-tune the argument in order
to obtain that for sufficiently small perturbations, we not only preserve the class Ay, but
we also keep the same exponent in the corresponding reverse Holder class. More precisely,
assume that wr,, the elliptic measure associated with L, belongs to the class Ax (o), then
wr, € RH,(0) for some p > 1 (that is, the Radon-Nikodym derivative of wr, with respect
to the surface measure satisfies a scale-invariant estimate in LP). We obtain that if L is
a sufficiently small perturbation (in a Carleson measure sense) of Lo, then wy, € RHp(o).
This result can be seen as an extension of [Dah, MPT?2] (see also [Esc]), where the small
perturbation case is considered in the unit ball. It is worth mentioning that in the present
scenario, wr, € RH,(o) if and only if the LP'-Dirichlet problem for Lg is solvable (in a non-
tangential fashion). Thus, the small perturbation case says that if the L?-Dirichlet problem
for Lg is solvable for a given 1 < ¢ < oo then so is the corresponding Dirichlet problem
for L provided L is small perturbation of Lg. Analogously, saying that wr, € Ax(0) is
equivalent to the fact that L?-Dirichlet problem for Ly is solvable for some (large) g. Thus if
we just assume that Lg is an arbitrary perturbation of L we conclude that the Li-Dirichlet
problem for L is solvable for some (possibly larger) q.

In the second part of this series of papers [CHMT], together with Tatiana Toro, we
consider the non-symmetric case and present another approach, interesting on its own
right, to treat the “large” constant case in the same setting of 1-sided chord-arc domains.
There, we start with Ly and L two real elliptic operators, non-necessarily symmetric, whose
disagreement satisfies a Carleson measure condition. Our method decouples the proof in
two independent steps. The first one, which is the real perturbation result, shows that if
wr, € Ax(o) then all bounded solutions of L satisfy Carleson measure estimates. The
second step establishes that for any real elliptic operator non-necessarily symmetric L,
the property that all bounded solutions of L satisfy Carleson measure estimates yields
that wy, € Aso(0). This extends the work [KKiPT] where they treated bounded Lipschitz
domains and domains above the graph of a Lipschitz function. Let us point out that it
is also shown in [HMT1] that the converse is true, namely, that w; € A (o) implies that
all bounded solutions of L satisfy Carleson measure estimates. Hence, eventually both
properties are equivalent. Finally, an interesting application of the method developed in
[CHMT] allows one to obtain that if L = —div(AV) with A locally Lipschitz such that
IVA|§ € L>=(2) (here § is the distance to dQ) and |V A|?§ satisfies a Carleson condition
then wy, € Ax(0) if and only if w; T € A (o), where LT is the adjoint operator, that is
LT = —div(ATV) with AT being the adjoint matrix of A.

Let us now state the main results of this paper, the precise definitions can be found in
Section 2.

Theorem 1.1. Let Q C R™"' n > 2 be a I-sided CAD (cf. Definition 2.4). Let Lu =
—div(AVu) and Lou = —div(AoVu) be real symmetric elliptic operators (cf. Definition
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2.21). Define the disagreement between A and Ay in Q by

(1.2) oA A)X) = s JAY)-AY), Xeq
YeB(X,6(X)/2)

where 0(X) := dist(X, 00Q), and write
0(A, Ag)(X)?

dX.

1
1.3 o(A, Ao)|| := sup //
G A All= e B Ao M 00
0<r<diam(99)
Suppose that there exists p, 1 < p < 0o, such that the elliptic measure wr, € RH,(0S) (cf.
Definition 2.39). The following hold:

(a) If |lo(A, Ag)|| < oo, then there exists 1 < g < oo such that w;, € RH,(092). Here, q
and the implicit constant depend only on dimension, p, the 1-sided CAD constants,
the ellipticity of Lo and L, ||o(A, Ao)||, and the constant in wr, € RH,(0N).

(b) There exists eg > 0 (depending only on dimension, p, the 1-sided CAD constants,
the ellipticity of Ly and L, and the constant in wr, € RH,(0Q)) such that if one
has ||o(A, Ao)||| < €0, then wr, € RH,(0RQ), with the implicit constant depending only
on dimension, p, the 1-sided CAD constants, the ellipticity of Lo and L, and the
constant in wr, € RHp(09).

To present the characterization of chord-arc domains advertised above we need to in-
troduce some notation. Let Ly be the collection of real symmetric elliptic operators
Lu = —div(AVu) (cf. Definition 2.21) such that A € Lipy.(£2), HVA\(FHLOO(Q) < o0,

and

1

14 sup // VAX)|dX < oc.
( ) €02 O'(B(JT, T) N GQ) B(z,r)NQ | ( )|
0<r<diam(99)

We also introduce L, the collection of real symmetric elliptic operators Lu = — div(AVu)
(cf. Definition 2.21) for which there exists Ly = —div(4pVu) € Ly in such a way that
[lo(A, Ag)|| < co. Note that all constant coefficient operators belong to Lo and also that
Lo C L.

Corollary 1.5. Let Q C R"" n > 2 be a 1-sided CAD (cf. Definition 2.4). Let L € L
be a real symmetric elliptic operators. Then

wr, € Ax(0) = Q is a CAD (c¢f. Definition 2.5).

In the previous result the backward implication is well-known and follows from [MPT1,
KP] (see also [HMT2, Appendix A]). For the forward implication, (that is, the fact that
A (o) gives the existence of exterior corkscrews), the case when L is the Laplacian was
proved combining [AHM™2, HMU]. The case of operators in Lg is the main result of
[HMT?2]. Our contribution here is to extend Ly and to be able to consider operators in
L whose coefficients may not posses any regularity. The proof is as follows. Let L =
—div(AVu) € L be such that wy, € Ax(0). By the definition of the class L, there exists
Lo = —div(AoVu) € Ly such that ||o(A, Ao)|| < co. This and the fact that wy € Ax(0)
allow us to invoke Theorem 1.1(a) (note that we are switching the roles of Ly and L) to
conclude that wr, € Ax (o). In turn, since Ly € Ly we can invoke the main result in
[HMT2] to conclude that 2 satisfies the exterior corkscrew condition, and therefore 2 is
CAD as desired.

The plan of the paper is as follows. In Section 2 we present some preliminaries, definition,
and some background results that will be used throughout the paper. Section 3 contains



PERTURBATIONS OF ELLIPTIC OPERATORS IN 1-SIDED CHORD-ARC DOMAINS 5

some auxiliary results. The proof of Theorem 1.1 is given in Sections 4 and 5. Finally in
Section 6 we present some applications of Theorem 1.1(b).

2. PRELIMINARIES

2.1. Notation and conventions.

Our ambient space is R"*1, n > 2.

We use the letters ¢, C to denote harmless positive constants, not necessarily the same
at each occurrence, which depend only on dimension and the constants appearing in
the hypotheses of the theorems (which we refer to as the “allowable parameters”). We
shall also sometimes write a < b and @ ~ b to mean, respectively, that a < Cb and
0 < ¢ <a/b< C, where the constants ¢ and C are as above, unless explicitly noted to
the contrary. At times, we shall designate by M a particular constant whose value will
remain unchanged throughout the proof of a given lemma or proposition, but which may
have a different value during the proof of a different lemma or proposition.

Given a domain (i.e., open and connected) Q C R™"! we shall use lower case letters
x,, z, etc., to denote points on 02, and capital letters X, Y, Z, etc., to denote generic
points in R"*! (especially those in €2).

The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x,r) when
the center x lies on 9Q, or B(X,r) when the center X € R"*1\ 9Q. A “surface ball” is
denoted A(z,r) := B(x,r) N IS, and unless otherwise specified it is implicitly assumed
that x € 9Q. Also if 9 is bounded, we typically assume that 0 < r < diam(9€2), so that
A =99 if diam(99Q) < r < diam(09).

Given a Euclidean ball B or surface ball A, its radius will be denoted r(B) or r(A)
respectively.

Given a Euclidean ball B = B(X,r) or surface ball A = A(z,r), its concentric dilate by
a factor of k > 0 will be denoted by kB = B(X, kr) or kA = A(x, kr).

For X € R we set dgq(X) := dist(X,09Q). Sometimes, when clear from the context
we will omit the subscript 02 and simply write §(X).

We let H™ denote the n-dimensional Hausdorff measure, and let ogq := H " 50 denote
the “surface measure” on 0. For a closed set E C R™! we will use the notation
op = H" . When clear from the context we will also omit the subscript and simply
write o.

B

For a Borel set A C R"! we let 14 denote the usual indicator function of A, i.e.,
la(z)=1ifx € A, and 14(z) =0if = ¢ A.

For a Borel set A C R""! we let int(A) denote the interior of A, and A denote the
closure of A. If A C 09, int(A) will denote the relative interior, i.e., the largest relatively
open set in 0f) contained in A. Thus, for A C 012, the boundary is then well defined by
O0A = A\ int(A).

For a Borel set A C R™"*!, we denote by C(A) the space of continuous functions on A and
by C.(A) the subspace of C(A) with compact support in A. Note that if A is compact
then C(A) = C.(A).

For a Borel set A C 09 with 0 < 0(A) < oo, we write f, f do :=o(A)~! [, fdo.

We shall use the letter I (and sometimes J) to denote a closed (n + 1)-dimensional
Euclidean cube with sides parallel to the co-ordinate axes, and we let ¢(I) denote the
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side length of I. We use @ to denote a dyadic “cube” on E C R™*!. The latter exists,
given that F is AR, see Definition 2.3 (cf. [DS1], [Chr]), and enjoy certain properties
which we enumerate in Lemma 2.7 below.

2.2. Some definitions.

Definition 2.1 (Corkscrew condition). Following [JK], we say that an open set Q C
R+ satisfies the “Corkscrew condition” if for some uniform constant ¢ € (0,1) and for
every surface ball A := A(z,r) = B(xz,r) N 0Q with x € 9Q and 0 < r < diam(9f2), there
is a ball B(Xa,cr) C B(xz,r)NQ. The point XA € Q is called a “corkscrew point” relative
to A. Note that we may allow r < Cdiam(02) for any fixed C, simply by adjusting the
constant c.

Definition 2.2 (Harnack Chain condition). Again following [JK], we say that Q ¢ R"**!
satisfies the Harnack Chain condition if there is a uniform constant C' such that for every
p > 0,0 > 1, and every pair of points X, X’ € Q with 6(X),d(X’) > p and | X — X'| < Op,
there is a chain of open balls By,...,By C Q, N < C(©), with X € B;, X' € By,
By, N Bgy1 # @ and C~tdiam(By) < dist(By,dQ) < Cdiam(By). The chain of balls is
called a “Harnack Chain”.

Definition 2.3 (Ahlfors regular). We say that a closed set E C R""! is n-dimensional
AR (or simply AR), if there is some uniform constant C' = Car such that

C™l" < HYENB(z,7)) <Cr"*, 0<r<diam(E), z¢€ E.
Definition 2.4 (1-sided chord-arc domain). A connected open set  C R"*! is a “1-

sided chord-arc domain” (1-sided CAD for short) if it satisfies the Corkscrew and Harnack
Chain conditions and if 02 is AR.

Definition 2.5 (Chord-arc domain). A connected open set 2 C R"™! is a “chord-arc
domain” (CAD for short) if it is a 1-sided CAD and moreover () satisfies the exterior
Corkscrew condition (that is, the domain Qe = R7H1 \ Q satisfies the Corkscrew condi-
tion).

Definition 2.6. Given E C R"*! and n-dimensional AR set, let H'/?(E) be the set of
functions f € L?(E) such that

_ 2 1/2
T rrfr\L2<E)+( /E /E Wm)dc@)) < .

2.3. Dyadic grids and sawtooths. We give a lemma concerning the existence of a
“dyadic grid”:

Lemma 2.7 (Existence and properties of the “dyadic grid”, [DS1, DS2], [Chr]).
Suppose that E C R™" is n-dimensional AR. Then there exist constants ag > 0, n > 0
and C1 < oo depending only on dimension and the AR constant, such that for each k € 7Z
there is a collection of Borel sets (“cubes”)

Dy, = {Q CoN: j€ T},
where Jy, denotes some (possibly finite) index set depending on k, satisfying:
(a) E=U; Q? for each k € Z.
(b) If m > k then either Q" C Q? or Q"N Q;‘f‘ =0.
(¢) For each j,k € Z and each m > k, there is a unique i € Z such that Q;‘? C Q.
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(d) diam(Q?) <027k,

(e) Each Q;“ contains some “surface ball” A(x;’?, a2 %) = B(x?, a2 ") NE.

(f) H"({z € Q? : dist(a?,E\Q?) <727k} < ClTan(Q?), for all j,k € Z and for all
T € (O, ao).

A few remarks are in order concerning this lemma.

e In the setting of a general space of homogeneous type, this lemma has been proved by
Christ [Chr|, with the dyadic parameter 1/2 replaced by some constant 6 € (0,1). In
fact, one may always take 6 = 1/2 (cf. [HMMM, Proof of Proposition 2.12]). In the
presence of the AR property, the result already appears in [DS1, DS2].

e We shall denote by D(E) the collection of all relevant Q?, ie.,

D(E) =Dy,
k

where, if diam(E) is finite, the union runs over those k € Z such that 27% < diam(E).

e For a dyadic cube Q € Dy, we shall set £(Q) = 27%, and we shall refer to this quantity
as the “length” of Q. It is clear that ¢(Q) ~ diam(Q). Also, for Q € D(E) we will set

e Properties (d) and (e) imply that for each cube @@ € D, there is a point zg € E,

a Euclidean ball B(zg,rq) and a surface ball A(zg,rg) := B(xzg,rg) N E such that
cl(Q) <rg < (Q), for some uniform constant ¢ > 0, and

(2'8) A(an QTQ) cQc A('xQ?CTQ)

for some uniform constant C' > 1. We shall denote these balls and surface balls by
(2.9) Bq:=B(zq,rq).  Aq:=A(zq.7q);
(2.10) Bq = B(zq,Crq),  Aq = A(wg,Crq),

and we shall refer to the point zg as the “center” of Q.

e Let Q C R™! be an open set satisfying the Corkscrew condition and such that 0 is
AR. Given @ € D(99Q) we define the “corkscrew point relative to Q" as X¢q = Xa,,.
We note that

5(XQ) ~ diSt(XQ, Q) ~ diam(Q).

Following [HM3, Section 3] we next introduce the notion of “Carleson region” and “dis-
cretized sawtooth”. Given a cube @) € D(E), the “discretized Carleson region” D¢ relative
to @ is defined by

Do :={Q €D(E): Q' C Q}.
Let F = {Q;} C D(F) be a family of disjoint cubes. The “global discretized sawtooth”
relative to F is the collection of cubes Q € D(FE) that are not contained in any Q; € F,
that is,

Dr :=D(E)\ U Dg;-
QieF
For a given @ € D(FE), the “local discretized sawtooth” relative to F is the collection of
cubes in Dg that are not contained in any @); € F or, equivalently,

ID)]:’Q = ]D)Q\ U DQi = D]:Q]D)Q.
Qi:eF
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We also introduce the “geometric” Carleson regions and sawtooths. In the sequel, 2 C
R (n > 2) will be a 1-sided CAD. Given @Q € D(99) we want to define some associated
regions which inherit the good properties of Q. Let W = W() denote a collection of
(closed) dyadic Whitney cubes of @ C R"*!l so that the cubes in W form a pairwise
non-overlapping covering of €2, which satisfy

(2.11) ddiam(]) < dist(41,00) < dist(,0€) < 40diam(I), vIieW,

and

diam(/;) ~ diam(/3), whenever I; and I touch.

Let X (I) denote the center of I, let ¢(I) denote the sidelength of I, and write k = kj if
(I)=27"

Given 0 < A < 1 and I € W we write I* = (1 + A\)I for the “fattening” of I. By taking
A small enough, we can arrange matters, so that, first, dist(/*, J*) ~ dist(I,J) for every
I,J € W, and secondly, I'* meets J* if and only if OI meets 9.J (the fattening thus ensures
overlap of I* and J* for any pair I,J € W whose boundaries touch, so that the Harnack
Chain property then holds locally in *UJ*, with constants depending upon A). By picking
A sufficiently small, say 0 < A < \g, we may also suppose that there is 7 € (1/2,1) such
that for distinct I, J € W, we have that 7J N I* = (). In what follows we will need to work
with dilations I'** = (1 + 2A\)I or I"** = (1 + 4\)I, and in order to ensure that the same
properties hold we further assume that 0 < A < \g/4.

For every () € D(0€2) we can construct a family W¢, C W(Q), and define
Ug = U I,
Tewy,

satisfying the following properties: Xg € Ug and there are uniform constants £* and Ky
such that

X(I) —»u, Xo, VI eW),
dist(1, Q) < Ko27M@ | vI e Wp.

Here, X(I) —y, Xq means that the interior of Ug contains all balls in a Harnack Chain
(in Q) connecting X (I) to X, and moreover, for any point Z contained in any ball in the
Harnack Chain, we have dist(Z, 0Q) ~ dist(Z, 2\ Ug) with uniform control of the implicit
constants. The constants k*, Ko and the implicit constants in the condition X (I) —y, Xg,
depend on at most allowable parameters and on A. Moreover, given I € W(2) we have
that I € W, where Q; € D(99) satisfies £(Qr) = £(I), and contains any fixed y € 9
such that dist(I,09Q) = dist(I,y). The reader is referred to [HM3, Section3] for full details.

For a given @ € D(0N), the “Carleson box” relative to @ is defined by
TQ = int ( U UQ/).
Q’GDQ

For a given family F = {Q;} of pairwise disjoint cubes and a given @ € D(99), we define
the “local sawtooth region” relative to F by

(2.12) Q;Q:int< U UQ/):int< U I*),

Q'eDr g I1eWr g
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where Wr g := UQ’ED;,Q W&S Analogously, we can slightly fatten the Whitney boxes and

use I** to define new fattened Whitney regions and sawtooth domains. More precisely, for
every € D(09Q),

= int ( U UQ> Qr g :=int ( U U&), U .
Q'eDg Q'eDg Tewy
Similarly, we can define T, é*, Q}i“’Q and Ué* by using I*** in place of I**.
To define the “Carleson box” Ta associated to a surface ball A = A(z,r), let k(A)
denote the unique k € Z such that 27%~1 < 200r < 2%, and set
={Q €Dyay: QN2A#£ 0O},
We then set
= int < U TQ>
QeDA
We can also consider slight dilations of Ta given by

T ::int( U Tg;), X :zint( U TQ)

QehA QeDA

Following [HM3, Section 3], one can easily see that there exist constants 0 < k3 < 1 and
ko > 2C (with C the constant in (2.10)), depending only on the allowable parameters, so
that

(2.13) k1BQNQ C Ty CTH CTH CTy CroBeNQ=:3B5NQ,
(2.14) SBANQCTACTACTAN CTXF CroBaNQ=:1BANQ,
and also

(2.15) QCroBANON=1iBANON=1A"  vQeD?,

where Bg is defined as in (2.9), A = A(z,r) with z € 0, 0 < r < diam(J9Q), and
Ba = B(x,r) is so that A = Ba N oS

2.4. A, weights and Carleson measures. Throughout this section, E C R"*! will be
an n-dimensional AR set and o = H"| .

Definition 2.16 (A and AZ*¥). Given a surface ball Ag = ByNE, with By = B(zo, 7o),
zo € F, 0 <r < diam(E), a Borel measure w defined on A is said to belong to Ax(Ag) if
there exist constants 0 < «, 8 < 1 such that for every surface ball A = B N E centered at
E with B C By, and for every Borel set F' C A, we have that

o(F) w(F)

a(A)>a:> m>,8.

Given Qo € D(E), a Borel measure w defined on @) is said to belong to Ag%’adiC(Qo) if
there exist constants 0 < a, 8 < 1 such that for every € Dg, and for every Borel set
F C @, we have that

OT(F)>oz:> @>B.

o(Q) w(Q)




10 JUAN CAVERO, STEVE HOFMANN, AND JOSE MARIA MARTELL

It is well known (see [GR], [CF]) that since o is a doubling measure (recall that E satisfies
the AR condition), w € A (Ap) if and only if w < o in Ay and there exists 1 < p < oo
such that w € RHp(Ay), that is, there is a constant C; > 1 such that

(][A k(o) da@)); < Cif kla) dota),

for every A = BN E centered at E with B C By, and where k = dw/do is the Radon-
Nikodym derivative. Analogously, w € _A‘izad“(cgo) if and only if w < ¢ in Qp and there
exists 1 < p < oo such that w € RHSyadlC(Qo), that is, there is a constant C'y > 1 such that

<]é k(o) da@)); < cljé k() do (),

for every @ € Dg,, where again k = dw/do.

Fix Qo € D(E). For each F = {Q;} C Dg,, a family of pairwise disjoint dyadic cubes,
and each f locally integrable, we define

PrSE) =g (1,0) @)+ 2 (f, 7w dotw)10.@).

7,

Ifwisa non—negative Borel measure on )y, we may naturally then define the measure Prw
as Prw(F fE Prlpdw, that is,

(2.17) Pror) —w(F\ U @) + 3 70 5%,
QieF QieF t

for each Borel set F' C Qq.

The next result follows easily by combining the arguments in [HM3, Lemma B.1] and
[HM1, Lemma 4.1]

Lemma 2.18. Let w be a non-negative Borel measure on Qo € D(E).

(a) If w is dyadically doubling on Qo —that is, there exists C,, > 1 such that w(Q) <
w(Q') for every Q € Do, and every Q' € Dg such that £(Q") = ¢(Q)/2— then
Prw is dyadically doubling on Q.

(b) If w e AR™(Qy) then Prw e AZ(Qy).

Let {7q}gen(r) be a sequence of non-negative real numbers. We define the “measure”
m (acting on Collectlons of dyadic cubes) by

=> 1, D cDE).
QeD’
Let Qo € D(E), we say that m is a discrete “Carleson measure” on Qo (with respect to o)

or, equivalently, m € C(Qy) if

m(Dg)
m = sup
” HC(QO) GDQO U(Q)

Given F = {Q;} C Dg,, a family of pairwise disjoint dyadic cubes, we define mz by

m]:(]D),) = m(ID)’ N ID)]:) = Z YQ; D' c DQO'
QeD'ND

< Q.
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Equivalently, the measure mr is given by the sequence {’YI,Q}QEDQ(,’ where

e if Q€ Drgq,,
(2.19) VFQ = . ’
0 lfQEDQO\D}"QO.

Lemma 2.20 ([HM3, Lemma 8.5]). Suppose that E C R"™! is n-dimensional AR. Fiz
Qo € D(E), let o, w be a pair of non-negative dyadically doubling Borel measures on Qo,
and let m be a discrete Carleson measure with respect to o, with

[mllego) < Mo.

Suppose that there exists v > 0 such that for every Q € Dg, and every family of pairwise
disjoint dyadic cubes F = {Q;} C Dg verifying

m(Dr o)
[mzle@) = sup — == <,
(Q) Q’EDQ U(Q/)

we have that Prw satisfies the following property:

o(F) Prw(F) 1
Ve € (0,1) 3C. > 1 such that (F C Q, > = > —).
O 3¢ (Fee To Pra(@ > C2)
Then, there ezist ng € (0,1) and Cy < oo such that, for every @ € D,
o(F) w(F) 1
F CQ, >1l—n —= ——= > —.
LT T LG

In other words, w € AZ*(Q,).

2.5. PDE estimates. Next, we recall several facts concerning elliptic measure and Green
functions. For our first results we will only assume that Q C R™*! is an open set, not
necessarily connected, with 0€) satisfying the AR property. Later we will focus on the case
where € is a 1-sided CAD.

Definition 2.21. We say that L is a real symmetric elliptic operator if Lu = — div(AVu),
with A(X) = (am(X))fZ;r:ll being a real symmetric matrix such that a;; € L>(Q) and
there exists A > 1 such that the following uniform ellipticity condition holds

(2.22) AP < AX)E-€ <AE?,  €eR"™ forae X €.

In what follows we will only be working with this kind of operators, we will refer to them
as “elliptic operators” for the sake of simplicity. Associated with L one can construct an el-
liptic measure {wy } xcn and a Green function G, (see [HMT1] for full details). Sometimes,
in order to emphasize the dependence on €2, we will write wy o and G q.

Lemma 2.23. Suppose that Q C R is an open set such that 0 satisfies the AR property.
Let L be an elliptic operator, there exist constants ¢; < 1 and C; > 1 (depending only
on the AR constant and on the ellipticity of L) such that for every x € 0Q and every
0 < r < diam(09), we have

wl(A(z, 7)) > =, VY € B(z,cir) N Q.
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We refer the reader to [Bou, Lemma 1] for the proof in the harmonic case and to [HMT1]
for general elliptic operators. See also [HKM, Theorem 6.18] and [Zha, Section 3].

A proof of the next lemma may be found in [HMT1]. We note that, in particular, the AR
hypothesis implies that OS2 satisfies the Capacity Density Condition, hence 02 is Wiener
regular at every point (see [HLMN, Lemma 3.27]).

Lemma 2.24. Suppose that Q C R"! is an open set such that O satisfies the AR property.
Given an elliptic operator L, there exist C > 1 (depending only on dimension and on the
ellipticity of L) and cg > 0 (depending on the above parameters and on 6 € (0,1)) such that
G, the Green function associated with L, satisfies

(2.25) GrL(X,Y)<CO|X —Y|'™,

(2.26) ol X —Y|'"" < GL(X,Y), if | X -Y|<605X), 6c(0,1);
(2.27) GL(X,) e C(Q\{X}) and G(X,"),o=0 VX €
(2.28) GrL(X,Y)>0, VX,YeQ, X#Y;

(2.29) GL(X,Y)=GL(Y,X), VX, Y€, X#Y;

and for every ¢ € C°(R™™1) we have that

/ pdwy —p(X) = // AY)VyGL(Y,X) -Ve(Y)dY, forae X €.
o Q

Remark 2.30. If we also assume that  is bounded, following [HMT1] we know that the
Green function G, coincides with the one constructed in [GW]. Consequently, for each
X € Qand 0 <r < §(X), there holds

(2.31) GL(X,) e WH2(Q\ B(X,r)) n Wy (Q).

Moreover, for every ¢ € C2°(Q2) such that 0 < p <1 and ¢ =1 in B(X,r) with 0 < r <
0(X), we have that

(2.32) (1-@)GL(X,") € Wy?(Q).

Lemma 2.33 ([HMT1]). Suppose that Q@ C R"*! is a 1-sided CAD. Let L and Ly be
elliptic operators, there exist C1 > 1 (depending only on dimension, the 1-sided CAD
constants and the ellipticity of L) and Cy > 1 (depending on the above parameters and on
the ellipticity of Ly ), such that for every By = B(xg,rg) with xy € 982, 0 < g < diam(952),
and Ag = By N 9N we have the following properties:

(a) If B = B(x,r) with x € 02 and A = BN 0N is such that 2B C By, then for all
X € Q\ By we have that

1
wa (A) <" IGL(Xa, X) < Crwi (A).
1
(b) If X € Q\ 4By, then
w§(2A0> S Clwi((Ao).
(¢) If B = B(z,r) with x € 0Q and A := BN is such that B C By, then for every
X € Q\ 2k9By with ko as in (2.14), we have that
—w A) < ———~
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Moreover, if we also suppose that wy, < o, then

7 (

1 Xag y) < C kXAO

c,L (y) < Wi((AO) (y), foro-a.e. y € Ay.

(d) If B= B(z,r) with x € Ay, 0 <r <ro/4 and A = BN OQ, then we have that
1
Gy

This implies that wr o < o in A if and only if WL, T, K O i A and, in such a case,

wﬁ%(F) < wf%Ao( ) < Cle o), for every Borel set F' C A.

1
akfﬁ(y) < kpg, W) < Cikpg(y),  foro-ae yeA.

(e) If L =Ly in B(zo,2k0m0) N Q with ko as in (2.14), then

1 XAO
CQ YLy

This implies that wy, < o in Ag if and only if wr, < o in Ay and, in such a case,

(F) < Cowy, "°(F),  for every Borel set F' C A.

Xag

k20 (y) < Ky 2 (y) < Coky 2

(y), foro-a.e. y€ .

Remark 2.34. As a consequence of Lemma 2.33(c), one can see that if w;, < o, there exists
C' > 1 (depending only on dimension, the 1-sided CAD constants and the ellipticity of L)
such that for every Qo € D(012) and every @ € D¢, we have that

Ky %0 (y)
Wy (Q)

1, xq

CL (y)g

< Cka (y), foro-ae ye@Q.

Lemma 2.35 ([HMT1]). Suppose that @ C R is a 1-sided CAD. Given Qo € D(0N) and
F ={Q:i} C Dq,, a family of pairwise disjoint dyadic cubes, let Pr be the corresponding

. . . Aq
projection operator defined in (2.17). Given an elliptic operator L, we denote by wy, = wL o

A
and wr, . = wL%OF’QO the elliptic measures of L with respect to Q0 and Qr g, with fixed pole

at the corkscrew point Ag, € Qr g, (¢f. [HM3, Proposition 6.4]). Let v, = VSQO be the
measure defined by

(2-36) ( )—wL*<F\ U Qz) + Z Wwang wL,*(Pi)a FC QO;
QieF QieF i)

where P; is the cube produced by [HM3, Proposition 6.7]. Then Prvy, depends only on wr, «
and not on wy,. More precisely,

237)  Pra(r) =ens(F\ @)+ 30

QieF QieF

o(F
ﬂQ wL,*(Pi), FCQO.

Moreover, there exists 8 > 0 such that for all Q € Dg, and all F' C Q, we have

<waL(F))0 < Prvn(F) _ Prwi(F)

(2.38) Prwr(Q)) ™~ Prrn(Q) ~ Prwr(Q)
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Definition 2.39. Suppose that Q@ C R*! is a 1-sided CAD, let L be an elliptic operator

and let 1 < p < co. We say that wy, € RH,(01?) if wy, < o and kaO € RH,(Ap) uniformly
in Ag for every surface ball Ag C 9€). That is, there exists C' > 1 such that for every
By := B(xg, 1) with 2y € 9Q and 0 < r¢9 < diam(92), and for every B = B(x,r) C By
with x € 9f), we have that

(J[A k) da(y)) "< C][A k() do(y),  A=Bnow.

Analogously, we say that wy, € RHy"*¥(8Q) if wy, < o and k:fQO € RH,(Qp) uniformly in
Qo for every Qo € D(02). That is, there exists C' > 1 such that for every Qo € D(092) and
every @ € Dg,, we have that

(é kX (g do<y>> " o]é KX (y) do(y).

Before going further, let us introduce the following operators (see [HMU, Section 2.4]):
1/2 N
Su(z) = <// IVu(Y)[25(Y)n dY) , Niu(z) := sup |u(Y)],
INE) yel(x)

where

I(z):= U Ug, T(x) := U Uo-

z€QED(9N) z€QED(0N)

Similarly, we can define localized versions of the above operators. For a fixed Qo € D(99),
we define

1/2 B
Soou(x) == (// IVu(Y)P6(Y) dY> : Nggsu(z) == sup |u(Y)],
Loq () Vel (x)

for each z € Qq, where

Tou(x) = |J Up To)= |J Us
zEQREDg, TEQREDg,

Theorem 2.40 ([HMT1]). Suppose that Q C R"*! is a 1-sided CAD, let L be an elliptic
operator and let 1 < p < oo, the following statements are equivalent:

(a) There exists C > 1 such that
||~A7*U||Lp’(ag) < C”f”LP'(@Q))
whenever
(2.41) uX) = [ e, recion)

(b) wr, € RH,(0R) (cf. Definition 2.39).
(¢) wr, < o and there exists C > 1 such that for every B := B(z,r) with x € 092 and
0 < r < diam(09?), we have that

(2.42) /A kXA (y)P do(y) < Co(A)"P, A= Bnan.
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Moreover, (a), (b) and/or (c) yield that for every 0 < q < oo there ezists C' (depending
only on dimension, the 1-sided CAD constants, the ellipticity of L, the constants in (a),
(b) and/or (c), and on q) such that for every Qp € D

(2.43) 1SQoullLa(@o) S IINQo,+wll La(qo)
for every u as in (2.41).

Remark 2.44. Note that w; € RH,(09), together with Lemma 2.33(b) and Harnack’s
inequality, imply that wy, € RHy**¥¢(8). This in turn gives

(2.45) /Q KXy doly) < Co(@Q)'P, Q€ D(9Q).

Moreover, from (2.45) and Harnack’s inequality, we can see that (2.42) holds, and hence

wr € RH,(09). Therefore, the conditions wy € RH,(8Q), wy, € RHY*(5Q), (2.42) and
(2.45) are all equivalent.

3. AUXILIARY RESULTS

The following result is a generalization of [HM2, Lemma B.7] to our dyadic setting. In
what follows, given 0 < v € L} (Q) and given F C 0Q we write v(F) := [ v(y)do(y).

Lemma 3.1. Suppose that Q C R™! is an open set such that OS) satisfies the AR property.
Fiz 0 <n <1, Qo€ DON) and let v € L' (Qo) be such that 0 < v(Q) < Cov(nAg) for
every Q € Dgq,, for some uniform Co > 1. Suppose also that there exist C1 > 1 and
1 < p < oo such that

(3.2 (fAQU(y)pda(y)>1/pS01]{7 o) doy), Q€ Dy,

n Aq

then v € Ag%’adiC(Qo), with the implicit constants depending on dimension, p, Co, C1, n and
the AR constant.

Proof. We first prove that for every @ € Dg, and every Borel set F' C nAg, there holds

F F) \'"
(3.3) v(F) §01< o(F) > .
v(nAq) o(nAq)
Indeed, using Holder’s inequality together with (3.2), we obtain

v p 1/p /p
stosey = ssay o e < () (]{AQ vy doty))
< <U;7(22) > . ]{7 N v(y) do(y),
which is equivalent to (3.3).

To obtain that v € A%*M(Qy), we observe that o(Q) < Co(nAg) with C' > 1 depending
only on AR and n. Fix then 0 < a < (C’C’fl)_l and take £ C @ such that o(E) >
(1—-a)o(Q). Writing Ey = ENnAg and Fy =nAg \ E, it is clear that

(- ) oQ _ o) _ oBy)  o@Q\nAg) _ olBy) , 0@ _

o(ndg) ~o(ndq) ~ a(ndq) oc(ndqg)  o(ndq)  o(nlq)
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and hence

oF) ., olBy) _ 0@ _,
3 smdg) | olnhg) < “almag) = O
Combining (3.3) and (3.4) we obtain v(Fp)/v(nAg) < C1(Ca)'/P". This and the fact that
v(Q) < Cov(nAg) yield
v(E) _ v(nAg) v(Ep) 1, v(Fo)
> ) a2 O (1 iiang

with 0 < 8 < 1 by our choice of a. This eventually proves that v € A%*€(Qy) and the
proof is complete. 0

> >Cyt (1= Ci(Ca)' Py =1 -,

The following auxiliary result is standard and its proof is left to the interested reader.

Lemma 3.5. Let ¢ € C°(R) be such that 1oy < ¢ < 1g). For each t > 0 and
h e Ll _(89Q) define

(3.6) Pih(z) == /8 alaah()doly), 7€ 0n,
where | |)
e (57
t\ T, = 5 Z, 0.
=y A

The following hold:

(a) Py is uniformly bounded on L1(09Q) for every 1 < q < oc.

(b) If h e L1(09), 1 < qg< o0, and t >0 then P,h € L*°(0Q) N Lip(9%2).

(c¢) If h € LY99), 1 < q < oo, then Pth — h in LY(0) ast — 0.

(d) If h € C.(09), then Pih(z) — h(x) ast — 0T for every x € 0.

(e) If h € L1(0N), 1 < q < oo, with supp h C A(xzg,ro) then supp Pth C A(xg, 79 + 21t).

Fix Qo € D(E) and consider the operators Ag,, €g, defined by

(3.7) Agyalz) ::( 3 g(é)na@m, Cosale) = sup <0(1Q) 3 aé,)m,

CbGQEDQO xEQEDQO Q'ebg

where a = {aq }geng, is a sequence of real numbers. Note that these operators are discrete

analogues of those used in [CMS] to develop the theory of tent spaces. Sometimes, we use
a truncated version of Ag,, defined for each k£ > 0 by

1/2
Alé a(z) == Z ! ol
’ ar?)

k
:L"EQGJDJQO

where D%o is the collection of @ € Dg, such that £(Q) < 27%¢(Qo). The following propo-
sition is a discrete version of [CMS, Theorem 1].

Lemma 3.8. Suppose that E C R"™! is n-dimensional AR, fix Qo € D(E), let Ag, and €q,
be the operators defined in (3.7) respectively. There exists C, depending only on dimension
and the AR constant, such that for every o = {aqg}tqeng,. B = {Bolqeny, sequences of
real numbers, we have that

(3.9) S lagel <C /Q Agual)€q, () do ().

Q€EDg,
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Proof. We first claim that it suffices to consider the case on which Bg = 0 when ¢(Q) <
27N0(Qo) for some N € N, and in that scenario, we establish (3.9) with C independent of
N. To obtain the general case, for every N > 1, we let gV = {Bg}QGDQO where Bg = o
if 27N0(Qo) < £(Q) < £(Qp) and [)’g =0 when £(Q) < 27V¢(Qp). Then by our claim, (3.9)

holds for A% with C independent of N. Observing that €g, 3" < €, we just need to let
N — oo and the desired estimate follows at once.

Let us then show our claim. Fix £ so that 8o = 0 when £(Q) < 27N/(Qy) for some
N e N. For Q € Dg,, let kg > 0 be so that {(Q) = 27%@0(Qq). Suppose that Q' € Dg,
satisfies £(Q") < 27%2/(Qp) = ¢(Q) and Q' N Q # O, then necessarily @' € Dg. Therefore,
using the AR property we obtain

| g i = [ 3 100 gyt den) s Y A
Q/E]D) Q’eID)Q

Dividing both sides by o(Q), we have proved that for every @ € Dg, and every z € Q we
have that

(3.10) ng == ]2 (A2 5())2 do(y) < Co (CauB(@))’,

with Cy depending only on the AR constant. Since Bg = 0 for £(Q) < 27V4(Qo), we have
that Ag,B(z) < C(N) < oo and hence 1o < C(N)? < co. Now, we set Cy := 2¢/Cy and
define

Fy:={z€Qo: Ap,B(z) > C1€q,B(z), Yk > 0}.

In particular, using (3.10), we have Ag%ﬁ( ) > 277Q/ for each z € Q N Fy. We claim that

40(Q N Fy) < 0(Q). Indeed, if g = 0 then one can see that Algf)ﬁ(y) = 0 for every y € Q
and hence Q N Fy = @, which trivially gives that 40(Q N Fy) < o(Q). On the other hand,
if ng > 0, we have

k 2
oo QN F) < [ (A5(w)" doly) < noo(@).
QNFy
and the desired estimate follows since 0 < 7g < co. Let us now consider

(3.11) k(z) :=min{k > 0: A} B(z) < C1€q,B(x)},  z€Qo\ Fb.
Setting F1 g :={z € Q\ Fo: k(z) > kg} and using (3.10) we obtain

k. 1/2
FigC{zeQ\Fy: AgB() > 205"},
Applying Chebychev’s inequality, it follows that
k: 2 1
o(F1,q) < wB(y)) do(y) < o(Q).
o(Fia) < g [ (A580)" doty) < 30(Q)

Setting b g :={x € Q \ Fo : k(x) < kq}, and gathering the above estimates, we have

o(Ihg) =0(Q) —o(Q@NFy) —o(F1q) > %U(Q)-

Hence, the AR property, Cauchy-Schwarz’s inequality and (3.11) yield

lagBql lagBg
E < E F E d

QGDQO QEDQO

SRR (D DT Y AEWE >)1/2da<a:>

Q€eDg,
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< A Ab®) g2y 4
S Qo) Ag. " B(x) do(x)
Qo\Fo

< /Qo Ag,a(z)€q,B(x) do(z),

where we have used that ) € Dg(f) for each x € Fyg. As the implicit constant does not

depend on N € N, this completes the proof of (3.9). O

Lemma 3.12. Suppose that Q C R™" is a bounded open set such that OS) satisfies the
AR property. Let Lo, Ly be elliptic operators, and let ug € WH2(Q) be a weak solution of
Loug =0 in Q. Then,

(3.13) //Q Ay(Y)VyGrL, (Y, X) - Vug(Y)dY =0, forae X €.

Proof. Let us take a cut-off function ¢ € C.([-2,2]) such that 0 < ¢ < 1 and ¢ = 1

in [-1,1]. Fix Xg € Q, for each 0 < ¢ < 0(X()/16 we set .(X) = ¢(|X — Xg|/e) and
e = 1 — .. Using (2.32) we have that G, (-, Xo)ve € Wol’2(Q), which together with the
fact that ug € W12(Q) is a weak solution of Loug = 0 in Q, implies

//Q Ao(Y)V (G, (- Xo)e) (Y) - Vg (V) dY = 0.

Hence, we can write

(314) // onGLl(-, X(]) . V’LLO dY = // A()V(GLl(-, XO)QOE) . VUO dY
Q Q
= // AoVGrL, (-, Xo) - Vug pe dY + // AoV. - VugGr, (-, Xo) dY =: 1. + 11..
Q Q

In order to simplify the notation we set C;(Xo,e) := {Y € R*™!: 277tle <Y — X| <
27712¢} for j > 1. For the first term, we use Cauchy-Schwarz’s inequality, Caccioppoli’s
inequality and (2.25)

(3.15)

Ll < // ¥y G, (Y, X0) [ Vuo(Y)| dY
B(X0,25)

o0

‘ 1/2 1/2
< Z(Qﬂg)nﬂ <]§[ VG, (-, Xo)|? dY> (]6[ |Vu0|2dY>
- C;(Xo.€) B(X0,27312¢)

7j=1

<D 277eMy(|Vuol10) (Xo) S eMa(|Vuo| o) (Xo),

NE

1

<.
Il

where My f(X) := M(|f|?)(X)'/?, with M being the Hardy-Littlewood maximal operator
on R™"!. For the second term, using again (2.25) and Jensen’s inequality,

(3.16) II€|55_1// |G, (Y, X0)|[Vuo(Y)|dY
C1(Xo,e)

< g—”// Vo (V)| dY < eMo(|Vao[1) (Xo).
B(Xo,2¢)
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Combining (3.15) and (3.16), we have proved that, for every Xy € 2 and for every 0 < & <
5(X0)/167

(3.17) ‘ / Ao(Y)VyGLl (K X()) . VUQ(Y) dY S 5M2(’VUO|1Q)(X0).

Q
Recall that My (|Vug|lg) € LY®(Q) as |[Vug| € L3(Q), thus Ma(|Vug|lg)(X) < oo for
almost every X € (2. Taking limits as € — 0 in (3.17), we obtain as desired (3.13). O

Lemma 3.18. Suppose that Q C R™"*1 is a bounded open set such that O satisfies the AR
property. Let Ly and Ly be elliptic operators, and let g € H1/2(6Q) N C.(0N). Consider
the solutions ug and ui given by

wX) = [ gl wX)= [ e, Xeo
o0 oN
Then,
(3.19) w1 (X) —wup(X) = /Q(AO —A)(Y)VyGr, (Y, X) - Vup(Y)dY, forae X €.

Proof. Following [HMT1] we know that ug = g — vy and u; = g — v1, where g = Eyqg €
WhH2(R"*1) is the Jonsson-Wallin extension (see [JW]), and vg,v1 € WOI’Q(Q) are the Lax-
Milgram solutions of L(]’U() = Log and Lyv; = L1g respectively. Hence, we have that
U — Uy = Vg — V1 € Wo (), and following again [HMT1] we obtain

(uy — 10) // A (Y)VyGr,y (V. X) - V(ur — uo)(Y)dY, for ae. X € O,

For almost every X € 2 we then have that

(U1 - UO)(X) - /Q(AO - Al)(Y)VyGLl(Y,X) . VUO(Y) dY =

:// AL(Y)VyGr, (Y, X) - Vuy (Y) dY—// Ao(Y)VyGp, (Y, X) - Vug(Y) dY.
Q Q

Using Lemma 3.12 for both terms, the right side of the above equality vanishes almost
everywhere, and this proves (3.19). O

Lemma 3.20. Suppose that Q C R is an open set such that O satisfies the AR property.
Let Lo, Ly be elliptic operators such that K := esssupp(Ag— A1) N is compact. For every
g € HY2(00) N C.(09Q), let

w® = [ gate.  w®= [ swafe).  Xeo
Then, for almost every X € Q\ K, there holds

(3.21) (X)) — up(X) = //Q(AO CAN(Y)Vy G, (Y, X) - Vug(Y) Y.

Proof. First, fix zg € 09, following [HMT1] we consider the family of bounded increasing
open subsets {7;}rez such that Q = (J,c, Tk, and 9T satisfies the AR property, with
constants possibly depending on k and diam(99) (see [HMT1]). As we can see in [JW],
there exists an extension operator Eyq, which maps H'/2(9) continuously into W12(R**1),
and a restriction operator Rgg, which is bounded from W1H2(R"+1) to H/2(9Q), such that
Raq 0 Egq = Id in HY/%(9Q). Moreover, we have that Egqf € C.(R™1) N L®(R™) for
every f € H'/2(9Q) N C.(9Q). Let g € HY/2(9Q) N C.(0N) and h = Esqg € WI2(R 1) N
C.(R™1) N L2 (R™ ). Let n € C°([-2,2]) be such that 0 < n < 1,7 =11in [-1,1], n
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monotonously decreasing in (1,2) and monotonously increasing in (—2, —1). Let us consider
hi(y) = h(y)n(ly — x0]/2%), as well as the solutions

ub(X) = / hi(y) dok, 72 (y), b (X) = / he(y)dof 7 (4), X €T
0Tk T

We take ko > 1 such that supp(g),supp(h) C B(zg,2"~1), in such a way that hy = h
for k > ko. Note that by [HMT1], B(xo,2¥) N Q C Ti, hence h = glpg on 9T, and
consequently h € HY2(0T;,) N C.(0Tx) for k > ko. Using Lemma 3.18, we have that

(322) (b —uf)(X) = //T (Ao — A)(Y)Vy Gy (Y. X) - Vub (V) dY, k> ko,

for almost every X € Ti. Let Gy be the set of points X € T for which (3.22) holds, and let
By, = Ti. \ Gr. We fix Xo € (2\ K) \ Ugsp, Br and take ko (possibly greater than before)
such that Xy € B(z0,2" ") NQ C T and K C B(zo,2" 1) NQ C T;. Let us consider
vy = Gr, 7:.(+, Xo), which converge to v = G, (-, Xo) uniformly on compacta in \ {Xo}
(see [HMT1]), and hence on WI})E(Q \ {Xo0}) by Caccioppoli’s inequality. Also, note that
for i = 0, 1, we have that u¥ — u; uniformly on compacta in  (see [HMT1]). In particular,
Caccioppoli’s inequality yields ulg — ug in Wif(Q) Thanks to these observations, using
(3.22) and Cauchy-Schwarz’s inequality we obtain

(u — ub)(Xo) — // (Ap — A))(Y)Vy G, (Y, Xp) - Vuo(Y) dY
Q

< // [(Ag — A1) (V) || Vor(Y) - Vug (V) = Vu(Y) - Vue(Y)| dY
K
S VRl 20 IVus — Vuollz2cry + Vor — Voll 2y | Vol 22 )
Taking limits as k — oo, (3.21) is then proved. O

Remark 3.23. Note that Lemma 3.18 ensures that there exists G C 2 with |2\ G| = 0 such
that (3.19) holds for all X € G. Let A = A(z,r) with z € 9Q and 0 < r < diam(99Q)
be such that XA ¢ G. Take Xa € B(Xa,cr/2) NG where 0 < ¢ < 1 is the corkscrew
constant. Taking into account that B(X A,cr/2) C B(Xa,cr) and slightly modifying the
constants, we can use X A as a corkscrew point associated with A. Hence, we may assume
that for every A as before, there exists a corkscrew point Xa € G for which (3.19) holds
with X = X . Similarly, we may also assume that (3.21) holds for X, as long as XA ¢ K.
In particular, for every @ € D(012), we can choose X¢ so that (3.19) and (3.21) hold with
X = X (the latter provided Xg ¢ K).

Lemma 3.24. Suppose that Q C R™""! is a 1-sided CAD. Fiz Qg € D(0Q), let Ly and Lo
be elliptic operators such that wy,, < o, wr, < o, and L1 = Ly in Tg,. Given 0 <1 <1,
there exists C > 1 such that

1 Xq,

X X
O L (y) < kLlQO (y) < CTkLQQO (y), foro-ae. y€Qo\Xqyr,

where g, 7 is the region defined by g, = {Jc € Qo : dist(z,002\ Qo) < Tﬁ(Qo)}.

Proof. Let r = 74(Qo)/M with M > 1 to be chosen. Using a Vitali type covering argument,
we construct a maximal collection of points {z;}jes C Qo \ Xq,, with respect to the
property that |x; — x| > 2r/3 for every j,k € J, and a disjoint family {A;}jej given
by Al = A(x;,7/3), in such a way that Qo \ g+ C U;c73A). Note that there exists
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C, depending only on dimension and on the 1-sided CAD constants, such that A;- C
A(zg,,Cl(Qy)) for every j € J. Hence,

Te(QO)) ~ Zja(A;) = U( LJJA;) < U(A(meCg(QO))) ~ K(QO)H'

#7(

We have then obtained a covering {A; }N_1 of Qo \ X, by balls A; = A(xj,r) with
xzj € Qo \ Xy, = TL(Qo)/M and N, ,§ (M/7T)". We claim that for M > 1 we have
Bj N C Ty, with B} := B} = B(xj,2k0r) and £ as in (2.14). Let Y € By N and
I € W be such that Y € I. Take y; € 0Q such that dist(I,08) = dist(/,y;) and pick
Q; € D(0R) the unique cube such that y; € Q; and ¢(Q;) = ¢(I). As already observed,

Ie Wg?j. We are going to see that QQ; € Dg,. First of all, note that
E(Q]) ={(I) = dist(I,00) < |."L‘j Y| <2koml(Qo)/M < 2k0l(Qo)/M.

Choosing M > 1 sufficiently large (independent of 7) we may obtain £(Q;) < ¢(Qo)/4 and
dist(1,00) < |z; = Y| < 74(Qp)/4. Also, since z; € Qo \ Xg,,-, we can write by (2.11)

TE(Q()) < diSt(l‘j, o9 \ Qo) < |£Cj — Y| + dlam(I) + diSt(I, yj) + diSt(yj, o) \ Qo)
< 170(Qo) + § dist(Z,09) + dist(y;, 0\ Qo) < $%7(Qo) + dist(y;, 92\ Qo),
and hence y; € int(Qp). Since y; € Qo N Q; and £(Q;) < £(Qo)/4 it follows that Q; € D, .

This and the fact that Y € I € W* ~allow us to conclude that Y € Ty,. Consequently, we
have shown that B* NQC Ty, and thus L1 = Ly in B* N for every j=1,..., N;.

Next, we note that 0(Xq,) = Qo) > TL(Qo), (5(XAJ.) ~ 70(Qo), and |XQ0 - Xal S
¢(Qo). Hence, we can use Harnack’s inequality to move from X¢, to X A; with constants
depending on 7, and Lemma 2.33(e), we obtain

X XA XA X
kLlQO(y) ~r R, "(y) = ky, J( ) ~r kao(y)

for o-almost every y € Aj = B; N 0Q. Since we know that {A; } 7, covers Qo \ X7, the
desired conclusion follows. O

We will prove Theorem 1.1(a) with the help of Lemma 2.20. In this way we consider the
measure m = {7q }Qen(aq), Where

(3.25) Q= Y.

Tew;

supy- |€]*
——|I € D0

Fn Qepn)
and E(Y) = A(Y) — Ap(Y). We are going to show that m is indeed a discrete Carleson
measure with respect to o.

Lemma 3.26. Suppose that  C R*"! is a 1-sided CAD, let Lo and L be elliptic operators
whose disagreement in € is given by the function a := (A, Ag) defined in (1.2), and suppose
that ||a|| < oo, see (1.3). Then, there ezists k > 0 (depending only on dimension and the
1-sided CAD constants) such that for every Qo € D(9Q) with £(Qp) < diam(9Q)/ko (see
(2.13)), the collection m = {q }gen(aq) given by (3.25) defines a discrete Carleson measure
m € C(Qo) with [mlc(gy < wllall

Proof. Let Qo € D(0N2) with ¢(Qo) < diam(02)/ko. First, note that for every I € W and
every Y € I we have that sup;« |€] < a(Y). Indeed, since 4 diam(/) < dist(Z,0%) (see
(2.11)), we know that I* C {X € Q: | X - Y| < d0(Y)/2}. Given Q € D, we can write
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321) me)= Y o= 3 ¥ "

Q'eDg Q'eDq IEWy,
v)? a(Y)? a(Y)?

s v shers s s [ e e
QIEDQ IEW&, I 5(Y) Q’GDQ UpqHr 6(Y) TQ 5(Y)

where we have used that the family {UQ/}Qfem;Q has bounded overlap. Indeed, if Y €
Ug N Ugr then £(Q') = §(Y) ~ £(Q") and dist(Q’, Q") < dist(Y,Q") + dist(Y,Q") <
0Q") + Q") =~ £(Q'). These readily imply that ¥ can be only in a bounded number of
UQ/’S.

On the other hand, by (2.13) we know that Ty C B(zq,korg) N . Also, korg <
kol (Q) < kol(Qo) < diam(9). Using the AR property, from (3.27) we conclude that

a 2
mog s ff SRy < lall o8 a5 llello (@)
zQ,k0rQ)N

Taking the supremum over @ € Dg,, we obtain |[m|[¢c(g,) < #[a|| with x depending on the
allowable parameters. This completes the proof. O

4. PROOF OF THEOREM 1.1(a)

Before starting the proof we choose My > 2ko/c (which will remain fixed during the
proof) where c is the corkscrew constant and xg as in (2.13). Given an arbitrary Qo € D(99)
with £(Qo) < diam(0)/My we let Bg, = B(zq,,rq,) with rg, = {(Qo) as in (2.8).
Let XMOAQ0 be the corkscrew point relative to MyAg, (note that Myrg, < Mol(Qo) <
diam(012)). By our choice of My, it is clear that §(Xapag,) = cMorg, > 2rorq,. Hence,
by (2.13),

(4.1) X, € 2\ By, € Q\ TS,

We will prove Theorem 1.1(a) using Lemma 2.20. To do that we need to split the proof
in several steps.

4.1. Step 0. We first make a reduction which will allow us to use some qualitative prop-
erties of the elliptic measure. Fix j € N (large enough, as we eventually let 7 — o) and

L = L7 be the operator defined by Lu = — div(AVu), with

AY) if YeQ 6(Y)>2

- . > 9—j
(4.2) AlY) = AY) = { Ao(Y) if Y e, 8(Y) <277,

Note that the matrix A7 is uniformly elliptic with constant A; = max{A4, A4, }, where Ay
and A4, are the ellipticity constants of A and A respectively. Recall that wr,, € RH,(0%2)
and that L = Ly in {Y € Q: §(Y) < 277}. Therefore, applying Lemma 2.33(c) we have
that w; < o and there exists k:%( = dw% /do. The fact that L verifies these qualitative
hypotheses will be essential in the following steps. At the end of Step 4 we will have
obtained the desired conclusion for the operator L= L7, with constants independent of
j € N, and in Step 5 we will prove it for L via a limiting argument. From now on, j € N
will be fixed and we will focus on the operator L=1J.
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4.2. Step 1. Let us fix Qo € D(9Q) with ¢(Qo) < diam(9Q)/My and My as chosen above,
and set Xo := X, so that (4.1) holds. We also fix 7 = {Q;} C Dg, a family of disjoint
dyadic subcubes such that

4.3 m = sup ———— <&,
(4.3) Imzlleo) o (e) 0

with 9 > 0 sufficiently small to be chosen and where m = {y}gep with v defined
in (3.25). We modify the operator Lo inside the region Qr g, (see (2.12)), by defining
L) = Lf’QO as Liu = —div(A;Vu), where

_ [ AY) Y €Qrg,,
Al¥) = { Ap(Y) i Y € Q\ QF q,,

and A = AJ as in (4.2). By construction, it is clear that & := Ay — Ap verifies |&1] <
€1y, and also & (Y) = 0if 6(Y) < 277. Hence, the support of A; — Ap is contained in
a compact subset contained in €.

Our goal in Step 1 is to prove ”kleOHLp(QO) < 0(Qo)~Y/?" (uniformly in 7), using that
wr, € RH, (89) Note that by Harnack’s inequality and Lemma 2.33(e), we have that
wr, < o and Hk: |lrr Qo) < €5 < oo for kL = de /do. We will use this qualitatively,
and the point of thls step is to show that we can actually remove the dependence on j.

Take an arbitrary 0 < g € L (Qo) such that ||g| Lo (o) = 1- Without loss of generality

we may assume that g is defined in  with ¢ =0 in Q\ Qp. Let AQO = Axq,, Crg,) (see
(2.8)) and take 0 < t < Crg,/2. Set g; = Pig (cf. Lemma 3.5) and consider the solutions

(44)  uh(X) = /mgt<y>dw§0<y>, uk(X) = /mgt(y)dwﬁ(y), Xeq

By Lemma 3.5, g; € Lip(99) with supp(g:) C QEQO, hence g; € Lip.(092) ¢ HY2(0Q) N
Ce(02). Recall that & = A;— Ao verifies [&1] < |E]1q, , and also £1(Y) = 0if 6(Y) < 277,
This, (4.1), and (2.13) allow us to invoke Lemma 3.20 (see Remark 3.23) and Cauchy-
Schwarz’s inequality to obtain

(45) Fby(Xo) := \ui(Xo>—u6<Xo>\=\ Il <Ao—A1><Y>vyGL1<Xo,Y>~w6<Y>dY\

< ¥ % [ lEmivyen o vivimay,

QGD}' Qo IEW*

< ¥ swiel( [ oty >|2dY)1/2< /I*Nuw)r?dy)l/z,

QE]D)]: Qo IEW*

Note that by our choice of Xo = Xaga,,, see (4.1), the function v(Y) = Gr,(Xo,Y)
is a weak solution of Liv = 0 in I™* for every I € Wy, with @ € Dg,. Therefore, by
Caccioppoli’s and Harnack’s inequalities, and Lemma 2.33(a), we obtain
Wi (@)

) in

(4.6) //* IVyGr,(Xo,Y)|?dY ~ ¢(I)" G, (X0, Xg)? = < fil(Q)

Also, since §(Y) ~ £(I) =~ {(Q) for every Y € I" such that I € W,

(4.7) //\vuo 2 dY ~ 6(D)~10(Q //|Vu0 J2S(YYm Y.
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Recalling (3.25), (2.19), we define the sequences o = {aQ}QeDQO, 8= {BQ}QE]DQO by

leo(Q) n t -n 2
(4.8) ag = 5( ) <€(Q) //U Q|Vu0(Y)|2<5(Y)1 dY) and B _7}%

Using Cauchy-Schwarz’s inequality and the bounded overlap of the cubes I*, one can see
that (4.5), (4.6), (4.7), and (4.8) yield

(4.9) Fh,(Xo) < Z wj)-(l(oéc)? 1/2( // Vi (V)Y - "dY>1/2

QEDQO

= Z aQﬁQg/Q Agoa(x)€q,B(x) do(z),

QGDQO

where in the last estimate we have used Lemma 3.8, and where we recall that Ag,, €q,
were defined in (3.7). Using the bounded overlap property of Ug with @ € Dg,, we have
that

(4.10) AQoa(x):< 3 (le >//UQ Vs ndy)l/Z

:EEQG]D)Q
< M ko () Sqoub(),

where
(4.11) M(%Of( = sup ][|f )| do(y
mEQEDQO
On the other hand, (4.3) yields
1 12 1/2 /2
@10 b= sw (o ¥ ame) <l <o
mEQEDQO O(Q) Q'EDQ

Plugging (4.10), (4.12) into (4.9), using Hélder’s inequality we conclude that

1/2
(4.13) Fb,(X0) S 2o/ 150utbll o oy IME k2 o) S €6 1522 | ooy

where we have used that MQo is bounded in LP(Qq) and that

HSQOU/B”LPI(QO) S ‘|NQ0,*U6HLP’(QO) S HgtHLp’(QO) S ”gHLPI(QO) =1,
which follows from (2.43), Lemma 2.40(a), wr,, € RHp(09?), (4.4), and Lemma 3.5.
From (4.5), (4.13), and for all 0 < t < Crq,/2,

0 < (Xo) < Fy(Xo) + ub(Xo0) S /W12 oty + 155 | ooy

where we have used Holder’s inequality, that | g:|| ' (o0) ~ 1 and Lemma 3.5, and the
implicit constants do not depend on ¢. Next, using the previous estimate and Hdlder’s
inequality we see that

/ o)k (y) do(y) = it (Xo) + / (9(9) — 9 (w))kX° () do(y)
o0 o0

1/2
S ey 1650 ooy + KT o loeig ) + 19 = gill Lo a0 (L3 lreea
Qo ( Qo)
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Note that szﬁo HLP(2EQO
in{Y €Q: 6(Y) <277}). Recall that ||g — gt||Lp/(am — 0 as t — 0 (see Lemma 3.5) and

hence

) < C; < oo by Lemma 2.33(e) and Harnack’s inequality (Lo = L1

X, 1/21.X X
| s dot) < 2 1 iy + 158 g,
Taking the supremum over 0 < g € L¥ (Qg) with ||g||Lp/(Q0) = 1, the latter implies

1/2
’Wfﬂhﬂ@»SCkJ|W§Hhﬂ@ﬂ+(wkﬁWmmz%y

with C depending only on dimension, p, the 1-sided CAD constants, the ellipticity of Lg
and L, and the constant in wr, € RHy,(02). As mentioned above, ||k:ﬁ°||Lp(Q0) < Cj < oo,
thus taking eg < C~2/4 we can hide the first term in the left hand side, and consequently
165N £e () S I1EES |23, Recalling that Xo = Xara,, we have that 6(Xg,) ~ £(Qo).
(5(X0) ~ Mog(Qg) Z E(Qo), 6(X2£Q0) ~ E(Qo) AISO, ’XO_XQO’+‘X0_X2£QO‘ S M()E(Qo)
Hence, using Harnack’s inequality (with constants depending on My, which has been already
fixed), and the fact that wr, € RH,(09), we conclude that

(4.14) /Q ) doty) = /

k‘ﬁo (y)P do(y) < / k‘ﬁ? (y)P do(y)
Qo

284,

X2Z ~ _ _
~ / B0 ()P do(y) S 0(2Rg0) 7 & 0(Q0) .
2R,

4.3. Self-improvement of Step 1. The goal of this section is to extend (4.14) and show
that it holds with the integration taking place in an arbitrary @ € Dg,, but with the pole
of the elliptic measure being X¢,. In doing this, we will lose the exponent p, showing that
a RH, inequality holds for some fixed q.

Fix Q € Dg,, and let L9 be the operator defined by LYu = — div(AYVu), where

Q. | AY) Y €Qrg,
4200 = 40 Y E8i8a,
with A = A7 as in (4.2). Since LY = Ly in {Y € Q: 6(Y) < 277}, Lemma 2.33(¢) implies
that w, o < o, hence there exists k:fQ = dwa /do. Our first goal is to obtain
1 1 1

(1.15) | s et 0@

We consider two cases. Suppose first that Q C @Q; for some Q; € F, then Qr g = O,
L? = Lo in Q, and (4.15) is a consequence of the fact that wr, € RH,(0N). In other case,
that is, if Q@ € Dr q,, we define Fo ={Q; € F: QiNQ # 0O} ={Q; € F: Qi £ Q}. Note
that Ag — AIQ is supported in Qz, ¢ = QF g, and clearly

mzg (Dgr) mr(Dg)

Imrylleioy = sup 220 o g, W Be)
@ (Q) Q’EDQ J(Ql) QIEDQO G(Ql)

We can then repeat the argument of Step 1 for the operator LlQ replacing L1, and with Q
and Fg in place of respectively Qo and F. Hence, the estimate (4.14) becomes (4.15).

We next notice that using [HM3, Lemma 3.55], there exists 0 < k1 < k1 (see (2.13)),
depending only on the allowable parameters, such that K1 Bg NQr g, = k1B N§r,q. This
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easily gives that Ly = L? in kK1 BgNQ. Using now Lemma 2.33(e) and Harnack’s inequality,
we have

XQ ()~ 15Q
(4.16) kp o (y) ~ kg (y), for o-a.e. y € nlAg,

1

where n = K1/(2k0) and kg is as in (2.14), and hence nAg C Ag C Q. Combining (4.15),
(4.16), Lemma 2.23, Lemma 2.33(b) and Harnack’s inequality we obtain

([, sewraw)” < (f g antn) V<o

nAg

<o(QWwieQ) < ][ kX2 (y) do(y).
nAg

Now, using Remark 2.34 we have that

(4.17) (f kfl%(y)p da(y)) " < Cl]{YAQ kff“(y) do(y),

nAqg

with C7 > 1 depending only on dimension, p, the 1-sided CAD constants, the ellipticity of Lg
and L, and the constant in wr, € RH,(02). Note that (4.17) holds then for every @ € Dg,,.
Also, by means of Lemma 2.23, Lemma 2.33(b) and Harnack’s inequality, there exists

Cy > 1 such t)};at 0< wffo Q) < C’nwl)iQO (nAgq) for every Q € Dg,. )I(Jsing Lemma 3.1 we
obtain that leQo e A%*ic(0). This and Lemma 2.18(b) yield P]—‘CULIQO e A%adic(g).

4.4. Step 2. We define a new operator Lo by changing L; below the region Qr g,. More
precisely, set Lou = — div(A2Vu) with

_ [ AY) i Y €Ty, \ Qrqo
Ay (Y) = { A(Y) ifY € QQ\ (TQ;)F\QnyQO)'

Note that by construction, Ay = A in T, and Ay = Ag in Q\ T,. Our goal is to prove
that waffo € A;‘X‘“‘di"(Qo) by using Lemma 2.35. For k = 1,2, we write wy, = wfg?) and
Whyx = wf}i%ﬁ@o for the elliptic measures of Lj with respect to the domains €2 and 7 g,
with fixed pole at Ag, (see [HM3, Proposition 6.4]). Note that since A1 = A in Qr g,
then wp, » = wr, . Finally let vy, = l/ffo be the corresponding measures defined as in
(2.36), and observe that (2.37) implies Prvy, = Pryp,.

In Step 1 we have shown that P]-‘(.UleO € AgZadiC(Qo), thus Harnack’s inequality and
(2.38) give that Prup, = Prup, € AR*(Qy). Another use of (2.38) and Harnack’s
inequality allows us to obtain that ’waffo ~ Prwr, € AZ*(Qq). Note that by Lemma
2.33(b), Harnack’s inequality and Lemma 2.18(a) it follows that P;wffo is dyadically
doubling in Q. Thus, [HM3, Lemma B.7] implies that there exist 6,0" > 0 such that

o(E)\’ _ Proy(B) _ (o(E)\”
(4.18) (0(62)) Spfwi%(@)s< > Q€D Ec@
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4.5. Step 3. To complete the proof it remains to change the operator outside T),. Let us
introduce Lyu = — div(A3Vu), where
Ao(Y) if Y €T,
Ag(v) = { 2 YV ETan
AY) if Y e Q\Ty,,
and note that L3 = L in Q.
We want to prove that for every 0 < & < 1, there exists C; > 1 such that
X
PfWL3QU (E) 1

o(B)
E = ———— > —,

(4.19) E C Qo, o(Qo) ~ P]__wz(;?o (Qo) - C:

Let 0 < e <1 and let E C Qp be such that o(E) > e0(Qp). First, we can disregard the
trivial case F = {Qo}:

o X,

Prop®(E) 265w, °(Q)  o(E)
X T o

Prop®(Qo) A& w; Qo) (@)

> E.

Suppose then that F C Dg, \ {Qo}. For 7 < 1 we consider the sets
Sy = {x € Qo: dist(z, 00\ Qo) < 74(Qo)}
and Qg = Qo \Ugrez, @'; where

I = {Q € Dq, : T4Qo) < {(Q') < 27((Q0), @' N # O}

By construction, ¥, C Uger, @', and there exists C' = C(n, AR) > 0 such that every
Q' € I, satisfies Q' C X¢,. Using Lemma 2.7(f), for 7 = 7(¢) > 0 sufficiently small we
have

o(Q0\ Qo) < 0(Ser) < C1(CT)"0(Qo) < 5 0(Qo),
and letting F = E N Qy, it follows that
£0(Qo) < o(E) < o(F) +(Qo\ Qo) < o(F) + Z0(Qo).
Hence o(F)/o(Qo) > /2 and by (4.18), we conclude that

waXZQO(F) o(F)\’ 9
20 P;wiQO(QO) S (0(620)) - (%) '

X, X,
We claim that there exists ¢. > 0 such that PJ:wL3Q° (F)> CEwaLfO (F). Assuming this
momentarily, we easily obtain (4.19):

X

Prw, P (E

Prwy,” (E) > Pruwp 0 (F) > cPruw; 20 (F) 2 ce .
Ko Ls Lo XQo

Pruwp, (Qo) Pres, (@)

where we have used Lemma 2.23, (4.20), and the fact that P;w]i@o (Qo) = wﬁfo (Qo) for
k=2,3.

Let us then show our claim. First, since Ly = L3 in T, and @6 C Qo \ X, Lemma 3.24
yields

wafQQO(F) S CE<5>9 1

2 oA

X, X, —~
(4.21) kL2Q0 (y) =~- kL3Q° (y), for o-a.e. y € Q.
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This and the fact that F' C @6 give
X X
w20 (F\ U Qi) Ry wp (F\ U Qi):
QiEF QiEF

which in turn yields

(4.22) Prwp2(F) = w20 (F\ U Qz>+ Yy £ FﬂQ W2 (Q)

QieF QiEF
> cTwLQO (F\ U Qz) + Z FQQZ) XQO(Q@)
QiEF QiEF

It remains to estimate the second term. Note that in the sum we can restrict ourselves to
those cubes Q; € F such that FﬂQl # (). We consider two cases. If Q; C Qo, using (4.21)
we have that wffo (Qi) =~ wL2 °(Q;). Otherwise, if @Q; \ Qo # O, there exists Q' € Z,
such that @; N Q" # @. Then Q' C Q; (if Q; C Q' then Q; C Qo \ Qo, contradicting that
FNQ;#®and F C @\6) and, in particular, £(Q;) > 7¢(Qo). Let g, be the center of Q;,
and let Ag, = A(zqg,,rg,) with rg, = £(Q;) as in (2.9). Take Q: € Dg, with zg, € Qi)
E(@\Z) = 27My(Q;) and M > 1 to be chosen. Notice that diam(@) ~ 27 MY(Q;) ~ 27 Mg,
and clearly

ro, < dist(zg,, 92\ Ag,) < diam(Q;) + dist(Q;, 2 \ Ag,)
~ 2 Mrg, + dist(Q, 092\ Ag,).
Taking M > 1 large enough (depending on the AR constant), we conclude that ¢74(Qp) <
dist(Qs, 002\ Ag,) < dist(Qs, 02\ Qo) and hence Q; C Qo \ X¢r. Again, using Lemma 3.24

and the fact that wffo is doubling in Qo (which is a consequence of Lemma 2.33(b) and
Harnack’s inequality), we obtain

Wy 2(Qi) = w2 (Qh) ~r w0 (@) 2w (Q0).

In the two cases, since 7 = 7(¢), (4.22) turns into

waffo(F) XQO (F\ U Q,) - Z QmF ffO(Q) P;wfj (F),

QieF QieF

completing the proof of our claim.

Recalling that L= Ls, the previous argument proves the following proposition:

Proposition 4.23. There exists g > 0 (depending only on dimension, p, the 1-sided
CAD constants, the ellipticity of Lo and L, and the constant in wr, € RH,(0N?)) such
that the following property holds: given e € (0,1), there exists C. > 1 such that for every
Qo € D(0Q) with £(Qo) < diam(9Q) /My and every F = {Q;} C Dg, with |[mz|l¢(q,) < €0,
there holds

o(B) __ _ Prot®(E) 1
Z € -

(4.24) E C Qo, Qo) e o) o

where L = L7 is the operator defined in (4.2) and j € N is arbitrary.
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4.6. Step 4. What we have proved so far does not allow us to apply Lemma 2.20. We have
to be able to fix the pole relative to Qo, and show that (4.24) also holds for all @ € Dg,.

Proposition 4.25. Let gy be the parameter obtained in Proposition 4.23. Given e € (0, 1),
there exists C. > 1 such that for every Qo € D(0Q) with £(Qy) < diam(9Q)/My, every
Q € Dg,, every F ={Qi} C Dq with ||mx|cq) < co, there holds

o(E) Prw (E) .

(4.26) EcCQ,

Q
S
J
&
SO
@
§
o0

where L = L7 is the operator defined in (4.2) and j € N is arbitrary. Consequently, there
exists 1 < q < oo such that w?QO € RHgyadiC(Qo) uniformly in Qo € D(0Q) provided
£(Qo) < diam(9€) /My, and moreover wy € RH,(09) .

Proof. Fix Qo € D(0R) with ¢(Qo) < diam(09Q)/My. Let 0 < ¢ < 1, Q € Dg,. Let
F ={Qi} C Dq be such that |[mz|c) < €0 and let E C Q satisfy o(E) > e0(Q). By

Lemma 2.33(c) (see also Remark 2.34) and the fact that P]-‘CL)?Q Q) = ng(Q) ~ 1 by

Lemma 2.23, we see that

X
P]—"wz Qo

X
(E) _Prup™(B) _ o E n Q e
Qo Qo
Prwz Q) w:(Q) QieF QieF
wa%(Q (E) .
wagQ(Q) -G
where in the last inequality we have applied Proposition 4.23 to @ (replacing Qo) satisfying
(Q) < diam(99Q)/My. This shows (4.26), which together with Lemma 3.26 and our choice

of My, allows us to invoke Lemma 2.20 and eventually conclude that w?QO S Aggadic(Qo)
uniformly in Qq, provided £(Qo) < diam(9€)/My. Thus, there exists 1 < ¢ < oo, such that
wafQo € RH;1 yadiC(Qo) uniformly in Qg for the same class of cubes and, in particular,
diam(9)

My

— waXQ (E) ~

@ [ E)de) SoQu)'T QueDOR), Q) <

0

When diam(9f2) < oo, we need to extend the previous estimate to all cubes with side-
length of the order of diam(0€2). Let us then take Qo € D(992) with ¢(Qo) > diam(0) /My
and define the collection

diam(09) diam(092)
= D < —_— .
IQO {Q < DQO 2My - E(Q) < My }
Note that Qg = UQEIQ Q is a disjoint union and using the AR property we have that
diam(09) : n
#1qQ, () Z 0(Q Z a(Q) = o(Qo) = £(Qp)" < diam(9Q)",
Q€Iy, Q€Iy,

which implies #Zg, < M. We can use Harnack’s inequality to move the pole from Xq,
to Xq for any @ € Zp, (with constants depending on My, which is already fixed), since
3(Xq,) = Qo) > ¢(Q), 6(Xg) ~ Q) and |X¢g, — Xg| S Mol(Q). Hence, we obtain

/Ok?LfQO ) do(y Z/ KOy Tdo(y) S S o(@) 0

QEIQ QEIQO
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< #1q, diam(00) 70" < 0(Q)' 77,
where we have used (4.27) for @ since ¢(Q) < diam(0f2)/My, and the AR property.
Therefore, we have extended (4.27) to all @y € D(09Q) and Remark 2.44 yields that
w; € RHy(0N2), where L = L’ and the implicit constants are independent of j € N. O

4.7. Step 5. In the previous step we have proved that w; € RH,(0€) where L =1L and
the implicit constants are all uniform in j. To complete the proof of Theorem 1.1(a) we
show that wy, € RH,(02) using the following result:

Proposition 4.28. Let Q C R"™Y, n > 2, be a I1-sided CAD. Let L and Ly be real
symmetric elliptic operators with matrices A and Ag respectively. For every j € N, let
LDiu = —div(A'Vu), with AI(Y) = A(Y) if 6(Y) > 277 and AJ(Y) = Ag(Y) if 6(Y) < 277,
Assume that there exists 1 < q < 0o such that wy; = wr; o € RHy(0Q) uniformly in j, for
every j > jo. That is, wr; o < o and there exists C' such that

(4.29) /A Frfa@)do(y) < Co(A)'79, ki = dw) iy /do,

for every j > jo and every A(x,r) with v € 0Q and 0 < r < diam(df2). Then wr o €
RH,(09).

Proof. Fix By = B(xg,ro) with g € 02 and 0 < rg < diam(92)/25, set Ag = By N 99,
and consider the subdomain €, := Thoa,. Using [HM3, Lemma 3.61] we know that €, is
a bounded 1-sided CAD, with constants depending only on those of 2. Applying Lemma
2.33(d) it follows that wy; o, < o in 4Ag and also

X X
kago (y) ~ ka,?ZO* (y), for o-a.e. y € 4A,.

Recalling (2.14) we know that 25BN Q C 2. In particular, 10By N 92 = 10By N 9, and
Oy := H"\ag coincides with o in 4A(. Therefore, (4.29) gives

X X _
(4.30) / KX ()9 do (y) ~ / K515 ()0 do () < o(Ag) 0
VAN ’ 4N ’

uniformly in j € N. Note also that 0.(X4a,) = 6(X4a,), where 6,(Y) = dist(Y, 9% ):
5*(X4A0) = diSt(X4AO, 10B0 N 8Q*) = diSt(X4AO, 1030 N 8(2) = 5(X4A0).
Define, for every g € C.(0f2,)

Let g € Lip.(0f2) be such that supp(g) C 44 and extend g by zero to 9, \ 44, (by a
slight abuse of notation we will call the extension g) so that g € Lip.(92,) and define

u) = [ g defow. w0 = [ gwdee W Xeo.
00 00

Since g € Lip.(0Q) C HY?(9Q,) N C.(99,), using Lemma 3.18 with €, and slightly
moving X4a, if needed, we can write

U(X4A0) - UJ(X4A0) = // (A] - A)(Y)VYGL,Q* (X4A07Y) ) VUJ(Y) dy.

Set X :={Y € Q:46(Y) <277}, By = B(X4a,,0(Xun,)/2) take j1 > jo large enough so
that ByNX;, = O. For every j > ji, it is clear that |A7—A| < 1y, with constants depending
only on the ellipticity of Lo and L. Also we have the a priori estimate |[Vu;|[r2(q,) S

~
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9/l zr1/200,) (see [HMT1]), where the implicit constant depends on dimension, the AR
constant, the ellipticity of Ly and L, and also of diam(9)) ~ r¢). All these and Hélder’s
inequality yield

(4.31) u(Xang) — 1 (Xano)] < //Q VyGra. (Xing, V)|V (V)| dY
e

S IVGLa. (Xang: Nsll 20,0 5o 19/ 5172 (00,)-

Since 2, is bounded, our Green function coincides with the one defined in [GW], hence
VG, (Xing ) € L2(%\ EO) (see (2.31)). Using the dominated convergence theorem,
the first factor of the right hand side of (4.31) tends to zero, hence u;(X4a,) = u(Xaa,)-
Recalling then (4.30) we have that Holder’s inequality give

4A0

[u(Xany)| = hm ‘U‘J(X4A0)| < HgHLq (4A0) Sup HkLJ Q*||LQ(4A0) S HgHLq’(4AO)‘7(A0)71/q .

and hence

(4.32) ()] S 19l L 4agy o (Do) 9, g € Lip.(09), supp(g) C 4A,.

Suppose now that g € L9 (2A¢) is such that supp(g) C 24, and for 0 < t < rq set
gt = P,g with P, as in Lemma 3.5. Since g; € Lip(0f) satisfies supp(g:) C 44, we have
by (4.32)

B(g0) ~ (g0 = |(ge — 92)| S l19¢ — sl 1o angyo (Do) 7
N U(AO)_I/q/(HPtg - g”Lq’(aQ + (| Psg — QHLq’ 8Q))

for 0 < t,5 < ro. Hence {®(g¢)}s0 is a Cauchy sequence, and we can define ®(g) :=

limg_,o ®(g¢). Clearly, ® is a well-defined linear operator and deL? (2A0)*:

(4.33) [B(9)| < sup |®(g)| S o(20) V7 sup [Pgllpwang) S 7(20) 7 19l o 20
0<t<ro 0<t<ro

where we have used (4.32) and Lemma 3.5. Consequently, there exists h € L1(2A¢) with

HhHLq 2A0) S o(Ao)” /4" in such a way that ®(g szO y)do(y) for every g €

L7 (2A¢) such that supp(g) C 2A.

Let g € C.(092) with supp(g) C 2A¢ and we extend g by zero to 92, so that g € C.(0Q).
From Lemma 3.5 applied to Q. [|Pigll o @00,) < 9]l @a,) and Pig(z) — g(z) as t — 0F

for every z € 09Q,. These, the definition of ®(g) and the dominated convergence theorem
. X4AO
with respect to wy o °, shows

= . . X X
(4.34) ®(g) = lim ®(Pg) = lim Pig(y) dwy, o (y) = / 9(y) dwp 0 (y) = ®(g),
t—0t+ t—0t Jaq, 90,

hence ®(g) = ®(g) for every g € C,(9Q) with supp(g) C 2A,.

Next, we see that @ := wl)iééio KL 0, =0 in %AO. Let E C gAO and let € > 0. Since @
and o are both regular measures, there exist K C F C U C %Ao with K compact and U
open such that O(U\ K)+0c(U \ K) < e. Using Urysohn’s lemma we construct g € C.(92)
such that 1x < ¢ < 1y and supp(g) C 2A¢g. Thus, by (4.34) and (4.33),

G(E) < e+ 0(K) <e+/89 g(y) dd(y) = = + ®(g) = = + B(g)

< e+ 9/l o angy 1M Laag) S €+ (e + a(B)Y9 a(Ag) 717
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Letting ¢ — 07 we conclude that B(E) < o(E)Y/7o(Ag)~1/7 and in particular & < o in
2Ao. Writing then k = di/do € L'(5A¢) we have that

(4.35) / _ 9)hly) doty) = B(g) = Blg) = /6 o) dat) - / o) k) da(y).

for every g € Cc(9Q) with supp(g) C 2 Ag. Since (h — %)I%AO € LY(0Q) by Lemma 3.5
it follows that P;((h — E)I%AO) — (h — /k\)l%AO in L1(0Q) as t — 0F. Moreover, for
any © € Ay, if we let 0 < t < ro/8 so that supp(¢i(z,-)) C %Ao, then (4.35) applied to
g = ¢i(z,-) yields that P,((h — k’)lng)(m) = 0. All these allow to conclude that kK = h
o-a.e. in Ay, hence ||E||LLI(A0) < 1B/l Laang) S o(Aog) M9
Note that we showed before that & := wfoA*O < 0 in Ay, Lemma 2.33(d) and Harnack’s
inequality give wi?‘f < 0 in Ag, and
X X ~ _
| ma@rdnw ~ [ K et ~ [ Fw)rdet) < aae)
Ao Ag Ap

Since Ag = A(zg,70) with g € 9Q and 0 < 79 < diam(0f2)/25 was arbitrary, we have
proved that wy < ¢ and

diam(09)

25 ’
for C' > 1 depending only on dimension, p, the 1-sided CAD constants, the ellipticity of
Ly and L, and the constant in wr, € RHy(0N2). By a standard covering argument and

Harnack’s inequality, (4.36) extends to all 0 < r < diam(052). Using Lemma 2.40, we have
shown that wy, = wr o € RH,(0N2) completing the proof of Proposition 4.28. O

(4.36) /A Ka@)ido(y) < Co(A)1,  A=A,r), 0<r<

5. PROOF OF THEOREM 1.1(b)

We first note that by Theorem 1.1(a), the fact that [|o(A, Ap)|| < o gives that wy, €
RH,(09) for some 1 < ¢ < oo, and in particular wy, < 0. The goal of Theorem 1.1(b) is
to see that if ¢9 > 0 is taken sufficiently small, then we indeed have that w;, € RH),(09),
that is, Lo and L are in the same reverse Holder class. To this aim, we split the proof in
several steps.

We choose My > 400 ko/c (which will remain fixed during the proof) where ¢ is the
corkscrew constant and kg as in (2.13). Given an arbitrary ball By = B(zg, ) with 2o € 0
and 0 < ro < diam(92) /Moy, let Ay = BoNOS? and take Xy, Ag, the corkscrew point relative

to MyAg, (note that Morg < diam(09)). If Qo € DA° then £(Qo) < 4007 < diam(9£)/kyo.
Also (X aun,) = cMorg > 2ko70, and by (2.13),

(5.1) XMOAO e \ 2koBg C Q\TX‘;.

5.1. Step 0. As done in Step 0 of the proof of Theorem 1.1(a), we let work with L= L,
associated with the matrix A = A7 defined in (4.2). As there we have that wj < o, hence
we let k%( = dw%{ /do. This qualitative property will be essential in the first two steps. At
the end of Step 2 we will have obtained the desired conclusion for the operator L=101 )
with constants independent of 7 € N, and in Step 3 we will transfer it to L via a limiting
argument. From now on, j € N will be fixed and we will focus on the operator L=1J.
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5.2. Step 1. We start by fixing By = B(xg, r9) with xg € 99, 0 < rg < diam(9Q)/My and
My as chosen above. Set Ag = By N o and X := XMyAg, so that (5.1) holds. We define

the operator Liu = Lleu = —div(A1Vu) where

_AY) Y €Ta,,
A(Y) = { Ag(Y) ifY € Q\ Ta,,

and A = A7 asin (4.2). By construction, it is clear that & := A; — A verifies || < €11y,
and also £1(Y) = 0if §(Y) < 277. Hence, the support of A; — Ay is contained in a compact
subset of €.

In order to simplify the notation, we set 30 = %AS = A(zo,koro) and let 0 < g €
L (Ag) be such that ||g|| L' (Ag) = 1- Without loss of generality, we may assume that g is

defined in 092 with ¢ =0 in Q\ Ag. For 0 < ¢t < kor9/2, we consider g = P,g > 0 with P.g
defined as in (3.6), together with the solutions

uh(X) = /8 el ). wh(X) = /8 aldel).  Xen

By Lemma 3.5, g; € Lip(99) verifies supp(g;) C Aj and hence g; € Lip,(9Q) C HY/2(092)N
Ce(09). Since & = Ay — A verifies |&1] < [E]1r,, and also &i(Y) = 0if §(Y) < 277,
(5.1) and (2.13) allow us to invoke Lemma 3.20 (see Remark 3.23) which together with
Cauchy-Schwarz’s inequality give

F'(Xo) := |uf(Xo) — ub(Xo)| = ‘//Q(Ao — AN(Y)VyGr, (Xo,Y) - Vuy(Y) dY‘

<> D Z/I*yg(Y)HVYGLl(XO,Y)||VUS(Y)|dY

QoeD?o QeDgq TEWS,

S D D DI //I*|vyGL1<X07Y>|2dY)W( /I*Wué(mﬁdy)m-

QoeD?o QeDg, TeEWS,

Note that for every Qg € D?° and our choice of My, we have that £(Qo) < diam(9Q)/ko.
Thus by Lemma 3.26 the estimate [|af| < eo implies that m = {yg}genn) € C(Qo) (see
(3.25)) and [|m|l¢(q,) < k€0, where £ > 0 depends only on dimension and on the 1-sided
CAD constants. At this point we just need to repeat the arguments in (4.5)—(4.13) in every
Qo € D0 with F = @ and hence D 7.Qo = Dg,. This ultimately gives

1/2 X 1/271.X,
F'(X0) S2o® > 165 oo S & 1650l o iy
Qo€D?0

where the last inequality is justified by the bounded cardinality of D?0. Therefore,
1/2)1.X X
0 < uh (X0) < F*(X0) + uh(X0) S &2 Ik30 0z, + 155l 2ncag):
where we have used Holder’s inequality, and the facts that | g,/ 09) < 1 and supp(g:) C
Af by Lemma 3.5, and where the implicit constants do not depend on ¢. Next, we write

/ Gk (y) do(y) = ut (Xo) + / (9(v) — 9 (w)kX° () do(y)
o0 o0

1/2;. X X X
S e 2150 o zgy + K52 o (ag) + 119 = 9ell 1ot o 1622 ocasy-
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Notice that g; — ¢ in L? (9Q) by Lemma 3.5, which along with the fact that szﬁo zr(ag) <
Cj < 400, by Lemma 2.33(e) and Harnack’s inequality, implies

1/2
/8 o) do(w) < 2 IR gaqay) + IS loncagy

Taking the supremum over all 0 < g € L (Ag) with ||g||Lp/(£0) = 1 we obtain

1/2
15201 1o ag) < €6 *NE20 N poagy + CllERL 2o (ag):

where C' depends on the allowable parameters. Since HkﬁOH IRy < Cj < 0o, taking
g0 < C72/4, we can hide the first term in the left hand side to obtain HkﬁOHLp(ﬁo) <

Hkl)i? |r(az)- Using then that wr, € RH,(0(2) and Harnack’s inequality to change the pole
from Xo = Xy, to X A (with constants depending on My, which is already fixed), we
conclude that

52 [ Ererams [

EXO ()P do(y) < / EX0 ()P do(y)
Ap

A

X A*
~ [ R P dot) £ 0857~ a(80)' .
0

5.3. Step 2. Let Ly := —div(A2Vu) where

[ AY) HY € Ta,
Ax(Y) = { AY) Y €Q\Ta,,

and hence Ay = A in Q. As seen in Step 0, since L = Ly in {Y € Q: §(Y) < 279}, we
have that wr, = w; < 0, and there exists kr, = dwr,/do. Set By := B(xo,70/(2r0)) and
Ay = BjnoQ. By (2.14), 2k0ByNQ C %Bo NQ C Ta, and since Ly = Ly in Th,, Lemma
2.33(e) implies

XA6 XA’O XA6 ’
ke (y) =k, °(y) =k °(y), foro-ae ye A
Consequently, using (5.2) and Harnack’s inequality (with constants depending on M), which
is already fixed), we obtain
Xa,

/A K ()P do(y) ~ / By 2 ()P do(y) < / kL

0 Ag Ao

(y)P do(y) S o(Ao)' 7P ~ o(Ap)' 7.

Since the surface ball Ag = A(xg,79) with 2o € 9Q and rg < diam(92)/M, was arbitrary,
we have proved that

diam(992)

XA (,\P < 1-p —
(5.3) /Ak:L (y)Pdo(y) S o(A)TP, A=Az,r), 0<r< 5Morg

By a standard covering argument and Harnack’s inequality, (5.3) extends to all A = A(z, )
with 0 < 7 < diam(0€2). This and Lemma 2.40 show that w; € RH,(052) where we recall
that L = L/ is the operator defined in (4.2), j € N is arbitrary, and the implicit constant
is independent of j € N.
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5.4. Step 3. Using the previous step and Proposition 4.28 with ¢ = p we conclude as
desired that wy, € RH,(012) and the proof of Theorem 1.1(b) is complete.

Remark 5.4. One can easily see from the previous proof that ||a|| < e could be slightly
weakened by simply assuming that |[m[l¢(q,) is small enough, with m = {yg}gen0) and
vq defined in (3.25). Further details are left to the interested reader.

6. APPLICATIONS OF THEOREM 1.1(b)

Given Lo, L elliptic operators with matrices Ay, A respectively, we say that their dis-
agreement defined in (1.2) verifies a vanishing trace Carleson condition if

im su o oA, A)(X)? o
(6.1) 51_>0+ ( mea% )U(A(l‘,r)) //B(x,r)ﬂﬂ (5(X) dX) 0.

0<r<s<diam(092

Corollary 6.2. Suppose that Q C R*! is a 1-sided CAD. Let Lo, L be elliptic operators
whose disagreement in Q is given by the function o(A,Ao) defined in (1.2). If wr, €
RH,(09) for some 1 < p < oo and the vanishing trace Carleson condition (6.1) holds, then
wr, < o and there exist Cy > 0 (depending only on dimension, p, the 1-sided CAD constants,
the ellipticity of Lo and L, and the constant in wr,, € RH,(0N?)), and 0 < ro < diam(0S)
(depending on the above parameters and the condition (6.1)), such that

(6.3) / XS () do(y) < Coo (D)7, A=Aw,r), €09 0<r<n.
A

Proof. Take g9 > 0 from Theorem 1.1(b) and let M > 1 to be chosen. Thanks to (6.1),
there exists sop = so(eg, M) < diam(99Q) such that for every A = A(z,r) with x € 9 and
0 < r < 59, we have that

1 a(X)? €0
64 o(A@r) //B@,rm ) =

where a := o(4, Ag). Given s >0, set X, :={Y € Q: §(Y) < s} and consider the operator
Lu = — div(AVu) with

- L A()(Y) ifY e \ DI /4>
AY) = { AY) Y €Sy

Note that A is uniformly elliptic with constant A = max{Aa, A4}, where Agq and Ay,
are the ellipticity constants of A and Ay respectively. Setting & := K(Y) — Ap(Y) and
a(X) = sup|x_y|<s(x)/2 IE(Y)], it is clear that E(Y) = £(V)1 (Y). Therefore, since
B(X,0(X)/2) CQ\ Xy, /4 for each X € Q\ X 5, we have that

E50/4

(6.5) a(X) <a(X)1gp, ,(X), XeQ

Now, we claim that

~ 1 a(X)?

6.6 alll = sup // dX < ey,

(6.6) llall eat o A@ ) M p@ane 0(X) 0
0<r<s<diam(8Q)
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provided M is chosen large enough depending only on dimension and the AR constant. To
prove the claim we take B = B(x,r) with z € 02 and 0 < r < diam(0€2). Suppose first
that 0 < r < sg, using (6.4) and (6.5), we obtain

1 a(X)? 1 a(X)? S .
(A1) //B@,rm 5) X oA ) //me 500 X <ap s

On the other hand, if 7 > sp, using (6.5) we have that

//B(ac,r)ﬁQ i(())((); = //B(m)mzw Ci;(g(); dX.

By a standard Vitali type covering argument, there exists a family {A;}; of disjoint surface
balls Aj = A(z;, s0/2) with z; € A(z, 2r), satisfying A(z, 2r) C J; 3A; and A; C A(z, 3r).
Note that by construction, B(z,7) N Xy /2 C Uj B(zj,s0), hence by (6.4), we have that

a’(X)2 CL(X)2 €0 '
//B("E,T)ﬂzso/z 6(X) s ZJ: //B(xj,so)mg I(X) dX = M Z G(A(:E]’ 50))
£0

J

0(A)) < 2o(A(z,3r) & 2o(A, 7)) < 200 (A(x, 1)),

YA M M

J

for M sufficiently large, depending only on dimension and on the AR constant. Gathering
the above estimates, we have proved as desired (6.6).

Next we apply Theorem 1.1(b) to Lo and L, to conclude that w; € RHy(09Q) and, in
particular,

(6.7) /A k‘%A (y)P do(y) < o(A)P, A=A(z,r), €0, 0<r<dam(9R).

Set ro := so/(8ko) and let A = A(z, r) with z € 9 and 0 < r < ro. Note that B(z, 2kor)N
Q C B(w,80/4)NQ C Xy )4, hence L = L in B(z,2ror) N Q2. Using Lemma 2.33(e) we have
that wy, < o in A and

kp 2 (y) ~ /f%(A (y), for o-a.e. y € A.

This and (6.7) proves (6.3) and the proof is complete. O

Corollary 6.8. Suppose that Q C R*! is a bounded 1-sided CAD. Let Lo, L be elliptic
operators whose disagreement in € is given by the function a(X) defined in (1.2), and
suppose that wr, € RH,(0Q) for some 1 < p < oo. If the vanishing trace Carleson
condition (6.1) holds, then we have that wy, € RH,(0RY), with constants depending on
diam(05?), dimension, p, the condition (6.1), the 1-sided CAD constants, the ellipticity of
Ly and L, and the constant in wr, € RH,(0).
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