
Focal Flow
Velocity and Depth from Differential Defocus through Motion

Emma Alexander · Qi Guo · Sanjeev Koppal · Steven J. Gortler · Todd
Zickler

Abstract We present the focal flow sensor. It is an
unactuated, monocular camera that simultaneously ex-
ploits defocus and differential motion to measure a depth
map and a 3D scene velocity field. It does this using an

optical-flow-like, per-pixel linear constraint that relates
image derivatives to depth and velocity. We derive this
constraint, prove its invariance to scene texture, and
prove that it is exactly satisfied only when the sensor’s

blur kernels are Gaussian. We analyze the inherent sen-
sitivity of the focal flow cue, and we build and test a
prototype. Experiments produce useful depth and ve-

locity information for a broader set of aperture configu-
rations, including a simple lens with a pillbox aperture.

Keywords depth · optical flow · defocus · coded

aperture · ego-motion · computational sensing

Computational sensors reduce the data processing
burden of visual sensing tasks by physically manipu-
lating light on its path to a photosensor. They ana-

lyze scenes using vision algorithms, optics, and post-
capture computation that are jointly designed for a
specific task or environment. By optimizing which light
rays are sampled, and by moving some of the computa-
tion from electrical hardware into the optical domain,
computational sensors promise to extend task-specific
artificial vision to new extremes in size, autonomy, and
power consumption [24,14,5,9,15].

This paper presents a computational sensor for si-
multaneous depth and 3D scene velocity. It is called
a focal flow sensor. It is passive and monocular, and

E. Alexander
E-mail: ealexander@fas.harvard.edu

E. Alexander · Qi Guo · S.J. Gortler · T. Zickler
Harvard University

Sanjeev Koppal
University of Florida

it measures depth and velocity using a per-pixel lin-
ear constraint composed of spatial and temporal im-
age derivatives. The sensor simultaneously exploits de-
focus and differential motion, and its underlying prin-

ciple is depicted in Figure 1. This figure shows the one-
dimensional image values that would be measured from
a front-parallel, Lambertian scene patch with a sinu-

soidal texture pattern, as it moves relative to a sensor.
If the sensor is a pinhole camera, the patch is always in
focus, and the images captured over time are variously
stretched and shifted versions of the patch’s texture

pattern (Figure 1A). The rates of stretching and shift-
ing together resolve the direction of motion and time
to contact (e.g., using [11]), but they are not sufficient

to explicitly measure depth or velocity. The focal flow
sensor is a real-aperture camera with a finite depth of
field, so in addition to stretching and shifting, its im-
ages exhibit changes in contrast due to defocus (Figure

1B). This additional piece of information resolves depth
and velocity explicitly.

Our main contribution is the derivation of a per-
pixel linear equation,[
Ix Iy (xIx + yIy) ∇2I

]
· v + It = 0,

that relates spatial and temporal image derivatives
to depth and 3D scene velocity, and that is valid for
any generic scene texture. Over an image patch, depth
and velocity are recovered simply by computing partial
derivatives in time (It) and space (Ix, Iy, ∇2I), solv-
ing a 4 × 4 linear system for vector v ∈ R4, and then
evaluating analytic expressions for depth Z(v) and 3D
velocity (Ẋ, Ẏ , Ż)(v) determined by the physical char-
acteristics of the calibrated sensor.

The focal flow cue is distinct from conventional pas-
sive depth cues like stereo and depth from defocus be-
cause it directly measures 3D velocity in addition to

Todd Zickler
The final publication is available at http://link.springer.com

2 Emma Alexander et al.

PINHOLE (ALL IN FOCUS)

FOCAL FLOW (GAUSSIAN BLUR)

A C

B

Fig. 1 The focal flow principle. A: When a 1D pinhole camera observes a world plane with sinusoidal texture, the image
is also a sinusoid (black curve). Motion between the camera and scene causes the sinusoidal image to change in frequency
and phase (blue curve), and these two pieces of information reveal time to contact and direction of motion. B: When a finite-
aperture camera images a similar moving scene, the motion additionally induces a change in image amplitude, because the
scene moves in or out of focus. This third piece of information resolves depth and scene velocity. C: We show that, with an
ideal thin lens and Gaussian blur κ(r), depth and 3D velocity can be measured through a simple, per-pixel linear constraint,
similar optical flow. The constraint applies to any generic scene texture.

depth. Importantly, it does not require inferences about

disparity or blur; instead, it provides per-pixel depth in
closed form, using a relatively small number of multiply
and add operations. The focal flow sensor might there-

fore be useful for applications, such as micro-robotics [5],
that involve motion and that require visual sensing with
low power consumption and small form factors.

The heart of this paper is devoted to proving that
this linear constraint is invariant to scene texture, that
it exists analytically whenever the optical system’s point

spread functions are Gaussian, and that no other class
of point spread functions—be they discs, binary codes,
or continuous functions—provides the same analytic ca-

pabilities. We also analyze the first order sensitivity of
the focal flow sensor and compare it to those of stereo
and depth from defocus.

In the second part of the paper, we formulate the
patch-based computation of depth and velocity as a
feed-forward computational tree, and we develop tech-
niques for end-to-end calibration that maximize depth
accuracy by simultaneously optimizing the discrete spa-
tial derivative filters and the precise values of the sen-
sor’s relevant optical dimensions. Experimentally, we
find this allows effective depth estimation using point
spread functions that deviate substantially from Gaus-

sians, including those that arise from a simple, bare
lens. We demonstrate a working prototype that can

measure depth within ±6mm over a range of 20cm us-

ing a one-inch lens.

1 Related Work

This paper is an extended version of [1]. It presents

a more general characterization of the allowable point
spread functions by dropping the restriction of radi-
ally symmetric optics. This slightly widens the family
of point spread functions that analytically allow a fo-
cal flow constraint, and it greatly increases the set of
those that do not. This paper also introduces a com-
putational model that supports end-to-end calibration,

which empirically provides a significant improvement in
performance.

Motion & Linear Constraints. Differential optical
flow, which assumes that all images are in focus, is com-
putable from a linear system of equations in a window
[13]. A closely related linear system resolves time to
contact [11,16]. The focal flow equation has a similar
linear form, but it incorporates defocus blur and pro-
vides additional scene information in the form of depth
and 3D velocity. Unlike previous work on time to con-
tact [12], our focal flow analysis is restricted to front-
parallel scene patches, though experimental results sug-
gest that useful depth can be obtained for some slanted
planes as well (see Figure 6).

Focal Flow 3

Defocus. When many images are collected under a
variety of calibrated camera settings, a search for the
most-in-focus image will yield depth [10]. This approach
is called depth from focus, and it is reliable but ex-
pensive in terms of time and images captured. When
restricted to a few images, none of which are guaran-
teed to be in focus, a depth from defocus algorithm
must be used [23]. This method is more difficult be-
cause the underlying texture is unknown: we cannot
tell if we’re seeing a blurry picture of an oil painting or
the sharp image of a watercolor, and without accurate
image priors both solutions are equally valid. To reduce
ambiguity, most depth from defocus techniques require
at least two exposures with substantially different blur
kernels, controlled by internal camera actuation that
changes the focal length or aperture diaphragm to ma-
nipulate the blur kernel [23,32,25,37]. The speed, ac-
curacy, and complexity of recovering depth depends on
the blur kernels and the statistical image model that is
used for inference. Depth performance improves when

well-designed binary attenuation patterns are included
in the aperture plane [39,17,40], and with appropriate
inference, binary codes can even provide useful depth

from a single exposure [18,36,3].

Focal flow is similar to depth from defocus in that
it relies on focus changes over a small set of images
to reveal depth, and that it requires a specific blur
kernel. However, the implied hardware is different: un-

like multi-shot depth from defocus, our sensor does not
require internal actuation, and unlike binary aperture
codes, it employs a continuous filter.

Differential defocus with Gaussian blur has been
previously considered under changing lens and aperture

conditions [31,32,6]. We build on this work by proving
the uniqueness of the Gaussian filter, and by exploiting
differential motion to avoid camera actuation.

Cue Combination. Our use of relative motion be-
tween scene and sensor means that in many settings,
such as robotics or motion-based interfaces, this cue
comes without an additional power cost. Previous ef-

forts to combine camera/scene motion and defocus cues [20,
7,19,29,22,30,34] require intensive computations, though
they often account for motion blur, which we ignore.
Even when motion is known, equivalent to combining
defocus with stereo, measuring depth still requires search-
ing over a discrete set of depth estimates [26,35]. The
simplicity of focal flow provides an advantage in effi-
ciency.

2 The Focal Flow Constraint

In differential optical flow, a pinhole camera views a
Lambertian object with a temporally constant albedo
pattern, here called texture and denoted T : R2 →
[0,∞). For now the texture is assumed to be differ-
entiable, but this requirement will be relaxed to local
integrability for the derivation of focal flow. For front-
parallel planar objects, located at a time-varying offset
(X,Y) and depth Z from the pinhole, the camera cap-
tures an all-in-focus image that varies in time t and
pixel location (x, y) over a bounded patch S on a sen-
sor located an axial distance µs from the pinhole. The
intensity of this image P : S × R → [0, 1] is a magni-
fied and translated version of the texture, scaled by an
exposure-dependent constant η:

P (x, y, t) = η T

(
Z(t)

−µs
x−X(t),

Z(t)

−µs
y − Y (t)

)
. (1)

It is well known that the ratios of the spatial and

temporal derivatives of this image are independent of
texture, and so can reveal information about the scene.
A familiar formulation [13] provides optical flow (ẋ, ẏ)
from image derivatives:

0 =
[
Px Py

] [ẋ
ẏ

]
+ Pt, (2)

while following [11] to split the translation and magni-
fication terms:

0 =
[
Px Py (xPx + yPy)

]
u + Pt, (3)

u =[u1, u2, u3]T =

[
−Ẋµs

Z
,− Ẏ µs

Z
,− Ż

Z

]T
, (4)

provides texture-independent time to contact and di-
rection of motion (bearing):

Z

Ż
=
−1

u3
, (5)(

Ẋ

Ż
,
Ẏ

Ż

)
=

(
u1
µsu3

,
u2
µsu3

)
. (6)

For focal flow, we replace the pinhole camera with a
finite-aperture camera having an ideal thin lens and an
attenuating filter in the aperture plane. We represent
the spatial transmittance profile of the filter with the

function κ : R2 → [0, 1]. We do not require smoothness,
which allows for pillboxes and binary codes as well as
continuous filters. For a front-parallel world plane at
depth Z, the filter induces a blur kernel k on the image
that is a “stretched” version of the aperture filter:

k(x, y;Z) =
1

σ2(Z)
κ

(
x

σ(Z)
,

y

σ(Z)

)
, (7)

4 Emma Alexander et al.

where the magnification factor σ, illustrated in Figure
1C, is determined by object depth, sensor distance, and
in-focus depth µf via the thin lens model:

σ(Z) =

(
1

Z
− 1

µf

)
µs. (8)

Denoting by ∗ a convolution in x and y, we can write
the blurred image I as

I(x, y, t) =k (x, y;Z(t)) ∗ P (x, y, t). (9)

Unlike the pinhole image P , the ratios of the spa-
tial and temporal derivatives of this defocus-blurred im-
age I depend on texture. This is because the constant
brightness constraint does not hold under defocus: pixel
intensity changes both as image features move and also
as patch contrast is reduced away from the focal plane.
This difference, illustrated in Figure 1, implies that any
finite-aperture system for measuring optical flow will
suffer a systematic error from defocus. Mathematically,
this appears as an additive residual term on the time
derivative, as shown in the following proposition.

Proposition. For an ideal thin lens camera and front-
parallel planar scene, denoting by kx and ky the partial,
distributional derivatives of k,

It =kt ∗ P + k ∗ Pt (10)

=− u1Ix − u2Iy − u3(xIx + yIy)−R, (11)

R =
Ż

Z − µf
(2k + xkx + yky) ∗P. (12)

The time-varying residual image R(x, y, t) changes
with depth, velocity, and camera design. It is trouble-
some because it also depends on the pinhole image P ,
which is not directly measured. Only the blurred im-
age I=k∗P is available. This means that for almost all

aperture filters, there is no way to express R using scene
geometry and image information alone—it is inherently
texture-dependent.

However, we observe that for a very specific aperture
filter, this source of error can actually be transformed
into a usable signal that resolves both depth and 3D
velocity. For this to happen, the image must be pro-

cessed with a particular operation that, in combination
with the filter, allows the decomposition of residual im-
age R into a depth/velocity factor (analogous to u1)
and an accessible measurement (analogous to Ix). To
formally identify such a filter and image operator, we
seek triples (M,κ, v) of shift-invariant linear image op-
erators M , aperture filters κ, and scalar scene factors v
that satisfy, for any front-parallel planar scene,

v(t) M [I](x, y) =R(x, y, t). (13)

We prove in the following theorem that there exists a
unique family of such triples, comprising Gaussian aper-
ture filters and Laplacian image measurements. This
leads directly to a simple sensor and algorithm that we
prototype and evaluate in Section 4.

Theorem. Let k be induced by some κ : R2 → [0, 1]
with κ(x, y), xκ(x, y), and yκ(x, y) Lebesgue integrable
and κ not identically zero. For v ∈ R and translation-
invariant linear spatial operator M with finite support,

v M [k ∗ P] = R(k, P) (14)

for all compactly supported P , if and only if there are
constants a ∈ R+, b, Σ ∈ {R− 0} and a real symmetric
positive definite matrix Σ such that

κ = a e
− xTΣx

4Σ2|Σ| , (15)

M = b ∇2
Σ = b ∂TxΣ

−1∂x. (16)

This theorem states that, when the filter κ is a Gaus-
sian with covariance matrix Σ, the residual R is pro-
portional to the image Laplacian of inverse covariance,

M [I] ∝ ∇2
ΣI = Σ−111 Ixx + 2Σ−112 Ixy +Σ−122 Iyy, which is

directly observable from image information. Moreover,
the Gaussian is the only aperture filter—out of a broad

class of possibilities including pillboxes, binary codes,
and smooth functions—that permits exact observation
by a depth-blind, translation-invariant linear operator.

Combining the proposition and theorem leads im-
mediately to a per-pixel linear constraint, analogous to

those used in measuring optical flow or time to contact.

Corollary (Focal Flow Constraint). For a camera
with Gaussian point spread functions observing a front-
parallel planar scene, the following constraint holds at

each image pixel:

0 =
[
Ix Iy (xIx + yIy) ∇2

ΣI
]
v + It,

v =[u1, u2, u3, v]T

=−

[
Ẋµs
Z

,
Ẏ µs
Z

,
Ż

Z
,
Ż

Z

(
1− µf

Z

)(Σµs
µf

)2

2|Σ|

]T
.

(17)

Note that the boxed equation in the introduction is
one member of this family of possible constraints, cor-
responding to the case where Σ is the identity matrix

and the point spread functions of the camera are radi-
ally symmetric. For a calibrated camera, holding this
constraint over a generic image patch yields a system
of linear equations that can be solved for v. In the pres-
ence of axial motion (Ż 6= 0) the new scalar factor v

Focal Flow 5

provides enough additional information to directly re-
cover complete depth and velocity:

Z =
(2|Σ|Σ2µ2

sµf) u3
(2|Σ|Σ2µ2

s) u3 − (µ2
f) v

, (18)

(Ẋ, Ẏ , Ż) =− (Zu1/µs, Zu2/µs, Zu3) , (19)

where components of v are measured from the image
and all other parameters are known from camera cali-
bration. Note that the corollary drops the assumption of
a compactly-supported texture (see appendix A for de-
tails): the constraint holds exactly for any front-parallel
textured plane.

This implies a simple patch-wise algorithm for mea-
suring depth and velocity, about which we make a few
notes. When an image patch is degenerate, meaning
that the matrix having a row [Ix, Iy, xIx+yIy,∇2

ΣI] for
each of the patch’s pixels is not full rank, partial scene
information can often still be obtained. For example,
a patch that contains a single-orientation texture and
is subject to the classical aperture problem gives rise
to ambiguities in the lateral velocity (Ẋ, Ẏ), but depth
Z and axial velocity Ż can still be determined. Sepa-

rately, in the case of zero axial motion (Ż = 0), there
is no change in defocus and the depth signal is lost.
Specifically, u3 = v = 0, and the patch can only pro-

vide optical flow. Finally, note that unlike many depth
from defocus methods, the combination of magnifica-
tion and defocus changes in focal flow breaks the side-

of-focal-plane ambiguity.
The following proofs draw heavily on the theory of

distributions, for which we suggest [27] as a reference. A
brief introduction to the relevant terms and properties

can be found in appendix A. Intuition may be gained
from appendix B, which contains alternate derivations
for the focal flow constraint under the assumption of

Gaussian blur.

2.1 Proofs

Proof (Proposition) We can rewrite the first term in
equation (10) using the differential optical flow con-
straint, which expresses Pt in terms of spatial deriva-
tives Px and Py:

k ∗ Pt = k ∗

− [Px Py (xPx + yPy)
] u1u2
u3

 . (20)

The magnification term xPx+yPy introduces a compli-
cation, because the image coordinates x and y cannot
be pulled out of the convolution without introducing
additional terms:

k ∗ xPx =x(k ∗ Px)− (xk ∗ Px). (21)

Spatial derivatives can be applied to either term in a
spatial convolution, so this new term takes the form

xk ∗ Px =(k + xkx) ∗ P, (22)

and equation (20) can be rewritten in terms of image
measurements with leftover P terms:

k ∗ Pt =−
[
Ix Iy (xIx + yIy)

] u1u2
u3


+ u3(2k + xkx + yky) ∗ P.

(23)

The second term in equation (10) takes a similar form:

kt ∗ P =kσσ̇ ∗ P (24)

=− 1

σ
(2k + yky + xkx)σ̇ ∗ P, (25)

and noting that u3 − σ̇
σ = − Ż

Z−µf completes the proof.
ut

We now make several claims that will be used to

prove the theorem. We begin by noting that the opera-
tor M [I] can be expressed as a convolution m ∗ I with
some compactly-supported m. While the correct terms
for M and m are an operator and a filter, respectively,

we will refer to m as an “operation” rather than a “fil-
ter” to emphasize that it is a computational object and
to distinguish it from the physical, light-blocking filter

κ at the camera’s aperture.

Claim 1. The blur kernel k and post-processing opera-
tion m are related in the frequency domain by k̂(r̂, θ̂) =

f(θ̂)e−w
∫ r̂
0
m̂(s,θ̂)
s ds for w(σ) =

Z−µf
Ż

v and some angu-

lar function f(θ̂).

Proof The Fourier transform takes the convolution

v m ∗ k ∗ P = R (26)

to a multiplication

v m̂ k̂ P̂ = R̂, (27)

with hats indicating the Fourier transforms of the origi-
nal distributions, expressed in polar coordinates (r̂, θ̂) =

(
√
ω2
x + ω2

y, tan−1(ωx, ωy)). See appendix A for details

on this use of the convolution theorem.

The Fourier transform of the residual takes the form

R̂ =F

[
Ż

Z − µf
(2k + xkx + yky) ∗ P

]
(28)

=
Ż

Z − µf
F [(2k + xkx + yky)] P̂ , (29)

6 Emma Alexander et al.

where

F [(2k + xkx + yky)] =2k̂ + i∂ωx(iωxk̂) + i∂ωy (iωyk̂)
(30)

=− ωxk̂ωx − ωyk̂ωy (31)

=− r̂k̂r̂ (32)

so we can rewrite equation (27) as

v m̂ k̂ P̂ =− Ż

Z − µf
r̂ k̂r̂ P̂ . (33)

We require this to hold for all underlying scene tex-
tures by dropping the P̂ term from either side. This
leaves a simple partial differential equation on k̂. Com-
pactness of m guarantees that m̂ is smooth, and inte-
grability of k, xk, and yk guarantee that k̂, k̂ωx , and
k̂ωy are continuous, so we solve this equation using in-
tegrating factors. ut

Claim 2. The Fourier transform of the post-processing
operation, m̂, takes the form g(θ̂)r̂n for some n ∈ C
and angular function g(θ̂).

Proof Recall that the post-processing operation is re-
quired to be depth-blind, so m̂ cannot be a function

of the depth-scaling factor σ. However, we require that
equation (14) holds for the entire family of possible blur
kernels k, which are depth-scaled versions of the phys-

ical aperture filter κ according to equation (7). In the
frequency domain this depth scaling takes the form

k̂(r̂, θ̂) =κ̂(σr̂, θ̂). (34)

This means that we can introduce the functions

α(σr̂, θ̂) = ln

(
κ̂(σr̂, θ̂)

f(θ̂)

)
, (35)

β(σ) =− w(σ), (36)

γ(r̂, θ̂) =

r̂∫
0

m̂(s, θ̂)

s
ds, (37)

and rewrite a slightly rearranged form of claim 1 as

α(σr̂, θ̂) =β(σ)γ(r̂, θ̂). (38)

Considering what happens when r̂ = 1, we see that

α(σ, θ̂) =β(σ)γ(1, θ̂), (39)

so α is separable in θ̂. This separability can be seen in
the general-r̂ case by replacing σ with σr̂ for an alter-
nate expression for α:

α(σr̂, θ̂) =β(σr̂)γ(1, θ̂). (40)

Taking the r̂ derivative of equations (38) and (40) and
noting that they must be equal, we have

d

dr̂

(
β(σ)γ(r̂, θ̂)

)
= β(σ)γ(1,0)(r̂, θ̂) (41)

=
d

dr̂

(
β(σr̂)γ(1, θ̂)

)
= σβ′(σr̂)γ(1, θ̂), (42)

so that again considering the r̂ = 1 case, we find that

β(σ) =
γ(1, θ̂)

γ(1,0)(1, θ̂)
σβ′(σ). (43)

This is a separable ordinary differential equation that
has the solution

β(σ) =cσ
γ(1,0)(1,θ̂)

γ(1,θ̂) (44)

for some constant c. Because β(σ) cannot change with

θ̂, the exponent must also be a constant, which we call
n. These forms of β and n allow equation (42) to be
rewritten

γ(1,0)(r̂, θ̂) =
σβ′(σr̂)

β(σ)
γ(1, θ̂) (45)

=nr̂n−1γ(1, θ̂) (46)

=r̂n−1γ(1,0)(1, θ̂). (47)

This derivative in γ simply removes the integral in equa-
tion (37), so that we can rewrite the equation above as

m(r̂, θ̂)

r̂
=r̂n−1

m(1, θ̂)

1
. (48)

Introducing g(θ̂) = m̂(1, θ̂) completes the proof of the
claim. ut

Claim 3. The operation exponent n must be a positive
integer.

Proof The proof of this claim relies on concepts from
complex analysis that are introduced in appendix A.

According to Schwartz’s Paley-Weiner theorem, the
Fourier transform of a compactly supported distribu-
tion has continuous derivatives of all orders at every
point. The origin is a location of particular interest,
because almost all choices of g and n will lead to a
discontinuity there.

First note that g(θ̂) cannot vanish everywhere. In
this case, the aperture filter implied by claim 1 would
be a Dirac delta pinhole. This corresponds to the no-
residual optical flow case, which cannot reveal depth,
and violates the integrability requirement on κ.

If <(n) is negative, then r̂n will go to complex in-

finity at the origin, and if n is not an integer or has
an imaginary part, repeated application of the power

Focal Flow 7

rule shows that some derivative of m̂ will have an ex-
ponent n′ with <(n′) < 0 and the same discontinuity.
Specifically, the jth-order derivative in r̂ of m̂ is

djm̂

dr̂j
=

{
0, n ∈ Z+, j > n or n = 0,

g(θ̂) n!
(n−j)! r̂

n−j , else.

(49)

As r̂ approaches zero, this derivative approaches com-
plex infinity for <(n − j) < 0 (unless n is a positive
integer or zero), has an essential singularity when n− j
is imaginary, and otherwise goes to zero. So, there is a
discontinuity in some order derivative in r̂ at the origin
unless n is a nonnegative integer. Strictly speaking, it
is discontinuities in the derivatives in ωx and ωy that
are forbidden, but these follow directly, e.g. by Faà di
Bruno’s formula. Thus, n must be a nonnegative inte-
ger.

When n = 0, m̂ = g(θ̂) must take a constant value g
to avoid a discontinuity at the origin. Note that k̂ under

unit depth scaling (σ = 1) is exactly κ̂, and consider the
corresponding filter implied by claim 1:

κ̂ =f(θ̂)e−w(1)g ln(r̂) = f(θ̂)r̂−w(1)g. (50)

Because κ is integrable, the Riemann-Lebesgue lemma
states that κ̂ must vanish as r̂ approaches infinity, so

<(w(1)g) must be positive. However, this implies an
infinite discontinuity at the origin which also violates
integrability assumptions: integrability of κ implies uni-
form continuity of κ̂. Thus, n 6= 0. ut

Claim 4. m̂ is a homogeneous polynomial of degree n.

Proof Combining the previous claims, we have that for
some positive integer n,

κ̂(r̂, θ̂) = f(θ̂) e−w(1)g(θ̂)r̂n . (51)

By the Riemann-Lebesgue lemma, integrability of κ im-
plies κ̂ vanishes at infinity, which requires <(w(1)g(θ̂)) >

0 for θ̂ ∈ [−π, π]. Then, g(θ̂) 6= 0 on [−π, π] and in both
ωx and ωy, m̂ has a pole at (complex) infinity.

Schwartz’s Paley-Wiener theorem states that the
Fourier transform of a compactly supported distribu-
tion can be extended to an entire function, i.e. one that
is complex differentiable everywhere in C2. Proofs of

the previous claims have used the smoothness of m̂ that
this theorem implies over real values of ωx and ωy, but
this is a much more restrictive condition; the function
<(z), for example, is nowhere complex differentiable. In
fact, the only entire functions with a pole at infinity are
polynomials. See appendix A for details. Because m̂ is
degree n along any radial slice, it must also be homo-
geneous. ut

Claim 5. f(θ̂) = a0 ∈ R+ and n = 2.

Proof Combining the previous claims, we have that for
some positive integer n, and constants c0, ..., cn ∈ R

κ̂(r̂, θ̂) = f(θ̂) e
−w(1)

∑
j

cjω
j
xω

n−j
y

. (52)

Integrability of κ implies that κ̂ is uniformly contin-
uous, so f(θ̂) must be a constant a0 to avoid a discon-
tinuity in κ̂ at the origin, where the exponential term
goes to one. It must be real by the conjugate symmetry
of κ̂ induced by reality of κ, and it cannot be negative
or zero without causing κ to be so as well.

The Riemann-Lebesgue lemma implies that n is even,
because κ̂ must vanish as each ω approaches either posi-
tive or negative infinity while the sign of each cj is fixed.
For n even,

g(θ̂) =
∑
j

cj cosj(θ̂) sinn−j(θ̂)

=
∑
j

cj(−1)j cosj(θ̂ + π)(−1)n−j sinn−j(θ̂ + π)

=g(θ̂ + π)

(53)

Next see that for n ≥ 3, κ̂ along any fixed-θ̂ radial
slice is not a positive definite function, because with

C(n) =
∑∑

zizja0e
−w(1)g(θ̂)|ri−rj |n , (54)

z = [1, − 2, 1] , (55)

r =

[
− n

√
.1

w(1)g(θ̂)
, 0, n

√
.1

w(1)g(θ̂)

]
, (56)

we have

C(n) =6− 8e−.1 + 2e−(.1)(2
n), (57)

and both C(3) and dC
dn are negative. The Fourier slice

theorem [2,21] states that each of these angular slices is
the one-dimensional Fourier transform of the projection
of κ along the same angle in the spatial domain:

κ̂(r̂, θ0) =F1D

[∫
κ(r cos θ0 + z sin θ0, r sin θ0 − z cos θ0)dz

]
.

(58)

However, Bochner’s theorem states that the Fourier
transform of a nonnegative integrable function must be
positive definite. So for n ≥ 3, all projections of κ, and

therefore the filters κ themselves, fail to meet our re-
quirement of nonnegativity and integrability. ut

8 Emma Alexander et al.

Proof (Theorem) Combining the previous claims we see
that

m̂ =c2ω
2
x + c1ωxωy + c0ω

2
y (59)

κ̂ =a0e
−w(1)(c2ω

2
x+c1ωxωy+c0ω

2
y). (60)

Integrability of κ requires that w(1) > 0 and c21 < 4c0c2,
so that for

Σ2 =w(1), (61)

Σ =

[
c0 −c1/2
−c1/2 c2

]
, (62)

a =
a0

2Σ
√
|Σ|

, (63)

the inverse Fourier transforms and basic manipulation
prove the theorem. ut

3 Inherent Sensitivity

Due to the loss of image contrast as an object moves
away from the focal plane, we expect the focal flow
depth signal to be strongest for scene patches that are in
focus or nearly in focus. This is similar to the expected

performance of stereo or depth from defocus, for which
depth accuracy degrades at large distances. In those
cases, accuracy is enhanced by increasing the baseline

or aperture size. In focal flow, focal settings play the
analogous role.

Following Schechner and Kiryati in [28], we can de-

scribe the inherent sensitivity of all three depth cues.
Recall that for a stereo system with baseline b and an
inference algorithm that estimates disparity ∆x, depth
is measured as

Z =
bµs
∆x

, (64)

with first-order sensitivity to the disparity estimate∣∣∣∣ dZ

d(∆x)

∣∣∣∣ =

∣∣∣∣ bµs
−(∆x)2

∣∣∣∣ =
Z2

bµs
. (65)

Similarly, for a depth from defocus sensor with aperture
radius A and an algorithm that estimates blur radius
Ã, the sensitivity of depth to error in Ã is

Z =
µfµsA

µf Ã+ µsA
, (66)∣∣∣∣dZdÃ

∣∣∣∣ =

∣∣∣∣∣ −µ2
fµsA

(µf Ã+ µsA)2

∣∣∣∣∣ =
Z2

Aµs
. (67)

These equations show a fundamental similarity between
stereo and depth from defocus, in which the baseline
and aperture size are analogous.

For a toy model of focal flow, we consider images
of a sinusoidal texture blurred by a normalized and
radially-symmetric Gaussian. Note that for a circular
lens, a radially-symmetric filter will provide the best
performance because it will have the highest light effi-
ciency. We assume the texture has frequency ω0, unit
amplitude, and arbitrary phase and orientation. The
image captured at time t has frequency ω and ampli-
tude B, which are determined by depth (see appendix
B.2 for additional detail):

ω(t) =Zω0/µs, (68)

B(t) =
x e−

x2

4Σ2σ2

4πΣ2σ2
cos(ω(t)x)dxdy = e

−Σ2ω2
0

(
Z−µf
µf

)2

.

(69)

Depth can be measured from image amplitude, frequency,
and their derivatives:

Z =
µf

1 +
(
µf
µsΣ

)2
Ḃ

2Bωω̇

. (70)

When image quantities (ω, ω̇, B, Ḃ) are measured within

error bounds (εω, εω̇, εB , εḂ), a simple propagation of
uncertainty bounds the depth error εZ :

εZ ≤

√(
∂Z

∂ω

)2

ε2ω+

(
∂Z

∂ω̇

)2

ε2ω̇+

(
∂Z

∂B

)2

εB+

(
∂Z

∂B1

)2

ε2
Ḃ

(71)

=
Z|Z − µf |

µf

√
ε2ω
ω2

+
ε2ω̇
ω̇2

+
ε2B
B2

+
ε2
Ḃ

Ḃ2
. (72)

The sum of error terms in the radicand describes the rel-
ative usefulness of improving accuracy in either bright-

ness or spatial frequency measurements for a given scene.
It could guide the design or selection of an optimized
photosensor, e.g. [38], because when combined with an
appropriate statistical model of the scenes to be imaged,
it quantifies the trade-off between bit depth, which places
a lower bound on εB and εḂ , and spatial resolution,
which likewise bounds εω and εω̇.

Depending on the error model, the radicand in ex-
pression (72) could introduce additional scene depen-

dencies, but in the simplest case, it is constant and fo-
cal flow is immediately comparable to stereo and depth
from defocus. Just as the sensitivity of those measure-
ments goes as depth squared, we see that focal flow mea-
surements are sensitive to object distance from both the
camera and the focal plane through the Z|Z−µf | term.
The focal flow analogue to aperture size or baseline in
this scenario is inverse magnification, the ratio of in-
focus depth µf to sensor distance µs.

Focal Flow 9

4 Prototype and Evaluation of Non-idealities

In theory, when an ideal thin lens camera with an infinitely-
wide Gaussian aperture filter observes a single moving,
front-parallel, textured plane, there is a unique solu-
tion v ∈ R4 to the system of per-pixel linear focal flow
constraints (equation (17)), and this uniquely resolves
the scene depth Z(v) and velocity (Ẋ, Ẏ , Ż)(v) through
equations (18) and (19). In practice, a physical instan-
tiation of a focal flow sensor will deviate from the ide-
alized model, and there will only be approximate so-
lutions ṽ ∈ R4 that can produce errors in depth and
velocity measurements.

We expect two main deviations from the idealized
model. First, thick lenses have optical aberrations and a
finite extent, making it impossible to create ideal Gaus-
sian blur kernels that scale exactly with depth. Second,
image derivatives must be approximated by finite dif-
ferences between noisy photosensor values. We assess
the impacts of both of these effects using the proto-
type shown in appendix C. Based on 1”-diameter radi-

ally symmetric optics, it includes an f=100mm planar-
convex lens, a monochromatic camera (Grasshopper GS3-
U3-23S6M-C, Point Grey Research), and an adjustable-
length lens tube. The aperture side of the sensor sup-

ports various configurations, including an adjustable
aperture diaphragm and the optional inclusion of a Gaus-
sian apodizing filter (NDYR20B, Thorlabs) adjacent to

the planar face of the lens. A complete list of parts can
be found in figure 6 in appendix C. Because the optics
are radially symmetric, Σ is assumed proportional to

the identity matrix and the blur kernels can be param-
eterized by the scalar Σ.

To accommodate these non-idealities, we formulate
the patch-based computation of depth and velocity as a

feed-forward sequence of computations that operates on
all pixels in parallel. Each step in the computational se-
quence is differentiable, so all of the tunable parameters
can be optimized by capturing images of textured tar-
gets whose depth is known, and then back-propagating
the depth errors to update the parameters by gradient
descent. We use this to calibrate the values of the two
optical parameters in Section 4.2, and then we extend
it to simultaneously optimize the coefficients of the dis-
crete derivative operators in Section 4.5.

4.1 Feed-forward, patch-wise computation

For all results, we produce depth and velocity mea-
surements using the simple sequence of computations
that follows directly from the modeling of Section 2.
The input is three ordered frames from a temporal se-
quence, I(x, y, ti), i ∈ {1, 2, 3}, and the computation

has four steps: (i) approximate spatial and temporal
derivatives using discrete kernels, Ix = Dx ∗ I, Iy =
Dy ∗I, It = Dt ∗I, and (Ixx+Iyy) = D∇2 ∗I; (ii) aggre-
gate the per-pixel linear constraints (Equation (14)) us-
ing sliding window to create per-pixel matrix equations
Av = b; (iii) assemble and invert the corresponding
normal equations ATAv = ATb at all pixels; and (iv)
compute per-pixel depth and 3D velocity using Equa-
tions (18, 19).

A reference Matlab implementation that computes
depth and velocity at all pixels in parallel is available
on the project website.1 Note that the measurement
process requires knowing the image sensor’s principal
point (the origin of the coordinate system for x and y
in equation (17)), and we align this to the center of the
sensor during assembly. The remaining tunable param-
eters of the computational sequence include the coef-
ficients of the derivative filters {Dx, Dy, Dt, D∇2}, the
spatial windowing filter, and the two optical parame-
ters shown in Figure 2: sensor distance µs and aperture

width Σ. (The object focal distance µf is determined
by the lens’ known focal length, f = 100mm.)

4.2 Depth-based calibration of optical parameters

We begin by setting the derivative and windowing ker-
nels manually and optimizing the optical parameters.
We use temporal kernel It(x, y) ≈ 1/2 (I(x, y, t3)− I(x, y, t1)),

and spatial kernels Dx = (−1/2, 0, 1/2), Dxx = Dx ∗
Dx (likewise in y) convolved with the middle frame
I(x, y, t2). These spatial derivatives are sensitive to noise,

so we emulate a lower-noise sensor by creating each in-
put frame as the average of ten shots from the cam-
era unless otherwise noted. We also find that numerical
stability is improved by pre-normalizing the spatial co-
ordinates x ← x/c, y ← y/c for some constant c (we
use c = 104). This pre-normalization and the use of fi-
nite differences lead to depth and velocity values that,

if computed naively with equations (18) and (19), are
scaled by an unknown constant, but this is naturally ac-
counted for by the depth-based calibration we describe
here.

To acquire calibration data, we mount a textured
plane on a high-precision translation stage and laser

align it to be normal to the sensor’s optical axis. We
collect images of this texture at known locations Zi and
with unknown sensor locations µjs. We densely sample
texture locations Zi, so that the most in-focus image
reveals lens tube length ∆µjs, determining sensor loca-
tions µjs up to a shared constant µ0

s.

1 http://vision.seas.harvard.edu/focalflow/

http://vision.seas.harvard.edu/focalflow/

10 Emma Alexander et al.

Fig. 2 Calibration Parameters. Depth planes and parameters used to calibrate prototype sensor, see section 4.2.

We run the feed-forward computation on every triple
of frames in the calibration dataset, producing a sin-
gle scalar estimate Zest from each triple by aggregating
constraints over a single large (201×201) window in the
center of the frame. We optimize the optical parameters
Σ and μs by gradient descent using a loss based on the
RMS depth error,

Σ,μ0
s = arg min

Σ,μ0
s

∑
i,j

ρ(Zest(I
ij ;Σ,μ0

s +Δμj
s)− Zi),

(73)

where ρ(x) = {x2 if |x| ≤ 1, and 1 otherwise} is a ro-
bust functional that reduces the effect of outliers. Fig-
ure 3 shows a typical cost surface for this objective.
Experimentally, we observe convergence to a good ex-
tremum for a wide range of initializations.

Note that this calibration must be repeated when
the aperture is reconfigured, such as when inserting
an apodizing filter or adjusting the diaphragm. When
the effective blur kernels change, so does the optimal
effective width Σ. But for a fixed aperture, we find
that the sensor distance μs can be adjusted without
re-calibrating Σ.

While developing this calibration procedure, we tried
alternatives that led to inferior results. In particular, we
tried calibrating the sensor distance μs using conven-
tional methods, and then measuring the point spread
functions k(x, y, Zi) for depths Zi (e.g., right of Fig-
ure 4) and fitting parameter Σ according to the Gaus-

sian thin lens model: κ(r) = e−r2/4Σ2σ(Zi)
2

σ(Zi)2
. This ap-

proach is less effective, especially when the point spread
functions deviate substantially from Gaussians, because
it optimizes a fit to the points spread functions instead
of depth accuracy, which is what we care about most.
Also, unlike optimizing with respect to depth, it does
not allow for the simultaneous optimization of both
optical parameters and derivative kernels, which is ex-
plored in Section 4.5.

4.3 Results

Figures 4 and 5 show performance for different aper-
tures and noise levels. Accuracy is determined using a
textured front-parallel plane whose ground truth posi-
tion and velocity are precisely controlled by a trans-
lation stage. In each case, the measurement algorithm
is applied to a 201 × 201 window around the center
of the 960 × 600 image. The top and middle rows of
Figure 4 compare the measured depth Z and speed
‖(Ẋ, Ẏ , Ż)‖ to ground truth, indicated by solid black
lines. Speed is measured in units of millimeter per video
frame (mm/frame). Different colors in these plots rep-
resent experiments with different in-focus distances μf ,
corresponding to different lengths of the adjustable lens
tube. We show measurements taken both with an apodiz-
ing filter (and open diaphragm) and without it (with di-
aphragm closed to about �4.5mm). In both cases, the
inset point spread functions reveal a deviation from the
Gaussian ideal, but the approximate solutions to the
linear constraint equations still provide useful depth in-

Fig. 3 A typical calibration cost surface. The surface of
energy function (equation (73)) has an optimal value (red
circle) over a wide range of feasible region, which ensures the
convergence of the optimization in the calibration process.

Focal Flow 11

Focal distance, μ
f
 (mm)

250 300 350 400 450 500 550 600

W
or

ki
ng

 ra
ng

e
(m

m
)

0

50

100

150

I II III IV

Focal distance, μ
f
 (mm)

250 300 350 400 450 500 550 600

W
or

ki
ng

 ra
ng

e
(m

m
)

0

50

100

150

10 shots 7 shots 4 shots 1 shot

True depth (mm)
250 350 450 550 650 750

Es
tim

at
ed

 d
ep

th
 (m

m
)

250

350

450

550

650

750

True depth (mm)
250 350 450 550 650 750

Es
tim

at
ed

 s
pe

ed
 (m

m
/f

ra
m

e)

0

0.2

0.4

0.6

0.8

1

1.2

True depth (mm)
250 350 450 550 650 750

Es
tim

at
ed

 d
ep

th
 (m

m
)

250

350

450

550

650

750

True depth (mm)
250 350 450 550 650 750

Es
tim

at
ed

 s
pe

ed
 (m

m
/f

ra
m

e)

0

0.2

0.4

0.6

0.8

1

1.2 Far

Far

In focus

Near

Near

In focus

Fig. 4 Accuracy and working range. Top and middle rows: Estimated depth and speed versus true depth for two aperture
settings: open �4.5 diaphragm (top) and apodizing filter (middle). Solid black lines are true depth and speed. Insets are sample
image and PSF. Colors are separate trials with different focal distances μf , marked by dashed vertical lines. Depth interval for
which depth error is less than 1% of μf defines the working range. Bottom left : Sample PSFs, and working range versus focal
distance, for aperture settings: (I) diaphragm �4.5mm, no filter; (II) diaphragm open, with filter; (III) diaphragm �8.5mm,
no filter; (IV) diaphragm �25.4mm, no filter. We observe that larger apertures correspond to smaller working ranges. Bottom

right: Working range for distinct noise levels, controlled by number of averaged shots.

0.05rad

True depth (mm)
300 350 400 450

E
st

im
at

ed
 d

ep
th

 (
m

m
)

300

350

400

450

450

True depth (mm)
300 350 400

E
st

im
at

ed
 s

pe
ed

 (
m

m
/fr

am
e)

0.2

0.4

0.6

0.8

1

1.2

Fig. 5 Velocity. Measured depth, speed, and 3D direction (Ẋ, Ẏ , Ż)/‖(Ẋ, Ẏ , Ż)‖ versus true depth, with markers colored by
true depth. Directions shown by orthographic projection to XY -plane, where the view direction is the origin. Ground truth
is black lines for depth and speed, and white squares for direction. (Two ground truth directions result from remounting a
translation stage to gain sufficient travel.)

12 Emma Alexander et al.

x

y

x

y

10mm

10mm

x

y

x

y

x

yTr
ue

 d
ep

th
 (

m
m

)

E
st

im
at

ed
 d

ep
th

 (
m

m
)

E
st

im
at

ed
 d

ep
th

 (
m

m
)

x

y

Fig. 6 Depth maps for two different scenes. From left to right: one frame from an input three-frame image sequence;
per-pixel depth measured by independent focal flow reconstruction in overlapping square windows; and true scene shape.

formation over ranges that are roughly centered at, and
proportional to, the focal distances.

The bottom of Figure 4 shows the effects that aper-
ture configuration and noise level have on the working
range, defined as the range of depths for which the ab-
solute difference between the measured depth and the
true depth is less than 1% of the focal distance μf . The
prototype achieves a working range of more than 15cm.
Figure 5 shows both the measured speed and the mea-
sured 3D direction of a moving texture. Comprehensive
results for different textures, aperture configurations,
and noise levels can be found in appendix D.

Figure 6 shows full-field depths maps measured by
the system. Each is obtained by applying the recon-
struction algorithm in parallel to overlapping windows.
We used 71×71 windows for the top row and 241×241
windows for the bottom, again on 960×600 images. We
do not use multiple window sizes or any form of spa-
tial regularization; we simply apply the reconstruction
algorithm to every window independently. Even using
this simple approach, the depths map are consistent
with the scene’s true shape, even when the shape is not
front-parallel. The Matlab code used to generate these
depth maps can be found in our project website. It ex-
ecutes in 6.5 seconds on a 2.93GHz processor with Intel
Xeon X5570 CPU.

4.4 Empirical comparison with single-shot DFD

Another way to extract depth with an unactuated, monoc-
ular sensor is single-shot depth from defocus with a
binary coded aperture (e.g., [33,18,36]), where one ex-
plicitly deconvolves each image patch with a discrete
set of per-depth blur kernels and selects the most “nat-
ural” result. Compared to focal flow, this provides a
larger working range, but lower depth precision and a
much greater computational burden.

We compare the performance of focal flow and Levin
et al.’s [18] single-shot depth from defocus in simula-
tion. The simulation used sensor dimensions f = 100mm
and μs = 130mm for both approaches. For single-shot
depth-from-defocus, we used the binary aperture pat-
tern from [18]. For focal flow, we used radially-symmetric
Gaussian blur kernels, and all other settings were the
same as those used in section 4.3. Zero-mean Gaussian
noise with variance 10−6 was added to the simulated
input images for both methods. We used a randomly
selected texture from the CuRET database2[4], and to
capture the best possible performance of the single-shot
approach, we used the same texture for the training step
(parameters λk) of [18]. For focal flow, we simulated
input images for depths between 400mm and 500mm at
increments of 1mm; and for the single-shot approach,
we simulated input images for depths between 320mm
and 720mm with increments of 4mm. As in section 4.3,
the working range (400mm-500mm) of focal flow is de-

2 http://www.cs.columbia.edu/CAVE/software/curet/

http://www.cs.columbia.edu/CAVE/software/curet/

Focal Flow 13

termined as the set of depths for which the absolute
depth error is less than 1% of the focal distance μf . For
each approach, we obtained depth estimates for each
of the 101 increments, and the RMS depth error was
computed over these estimates.

The depth performance of the two approaches is
shown in Table 1. It includes evaluations for each of
the three deconvolution algorithms proposed in [18],
as implemented in Matlab by the authors.3 The depth
performance of focal flow and single-shot depth from
defocus is complimentary: the working volume of the
single-shot approach is four times larger, but focal flow
is more than seven times as precise and at least hun-
dreds of times faster.

4.5 End-to-end Optimization

Fig. 7 Working range improved with end-to-end train-

ing. Using trained derivative filters (blue) instead of finite
differences (red) extends the working range(≡ 1%μf) by at
least 10mm. Results on two different test textures are shown.

3 https://groups.csail.mit.edu/graphics/CodedAperture/

Next, we extend the calibration of optical parame-
ters Σ and μs by also optimizing the finite difference
kernels Dx, Dy, Dxx, Dyy. This allows learning kernels
that incorporate low-pass filtering to suppress sensor
noise, while also adjusting the optical parameters to ac-
count for the implicit changes in spatial scale that these
kernels induce. It is possible because each step in our
computational sequence is differentiable, so the deriva-
tives of our depth-based loss can be back-propagated
to simultaneously adjust all of the optical and compu-
tational parameters.

In this experiment, we first optimize the optical pa-
rameters μs and Σ with naive derivative kernels as de-
scribed in Section 4.2, and then we fine tune Σ and the
spatial derivative kernels Dx, Dy, Dxx, Dyy to minimize
the 1-norm loss:

L(Zest − Ztrue) =
∑

|Zest − Ztrue|. (74)

We initialize Dx = [0, 0, 0, 0,−0.5, 0, 0.5, 0, 0, 0, 0] and
enforce the constraint that Dx (and hence ∂L

∂Dx
) is anti-

symmetric during optimization. We also force Dy =
DT

x , Dxx = Dx ∗ Dx, so the total number of free pa-
rameters in the derivative kernels is 6. For faster con-
vergence, we multiply a manually-set constant λΣ to
∂L
∂Σ , to keep

(
λΣ

∂L
∂Σ

)
/Σ to be smaller than, or roughly

the same order as,
(

∂L
∂Dx

)
/Dx. We used λΣ = 10−6

in our experiment. We use the same 10-shot averaging
calibration data as in Section 4.2.

Figure 7 shows the effect of the optimized kernels
on two of the test textures. The working range can be
extended by at least 10mm for each μf and each texture
by training the filters. Although the noise is already
partially suppressed in the 10-shot data, we still see a
gain in working range. We predict a larger performance
boost from this training procedure on noisier images.

5 Discussion

By combining blur and differential motion in a way that
mitigates their individual weaknesses, focal flow enables
a passive, monocular sensor that provides depth and 3D
velocity from a simple, small-patch measurement algo-
rithm. While the focal flow theory is developed using
Gaussian blur kernels and front-parallel scene patches,
we find in practice that it can provide useful scene in-
formation for a much broader class of aperture config-
urations, and some slanted scene planes.

The prototype described in this paper currently has
some limitations. Its simple measurement algorithm per-
forms independent measurement in every local patch.
As such, it is overly sensitive to noise and requires
high-contrast texture to be everywhere in the scene.

https://groups.csail.mit.edu/graphics/CodedAperture/

14 Emma Alexander et al.

Table 1 Focal flow vs. single-shot depth from defocus. We compare speed, accuracy, and working range of focal flow and
Anat et al. [18] in simulation. Focal flow requires multiple images and has a smaller working range but runs more than 100x
faster with less than 1/7 error.

Method
Running Time

Working Range (mm)
RMS depth

(sec/estimate) error (mm)

Focal Flow 0.03 400-500 2.94

Coded DfD: L2 deconvolution
7.90 320-720 20.95

in frequency domain, we = 0.01
Coded DfD: L2 deconvolution

7.93 320-720 44.73
in frequency domain, we = 0.002

Coded DfD: L2 deconvolution
159.03 320-720 56.25

we = 0.01, max it = 80
Coded DfD: sparse deconvolution

1456.62 320-720 45.24
we = 0.01, max it = 200

Performance can likely be improved by including noise
suppression and dynamical filtering that combines the
available depth and velocity values. At the expense of
additional computation, performance could be improved
by adapting techniques from optical flow and stereo,

such as outlier-rejection, multi-scale reasoning, and spa-
tial regularization that can interpolate depth in texture-
less regions. Projecting a pattern onto the scene could

also provide texture at the expense of electrical power.
The relative efficiency of focal flow suggests its suit-

ability for small, low-power platforms, particularly those
with well-defined working ranges and regular ambient

motion, either from the platform or the scene. While
the prototype shown here is relatively large and slow,
an optimized processor and miniaturized optics could

greatly benefit microrobots for which traditional com-
puter vision has had little to offer.

6 Acknowledgments

We would like to thank J Zachary Gaslowitz and Ioan-

nis Gkioulekas for helpful discussion. This work was
supported by a gift from Texas Instruments Inc. and by
the National Science Foundation under awards No. IIS-
1212928 and 1514154 and Graduate Research Fellow-
ship No. DGE1144152 to E.A.

References

1. Alexander, E., Guo, Q., Koppal, S., Gortler, S., Zickler,
T.: Focal flow: Measuring distance and velocity with de-
focus and differential motion. In: European Conference
on Computer Vision, pp. 667–682. Springer (2016)

2. Bracewell, R.N.: Strip integration in radio astronomy.
Australian Journal of Physics 9(2), 198–217 (1956)

3. Chakrabarti, A., Zickler, T.: Depth and deblurring from
a spectrally-varying depth-of-field. In: European Confer-
ence on Computer Vision (ECCV) (2012)

4. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink,
J.J.: In: Reflectance and Texture of Real-world Surfaces

5. Duhamel, P.E.J., Perez-Arancibia, C.O., Barrows, G.L.,
Wood, R.J.: Biologically inspired optical-flow sens-
ing for altitude control of flapping-wing microrobots.
IEEE/ASME Transactions on Mechatronics 18(2), 556–
568 (2013)

6. Farid, H., Simoncelli, E.P.: Range estimation by optical
differentiation. Journal of the Optical Society of America
A 15(7), 1777–1786 (1998)

7. Favaro, P., Burger, M., Soatto, S.: Scene and motion re-
construction from defocused and motion-blurred images
via anisotropic diffusion. In: European Conference on
Computer Vision (ECCV) (2004)

8. Fisher, S.D.: Complex variables. Courier Corporation
(1999)

9. Floreano, D., Zufferey, J.C., Srinivasan, M.V., Ellington,
C.: Flying insects and robots. Springer (2009)

10. Grossmann, P.: Depth from focus. Pattern Recognition
Letters 5(1), 63–69 (1987)

11. Horn, B.K., Fang, Y., Masaki, I.: Time to contact relative
to a planar surface. In: Intelligent Vehicles Symposium
(IV) (2007)

12. Horn, B.K., Fang, Y., Masaki, I.: Hierarchical framework
for direct gradient-based time-to-contact estimation. In:
Intelligent Vehicles Symposium (IV) (2009)

13. Horn, B.K., Schunck, B.G.: Determining optical flow. In:
1981 Technical Symposium East. International Society
for Optics and Photonics (1981)

14. Humber, J.S., Hyslop, A., Chinn, M.: Experimental vali-
dation of wide-field integration methods for autonomous
navigation. In: Intelligent Robots and Systems (IROS)
(2007)

15. Koppal, S.J., Gkioulekas, I., Zickler, T., Barrows, G.L.:
Wide-angle micro sensors for vision on a tight budget.
In: Computer Vision and Pattern Recognition (CVPR)
(2011)

16. Lee, D.N.: A theory of visual control of braking based
on information about time-to-collision. Perception (5),
437–59 (1976)

17. Levin, A.: Analyzing depth from coded aperture sets.
In: European Conference on Computer Vision (ECCV)
(2010)

18. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image
and depth from a conventional camera with a coded aper-
ture. In: ACM Transactions on Graphics (TOG) (2007)

19. Lin, H.Y., Chang, C.H.: Depth from motion and defocus
blur. Optical engineering 45(12), 127,201–127,201 (2006)

20. Myles, Z., da Vitoria Lobo, N.: Recovering affine motion
and defocus blur simultaneously. Pattern Analysis and
Machine Intelligence (6), 652–658 (1998)

Focal Flow 15

21. Ng, R.: Fourier slice photography. In: ACM Transactions
on Graphics (TOG) (2005)

22. Paramanand, C., Rajagopalan, A.N.: Depth from mo-
tion and optical blur with an unscented kalman filter.
IEEE Transactions on Image Processing 21(5), 2798–
2811 (2012)

23. Pentland, A.P.: A new sense for depth of field. Pattern
Analysis and Machine Intelligence (4), 523–531 (1987)

24. Raghavendra, C.S., Sivalingam, K.M., Znati, T.: Wireless
sensor networks. Springer (2006)

25. Rajagopalan, A., Chaudhuri, S.: Optimal selection of
camera parameters for recovery of depth from defocused
images. In: Computer Vision and Pattern Recognition
(CVPR) (1997)

26. Rajagopalan, A., Chaudhuri, S., Mudenagudi, U.: Depth
estimation and image restoration using defocused stereo
pairs. Pattern Analysis and Machine Intelligence 26(11),
1521–1525 (2004)

27. Rudin, W.: Functional analysis. McGraw-Hill (1991)
28. Schechner, Y.Y., Kiryati, N.: Depth from defocus vs.

stereo: How different really are they? International Jour-
nal of Computer Vision 39(2), 141–162 (2000)

29. Seitz, S.M., Baker, S.: Filter flow. In: International Con-
ference on Computer Vision (ICCV) (2009)

30. Sellent, A., Favaro, P.: Coded aperture flow. In: German
Conference on Pattern Recognition (GCPR) (2014)

31. Subbarao, M.: Parallel depth recovery by changing cam-
era parameters. In: International Conference on Com-
puter Vision (ICCV) (1988)

32. Subbarao, M., Surya, G.: Depth from defocus: A spatial
domain approach. International Journal of Computer Vi-
sion 13(3), 271–294 (1994)

33. Tai, Y.W., Brown, M.S.: Single image defocus map esti-
mation using local contrast prior. In: International Con-
ference on Image Processing (ICIP) (2009)

34. Tang, H., Cohen, S., Price, B., Schiller, S., Kutulakos,
K.N.: Depth from defocus in the wild. In: Computer
Vision and Pattern Recognition (CVPR) (2017)

35. Tao, M., Hadap, S., Malik, J., Ramamoorthi, R.: Depth
from combining defocus and correspondence using light-
field cameras. In: International Conference on Computer
Vision (ICCV) (2013)

36. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A.,
Tumblin, J.: Dappled photography: Mask enhanced cam-
eras for heterodyned light fields and coded aperture refo-
cusing. In: ACM Transactions on Graphics (TOG) (2007)

37. Watanabe, M., Nayar, S.K.: Rational filters for passive
depth from defocus. International Journal of Computer
Vision 27(3), 203–225 (1998)

38. Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Gener-
alized assorted pixel camera: postcapture control of reso-
lution, dynamic range, and spectrum. IEEE Transactions
on Image Processing 19(9), 2241–2253 (2010)

39. Zhou, C., Lin, S., Nayar, S.: Coded aperture pairs for
depth from defocus. In: International Conference on
Computer Vision (ICCV) (2009)

40. Zhou, C., Lin, S., Nayar, S.K.: Coded aperture pairs for
depth from defocus and defocus deblurring. International
Journal of Computer Vision 93(1), 53–72 (2011)

Appendix A: Introduction to Distributions and
Complex Analysis

The theory of distributions generalizes functional anal-
ysis beyond the classic notion of a function. Much of
its usefulness comes from extending results from the
study of differential equations to include discontinuous
objects whose derivatives do not exist in the traditional
sense, but can nonetheless be abstracted in consistent
and powerful ways. While standard functions and mea-
sures can be treated as distributions, so can more ex-
otic objects like the Dirac delta “function”, which is
the distributional derivative of the discontinuous step
function, as well as its derivatives in turn.

In this context, a distribution is defined as a linear
functional that maps some set of well-behaved functions
to the real numbers. Unlike functions, they do not have
values at given points in a domain, though this can
be a useful way to visualize their effect. Any locally-

integrable function P can induce a distribution P̃ that
maps a good test function f (more detail below) to the
reals through integration:

〈P̃ , f〉 =

∫
Rn

P (x)f(x) dx, (75)

while the Dirac delta maps each function to its value at
the origin:

〈δ, f〉 =f(0). (76)

Distributions in this sense should not be confused with
probability or frequency distributions, distributions as
defined in differential geometry, or any of the many

other scientific uses of the term.

Many operations require more care in their applica-
tion to distributions than to functions. While distribu-
tions can be added together and multiplied with real
numbers or with infinitely differentiable functions, the

product of two distributions, for example, is not well-
defined. One of the most useful operations that can be
performed on a distribution is taking its derivative. This
operation is defined by moving the derivative onto the
test function (with a sign change), and allows all dis-
tributions to be treated as infinitely differentiable with
many of the properties of classical derivatives. This al-
lows us to meaningfully use objects like the nth deriva-
tive of the Dirac delta:

〈δ(n), f〉 =(−1)n〈δ, f (n)〉 = (−1)nf (n)(0). (77)

In describing the properties of distributions, it is

useful to classify them by the sets of test functions
that they handle gracefully. There are many choices

16 Emma Alexander et al.

of f that could lead equation (75) to violate our def-
inition of a distribution, such as any complex-valued
function. Typically, test functions are drawn from the
spaceD(Rn), which is the set of infinitely-differentiable,
real-valued, compactly-supported functions. A distribu-
tion must linearly map any member of this set to a real
number. The space of distributions is called D′(Rn), as
the dual space of D(Rn).

By considering larger sets of test functions, one can
define smaller sets of distributions that still linearly
map all allowed test functions to the reals. Two such
classes are used in this paper. The first is the set of
tempered distributions. The test function of a tempered
distribution does not have to be compactly supported,
but can be any rapidly-decreasing smooth function. The
space of these test functions is called Schwartz space or
S(Rn) and notably includes Gaussians and their deriva-
tives. By its integrability and boundedness, the most
general form of our aperture filter is a tempered dis-
tribution, and tempered distributions are closed under

differentiation: κ̃, κ̃x, κ̃y ∈ S′(R2).

A useful subset of the tempered distributions is the
set of distributions with compact support. These distri-
butions map any test function to zero if the support of

that function excludes a certain compact region, called
the support of the distribution. The Dirac delta is a
classic example of a compactly-supported distribution,

because any test function with f(0) = 0 is mapped to
zero, so supp(δ) = {0}. We require the distributions in-
duced by our post-processing operation and the texture

to have compact support: m̃, P̃ ∈ E ′(R2).

All of this is relevant because we want to rigorously
specify what m and κ can be, without requiring them
to be differentiable functions. Specifically, we want to
know when the quantity M [I] = m∗k∗P is well-defined.
The convolution theorem, which states that convolution
can be performed by multiplication of Fourier trans-

forms, holds for:

1. two L1 functions, producing another L1 function.
2. a tempered distribution and a compactly-supported

distribution, producing a tempered distribution.
3. a rapidly decreasing function with a tempered dis-

tribution, producing another tempered distribution.

The first of these describes the traditional use of the
theorem, the second is the reason we require P com-
pactly supported for general (tempered) κ in the the-
orem, and the third lets us drop this assumption of
compactness on P (which is bounded and locally inte-
grable, so P̃ is tempered) in the corollary after m ∗ κ is
specified as a rapidly-decreasing function.

We also use Schwartz’s Paley-Weiner theorem, which

states that the Fourier transform of a compactly-supported
distribution on the reals is an entire function. This is

a very powerful result in complex analysis, for which
we suggest [8] as a reference. Complex analysis extends
analysis to functions on the complex numbers, creating
alternate versions of familiar ideas from calculus on the
reals. Several of these appear in our proof, particularly
in claims 3 and 4.

Perhaps the most important of these concepts is the
complex derivative. This is defined, just as on the re-
als, as the limit of the difference quotient, but it will
exist in far fewer cases. Take, for example, the function
<(z), which returns the real part of its complex input
z. Using the standard metaphor of R2 for C1, we could
imagine this function as having perfectly well-defined
partial derivatives: 1 along the real axis, 0 along the
imaginary axis. However, because the derivative is a
single limit, which must match from all directions of
approach in order to exist, the function <(z) is in fact
nowhere complex differentiable.

As a result of this restrictive definition, differen-
tiable functions are much rarer in complex analysis,
and they have a number of remarkable properties. Func-

tions that are complex differentiable in a neighborhood,
called analytic or holomorphic functions, are, for exam-
ple, infinitely differentiable everywhere the first deriva-
tive exists.

For complex functions that are holomorphic except
at isolated points, there are three kinds of singulari-
ties that can occur: removable singularities, poles, and

essential singularities. A removable singularity is like a
patchable hole in the function — the function is not de-
fined at the point, but it can be continuously extended

to a function that is. A pole is a point at which the
function goes to complex infinity (a quantity with infi-
nite magnitude and indeterminate phase) but where the
product of the function and some polynomial is holo-
morphic at that point. Anything more serious, like an
oscillating discontinuity or a non-pole infinity, is called
an essential singularity.

A holomorphic function with no singularities at any
point other than infinity is called an entire function, and
these are very special. They include polynomials, expo-
nentials, trigonometric functions, and their sums, prod-
ucts, compositions, derivatives, and integrals. Accord-
ing to Liouville’s theorem, any entire function whose
magnitude is bounded must be constant, so any non-

constant entire function must have a singularity at in-
finity. If this singularity is essential, the function is tran-
scendental (e.g. sin and cos) and if it is a pole, the func-
tion is a polynomial. We use this restriction, along with
Schwartz’s Paley-Weiner theorem, to prove claim 4.

Focal Flow 17

Appendix B: Alternate Derivations of the Focal Flow Constraint

Putting aside the question of uniqueness, the correctness of the focal flow constraint (17) is easily verified by
setting I = k ∗ P with Gaussian k and simply taking the relevant derivatives. Here we provide two alternative
confirmations that may provide additional intuition. One of these derivations is based on a truncated Taylor
expansion, mirroring a common derivation for linearized optical flow. The other is based on sinusoidal textures,
illustrated in Figure 1 and analyzed in section 3 for inherent sensitivity.

B.1 From Taylor Expansion

Following the well-known Taylor series derivation for differential optical flow, we can consider the difference in
intensity at a pixel between a pair of images taken a time step ∆t apart. We take advantage of the fact that the
brightness of the underlying sharp texture does not change, but we must correct for the change in blur to process
the images.

To do so, we assume Gaussian blur kernels k,

k(x, y, σ) =
e−

x2+y2

2Σ2σ2

2πΣ2σ2
, (78)

and define a reblurring filter b that takes narrow Gaussians to wider Gaussians under spatial convolution:

k(x, y, σ2) =b (x, y, σ1, σ2) ∗ k(x, y, σ1) . (79)

This reblurring filter takes the form

b(x, y, σ1, σ2) =k(x, y,
√
σ2
2 − σ2

1). (80)

The unchanging texture brightness constraint states that for an all-in-focus pinhole image P ,

P (x+∆x, y +∆y, t+∆t) =P (x, y, t), (81)

with features moving from (x, y) to (x + ∆x, y + ∆y) on the image. We are free to convolve both sides of this
constraint by a Gaussian, for example:

k(x, y, σ(t+∆t)) ∗ P (x+∆x, y +∆y, t+∆t) = k(x, y, σ(t+∆t)) ∗ P (x, y, t). (82)

Then, for images blurred with different Gaussian kernels, where we set the sign of ∆t without loss of generality so
that σ(t+∆t) > σ(t), we can express this modification of the unchanging texture brightness constraint in terms
of blurred images I:

I(x+∆x, y +∆y, t+∆t) = b

(
x, y, σ(t),

Z(t+∆t)

Z(t)
σ(t+∆t)

)
∗ I(x, y, t), (83)

where the Z+∆Z
Z term accounts for the change in magnification between images. Taking the Taylor expansion of

either side and dropping terms above first order, we have the approximation

I(x, y, t) + Ix∆x+ Iy∆y + It∆t ≈ δ(x, y) ∗ I(x, y, t) +
(
∆t
(
Żσ/Z + σ̇

)
bσ2

(x, y, σ, σ) ∗ I(x, y, t)
)
. (84)

Subtracting the I(x, y, t) term from each side, dividing by ∆t, and noting that(
Żσ/Z + σ̇

)
bσ2(x, y, σ, σ) =− v (bxx(x, y, σ, σ) + byy(x, y, σ, σ)) (85)

=− v(δxx + δyy), (86)

our approximate constraint becomes

Ix
∆x

∆t
+ Iy

∆y

∆t
+ It ≈− v(Ixx + Iyy). (87)

In the absence of blur, v = 0 and this is identical to optical flow. In the limit as ∆t approaches zero, and under
the separation of (ẋ, ẏ) into translation and magnification terms, this produces the focal flow constraint (17).

18 Emma Alexander et al.

B.2 From Sinusoidal Textures

For general sinusoidal texture

T (a, b) = sin(ωaa+ ωbb+ φ0) (88)

a pinhole camera will record the image

P (x, y, t) = sin(ωx(t)x+ ωy(t)y + φ(t)), (89)

ωx =− Z(t)

µs
ωa, (90)

ωy =− Z(t)

µs
ωb, (91)

φ =ωaX(t) + ωbY (t) + φ0. (92)

Under Gaussian blur as in equation (78), frequency and phase will not change but amplitude will:

I(x, y, t) =B(t) sin(ωxx+ ωyy + φ), (93)

B(t) = max
φ

(k ∗ P) = e−Σ
2(ω2

x+ω
2
y)σ

2/2. (94)

The derivatives of this image are as follows:

Ix =ωxB cos(ωxx+ ωyy + φ), (95)

Iy =ωyB cos(ωxx+ ωyy + φ), (96)

Ixx =− ω2
xB sin(ωxx+ ωyy + φ), (97)

Iyy =− ω2
yB sin(ωxx+ ωyy + φ), (98)

It =(φ̇+ ω̇xx+ ω̇yy)B cos(ωxx+ ωyy + φ)

+ Ḃ sin(ωxx+ ωyy + φ),
(99)

so that

It =
ωaẊ

ωx
Ix +

ωbẎ

ωy
Iy +

ω̇xx

ωx
Ix +

ω̇yy

ωy
Iy

+
Ḃ

−B(ω2
x + ω2

y)
(Ixx + Iyy)

(100)

=− u1Ix − u2Iy − u3xIx − u3yIy − vIxx − vIyy. (101)

By the linearity of convolution and differentiation, equation (101) holds for all sum-of-sinusoid textures, so that

the focal flow constraint applies to any texture with a Fourier transform.

Focal Flow 19

Appendix C: List of Parts

No. Component Source Part Number Quantity Description

1 Camera Point Grey GS3-U3-23S6M-C 1
High speed, monochrome,

powered by USB

2 Lens Thorlabs LA1509-A 1
Planar-convex, �1′′, f = 100mm,

AR coated(350-700nm)

2
Apodizing Filter

Thorlabs NDYR20B 1
Reflective, �25mm, ND,

(Optional) OD: 0.04 - 2

3 Lens Tube Thorlabs SM1 Family Flexible
SM1 thread, �1′′, recommend
SM1V15 for adjustable μs

4
Lens Tube

Thorlabs SM1TC+TR075 2
Mounts

5
Aperture

Thorlabs
SM2D25D or

1
SM1/SM2 thread, �2′′ or �1′′, rem-

Diaphragm SM1D12D oved when using apodizing filter

6
Calibration

Thorlabs SM2D25D 1
SM2 thread, �2′′, connected with

Diaphragm SM1A2 and SM2A6

7
Pitch & Yaw

Thorlabs PY003 3
Platform

8
Rotation

Thorlabs PR01+PR01A 2
Platform

9
Translation

Thorlabs LNR50S 1 Controlled and powered by 12
Stage

10
X-Y Translation Thorlabs 2×PT1+PT101+

2
Stage & EO PT102+EO56666

11
Wide Plate

Thorlabs FP02 1
Holder

12
Stepper Motor

Thorlabs BSC201 1
Powered by 110V, connected

Controllers with PC via USB

13 Laser Thorlabs CPS532 1
Mounted with AD11F, SM1D12SZ,

CP02, NE20A-A, SM1D12D

20 Emma Alexander et al.

Appendix D: Detailed Experimental Results

Performance versus noise

To counteract sensor noise, several shots can be averaged to create an input image (inset) to the measurement
algorithm. (zoom in to see difference in noise level). Comparing measured depth to ground truth (solid black line)
shows that that, as expected, measurement accuracy improves with shot count. Unless otherwise noted, all results
the paper use 10-shot averages.

Working range versus aperture

We show working range (≡ range for which depth error < 1%μf) versus focal depth μf for four apertures, over
two scene textures. We also show a sample point spread function for each aperture, at the same scale as the input
image.

Focal Flow 21

Performance for varying apertures and textures

Distance measurements versus ground truth (black lines) for a variety of focal distances and aperture configu-
rations. Each row is a different aperture configuration, and the left and middle columns show results for both
lower-frequency scene textures (left column) and higher-frequency scene textures (middle column). The right-most
column shows corresponding sample point spread functions, each for a variety of depths. The measurement al-
gorithm is quite robust to deviations from the idealized Gaussian blur model. From top to bottom, the aperture
configurations are: (I) diaphragm �4.5mm, no filter; (II) diaphragm open, with apodizing filter; (III) diaphragm�8.5mm, no filter; (IV) diaphragm �25.4mm, no filter.

