1507.05609v3 [math.PR] 11 Apr 2018

arxiv

Accepted in Operations Research

Robust Analysis in Stochastic Simulation:
Computation and Performance Guarantees

Soumyadip Ghosh
IBM Research AI, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, ghoshs@us.ibm.com

Henry Lam

Department of Industrial Engineering and Operations Research, Columbia University, New York, NY 10027,
henry.lam@columbia.edu

Any performance analysis based on stochastic simulation is subject to the errors inherent in misspecifying
the modeling assumptions, particularly the input distributions. In situations with little support from data,
we investigate the use of worst-case analysis to analyze these errors, by representing the partial, nonparamet-
ric knowledge of the input models via optimization constraints. We study the performance and robustness
guarantees of this approach. We design and analyze a numerical scheme for solving a general class of sim-
ulation objectives and uncertainty specifications. The key steps involve a randomized discretization of the
probability spaces, a simulable unbiased gradient estimator using a nonparametric analog of the likelihood
ratio method, and a Frank-Wolfe (FW) variant of the stochastic approximation (SA) method (which we call
FWSA) run on the space of input probability distributions. A convergence analysis for FWSA on non-convex

problems is provided. We test the performance of our approach via several numerical examples.

1. Introduction

Simulation-based performance analysis of stochastic models, or stochastic simulation, is built on
input model assumptions that to some extent deviate from the truth. Consequently, a performance
analysis subject to these input errors may lead to poor prediction and suboptimal decision-making.
To address this important problem, a typical framework in the stochastic simulation literature
focuses on output variability measures or confidence bounds that account for the input uncertainty
when input data are available. Established statistical techniques such as the bootstrap (e.g., Barton

and Schruben (1993), Barton et al. (2013)), goodness-of-fit tests (e.g., Banks et al. (2009)), Bayesian



Ghosh and Lam: Robust Analysis in Stochastic Simulation
2 Article accepted in Operations Research

inference and model selection (e.g., Chick (2001), Zouaoui and Wilson (2004)) and the delta method
(e.g., Cheng and Holland (1998, 2004)) have been proposed and have proven effective in many
situations.

In this paper, we take a different approach for situations with insufficient data, or when the
modeler wants to assess risk beyond what the data or the model indicates. Such situations can arise
when the system, service target or operational policy in study is at a testing stage without much
prior experience. To find reliable output estimates in these settings, we investigate a worst-case
approach with respect to the input models. In this framework, the modeler represents the partial
and nonparametric beliefs about the input models as constraints, and computes tight worst-case
bounds among all models that satisfy them. More precisely, let Z(P*,..., P™) be a performance
measure that depends on m input models, each generated from a probability distribution P?. The

formulation for computing the worst-case bounds are

min  Z(P',...,P™) and max  Z(P',...,P™) (1)

Picui,i=1,....,m Picyi,i=1,....,m
The set U encodes the collection of all possible P’ from the knowledge of the modeler. The decision
variables in the optimizations in (1) are the unknown models P,i=1,...,m.
The primary motivation for using (1) is the robustness against model misspecification, where
a proper construction of the set U’ avoids making specific assumptions beyond the modeler’s

knowledge. The following three examples motivate and explain further.

EXAMPLE 1 (ROBUST BOUNDS UNDER EXPERT OPINION). When little information is available for
an input model, a common practice in stochastic simulation is to summarize its range (say |a,b])
and mean (or mode) as a triangular distribution, where the base of the triangle denotes the range
and the position of the peak is calibrated from the mean. This specific distribution only crudely
describes the knowledge of the modeler and may deviate from the true distribution, even if a,b,

are correctly specified. Instead, using

U ={P": Epi[X'] =, supp P’ =]a,b]} (2)
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in formulation (1), where X" is the random variate, Ep:[-] is the expectation under P*, and supp P’
is the support of P!, will give a valid interval that covers the true performance measure whenever
a,b, . are correctly specified. Moreover, when these parameters are not fully known but instead

specified within a range, (2) can be relaxed to
U ={P": p < Epi[X']| <7, supp X' = [a,b]}

where [u, 7i] denotes the range of the mean and a,b denote the lower estimate of the lower support

end and upper estimate of the upper support end respectively. The resulting bound will cover the

truth as long as these ranges are supplied correctly. [

EXAMPLE 2 (DEPENDENCY MODELING). In constructing dependent input models, common
approaches in the simulation literature fit the marginal description and the correlation of a multi-
variate model to a specified family. Examples include Gaussian copula (e.g., Lurie and Goldberg
(1998), Channouf and L’Ecuyer (2009); also known as normal-to-anything (NORTA), e.g. Cario
and Nelson (1997)) and chessboard distribution (Ghosh and Henderson (2002)) that uses a domain
discretization. These distributions are correctly constructed up to their marginal description and
correlation, provided that these information are correctly specified. However, dependency structure
beyond correlation can imply errors on these approaches (e.g., Lam (2017)), and formulation (1)
can be used to get bounds that address such dependency. For example, suppose P’ is a bivariate
input model with marginal distributions P%!, P%2, marginal means u®!, u** and covariance p'. We

can set

Z/[i:{Pi:PP"Lal(‘XVi’1 Sq;,l) :V;aj: 17"'7l17 PPiﬂQ(Xi72 SQ;Q) :ija.jzlv"'al% E[Xi’lXig] :Pi‘FMi’lMi’Q}

1 ; 1 0,1 1,2 i, 1
where (X", X*?) denote the random vector under P*, and ¢}, ¢;~, v}

0,2
V.

,v; are pre-specified quan-

tiles and probabilities of the respective marginal distributions. Unlike previous approaches, (1)
outputs correct bounds on the truth given correctly specified marginal quantiles and correlation,

regardless of the dependency structure. [
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ExAaMPLE 3 (MODEL RISK). Model risk refers broadly to the uncertainty in analysis arising from
the adopted model not being fully accurate. This inaccuracy occurs as the adopted model (often
known as the baseline model), typically obtained from the best statistical fit or expert opinion,
deviates from the truth due to the real-world non-stationarity and the lack of full modeling knowl-
edge or capability. To assess model risk, a recently surging literature studies the use of statistical
distance as a measurement of model discrepancy (e.g., Glasserman and Xu (2014), Lam (2016b)).
Given the baseline model Py, the idea is to represent the uncertainty in terms of the distance away

from the baseline via a neighborhood ball

U= {P':d(P',B}) <’} (3)

where d is a distance defined on the nonparametric space of distributions (i.e., without restricting
to any parametric families). The bounds drawn from formulation (1) assess the effect of model risk
due to the input models, tuned by the ball size parameter n' that denotes the uncertainty level.
Besides risk assessment, this approach can also be used to obtain consistent confidence bounds
for the true performance measure, when P} is taken as the empirical distribution and n and d are

chosen suitably (discussed further in Section 3). O

Our worst-case approach is inspired from the literature of robust optimization (Ben-Tal et al.
(2009), Bertsimas et al. (2011)), which considers decision-making under uncertainty and advocates
optimizing decisions over worst-case scenarios. In particular, when the uncertainty lies in the prob-
ability distributions that govern a stochastic problem, the decision is made to optimize under the
worst-case distributions, a class of problems known as distributionally robust optimization (e.g.
Delage and Ye (2010), Lim et al. (2006)). Such an approach has also appeared in so-called robust
simulation or robust Monte Carlo in the simulation literature (Hu et al. (2012), Glasserman and Xu
(2014)). However, the methodologies presented in the above literature focus on structured problems
where the objective function is tractable, such as linear or linearly decomposable. In contrast, Z(-)

for most problems in stochastic simulation is nonlinear and unstructured, obstructing the direct
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adaptation of the existing methods. In view of this, our main objective is to design an efficient
simulation-based method to compute the worst-case bounds for formulation (1) that can be applied

to broad classes of simulation models and input uncertainty representations.

1.1. Our Contributions

We study a simulation-based iterative procedure for the worst-case optimizations (1), based on a
modified version of the celebrated stochastic approximation (SA) method (e.g. Kushner and Yin
(2003)). Because of the iterative nature, it is difficult to directly operate on the space of continuous
distributions except in very special cases. Thus, our first contribution (Section 3) is to provide a
randomized discretization scheme that can provably approximate the continuous counterpart. This
allows one to focus on discrete distributions on fixed support points as the decision variable to feed
into our SA algorithm.

We develop the SA method in several aspects. In Section 4, we construct an unbiased gradient
estimator for Z based on the idea of the Gateaux derivative for functionals of probability distri-
butions (Serfling (2009)), which is used to obtain the direction in each subsequent SA iterate. The
need for such a construction is motivated by the difficulty in naive implementation of standard
gradient estimators: An arbitrary perturbation of a probability distribution, which is the decision
variable in the optimization, may shoot outside the probability simplex and results in a gradient
that does not bear any probabilistic meaning and subsequently does not support simulation-based
estimation. Our approach effectively restricts the direction of perturbation to points within the
probability simplex, leading to a simulable gradient estimator. We justify our approach as a non-
parametric version of the classical likelihood ratio method (or the score function method) (Glynn
(1990), Reiman and Weiss (1989), Rubinstein (1986)).

Next, in Sections 5 and 6, we design and analyze our SA scheme under the uncertainty con-
straints. We choose to use a stochastic counterpart of the so-called Frank-Wolfe (FW) method
(Frank and Wolfe (1956)), known synonymously as the conditional gradient method in determinis-

tic nonlinear programming. For convenience we call our scheme FWSA. Note that a standard SA
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iteration follows the estimated gradient up to a pre-specified step size to find the next candidate
iterate. When the formulation includes constraints, the common approach in the SA literature
projects the candidate solution onto the feasible region in order to define the next iterate (e.g.
Kushner and Yin (2003)). Instead, our method looks in advance for a feasible direction along which
the next iterate is guaranteed to lie in the (convex) feasible region. In order to find this feasible
direction, an optimization subproblem with a linear objective function is solved in each iteration.
We base our choice of using FWSA on its computational benefit in solving these subproblems, as
their linear objectives allow efficient solution scheme for high-dimensional decision variables for
many choices of the set U°.

We characterize the convergence rate of FWSA in terms of the step size and the number of
simulation replications used to estimate the gradient at each iteration. The form of our convergence
bounds suggests prescriptions for the step-size and sample-size sequences that are efficient with
respect to the cumulative number of sample paths simulated to generate all the gradients until the
current iterate. The literature on the stochastic FW methods for non-convex problems is small.
Kushner (1974) proves almost sure convergence under assumptions that can prescribe algorithmic
specifications only for one-dimensional settings. During the review process of this paper, two other
convergence rate studies Reddi et al. (2016) and Lafond et al. (2016) have appeared. Both of
them assume the so-called G-Lipschitz condition on the gradient estimator that does not apply to
our setting. Consequently, our obtained convergence rates are generally inferior to their results.
Nonetheless, we will point out how our rates almost match theirs under stronger assumptions on
the behavior of the iterates that we will discuss.

Finally, in Section 7 we provide numerical validation of our approach using two sets of exper-
iments, one testing the performance of our proposed randomized discretization strategy, and one

on the convergence of FWSA.

1.2. Literature Review

We briefly survey three lines of related work. First, our paper is related to the literature on input

model uncertainty. In the parametric regime, studies have focused on the construction of confidence
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intervals or variance decompositions to account for both parameter and stochastic uncertainty
using data, via for instance the delta method (Cheng and Holland (1998, 2004)), the bootstrap
(Barton et al. (2013), Cheng and Holland (1997)), Bayesian approaches (Zouaoui and Wilson
(2003), Xie et al. (2014), Saltelli et al. (2010, 2008)), and metamodel-assisted analysis (Xie et al.
(2014, 2015)). Model selection beyond a single parametric model can be handled through goodness-
of-fit or Bayesian model selection and averaging (Chick (2001), Zouaoui and Wilson (2004)). Fully
nonparametric approaches using the bootstrap have also been investigated (Barton and Schruben
(1993, 2001), Song and Nelson (2015)).

Second, formulation (1) relates to the literature on robust stochastic control (Petersen et al.
(2000), Iyengar (2005), Nilim and El Ghaoui (2005), Xu and Mannor (2012)) and distributionally
robust optimization (Delage and Ye (2010), Goh and Sim (2010), Ben-Tal et al. (2013), Wiesemann
et al. (2014)), where the focus is to make decision rules under stochastic environments that are
robust against the ambiguity of the underlying probability distributions. This is usually cast in the
form of a minimax problem where the inner maximization is over the space of distributions. This
idea has spanned across multiple areas like economics (Hansen and Sargent (2001, 2008)), finance
(Glasserman and Xu (2013), Lim et al. (2011)), queueing (Bertsimas and Natarajan (2007), Jain
et al. (2010)), dynamic pricing (Lim and Shanthikumar (2007)), inventory management (Xin and
Goldberg (2015)), physical sciences (Dupuis et al. (2016)), and more recently machine learning
(Shafieezadeh-Abadeh et al. (2015), Blanchet et al. (2016)). In the simulation context, Hu et al.
(2012) compared different global warming policies using Gaussian models with uncertain mean
and covariance information. Glasserman and Xu (2014), Glasserman and Yang (2016) studied
approaches based on sample average approximation for solving distance-based constrained opti-
mizations to quantify model risk in finance. Lam (2016b, 2017) investigated infinitesimal approx-
imations for related optimizations to quantify model errors arising from sequences of uncertain
input variates. Bandi and Bertsimas (2012) studied the view of deterministic robust optimiza-

tion to compute various stochastic quantities. Simulation optimization under input uncertainty
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has also been studied via the robust optimization framework (Fan et al. (2013), Ryzhov et al.
(2012)), and the closely related approach using risk measures (Qian et al. (2015), Zhou and Xie
(2015)). Lastly, optimizations over probability distributions have also arisen as generalized moment
problems, applied to decision analysis (Smith (1995, 1993), Bertsimas and Popescu (2005)) and
stochastic programming (Birge and Wets (1987)).

Our algorithm relates to the literature on the FW method (Frank and Wolfe (1956)) and con-
strained SA. The former is a nonlinear programming technique initially proposed for convex opti-
mization, based on sequential linearization of the objective function using the gradient at the
solution iterate. The classical work of Canon and Cullum (1968), Dunn (1979) and Dunn (1980)
analyzed convergence properties of FW for deterministic convex programs. More recently, Jaggi
(2013), Freund and Grigas (2014) and Hazan and Luo (2016) carried out finite-time analysis for
the FW method motivated by machine learning applications. For stochastic FW on non-convex
problems (viewed as a class of constrained SA), Kushner (1974) focused on almost sure conver-
gence based on a set of assumptions about the probabilistic behavior of the iterations, which were
then used to tune the algorithm for one-dimensional problems. While this paper was under review,
Reddi et al. (2016) provided a complexity analysis in terms of the sample size in estimating gra-
dients and the number of calls of the linear optimization routine. Lafond et al. (2016) studied the
performance in terms of regret in an online setting. Both Reddi et al. (2016) and Lafond et al.
(2016) relied on the G-Lipschitz condition that our gradient estimator violated. Other types of
constrained SA schemes include the Lagrangian method (Buche and Kushner (2002)) and mirror
descent SA (Nemirovski et al. (2009)). Lastly, general convergence results for SA can be found in

Fu (1994), Kushner and Yin (2003) and Pasupathy and Kim (2011).

2. Formulation and Assumptions

We focus on Z(P',...,P™) that is a finite horizon performance measure generated from i.i.d.

replications from the independent input models P',..., P™. Let X' = (X}),_,

.....
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random variables on the space X* C RV, each generated under P’. The performance measure can

be written as

Z(Pl,...,Pm):Ep1,m’pm[h(X1,...,Xm)]:/---/h(xl,...,xm)HdP(:ntl)---HdP(x;”) (4)

where h(-): H:il(Xi)Ti — R is a cost function, and Ep1__pm[-] denotes the expectation associated
with the generation of the i.i.d. replications. We assume that h(-) can be evaluated by the computer
given the inputs. In other words, the performance measure (4) can be approximated by running
simulation.

(4) is the stylized representation for transient performance measures in discrete-event simulation.
For example, X! and X2 can be the sequences of interarrival and service times in a queue, and P!
and P? are the interarrival time and service time distributions. When h(X*, X?) is the indicator
function of the waiting time exceeding a threshold, (4) will denote the corresponding threshold
exceedance probability.

Next we discuss the constraints in (1). Following the terminology in robust optimization, we call
U' the uncertainty set for the i-th input model. Motivated by the examples in the Introduction,
we focus on two types of convex uncertainty sets:

1. Moment and support constraints: We consider
U= {P': Bl i (X)) < gl = 1,..., 5", supp P' = A'} (5)

where X is a generic random variable under distribution P?, f/: X* — R, and A* C X*. For instance,
when X* =R, f/(z) being x or z? denotes the first two moments. When X" =R? f/(z,xs) = 2122
denotes the cross-moment. Equalities can also be represented via (5) by including Epi[— f{(X")] <
—pi. Thus the uncertainty set (5) covers Examples 1 and 2 in the Introduction.

Furthermore, the neighborhood measured by certain types of statistical distance (Example 3)
can also be cast as (5). For instance, suppose d is induced by the sup-norm on the distribution
function on R. Suppose P’ is a continuous distribution and the baseline distribution Py is discrete

with support points y;,j =1,...,n". The constraint

sup |F" (x) — Fy ()| <7’ (6)

z€R
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where F' and F} denote the distribution functions for P* and P} respectively, can be reformulated
as

Fi(y+)—n' < F'(y;) <Fi(y;—)+n', j=1,....n'

where Fy(y,—) and Fy(y;+) denote the left and right limits of F} at y;, by using the monotonicity

of distribution functions. Thus

where I(-) denotes the indicator function, falls into the form of (5). Bertsimas et al. (2014) con-
siders this reformulation for constructing uncertainty sets for stochastic optimization problems,
and suggests to select n° as the quantile of the Kolmogorov-Smirnov statistic if Fy is the empirical
distribution function constructed from continuous i.i.d. data.

2. Neighborhood of a baseline model measured by ¢-divergence: Consider
U'={P":ds(P', Py) <n'} (7)

where d, (P, P}) denotes the ¢-divergence from a baseline distribution P} given by

a(P B = [0 (dp> aP;
b

which is finite only when P is absolutely continuous with respect to P}. The function ¢ is a convex
function satisfying ¢(1) = 0. This family covers many widely used distances. Common examples are
¢(r) =xlogz —x + 1 giving the KL divergence, ¢(x) = (x — 1)? giving the (modified) x?-distance,
and ¢(x) = (1 — 0+ 0z —2%)/(0(1 —0)), 6 #0,1 giving the Cressie-Read divergence. Details of
¢-divergence can be found in, e.g., Pardo (2005), Ben-Tal et al. (2013), Bayraksan and Love (2015).

As precursed in the Introduction, in the context of simulation analysis where (P!, ..., P™) are
the input models, Z(-) in (4) is in general a complex nonlinear function. This raises challenges
in solving (1) beyond the literature of robust control and optimization that considers typically
more tractable objectives. Indeed, if Z(-) is a linear function in P*’s, then optimizing over the two

types of uncertainty sets above can both be cast as specialized classes of convex programs that
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can be efficiently solved. But linear Z(-) is too restrictive to describe the input-output relation
in simulation. To handle a broader class of Z(-) and to address its simulation-based nature, we
propose to use a stochastic iterative method. The next sections will discuss our methodology in

relation to the performance guarantees provided by (1).

3. Performance Guarantees and Discretization Strategy

This section describes the guarantees provided by our framework. Section 3.1 first presents the
motivation and justification of a discretization scheme for continuous input distributions. Section

3.2 then discusses the statistical implications in more details.

3.1. Randomized Discretization

Suppose there is a “ground true” distribution Pj for each input model. Let Z, and Z* be the
minimum and maximum values of the worst-case optimizations (1). Let Z, be the true performance

measure, i.e. Zg=Z(Py,...,P"). The following highlights an immediate implication of using (1):
PROPOSITION 1. If PieU® for all i, then Z, < Zy < Z*.

In other words, the bounds from the worst-case optimizations form an interval that covers the
true performance measure if the uncertainty sets contain the true distributions.

We discuss a discretization strategy for the worst-case optimizations for continuous input distri-
butions. We will show that, by replacing the continuous distribution with a discrete distribution on
support points that are initially sampled from some suitably chosen distribution, we can recover
the guarantee in Proposition 1 up to a small error. The motivation for using discretization comes
from the challenges in handling decision variables in the form of continuous distributions when
running our iterative optimization scheme proposed later.

We focus on the two uncertainty sets (5) and (7). The following states our guarantee:

THEOREM 1. Consider Z(P',...,P™) in (4). Assume h is bounded a.s.. Let n',i=1,...,m and n
be positive integers such that n' =nw' for some fived w' >0, for all i. For each input model i, we

sample n' i.i.d. observations {yi,...,y";} from a distribution Q" such that the true distribution P}
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is absolutely continuous with respect to Q*, with L' = dP}/dQ" satisfying |L||e < 00, where || L ||

denotes the essential supremum of L' under Q°. Consider the optimizations

Z,= min  Z(P',...,P"™) and Z*= max Z(P!,...,P™) (8)
Pieliii=1,...,m Pieliii=1,...,m
where each U' contains discrete distributions supported on {yi,... ,yfﬂ-}, defined in one of the two

cases below. For each case, we also make additional assumptions as follows:

1. Set
U ={P : Ep[f{(X)] < pi,l=1,...,s", supp P'C{yi,....yL:}} 9)

Moreover, assume that Py satisfies Eps|f{(X")] < oo and Eps[f{(X*)] <pj for all1=1,...,5".
2. The distribution Q" is chosen such that P} is absolutely continuous with respect to Q°, and
we denote L =dPj/dQ*. Set

U'={P':dy(P", ) <1'} (10)

where P} is defined as

= _hi) 5(y})

oY L)
with §(y) denoting the delta measure aty. Moreover, assume P} satisfies g\(b(dPg/deiﬂ < o0 and
ds(Pj, PY) <n'. Additionally, assume ¢(-) satisfies the continuity condition |¢p(t(1+ X)) — ¢(t)| <
|p(t)|k1(N) + K2(N) for any t >0 and X in a fived neighborhood of 0, where k1(-) and ra(-) are two
functions such that k1(\) = O(N) and ka(A) =O(X) as A — 0.

Then we have

Z, < Zy+0, <1> <z (11)
n

Here O,(1/4/n) is an error term e,, that is of stochastic order 1/4/n, i.e., for any 0 < e < 1, there
exist M, N >0 such that P(|/ne,| < M) >1—c¢ for any n> N. Theorem 1 is proved in Appendix

EC.1. We have a few immediate remarks:
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1. Optimizations (8) are the sample counterparts of the original worst-case optimizations (1)
with uncertainty sets given by (5) or (7), which optimize discrete distributions over support points
that are sampled from generating distributions Q%’s. Theorem 1 guarantees that, if the original
worst-case optimizations give valid covering bounds for the true performance measure (in the spirit
of Proposition 1), then so are the sample counterparts, up to an error O,(1/y/n) where n denotes
the order of the sample size used to construct the sets of support points. The constant implicit in
this O,(1/+/n) error depends on the sensitivity of Z with respect to the input distributions, as well
as the discrepancies between the true input distributions and the support-generating distributions.

2. The condition ||L]|, < oo implies that @ has a tail at least as heavy as P¢. In practice, the
tail of the true distribution P is not exactly known a priori. This means that it is safer to sample
the support points from a heavy-tailed distribution. Additionally, in the case of ¢-divergence, the
generating distribution should also support the baseline. One easy choice is to merely use the
baseline as the generating distribution.

3. The conditions Ep [f/(X")] < pi and dy(Py, P}) <n" state that Ep; [f/(X")] and dy (P, P}) are
in the interior of {(21,...,24): 2z <ui, 1=1,...,s'} and {z: 2 <n'} respectively. These conditions
guarantee that P projected on a sample approximation of the support is asymptotically feasible
for (8), which helps lead to the guarantee (11). In general, the closer P is to the boundary of the
uncertainty set, i.e., the smaller the values of u} — Ep: [f{(X")] and 1" — ds(Pi, Pf), the larger the
sample size is needed for the asymptotic behavior in (11) to kick in, a fact that is not revealed
explicitly in Theorem 1. One way to control this required sample size is to expand the uncertainty
set by a small margin, say € >0, i.e., use Epi[f}(X")] < pi + € and dg(P", P}/) <n'+¢, in (9) and
(10). Note that, in the case of moment equality constraint, say Ep:[f{(X*)] = ui, one does have to
deliberately relax the constraint to pi — e < Epi[fj(X*)] < pi + € for the interior-point conditions
to hold.

4. The continuity assumption imposed on ¢(-) in Case 2 is satisfied by many common choices,
including KL, (modified) y?-distance, and Burg entropy (see the definitions in Ben-Tal et al.

(2013)).
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5. As n' increases, the sampled uncertainty set U enlarges as it contains distributions supported
on more values. As a result, Z, becomes smaller and Z* larger as m' increases. Moreover, since
U c U, we have Z.> 7, and Z* < Z*. This means that as the generated support size increases,

the interval [Z,, Z*] progressively widens and is always contained by the interval [Z,, Z*].

3.2. Statistical Implications

We further discuss the statistical guarantees implied from Section 3.1. First, a probabilistic analog

of Proposition 1 is:

PROPOSITION 2. Suppose U' contains the true distribution Pj for all i with confidence 1 — a,
i.e. P(U > Pi foralli=1,...,m)>1—q, then P(Z, < Zy < Z*) > 1 — «, where P denotes the

probability generated from a combination of data and prior belief.

Proposition 2 follows immediately from Proposition 1. In the frequentist framework, P refers
to the probability generated from data. However, Proposition 2 can also be cast in a Bayesian
framework, in which P can represent the prior (e.g., from expert opinion) or the posterior belief.

Proposition 2 reconciles with the established framework in distributionally robust optimization
that the uncertainty set 4* should be chosen as a confidence set for the true distribution, in order to
provide a guarantee for the coverage probability on the true objective, in the case that P represents
the generation of data under a true model. Some strategies for constructing confidence sets are:

1. For moment constraint Ep:[f{(X")] < pui, one can choose pf as the upper confidence bound of
the moment.

2. For the sup-norm constraint in (6), supposing that P’ is continuous, n* chosen as the (1 — «)-
quantile of sup,¢ (o, B(t)/ Vni, where B(t) is a standard Brownian bridge, gives an approximate
(1 — a) confidence region. This follows from the limiting distribution of the Kolmogorov-Smirnov
statistic (see, e.g., Bertsimas et al. (2014)). This calibration becomes conservative (but still correct)
when P? is discrete, and one could use the bootstrap as a remedy. Note that the Kolmogorov-

Smirnov-based confidence region is crude for the tail in that it can include a wide range of tail
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behaviors, and thus is not recommended if the performance measure of interest is sensitive to the
tail.

3. For the ¢-divergence-based constraint in (7), under the assumption that P’ has finite support
of size 7, Ben-Tal et al. (2013) proposes using 1’ = (¢"(1)/(2n*))x%_, ,_, in the case P} is taken as
the empirical distribution, where Xf‘i—l,l—a is the (1 — a)-quantile of a y*-distribution with degree
of freedom 7 — 1. This leads to an approximate (1 —«a) confidence region by using the asymptotics
of goodness-of-fit statistics (Pardo (2005)). The resulting region from this approach, however, can
be conservative as the involved degree of freedom can be large. Recent works such as Lam and Zhou
(2015), Duchi et al. (2016), Lam (2016a) investigate the tightening of divergence-based regions
and extend their use to continuous data using the empirical likelihood theory. This theory can
also potentially shed insights on the (second-order) accuracies achieved using different divergences
(Owen (2001)). Other alternatives include using the Wasserstein distance; see, e.g., Esfahani and
Kuhn (2015), Blanchet and Murthy (2016), Gao and Kleywegt (2016) for these developments and
the involved ball-size calibration methods.

When discretization is applied, the probabilistic analog of Theorem 1 is:

THEOREM 2. Suppose all assumptions in Theorem 1 are in place except that Ep; [fH(XD)] <
or dy(Pi, Pi) < ' now holds true jointly for all i with confidence 1 — o under P. Then P(Z, <

Zo+0,(1/y/n) < Z*)>1—a.

Theorem 2 follows immediately from Theorem 1. Like before, Theorem 2 translates (1), whose
input models can be continuously represented, to (8) that is imposed over discrete distributions,
by paying a small price of error. In the next section we discuss our algorithm run over discrete
distributions and point out clearly why the discretization is necessary when the input distributions
are continuous.

We close this section with two cautionary remarks. First, while our discretization strategy works
for problems involving independent low-dimensional input distributions (which occur often in

stochastic simulation), high-dimensional joint dependent models may greatly inflate the constant
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implicit in the error term, and we do not advise using our strategy in such settings. Second, in
general, the finer the discretization scale (i.e., the more generated support points), the higher is
the decision space dimension for the resulting optimization problem, and there is a tradeoff on the
discretization scale between the approximation error and the optimization effort. Obviously, when
the input model is finite discrete, the sampling step depicted in Theorems 1 and 2 is unnecessary,

and our subsequent results regarding the algorithm applies readily to this case.

4. Gradient Estimation on Probability Simplices via a Nonparametric
Likelihood Ratio Method

veey

of probability weights for the discretized input model ¢. This probability vector is understood to
apply on the support points {y},...,y’,}. Moreover, let p =vec(p’:i=1,...,m) € RV where vec
denotes a concatenation of the vectors p’s as a single vector, and N =3Y"" n’. We denote P, =
{(p1,...,p) eR": Z;lej =1,p; >0,j=1,...,l} as the I-dimensional probability simplex. Hence
p' € P,i. For convenience, let P =[[", P,:, so that p € P. The performance measure in (8) can
among all input models. We also write X = (X*,...,X™) and h(X) = h(X*,...,X™) for simplicity.
Recall that I(E) denotes the indicator function for the event E. In the rest of this paper, " denotes
transpose, and ||x|| denotes the Euclidean norm of a vector x. We also write Varp(-) as the variance
under the input distribution p. Inequalities for vectors are defined component-wise.

We shall present an iterative simulation-based scheme for optimizing (8). The first step is to
design a method to extract the gradient information of Z(p). Note that the standard gradient of
Z(p), which we denote as VZ(p), obtained through differentiation of Z(p), may not lead to any
simulable object. This is because an arbitrary perturbation of p may shoot out from the set of
probability simplices, and the resulting gradient will be a high-degree polynomial in p that may
have no probabilistic interpretation and thus is not amenable to simulation-based estimation.

We address this issue by considering the set of perturbations within the simplices. Our approach

resembles the Gateaux derivative on a functional of probability distribution (Serfling (2009)) as
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follows. Given any p’, define a mixture distribution (1 — €)p’ + €1’, where 1’ represents a point
mass on yj, i.e. 1; =(0,0,...,1,...,0) € P,; and 1 is at the j-th coordinate. The number 0 <e<1
is the mixture parameter. When e = 0, this reduces to the given distribution p’. We treat € as a
parameter and differentiate Z(p',...,p"", (1 —€)p’ +€l,p™", ..., p™) with respect to € for each
,].

More precisely, let

V()= -Z(P' P (L= ep +elj,p™ o p™)|

Denote ¥'(p) = (¥}(P));=1,..ni € R™ | and (p) = vec(yi(p):i=1,...,m) € RV. We show that

possesses the following two properties:

THEOREM 3. Given p € P such that p > 0, we have:

1.

m m

VZ(p)(a-p)=)» _V'Z(p)(d —p)=>_ ¥'(p)(d —p)=%(p)(qa—p) (12)

i=1 i=1

for any Q" € P,i and q=vec(q’':i=1,...,m), where V'Z(p) € R" is the gradient of Z taken with
respect to pt.

2.

where s5(-) is defined as

s (x7) :ZM i (14)

forxi=(z},...,2b,) eRT".

The proof of Theorem 3 is in Appendix EC.1. The first property above states that ¥ (p) and
VZ(p) are identical when viewed as directional derivatives, as long as the direction lies within P.
Since the feasible region of optimizations (8) lies in P, it suffices to focus on 1 (p). The second
property above states that 1 (p) can be estimated unbiasedly in a way similar to the classical

likelihood ratio method (Glynn (1990), Reiman and Weiss (1989)), with s%(-) playing the role of
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the score function. Since this representation holds without assuming any specific parametric form
for p, we view it as a nonparametric version of the likelihood ratio method.
where X = (X!,...,X™) is the sample path. The following provides a bound on the variance of

this estimator (See Appendix EC.1 for proof):

LEMMA 1. Assume h(X) is bounded a.s., i.e. |h(X)| <M for some M >0, and that p > 0. Each
sample for estimating 1’ (p), given by h(X)s’(X") using one sample path of X, possesses a variance

bounded from above by M>*T"*(1 —p})/p}.

The function ¥ (p) derived via the above Gateaux derivative framework can be interpreted as
a discrete version of the so-called influence function in robust statistics (Hampel (1974), Hampel
et al. (2011)), which is commonly used to approximate the first order effect on a given statistics due
to contamination of data. In general, the gradient represented by the influence function is defined
as an operator on the domain of the random object distributed under p. Thus, in the continuous
case, this object has an infinite-dimensional domain and can be difficult to compute and encode.

This is the main reason why we seek for a discretization in the first place.

5. Frank-Wolfe Stochastic Approximation (FWSA)

With the implementable form of the gradient ¢(p) described in Section 4, we design a stochastic
nonlinear programming technique to solve (8). We choose to use the Frank-Wolfe method because,
for the types of U we consider in Section 3, effective routines exist for solving the induced linearized

subproblems.

5.1. Description of the Algorithm

For convenience denote U = H?;LAI’ We focus on the choices of U" depicted in Section 2, which

are all convex and consequently U* and also U are convex.
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FWSA works as follows. To avoid repetition we focus only on the minimization formulation

in (1). First, pretending that VZ(p) can be computed exactly, it iteratively updates a solution

sequence pi, P2,-.. by, given a current solution py, solving
min VZ(p:)'(p — Px) (15)
peU

Let the optimal solution to (15) be qi. The quantity q; — px gives a feasible minimization direction
starting from py (recall that U is convex). This is then used to update pj to pri1 via pry1 =
pi. +€x(ar — pr) for some step size €. This expression can be rewritten as py.1 = (1 — €x)pr + €£Qx,
which can be interpreted as a mixture between the distributions p, and qy.

When VZ(pyi) is not exactly known, one can replace it by an empirical counterpart. Theorem 3

suggests that we can replace VZ(px) by 1(px), and so the empirical counterpart of (15) is

mil[l";z’(Pk)/(P—pk) (16)

pell
where @(pk) is an estimator of ¥ (p;) using a sample size Rj. Note that all components of @@(pk)
can be obtained from these Rj sample paths simultaneously. Letting q; be the optimal solution to
(16), the update rule will be pyy1 = (1 — €;)px + €,.qs for some step size €,. The sample size Ry at
each step needs to grow suitably to compensate for the bias introduced in solving (16). All these

are summarized in Procedure 1.

5.2. Solving the Subproblem

By (12) and the separability of uncertainty set U= I, U, the subproblem at each iteration can

be written as

min » ' (p)'(q’ - p’) =Y _ min ¢'(p)'(q' - p) (17)

acll “— — el
where 9 (p) = (zﬁ; (P))j=1....ni is the empirical counterpart of 9’ (p) obtained in Algorithm 1. Hence
(17) can be solved by m separate convex programs. The update step follows by taking psi1 =
vec(phyy 1t =1,...,m), where pj,, = (1 —€,)pj, + €4}, and gj, is the solution to the i-th separate

program.
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Algorithm 1 FWSA for solving (1)
Initialization: p; € P where p; > 0.

Input: Step size sequence ¢;, sample size sequence Ry, k=1,2,....

Procedure: For each iteration k=1,2,..., given py:

1. Repeat R, times: Compute
hX)si(X') foralli=1,...,m

using one sample path X = (X',...,X"™), where s'(X’) = ZZZI I(X] =y!)/p, = T for j =
1,...,n"and i=1,...,m. Call these Ry i.i.d. replications (!(r), for j=1,...,n', i=1,...,m, r=
1,.... Ry

2. Estimate ¥ (py) by

Y (pr) = (zﬁj(pk))zzlm j=1,..,nt — (;k Z C}(?“))

i=1,...,m, j=1,...,nt

~

3. Solve q; € argminpead)(pk)’(p —Pi).

4. Update pyi1 = (1 — €x)Pr + €x Q-

The separate programs in (17) can be efficiently solved for the uncertainty sets considered in

Section 3. To facilitate discussion, we denote a generic form of each separate program in (17) as

min ¢'p’ (18)

pielli

for an arbitrary vector & = (§;);=1. i € R"

Case 1 in Theorem 1: Moment and support constraints. Consider U’ = {p' € P fi'pt < il =

1,...,8'} where £/ = (fi(y})) =1, € R™. Then (18) is a linear program.

Case 2 in Theorem 1: ¢-divergence neighborhood. Consider

U ={p' eP" :dy(p',p}) <n'} (19)
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PROPOSITION 3. Consider (18) with U’ presented in (19), where pi > 0. Let ¢*(t) = sup, o {tz —
o(x)} be the conjugate function of ¢, and define 0¢*(s/0) =0 if s <0 and 0¢*(s/0) =+o0 if s > 0.

Solve the program

(o, X") € argmaz, > rer —aZpb’jqﬁ (—] - —an' =\ (20)
j=1
An optimal solution q' = (q}),;=1, ni for (18) is
1. If a* >0, then
i = b o { <52 o) (21)

2. If a* =0, then
_hy or j e M?
q;'_ _ ) Zjemity; JorJ (22)

0 otherwise

where M' = argmin;&;, the set of indices j € {1,...,n'} that have the minimum &;.

Operation (20) involves a two-dimensional convex optimization. Note that both the function
¢* and the solution to the n’ one-dimensional maximization (21) have closed-form expressions for
all common ¢-divergence (Pardo (2005)). The proof of Proposition 3 follows closely from Ben-Tal
et al. (2013) and is left to Appendix EC.1.

In the special case where ¢ = xlogx — x + 1, i.e. KL divergence, the solution scheme can be

simplified to a one-dimensional root-finding problem. More precisely, we have

PROPOSITION 4. Consider (18) with U’ presented in (19), where ¢(x) = xlogx —x + 1 and pi, > 0.
Denote M* = argmin,&; as in Proposition 3. An optimal solution q' = (q}) =1, . ni for (18) is:

L If —log) . vy <n', then

plim' . i
-l forjeM
q;j _ ) ZjemiPh Jorj (23)

0 otherwise
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2. If =log> ;e piPh; >, then

i oBE;
i Dy ;€ J
q; = ﬁ (24)
Zj:l Dy ;€%
for all j, where B <0 satisfies
Bee (B) = ¢e(8) =n' (25)

Here () = log E?;pi,jeﬁfj is the logarithmic moment generating function of & under pj.

The proof of Proposition 4 follows from techniques in, e.g., Hansen and Sargent (2008), and is left

to Appendix EC.1.

6. Theoretical Guarantees of FWSA

This section shows the convergence properties of our proposed FWSA. We first present results on
almost sure convergence, followed by a local convergence rate analysis. Throughout our analysis
we assume that the subproblem at any iteration can be solved using deterministic optimization

routine to a negligible error.

6.1. Almost Sure Convergence

An important object that we will use in our analysis is the so-called Frank-Wolfe (FW) gap (Frank
and Wolfe (1956)): For any p €U, let g(p) = —min, ;% (P)'(p — P), which is the negation of the
optimal value of the next subproblem when the current solution is p. Note that g(p) is non-negative
for any p € u , since one can always take p =P in the definition of g(p) to get a lower bound 0. In
the case of convex objective function, it is well-known that g(p) provides an upper bound of the
actual optimality gap (Frank and Wolfe (1956)). However, we shall make no convexity assumption
in our subsequent analysis, and will see that g(p) still plays an important role in bounding the
local convergence rate of our procedure under the conditions we impose.

Our choices on the step size €, and sample size per iteration Ry of the procedure are as follows:

AssuMPTION 1. We choose €,k =1,2,... that satisfy

o0 [ee]
E €g=00 and g € < 00
k=1 k=1
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ASSUMPTION 2. The sample sizes Ry, k=1,2,... are chosen such that

00 k—1
€k H(l _1/2
Z — —€j) <00
k=1 VY By j=1
where for convenience we denote H?Zl(l —¢;)712=1.

Note that among all €, in the form ¢/k* for ¢ > 0 and o > 0, only o = 1 satisfies both Assumptions
1 and 2 and avoids a super-polynomial growth in R simultaneously (recall that Rj represents
the simulation effort expended in iteration k, which can be expensive). To see this, observe that
Assumption 1 asserts « € (1/2,1]. Now, if v < 1, then it is easy to see that Hf;ll(l —¢€;)7Y/? grows
faster than any polynomials, so that R cannot be polynomial if Assumption 2 needs to hold. On
the other hand, when =1, then H;‘:ll(l — ;)72 grows at rate vk and it is legitimate to choose
R, growing at rate k? with 8> 1.

Assumption 1 is standard in the SA literature. The growing per-iteration sample size in Assump-
tion 2 is needed to compensate for the bias caused by the subproblem in FWSA. Note that in stan-
dard SA, a solution update is obtained by moving in the gradient descent direction, and Assumption
1 suffices if this direction is estimated unbiasedly. In FWSA, the subprogram introduces bias on
the feasible direction despite the unbiasedness of the gradient estimate. The increasing simulation
effort at each iteration is introduced to shrink this bias as the iteration proceeds. We also note
that the expression H;:ll (1—¢;)~Y? in Assumption 2 is imposed to compensate for a potentially
increasing estimation variance, due to the form of the gradient estimator depicted in (13) and (14)
that possesses pé- in the denominator and thus the possibility of having a larger variance as the
iteration progresses.

We state our result on almost sure convergence in two parts. The first part only assumes the
continuity of ¢g(-). The second part assumes a stronger uniqueness condition on the optimal solution,

stated as:

ASSUMPTION 3. There ezists a unique minimizer p* for min,; Z(p). Moreover, g(-) is continuous

over U and p* is the only feasible solution such that g(p*) =0.
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In light of Assumption 3, g plays a similar role as the gradient in unconstrained problems. The
condition g(p*) =0 in Assumption 3 is a simple implication of the optimality of p* (since g(p*) >0
would imply the existence of a better solution).

Our convergence result is:

THEOREM 4. Suppose that h(X) is bounded a.s. and that Assumptions 1-2 hold. We have the
following properties on pi generated in Algorithm 1 :

1. Assume that g(-) is continuous and an optimal solution exists. Then D(Z(py),Z*) —0 a.s.,
where Z* ={Z(p) : p satisfies g(p) =0} and D(x,A) =infy e ||z —yl|| for any point x and set A in
the FEuclidean space.

2. Under Assumption 3, py converge to p* a.s..

Part 1 of Theorem 4 states that the objective value generated by Algorithm 1 will eventually get
close to an objective value evaluated at a point where the FW gap is zero. Part 2 strengthens the
convergence to the unique optimal solution p* under Assumption 3. In practice, this uniqueness
condition may not hold, and we propose combining Algorithm 1 with multi-start of the initial
solution p; as a remedy. Section 7.1 and Appendix EC.2.1 show some numerical results on this

strategy.

6.2. Local Convergence Rate

We impose several additional assumptions. The first is a Lipchitz continuity condition on an optimal
solution for the generic subproblem (18), with respect to the coefficients in the objective in a

neighborhood of the gradient evaluated at p*. Denote v(&) as an optimal solution of (18).

ASSUMPTION 4. We have

V(&) = v(&)] < Ll - &

for some L >0, for any &,&, € Na(yp(p*)), where Na(¥(p*)) denotes a Fuclidean neighborhood

of ¥(p*) with radius A, and p* is assumed to be the unique optimal solution for min,_; Z(p).
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Next, we denote q(p) as an optimizer in the definition of the FW gap at p, i.e. q(p) €

argmin, ¥ (p)' (p — P)-
ASSUMPTION 5.

9(p) = cll¥(p)lllla(p) — pl
for any p e U, where ¢> 0 is a small constant.

ASSUMPTION 6.

[ (p)[| >7>0
for any p € Z], for some constant T.

Assumption 5 guarantees that the angle between the descent direction and the gradient must be
bounded away from 90° uniformly at any point p. This assumption has been used in the design
and analysis of gradient descent methods for nonlinear programs that are singular (i.e. without
assuming the existence of the Hessian matrix; Bertsekas (1999), Proposition 1.3.3).

The non-zero gradient condition in Assumption 6 effectively suggests that a local optimum must
occur at the relative boundary of U (i.e. the boundary with respect to the lower-dimensional
subspace induced by the probability simplex constraint), which warrants further explanation. Note
that the other alternate scenario for local optimality will be that it occurs in the interior region
of the feasible set ¢. In the latter scenario, the gradient at the optimal solution is zero. While the
convergence analysis can be simplified (and plausibly give a better rate) under this scenario, the
statistical implication brought by this scenario is rather pathological. Note that our optimizations
are imposed on decision variables that are input probability distributions. As discussed at the
end of Section 4, the gradient vector 1(p) is the influence function for the performance measure
Z(-). If the influence function is zero, it is known that a Gaussian limit does not hold in the
central limit theorem as the input sample size gets large (where the central limit theorem is on the
difference between a simulation driven by empirical distributions and the truth). Instead, a x*-limit

occurs (Serfling (2009), Section 6.4.1, Theorem B). Such type of limit is unusual and has never
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been reported in simulation analysis. Indeed, in all our experiments, the obtained local optimal
solution is always at the boundary. For this reason we impose Assumption 6 rather than a more
straightforward zero-gradient type condition.

The following are our main results on convergence rate, first on the FW gap ¢(ps), and then
the optimality gap Z(px) — Z(p*), in terms of the number of iterations k. Similar to almost sure
convergence, we assume here that the deterministic routine for solving the subproblems can be

carried out with high precision.

THEOREM 5. Suppose |h(X)| < M for some M >0 and that Assumptions 1-6 hold. Additionally,
set

and R =bk”?

€ =

EN S

when k > a, and arbitrary €, <1 when k < a. Given any 0 <e <1, it holds that, with probability
1—e¢, there exists a large enough positive integer ko and small enough positive constants v,v, 0 such

that 0 < g(px,) < v, and for k> ko,

A
9(Pr) S 1T+ BX ot if > C (26)

log((k—}c)c{(ko—l)) ify=C

where
A:g(pk‘o)k(?a
1\¢ 2a%0K [ v
B=|1+— — 4+ L
( +k0> (ag—i— ctky <c7'+ 79))
and
2KLY 2Kv
=all- — 2
¢ a< cT 027'2> (27)

Here the constants L,c, T appear in Assumptions 4, 5 and 6 respectively. The sample size power (3
needs to be chosen such that > 2v+a+ 1. More precisely, the constants a,b, 5 that appear in the
specification of the algorithm, the other constants ko,9, 0,7, K, and two new constants p > 1 and

0 >0 are chosen to satisfy Conditions 1-9 listed in Appendiz EC.1.
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COROLLARY 1. Suppose that all the assumptions are satisfied and all the constants are chosen as
indicated in Theorem 5. Then with probability 1 — e, there exists a large enough positive integer kg

and small enough positive constants v,v, 0 such that 0 < g(px,) < v, and for k >k,

oG fo<y<C
D E
Z(p) — Z(p*) < F 1 : 28
1) = 207) <37+ e M eromeyeenme #1>C (28)
log((k—1)/(kg—1)) ify=C

C(k—1)¢
where

A
D = a?K, E:%, F=aB

and a,A,B,C, K are the same constants as in Theorem 5.

A quick summary extracted from Theorem 5 and Corollary 1 is the following: Consider the local
convergence rate denominated by workload, i.e. the number of simulation replications. To achieve
the most efficient rate, approximately speaking, a should be chosen to be 1+ w and g chosen to
be 5+ ¢ + w for some small w,{ > 0. The local convergence rate is then O(W =/ (6+¢+)) wwhere W
is the total number of simulation replications.

Note that the bounds in Theorem 5 and Corollary 1 are local asymptotic statements since they
only hold starting from k > ky and g(py) < v for some large kq and small v. It should be cautioned
that they do not say anything about the behavior of the algorithm before reaching the small
neighborhood of p* as characterized by 0 < g(px,) < v. The above summary therefore should be
interpreted in the way that, given the algorithm has already run ky number of replications and
g(px) < v for a suitably small v (which occurs with probability 1 by Theorem 4), the convergence
rate of O(W~1/(6+¢+w)) for the optimality gap is guaranteed with probability 1 — e starting from
that point.

The summary above is derived based on the following observations:

1. The local convergence rate of the optimality gap, in terms of the number of iterations k, is at

best O(1/k°""1). This is seen by (28).



Ghosh and Lam: Robust Analysis in Stochastic Simulation
28 Article accepted in Operations Research

2. We now consider the convergence rate in terms of simulation replications. Note that at itera-
tion k, the cumulative number of replications is of order Zle j? = kP*L. Thus from Point 1 above,
the convergence rate of the optimality gap in terms of replications is of order 1/W (¢ MAD/(B+1),

3. The constants C and ~ respectively depend on a, the constant factor in the step size, and S,
the geometric growth rate of the sample size, as follows:

(a) (27) defines C = a(l — 2KLY/(ct) — 2Kv/(c*7?)). For convenience, we let w =
2KLY/(eT)+2Kv/(c*t%), and so C =a(1 —w).
(b) From Condition 6 in Theorem 5 (shown in Appendix EC.1), we have f=2v+ pa+2+(
for some ¢ > 0. In other words v= (8 — pa —( —2)/2.
4. Therefore, the convergence rate in terms of replications is 1/W (a(=@DA((B=pa=C=2)/2)A1)/(5+1)

Let us focus on maximizing

(a1l —w))A((B—pa—C—2)/2)A1
B+1

(29)

over a and [, whose solution is given by the following lemma:

LEMMA 2. The mazimizer of (29) is given by

and the optimal value is

p/(l=w)+(+5

The proof is in Appendix EC.1. With Lemma 2, let us choose # and v, and hence w, to be small. We
also choose p to be close to 1. (Unfortunately, these choices can lead to a small size of neighborhood
around p* in which the convergence rate holds.) This gives rise to the approximate choice that
a~1+w and B~ 5+ ( +w. The convergence rate is then O(W ~1/(6+c+w)),

We compare our results to some recent work in stochastic FW. Hazan and Luo (2016) showed that

to achieve € error in terms of the optimality gap one needs O(1/€e'-*) number of calls to the gradient
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estimation oracle, when the objective function is strongly convex. Reddi et al. (2016) showed that
the number needed increases to O(1/e*) for non-convex objectives, and suggested several more
sophisticated algorithms to improve the rate. Corollary 1 and our discussion above suggests that
we need O(1/e87¢++) sample size, for some small (,w > 0, a rate that is inferior to the one achieved
in Reddi et al. (2016). However, Reddi et al. (2016) has assumed that the gradient estimator is
uniformly bounded over the feasible space, a condition known as G-Lipschitz (Theorem 2 in Reddi
et al. (2016)), which does not hold in our case due to the presence of p! in the denominator in (14)
that gives a potentially increasing estimation variance as the iteration progresses. This complication
motivates our sample size and step size sequences depicted in Assumption 2 and the subsequent
analysis. On the other hand, if Assumption 4 is relaxed to hold for any &;,&, € RY, it can be seen
that by choosing 3~ 3 + ¢ +w our complexity improves to O(1/e**¢**) which almost matches the
one in Reddi et al. (2016) (see Remark EC.1 in Appendix EC.1). However, such a relaxed condition
would not hold if the constraints are linear, because the optimal solutions of the subproblems are
located at the corner points and will jump from one to the other under perturbation of the objective

function.

7. Numerical Experiments

This section describes two sets of numerical experiments. The first set (Section 7.1) studies the
performance guarantees from Section 3 regarding our randomized discretization strategy and the
tightness of the bounds coming from moment constraints. The second set of experiments (Section
7.2) studies the numerical convergence of FWSA. The appendix provides additional details and
results. Unless specified, in all experiments we terminate the FWSA algorithm at iteration k if at
least one of the following criteria is met (as an indication that the convergence studied in Section
6 is attained):

e The cumulative simulation replications W}, reaches 5 x 108, or

e The relative difference between objective value Z(p;) and the average of the observed values
in 30 previous iterations, (Y o0, Z(pr_v))/30, is below 5 x 1072, or

e The gradient estimate % (py,) has an ly-norm smaller than 1 x 1073,
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7.1. Performance Bounds for Multiple Continuous and Unbounded Input Models

We use the example of a generic multi-class M/G/1 queue where jobs from three distinct classes
arrive and are attended to by one server. Such structures are common in service systems such as
call-centers. Let P = {P', P? P3} represent all the constituent probability measures, where each
Pi={P%}, i=1,2,3 with j =1 for interarrival and j = 2 for service, denotes the joint measure of
the interarrival and service distributions of jobs of class ¢. The performance measure of interest is

the weighed average waiting time:
1 i
Z(P)=Ep Z ¢ FZWt : (30)

where the average is observed up to a (fixed) 7% = 500 customers of class ¢ and ¢; is the cost assigned
to its waiting times. Jobs within each class are served on a first-come-first-served basis. The server
uses a fixed priority ordering based on the popular cu rule (Kleinrock (1976)), which prioritizes
the class on the next serving in decreasing order of the product of ¢; and the mean service rate '
of class i (as discussed momentarily, the p'’s are unknown, so we fix a specific guess throughout
this example).

To handle the uncertainty in specifying the interarrival and service time distributions of each
class (due to, e.g., the novelty of the service operation with little pre-existing data), we use the

uncertainty set based on moment constraints on the P’ as:
U=1Ju'", wheret’ ={P": i’ < Ep:[(X™7)']| <77, 1=1,2, j=1,2} (31)

where the index [ = 1,2 represents the first two moments of marginals P*/. This set is motivated
from queueing theory that mean system responses could depend on the mean and variance of the
input distributions. The moment bounds H;Vj and Eé’j can be specified from prior or expert opinion.
Here, to test the information value with respect to the accuracy of the moments, we specify the
bounds from a confidence interval on the corresponding moments calculated from N, synthetically

generated observations for each i, j. For example,

7 =iy +tajan.-16," [/ N,
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where t, /> y,—1 is the (1 —«/2)-quantile of the Student-t distribution with degree of freedom N, —1,
fi”7 is the empirical [—th moment and 6]” is the associated sample standard deviation as observed
from the N, data points. Suppose that the true marginal distribution of interarrival times for
each class is exponential with rate 0.5 and the true service distribution of the three classes are
exponentials with rates 2.25,2.0 and 1.75 respectively, to yield an overall traffic intensity of 0.75.

The FWSA algorithm is run by first sampling a discrete approximate support from bivariate
independent-marginal lognormal distributions as representative of each P? with support size n =
50,100,250 (we assume the support size corresponding to each distribution P’ is all equal to n).
Theorem 1 suggests that selecting lognormal distributions is reasonable if the modeler conjectures
that the true distributions are light-tailed. Here we set the means and standard deviations of the

lognormals to 1. The parameter n should ideally be large to minimize discretization error, but this

pays a penalty in the slowness of the FWSA algorithm.
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Figure 1 The range from max to min worst-case objectives when Ns and n vary as indicated. The dotted-line

indicates the expected steady-state performance under the true distribution.

Figure la shows the output of our approach over various n and N, to illustrate the effect of
discretization and the accuracy of moment information on the tightness of our bounds. The true

steady-state performance measure of the multiclass M/M/1 system, available in explicit form
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(Kleinrock (1976)), is indicated as the dotted-line in each plot. The bounds provided by our method
are all seen to cover the true performance value when n > 45. This is predicted by Theorem 1 as
the moment constraints are all correctly calibrated (i.e. contain the true moments) in this example.
Moreover, as predicted by discussion point 5 in Section 3.1, the obtained intervals widen as n
increases, since the expansion of support size enlarges the feasible region. On the other hand,
the intervals shrink as NV, increases, since this tightens the moment constraints and consequently
reduces the feasible region. The effect of the support size does not appear too sensitive in this
example. Thus, taking into account the optimization efficiency, a use of support size of about 45
points appears sufficient.

Figure 1b plots the performance when the supports of the distributions are sampled from the
true distributions. The performance trends are similar to Figure 1a. However, the obtained bounds
are slightly looser. Note that Theorem 1 guarantees that the obtained bounds under the generated
support points cover the truth with high confidence, when the generating distributions satisfy the
heavier-tail condition. In this example, both lognormal and exponential distributions (the latter
being the truth) satisfy these conditions and lead to correct bounds. On the other hand, the tight-
ness of the bounds, which is not captured in Theorem 1, depends on the size and geometry of the
feasible region that is determined by a complex interplay between the choice of the uncertainty set
and the support-generating distributions. The feasible region using the true exponential distribu-
tions include probability weights that are close to uniform weights (since the moment constraints
are calibrated using the same distribution). The region using the lognormal, however, does not con-
tain such weights; in fact, when N, =500, the resulting optimizations can be infeasible for n < 60,
signaling the need to use more support-generating samples, whereas they are always feasible using
the exponential, whose values are shown in the rightmost set of intervals in Figure 1b.

The results above are implemented with an initialization that assigns equal probabilities to the
support points. Appendix EC.2.1 shows the results applied on different initializations to provide
evidence that the formulation in this example has a unique global optimal solution or similar local

optimal solutions.
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7.2. Convergence of FWSA and Worst-case Input Distributions

We test the numerical convergence of FWSA. The key parameters in the algorithm are the sample-
size growth rate § and the step-size constant a. Varying these two parameters, we empirically test
the rate of convergence of the FW gap to zero analyzed in Theorem 5, and the objective function
Z(px) to the true optimal value Z(p*) analyzed in Corollary 1. We also investigate the magnitude
of the optimal objective value and the form of the identified optimal solution.

Here we consider an M /G /1 queue where the arrival process is Poisson known with high accuracy
to have rate 1. On the other hand, the service time X, for the ¢-th customer is uncertain but
assumed i.i.d.. A simulation model is being used to estimate the expected long-run average of the

waiting times Z(p) = E,[h(X)], where

h(X) :%ZWt

and W, is the waiting time obtained from Lindley’s recursion.

We test our FWSA with a KL-divergence-based uncertainty set for X; as

d—{p:ipjlog <pj) Sn} (32)
= DPo,j

where p, = (pp,j)j=1,....n is a baseline model chosen to be a discretized mixture of beta distribution
given by 0.3 x Beta(2,6) + 0.7 x Beta(6,2). The discrete supports are obtained by uniformly dis-
cretizing the interval [0, 1] into n points, i.e. y; = (j + 1)/n. The set (32) provides a good testing
ground because steady-state analysis allows obtaining an approximate optimal solution directly
which serves as a benchmark for verifying the convergence of our FWSA algorithm (see Appendix
EC.2.2 for further details of this approximate optimal solution).

Figure 2 captures the performance of our FWSA algorithm as a function of the a and § parame-
ters. Figures 2a—2c plot the (approximate) optimality gap as a function of the cumulative simulation
replications W, for the maximization problem under (32). We set the parameters n = 0.025, n = 100

and T = 500. Figures 2a, 2b and 2c¢ provide further insights into the actual observed finite-sample
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Figure 2  Figs 2a, 2b and 2c plot the optimality gap of the FWSA algorithm for the M/G/1 example as function
of cumulative simulation samples, under various combinations of step-size parameter a and sample-size
growth parameter 8. The three figures have the same range of values in both axes (note the log scale).

Fig 2d shows the FW gap as a function of iteration count. All figures provide the legend as a, 3.

performance (When interpreting these graphs, note that they are plotted in log-log scale and thus,
roughly speaking, the slope of the curve represents the power of the cumulative samples whereas
the intercept represents the multiplicative constant in the rate):

o Fig. 2a v.s. 2b—2c: Convergence is much slower when a < 1 no matter the value of 3.
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e Fig. 2b: For a > 1, convergence is again slow if g > 4.

e [ig. 2b: For a slightly greater than 1, the convergence rates are similar for 5 € [2.75,3.25] with
better performance for the lower end.

o Fig. 2c: For § = 3.1, the rate of convergence generally improves as a increases in the range
[1.10,2.75].

o Figs. 2a, 2b and 2c: The approximation Z* of the true Z(p*) (from (SS) in Appendix EC.2.2)
has an error of about 0.006 for the chosen 7', as observed by the leveling off of all plots around this
value as the sampling effort grows.
Figure 2d shows the FW gap as a function of the iteration count. In general, the sample paths with
similar 3 are clustered together, indicating that more effort expended in estimating the gradient at
each iterate leads to a faster drop in the FW gap per iteration. Within each cluster, performance
is inferior when a < 1, consistent with Theorem 5. Since most runs terminate when the criterion on
the maximum allowed budget of simulation replications is expended, the end points of the curves
indicate that a combination of @ > 1 and a § of around 3 gains the best finite-sample performance
in terms of the FW gap. These choices seem to reconcile with the discussion at the end of Section
6.2 when Assumption 4 is relaxed to hold for any &;,&, € RY.

We provide further discussion on the shape of the obtained optimal distributions in Appendix

EC.2.3.
8. Conclusion

In this paper we investigated a methodology based on worst-case analysis to quantify input errors
in stochastic simulation, by using optimization constraints to represent the partial nonparametric
information on the model. The procedure involved a randomized discretization of the support
and running FWSA using a gradient estimation technique akin to a nonparametric version of
the likelihood ratio or the score function method. We studied the statistical guarantees of the
discretization and convergence properties of the proposed FWSA. We also tested our method and

verified the theoretical implications on queueing examples.
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We suggest several lines of future research. First is the extension of the methodology to dependent
models, such as Markovian inputs or more general time series inputs, which would involve new sets
of constraints in the optimizations. Second is the design and analysis of other potential alternate
numerical procedures and comparisons with the proposed method. Third is the utilization of the

proposed worst-case optimizations in various classes of decision-making problems.
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Appendix
EC.1. Technical Proofs

Proof of Theorem 1. Let §(y) be the delta measure at y. For each i =1,...,m, define
P=) s @
j=1 ( )
i.e., the distribution with point mass L*(y})/ Zf; L'(y;) on each y;, where L' = dPF;/dQ". We first

show that as n — oo, the solution (P%);—;. _, is feasible for the optimization problems in (8) in an

appropriate sense.
Consider Case 1. For each | =1,...,s", by a change measure we have Eg:|f/(X")L(X")| =
Epi f{(X")] < oo by our assumption. Also note that Eq:L* = 1. Therefore, by the law of large

numbers,
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We analyze the two terms in (EC.1). For any sufficiently small A > 0, the first term is bounded

from above by
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(W ( </ >z Liy) ) (1) S, Lilyi) (1/n)) S0, Lilyi) | 2

1SN 1SN
= L'(y)—1| <\, |— Li(y)—1| <A\
’TLZX:: (yr) — nlrz_; b(yr) — )

Z 7<1/nz>zr  Li(y z>> Li(y}) 1SN Li(y}) €
E o L( T ——= > &(L(y;)) — 5 |>5
( ( (Un’)ZTZ1 Wyi)) (/ni)>20 Li(yi) ™54 § (1/ni) S0 Li(yl) | 2

13N 1 n' o
J = L'(y)—1|> A — Li(yl)—1| > A
n; (yi) or n; i (yl) )

i @

1 ¢ Ly (y;) € LS iy
<P = (6L )|+ DO\ ————— 5 ,ZU A=) L) — 1 <A
n j=1 ’ (1/nl)2r:1 LZ(yr 2 n n r=1
1 a Q0 1 a i,
+P M;L(yr)—l >\ or nirz:Lb(yr)—l >\ (EC.2)

where the first term in the last inequality follows from the continuity condition on ¢, with O(\)
being a deterministic positive function of A that converges to 0 as A\ — 0. This first term is further

bounded from above by

TR Li(y?)
Pl — o(L* ; +1 : nij —
"’;(' EOI D S T

By the law of large numbers, we have

o) > g (EC.3)

%Z(W(ii(yﬁ»))\ + 1)Ly (y;) = Bai[(|6(L1(X) |+ DL(X)] = Epg|¢(LI(X))[ +1 as.

j=1
by using our assumption EP5|¢(E(X )| < co. Moreover, by the law of large numbers again, we

have (1/n?) Z:il Li(y!) — 1 a.s.. Thus,

1 & Li(y)
o(L ) +1 : nﬁ —
& 1(' (i) )<1/nz>zT:1Lz<y;>

When A is chosen small enough relative to /2, we have (EC.3) go to 0 as n* — oc.

= Epi|¢(L'(X")|+1 as.

Since both = Zf; Li(y:) =1 and X Z:il Li(yt) — 1 a.s., the second term in (EC.2) also goes

to 0 as n’ — co. This concludes that the first term in (EC.1) goes to 0.
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For the second term in (EC.1), note that
1SN o e - o
= YL Y Li(y)) = Bgild(L (X)) Ly(X )] = Ep [6(L'(X")] = dy(F5, y) ass.
j=1
by the law of large numbers and the assumption that Epg\qﬁ(f)i(Xi)ﬂ < 00. Moreover, since

(1/n') S Liwi) = 1, we get

1 o Li(y?) o
LS s(Ei)—2%) R R as
Z s e

Thus, the second term in (EC.1) goes to 0 as n’ — co. Therefore, we conclude that d,(P?, Bi) %

dy(Pi, Pj). Since dy(Pi, Pj) <n' by our assumption, we have P(d, (P, Pi) <n') =1 as n' — co.
Next we consider the objective in (8). We show that Z(P',...,P™)—Z(P},...,Py")=0,(1/y/n),

following the argument in the theory of differentiable statistical functionals (e.g., Serfling (2009),

Chapter 6). For any A between 0 and 1, we write

Z(P}+XP'—P}),...,P"+ \(P" — P™))

— /.. h(xl,...,xm)ﬁﬁd[P3+)\(Pi—Pé)]@i)
/]

i=1t=1

Z/.../h(xl,...,XM) 1 dri) ] dP' - P

T
=) )\
k=0 uerh (GOECHE (it)esh

where {S*}, .7« is the collection of all subsets of {(i,t):i=1,...,m,t=1,...,T'} with cardinality

k, and Z% indexes all these subsets. Note that

d ~ -
aZ(PO1 + AP = Py),..., P+ AN(P™ = B}"))
A=01+
m Ti A B
— ZZ/m/h(xl, oy [ AR - P ()
i=1 t=1 (4,8):(4,8)#(4,¢)
-3 / S Bl PP — P (x) (EC.4)
=1
where
Ti
G Py B =3 g o [(X L X)X = a] (EC.5)
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By the definition of L, we can write (EC.4) as

- f@xP07"7 )((E) () T 1 m iJ} ix
Z( (1/n) 5, () WAl ’O)L()dQ”)

([ @ P P (2)d(Q - Q) (x) o i ( 1 >>
- — | (@ P),... P L (2)dQ () [ 1— ®Cl6
Z( <1/n%>zj:1n<yj> / ’ (1/nf) S0, Liy!)

where Q' is the empirical distribution (1/n?) Z?; d(y) on the n’ observations generated from Q°.

Suppose @' (z; Py,..., Py )Li(z) = 0 as., then [¢i(x;PL,..., Py Li(z)d(Q" — Q) (z) = 0 as..
Otherwise, using the assumed boundedness of h, hence ¢’ (z; P},..., Py"), and L', we have, by the

central limit theorem,

Vi ([ Bt L @AQ - @)@ ) = N, o))
where (07)2 = Varg: (¢'(X*; PL,..., Py") LI(X")) > 0 is finite. Since (1/n') 3" Li(y}) — 1 a.s. by
the law of large numbers, and that [ o' (z; PY, ..., Py*)Li(z)dQ(x) is bounded, the second term
in (EC.6) converges to 0 a.s.. Thus, by Slutsky’s theorem, each summand in (EC.6) converges in
distribution to N (0, (c%)?). Since for each i we have n’ = nw’ for some fixed w’* > 0, we conclude

that (EC.6) equal O,(1/+/n).

Now consider

d2 m m m
e Z(Py +MP' = F)),..., Py + A(P™ — P§"))
T
=) k(k— 1)\ 22/ / x") ] dPi) ] 4P (zi) (EC.7)
k=2 uweTk (i,t)e(Sk)e (i,t)eSk

Fixing each 8%, we define

hsgoesp) = [+ [hxloxm) [T drita)

(i,t)(Sk)e
where xgr = (}) ;. esk- Next define
ilsk (xsk)
= hsk Xsk Z /hsk Xsk dPJ( )+ Z //hsk Xsk dPJl(iljtl )dPJQ(.I'z;) — e
(j,t)eSk (41,t1),(G2,t2)€SE

_1)k//hsjj(xsfj)dpojl(l‘ﬁ)dng(‘Ti:)
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where each summation above is over the set of all possible combinations of (j,t) € S* with increasing

size. Direct verification shows that h sk has the property that

[ [hates) I am D= [ [hatxsp) TT dited - i)

t)esk Sk

for any probability measures R’’s, and

[ hsylxsp)apial) =0 (EC.8)

for any (j,t) € Sk. Thus, (EC.7) is equal to

Zk 1)AF- QZ/hSk xs) [[ dP'(a})

u€eZk (i,t)eSk

Now, viewing P’ as randomly generated from Q?, consider

T
Eguom | Y k(k—1X2 )" / hse(xse) [ dPi(«})
k=2 ueTk (4, t)e.sk
r 2
T
= Egu..qn || D_ k(=12 /hsk xs) [ dP'(=}) ZLZ )>1—cforalli=1,.
|\ F=2 ueTk (i,t)eSk
2
T
+Eg1,. om Zk(k —1)AF2 Z /hsk Xgh) H dP(z) ZI/ ) <1—¢€ for some i =1,.(EG
k=2 ueIk (i,t)eSk
We analyze the two terms in (EC.9). Note that the first term can be written as
2
T
L (Y ).+ Lk (Y )
EQl """ QM Zk(k_l))\kiz Z i1, i Z Zh‘sk Jl o JZk) nis ;
k=2 wezk " et i Jk=1 ' Hs:l((l/nls) > Lis(Yi))
1 &
— Y LYY )>1—ecforalli=1,. m]
n’L
r=1

1 Z
(Zk DAY W(E@ _____ KZ Zhsk YL Y

weTk =1 jp=1
, _ 4 _ 1/2y 2
LYY ... Lik(Yik
- ( “) — ( '7’“) ZLZ )>1—cforali=1,....,m (EC.10)
[Tey ((1/nie) 3272 Lis(Yie)) n

by Minkowski’s inequality, where we view Yj“s as the random variables constituting the observations

generated from Q%s. Since the expression [[*_, ((1/n) Zf:l L' (Y;'#)) inside the expectation in

(EC.10) does not depend on the j,’s, (EC.10) is further bounded from above by

. ) 2\ 1/2
T 21 % : i . i 2
1 n n ) Lzl(Yl)le(Yk)
k—2 i i J1 Jk
<Zk A2y o | Boreean D> he (Y.L YR) =
2 ucZk Jji=1 Jr=1
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hsp (Y0, YR LA (V) -

J1? T Ik

T k(k — 1))\k_2 nil nik  nil nik
= <Z (1 - e)k Z ninie . ( Z Z Z Z EQI _____ Qm
u€Ik

Jj1=1 Jk=1ji=1 jr=1
>1/2>2

Egi..om [hsk (Yu .. sz)Lzl (Y”) L Lk (Y;;k)ﬁsfj (Y;.?, o 7}/;%)1;1'1 (Yj?) R (Yﬂz;'f)] =0

hSli (Y{lj .. '7Yj;€k)Lll (Y’jil) .. L“C(Y;;f)

T Ik
(EC.12)
if any Y, shows up only once among all those in both hsk( R ]Zk’“) and hsk (Y’, .- 7Y;,’“) in
k

the expectation. To see this, suppose without loss of generality that lell appears only once. Then

we have

om [Bsﬁ(yh YZk)L’Ll(Y ). sz( Zk)hsk( 111 ’}/j?ck)Lll(Y'j'L/l)le(Y]Z/k)

) )
J1 Jk 1 k

3y

in27...7Y;lkk,Y“ ’Y;;ﬂ ng(y;n)[jk(yj;k)

= Bgr_qn |[Bar_qn [hsy (Vi1 Y5 L (V)

---------- J1? ? T Ik

fLS{j (Y;?’ o ’Y;ZC)L“ (Y;?) e Lk (}/th)]

k

= Egp Qm[E o [ﬁsk(Y“ LYY v YJ:} L2(Y2) . L (V)

~~~~ Py J17° Jk

B (it o YL (V) L (V)|
u k

1 k 1

RN N ji,ﬂ:()by (EC.8).

since F pil [hsk( YY)

J10° 0 Tk

The observation in (EC.12) implies that the summation in (EC.11)
ntl n'k  nil n'k

.....

D2 30 30 e 3 B [Py (VT LMW+ LR hy (V- LM (V) - L (V)

contains only O(n*) non-zero summands. This is because in each non-zero summand only at most
k distinct in’s can be present inside the expectation, and the cardinality of such combinations is
O(n*). Note that each summand is bounded since h, hence fzszﬁ, and L' are all bounded by our
assumptions. Hence (EC.11) is

(G (e (nizz))z:() () (B0.13)

k=2

L (Y34)

(EC.11)

k
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This shows that (EC.7) is O,(1/n) for any A between 0 and 1. Therefore, by using Taylor’s expan-

sion, and the conclusion that (EC.6) is O,(1/y/n), we have

Z(P',....P™=Z(PL,... P"+O, <\/15> 7,40, <\/15> (EC.14)

Note that we have shown previously that P(Pi € Z:ll) — 1 for any ¢ =1,...,m in both Cases 1

and 2. Using this and (EC.14), for any given € > 0, we can choose M, N > 0 big enough such that

m

P(A(Z. — Z) > M) < PUNVR(Z(PY,..., P') = Z3)| > M) + S P(P ¢ ) < e
and similarly
P(Vn(Zo—2") > M) < P(Vn(Z(P',... . P') = Zy)| > M) +iP(Pi gu)<e

for any n > N. This concludes that

A 1 ~

Proof of Theorem 3. To prove 1., consider first a mixture of p* = (p?)jzl_wni with an arbitrary
q' € P, in the form (1 —€)p’ +eq’. It satisfies

d i i i i m
&Z(plw"?pl 17(1_6)p +6qap+1a"'ap )

=V'Z(P)(d-p')

€

by the chain rule. In particular, we must have
¥i(p)=V'Z(p)(1;-p')=0;Z(p) - V'Z(p)'p’ (EC.15)

where 9 Z(p) denotes partial derivative of Z with respect to p;. Writing (EC.15) for all j together
gives

P'(p)=V'Z(p) - (V'Z(p)p' )1’

where 1° € R" is a vector of 1. Therefore

P'(p)'(q' —p') = (V'Z(p) - (V'Z(p)'P")1") (¢’ —p') = V'Z(p)'(d' — ')
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since g, p’ € P,;. Summing up over 7, (12) follows.

To prove 2., note that we have

; d i— i i m
d}j( )_ %Z(plv"'vpz 17(1_€)p +€1j7p +17"'7p ) e=0
d
— %Epl _____ pifl,(l—e)pi—O—El;‘-,pi‘Fl 77777 pm [h(X)}
e=0
= By [h(X)s!(X7)] (EC.16)

where s’ (-) is the score function defined as

Z—log (L—e)p'(xy) +el(z; =y))) (EC.17)

e=0

Here p*(z}) = p} where j is chosen such that z} = y;. The last equality in (EC.16) follows from the

fact that
d T T
o [T =o' (@) +el(a;=1y))) Zlog (L—epi(a}) +el(z;=y))| - []p'(=)
t=1 e=0 e=0 t=1
Note that (EC.17) can be further written as
Tzi—pi(q:i)—i—f(xi:yj _ TL+Z Tl—i—z
— p'(x)
which leads to (13).
Proof of Lemma 1 We have
Var, (h(X)s5(X")) < Ep(h(X)s5(X1))? < M? By (s3(X1))? = M*(Vary(s3(X")) + (Ep[s;(X")])?)

(EC.18)
Now note that by the definition of s%(X) in (14) we have Ep[s;(X’)] =0 and

T'Var,(I(X{ =y;)) _ T'(1-pj)

Varp(sj- (XH) = AL = o

Hence, from (EC.18), we conclude that Var,(h(X)s(X*)) < M>T*(1 —p})/p}.
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Proof of Proposition 3 Consider the Lagrangian relaxation

a%%)éRgl;%ijﬁpLa Zpbd < )—nl +A le;—l (EC.19)
]:
= max —aZpgyjmaX{—éjJrsz—gb(]?])}—anl—)\
oa20AeR i pi>0 a pyj Db
_ = i §j+)‘ i
= D T 2 P (‘a —an' = A
Jj=

In the particular case that a* =0, the optimal value of (EC.19) is the same as

maxmanpjfj + A Zp] -1

AER p1>0

7
. . . . . . . . . . n 7 _ . . .
whose inner minimization is equivalent to mingicpi Y jm P3G =mingen iy &5 Among all solutions

that lead to this objective value, we find the one that solves

‘min Z P} 0 <p ) (EC.20)

i . .
PLIEMES i D

jEMI
Now note that by the convexity of ¢ and Jensen’s inequality, for any Zj M p;'. =1, we have
pb, 1 1
Sne(f)- T e ()2 S ) (st )
jeM? reMi jEM? TeMlpb'r' pb] eM? JEMipr jEMipb1j

(EC.21)
It is easy to see that choosing p’ in (EC.20) as ¢} depicted in (22) achieves the lower bound in
(EC.21), hence concluding the proposition.

Proof of Proposition 4 Consider the Lagrangian for the optimization (18)

. : Pt .
min Zﬁjp; +a Zp; log piJ -7 (EC.22)
j= 2

By Theorem 1, P.220 in Luenberger (1969), suppose that one can find a* > 0 such that q' =

(¢})j=1,....ni € P,i minimizes (EC.22) for o = a* and moreover that o <Z;ﬁ_1 q;log pz; —ni) =0,
b
then q' is optimal for (18).
Suppose a* =0, then the minimizer of (EC.22) can be any probability distributions that have

masses concentrated on the set of indices in M?. Any one of these distributions that lies in
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will be an optimal solution to (18). To check whether any of them lies in LA{i, consider the one
that has the minimum d,(q’,p;) and see whether it is less than or equal to n’. In other words,
we want to find minp§,j€Mi¢ZjeMi pi=1 > ieai P log(p}/py ;). The optimal solution to this mini-
mization is pé,]’/ZjEMi pZJ for j € M, which gives an optimal value — log Zg‘e/\/ti pi,j' Thus, if
—log Y.\ Ph; <", we find an optimal solution q' to (18) given by (23).

In the case that o* = 0 does not lead to an optimal solution, or equivalently —log > jeMi pa ;> n,
we consider a* > 0. We write the objective value of (EC.22) with o =a* as

Y &pi+aty plog
j=1 j=1

P

L — o'y (EC.23)
Py

By Jensen’s inequality,
pi}e—fj/a*—log(pzv/p?,,j) > o 2i=1 8P/ a" =307 )y los (P} /)
g y z

j=1

giving

S gpi+a > pilog L > —atlog ¥ pj e/ (EC.24)
i=1 i=1 Po.; o
It is easy to verify that putting pz as

Py e
ni ' _ *
ZT:I p%},re &n/a

gives the lower bound in (EC.24). Thus ¢} minimizes (EC.23). Moreover, a* > 0 can be chosen such

%

q; =

that ‘ _ .
A i q; PR f‘pzi;,'e_gj/a* i i —tiat
qulog ij == . %ui] ‘] —&5/a* _logzpb’je 4 =n
j=1 P, ar Zj:l Dy € j=1
Letting 8 = —1/a*, we obtain (24) and (25). Note that (25) must bear a negative

root because of the following. Note that the left hand side of (25) is continuous,
and goes to 0 when S — 0. Defining & = min{¢; : j = 1,...,n'}, we have, as [ —
—00, 902(5) = log Z?:l pé,jeﬁgj = log (Z]‘eMi pi7j€55*(1 + ngMi pé7j66(€j_€*)/2jeMi p?y,j)) = B, +
10g 3~ i api 4, ; +O(e17) for some positive constant ¢y, and oL (B) = Z:; &py €75/ Z;ilpz)jeﬁgf =
E.(1+ qug/v[i fjpi,jeﬂ(fj_é*)/zjew pé,j)/(l + ngMi p?},jeﬂ({j_g*)/zj'e/\/[i Pi,j) =& + O(GCB) for
some positive constant cy. So 5902/(5) — pe(B) = —log> .\ Di; + O(ee172)f) > ni when 3 is

negative enough.
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Proof of Theorem 4 The proof is an adaptation of Blum (1954). Recall that p; = vec(p} :i =
1,...,m) where we write each component of p, as p};)j. Let N =3>"" n’ be the total counts of
support points. Since h(X) is bounded a.s., we have |h(X)| < M a.s. for some M. Without loss
of generality, we assume that Z(p) > 0 for all p. Also note that Z(p), as a high-dimensional
polynomial, is continuous everywhere in U.

For notational convenience, we write d;, = q(px) — px and d, = a(pr) — pr, i.e. dj, is the k-th
step best feasible direction given the exact gradient estimate, and d;. is the one with estimated
gradient.

Now, given py, consider the iterative update pyy1 = (1 — €x)px + €£Q4(Pr) = Pr + exdy. We have,

by Taylor series expansion,
A e . S
Z(Pr+1)=Z(pr) +eVZ(py)'dy + Ed;CVQZ(Pk + Operdy)dy,
for some 6, between 0 and 1. By Theorem 3, we can rewrite the above as
2
13 €k T\
Z(Pr+1) = Z(Pr) + e (pr)'di + gkdeQZ(Pk + Orendy)d (EC.25)

Consider the second term in the right hand side of (EC.25). We can write

~ ~

¥(pr)'di = P(pr)'dy + ((pr) — ¥(pr)) ds

(pr)'di + (¢(pr) — ¢(pk))’ak by the definition of d,

(pr)'di + (P (pr) — ¥ (pr)) (i — dy) (EC.26)
Hence (EC.25) and (EC.26) together imply

Z(pr1) < Z(r) + e (Pr) di + ex (9 (pr) — (i) (e — di) + Z%aQVQZ(Pk +Operdy)dy
Let F; be the filtration generated by py,...,pr. We then have

E[Z(prs1)|Fi] < Z(pr) + et (pr) di + e E[(¥(pr) — ¥(pr)) (di — di )| Fi]

2 ~ ~ ~
n %E[d;VQZ(pk + Orendy )i Fi (EC.27)
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We analyze (EC.27) term by term. First, since Z(p) is a high-dimensional polynomial and U is
a bounded set, the largest eigenvalue of the Hessian matrix V2Z(p), for any p € U, is uniformly

bounded by a constant H > 0. Hence
E[d, V2 Z(py, + Operdy)dy| Fi] < HE[||dy |2 Fi] <V < o0 (EC.28)
for some V > 0. Now

E[(4(pr) — ¢ (px)) (di — dy,) | Fi] (EC.29)

< \/E[Hzﬁ(pk) —(pw)|2IFJE]|dr — di||2|F:] by Cauchy-Schwarz inequality

< \/E[W(pk)—¢(Pk)|!2lfk]E[2(HdkH2+ Idx®)|F,] by parallelogram law

\/SmE[Htﬁ(pk) — (P21 F]  since [di])?,||dxl|* < 2m by using the fact that pe,a(pr), a(pr) € P

IN

SmM?2T > 1—pj.;
- Ry, — p?;,j

%,

ImTN
< M|t (EC.30)
Rj, min; ; Prj

Note that by iterating the update rule (1 — €, )px + €1.9x, we have

by Lemma 1

k—1
minpj; > [J(1-¢;)0

Jj=1

where § = min, ; p} ; > 0. We thus have (EC.30) less than or equal to

8mTN &
SE. H —1/2 (EC.31)

Therefore, noting that ¥ (px)'dx <0 by the definition of di, from (EC.27) we have

8mTN €2V
E[Z(pri1) — Z(pi)| Fi] < exM H R (EC.32)
and hence
N SmTN o2
ZE[E[Z(Pk+1) Z(pr)|Fi) " <M\/72 H 1—¢;) 1/2+Z BV
k=1

By Assumptions 1 and 2, and Lemma EC.1 (depicted after this proof), we have Z(p;.) converge to

an integrable random variable.
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Now take expectation on (EC.27) further to get

E[Z(pin1)] < E[Z(pi)) + exE[Yp(pr)'di] + e B[(v(pi) — ¥ (pr)) (di — dy)]

2
€% in) A
+ EkE[dkvzz(pk + ekfkdk)dk]

and telescope to get

E[Z(pri1)] < E[Z(pl)]JrZ Y(p;)'d;] Z —(p;))'(d; — d;)]
+2 ;?E[‘A#VQZ(PJ +0;6;d;)d;] (EC.33)

Now take the limit on both sides of (EC.33). Note that E[Z(py+1)] = E[Z] for some integrable
Z, by dominated convergence theorem. Also Z(p;) < oo, and by (EC.28) and (EC.31) respectively,

we have
k 2 00
. € - - eV
Jim 3 EJE[d;VZ(pj +6;€;d; Z 5 <
J: :

and

lim S 6 Bl ()~ $(p,) (4 M\/WNZ Hl—e )2 < o0

j=1
Therefore, from (EC.33), and since E[¢(p;)'d;] <0, we must have Zle ¢;El(p;)'d;] converges
a.s., which implies that limsup,_, . E[¢(px)'di] = 0. So there exists a subsequence k; such that
lim;_, oo E[p(p,;)'dr,] = 0. This in turn implies that ¥ (py,) dx, 2 0. Then, there exists a further
subsequence [; such that +(p;,)'d;, — 0 a.s..

Consider part 1 of the theorem. Let S* = {p € P: g(p) = 0}. Since g(-) is continuous, we have
D(py,,S*) — 0 a.s.. Since Z(-) is continuous, we have D(Z(p;,),Z2*) — 0 a.s.. But since we have
proven that Z(py) converges a.s., we have D(Z(py), Z2*) — 0 a.s.. This gives part 1 of the theorem.

Now consider part 2. By Assumption 3, since p* is the only p such that g(p) =0 and g(-) is
continuous, we must have p;, — p* a.s.. Since Z(-) is continuous, we have Z(p;,) — Z(p*). But
since Z(py) converges a.s. as shown above, we must have Z(py) — Z(p*). Then by Assumption 3

again, since p* is the unique optimizer, we have p; — p* a.s.. This concludes part 2 of the theorem.
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LEmMA EC.1 (Adapted from Blum (1954)). Consider a sequence of integrable random vari-

able Y, k=1,2,.... Let F;, be the filtration generated by Yy,...,Y,. Assume
> EBIE[Yin — Yil Rl T <00
k=1

where x* denotes the positive part of x, i.e. xt =z if t >0 and 0 if © < 0. Moreover, assume
that Yy is bounded uniformly from above. Then Y, — Y, a.s., where Y, is an integrable random

variable.

The lemma follows from Blum (1954), with the additional conclusion that Y, is integrable, which

is a direct consequence of the martingale convergence theorem.

THEOREM EC.1 (Conditions in Theorem 5). Conditions 1-9 needed in Theorem 5 are:

1.
AKMTm KLY
k’o Z 2@ +
212 cT
2.
2KLY  2a0K 20K LYo o 2K1?
—(1- - anzve e 2l o
( cT 027%()) v etk ™ + kg + c2r2 —
3.
2KLY 2Kv
<1
cT 212
4.
a 1_2KL19_2K1/ <1
ko cT 272
5.
ko > ap
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6.
B> pa+2vy+2
7.
o M>TN 1
H (1_6.7)_1 2 1
ey 920b (B —pa—1)(ko—1)5~
ko—1
M |8mTN 1
+ 1—e€. -1/277 <e
=) N = Gz =7 00—

where N =3%"" n' is the total count of all support points.
8. K >0 is a constant such that |x'V*Z(p)y| < K|x|||lyll for any z,y € R™ and p € A (which

must exist because Z(-) is a polynomial defined over a bounded set).

Proof of Theorem 5 We adopt the notation as in the proof of Theorem 4. In addition, for
convenience, we write ¥, =¥ (px), Tﬁk = lZJ(Pk)a ar =d(Pr), Ax =a(Pr), gr = 9(Pr) = —P(Px)'dy,
VZ,=VZ(pi), and V2Z, = V2Z(ps). Note that pry1 = pr + €xdy.

First, by the proof of Theorem 4, given any v and ko, almost surely there must exists a ko > ko
such that g, <wv. If the optimal solution is reached and is kept there, then g, =0 from thereon
and the algorithm reaches and remains at optimum at finite time, hence there is nothing to prove.
So let us assume that 0 < g, < v. Moreover, let us assume that v is chosen small enough so that
for any p with g(p) <v and p > 0, we have 1(p) € Na_y(1p(p*)) (which can be done since g(-) is
assumed continuous by Assumption 3 and t(p) is continuous for any p > 0 by the construction in
Theorem 3).

We consider the event
o0 o0
e=J&auvlJe&
k=ko k=ko

where

Ex = {Ilvb — il > 9}
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and
= {1 — w0 (@A =) > -}

Note that by the Markov inequality,

P(&) <

E”"/’k_"pknz M2Tzl_p;‘~"j < M?*TN kil(l_e_)—l
92 — 2R, p;w — V2RL0 e J

where the second inequality follows from Lemma 1 and the last inequality follows as in the deriva-

tion in (EC.30) and (EC.31). On the other hand, we have

VE| (¢, — ) (dy — d "M TN %
Py < M EIWeZ ) (demd)| K 8m H —1/2 (EC.34)
0 0 e
by following the derivation in (EC.30) and (EC.31). Therefore,
Z P(&)+ Z P(&)
k=kq k=kq
(o'} k—1
M?TN 1 1y M /8mTN "
=925 ZEH(l_Eﬂ Z —€5)
k=k j=1
ot M?TN 1 -1 M [8SmTN -
~Tl0-ar [u-e [To-o 322 5 2 TTo-
j=1 920 = ng ko k=kq =kq
(EC.35)

Now recall that €, = a/k. Using the fact that 1 —x >e™* for any 0 <z <(p—1)/p and p> 1, we

have, for any

or equivalently

we have

a
l—e=1——>¢ Pk
€k L=

Hence choosing kg satisfying Condition 5, we get

k—1 a
o E—1\"
[Ta-e)t<e The Vi< (> (EC.36)

Jj=ko Fo—1

—1/2
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Therefore, picking R, = bk® and using (EC.36), we have (EC.35) bounded from above by

ko—1 ko—1
M TN 1 1/2M 8mT N
jli[l (1- 61) 9258b = (k:o — 1)pak;ﬁ pa + H \/7 Z kO 1 pa/Qk(b’ pa)/2—y
M?*TN 1
< 1—e) !
~ jli[l( 6]) ,1925b (ﬂ_pa_l)(ko_l)ﬂ_l
ko—1
M TN 1
+ H a2 (BC.37)

((B=pa)/2=~—=1)(ky—1)7/2~1
if Cond1t10n 6 holds. Then Condition 7 guarantees that P(£) <e

The rest of the proof will show that under the event £°, we must have the bound (26), hence
concluding the theorem. To this end, we first set up a recursive representation of g,. Consider
Jk+1 = —¢2+1dk+1 = —¢2+1(Qk+1 —Pkt1)
= =P (Wet1 — Prr1) + (Y — Yri1) (A1 — Prsa)
= =Y (de+1 = Pr) + Y (Prs1 — Pr) + (W — Yr1) (A1 — Prtr)
<gr+ eklﬁ;ak + (Yr —Y111)'diy1 by the definition of gy, d, and dyi
< gk — exgi + ex(hr — 1) (di — di)) + (5 — 1)'diys by (EC.26)
=(1—e)gs+ (VZi =V Z4i1) diyr + (P — i) (dy, — dy) (EC.38)
Now since VZ(-) is continuously differentiable, we have VZ,,1 =VZ, + ¢,V?Z(pi + ék&k)ak for
some 6, between 0 and 1. Therefore (EC.38) is equal to
(1—€x)gr — €kaLVQZ(Pk + ékak)dk-i-l + 6k(¢k =) (dy, - ak)
< (1= e)gi + e K || di || diall + €x(vbr — 41)'(di —di) by Condition 8
< (L= en)gn+ e[| el dns |+ en [l de — dilllldusall + e (e — 1) (de — i)
by the triangle inequality

S (1 —ek)gk—i-ekK Ik 1 +6kKLH’lZJk ’(,ka Ir+1 +6k( ’(,bk)/(dk. —Elk)

Al ebe |||l ¢l Pl
by using Assumption 4 with the fact that g, < v and hence ¥y, 9, € Na(p(p*)), and also
Assumption 5. The fact g, <v will be proved later by induction.

K KL, - « , .
< (I—er)gr + € 229Kk + €k?”¢k — Y|\ grr1 + €x (VY — i) (dy — dy) (EC.39)

by Assumption 6
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Now under the event £, and noting that e = a/k, (EC.39) implies that

<(1_C aK aK LY ap
k1 < ( - E) gk + poscy R LIS + “orfe Ikt + pRE=

or

1 aK aK LY <<1 a) n ag
eI ok )= k) IET i

We claim that |gx| = |, dx| <4MTm, which can be seen by writing

0) = Balh(0s}(X)) = 3 B [0 T 1 )

=D Ep[h(X)| X, = yj] = T'Ep[h(X)] (EC.40)

so that [¢!(p)| <2MT"* for any p and i. Using this and the fact that 1/(1 —z) <1+ 2z for any

0 <x<1/2, we have, for
4aKMTm oKLY <

1
— EC.41
A2k * ctk T2 ( )
we must have
2a K 2a K LY a ap
s (14 Zo ) (- ) ovs 58) (ECA42)
Note that (EC.41) holds if
AKMTm KLY
k> 2a > +
2T cT
which is Condition 1 in the theorem. Now (EC.42) can be written as
(1 ¢ 20K LY  2a’°Kp ao  2a°KLYo 2a°KLY 20K LY 2
Jrr1 =\ 17 k * ctk A2kt Ik kit etk cerk? Ik 22k ( B E) I
a 2aKLY 2a°Kp ao  2a°KLYp 2aK ay o
= <1 A ctk 02721{2*7) Ik ko ekt c2r2k < B %) Ik (EC.43)

We argue that under Condition 2, we must have g, < v for all k > ky. This can be seen by induction
using (EC.43). By our setting at the beginning of this proof we have g, <v. Suppose g, <v for

some k. We then have

2 2
Gias < (1_Z+2aKL19 2a*K o >V ap 2a°KIL99 2aK ( a)y2

ctk A2k kit Tkt ek k
P _1+2KL19 2aK o Lo 20K LYo 2Kv?
- k cT 22+ ki~ erky™ 272

<v (EC.44)
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by Condition 2. This concludes our claim.

Given that g, <v for all k> kq, (EC.42) implies that

a 2K LY 20°KLY 2aKv a ao a’o (2Kv 2KLY
gen<(1-%(1- - o (1-2) ) e+ +

cT ctk? 212k k kit o Ry \ 272 cT
< a(, 2KLY 2Kv ao a’o (2Kv 2KLY
Uk er e 9r ¥ kit * k2 \ 272 + cT
C G
< <1 - k) 95+ 1 (EC.45)
where
c—al1- 2K LY B 2Kv
cT 212
and

G:CLQ—F?O

212 cT

a’o <2K1/ 2KL19>

Now note that Conditions 3 and 4 imply C' >0 and 1 — C/k > 0 respectively. By recursing the

relation (EC.45), we get

k k k
() L0 5

i=ko j=ko i=j+1
—Cxk 1/ . eyt i G
<e i=ko M g+ Z e i=j+1 s
J=ko
ko \© Eir1NC @
< Gro T Z k1 T
k+1 k+1) 41t
J=ko
1 .
. .| TE f0<y<C
ko 1
< 1+ — G 1 .
B <k+ 1) o ¥ < " k‘o) *\ Trom-ewEe $r>0C
log(k/(ko—1)) A
R N SR

which gives (26). This concludes the proof.

Proof of Corollary 1 We use the notations in the proof of Theorem 5. Our analysis starts from

(EC.25), namely

2
- €4 A ~A A
Zii1 = Zy + epPdy + fd;fVQZ(Pk + O exdy)dy,
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for some 6, between 0 and 1. Using the fact that Ip;&k > ), dy by the definition of d, we have
2
’ €k T\
L1 > Zy + e dy + gkdeQZ(pk + Orerdy)dy,
2
€ ~, AA
=Z) — €xgk + Ekdkvzz(pk + Oerdy)dy,

Now, using (26), Condition 8 in Theorem 5 and ||d |2 < 2, we have

W ifo<y<C
A >
Zyy1 > Z — € el + B x (770)(]60;)77%0 if y>C — K

log((k=1)/(ho=1)) if o — (0

G ifo<y<C
2
— 7 — k‘f% —aBx{ b iy C - akf( (EC.46)
log((kfki)Jr/c(ykofl)) ify=C
Now iterating (EC.46) from k to [, we have
o o Y e ifo<y<C -
4253 iz — B e S e >0 (—PKY
SU U iy
and letting [ — oo, we get
N ©o) 2k 7T if0<y<C N
75> 7, — ; j‘ffc —aBxQ el T iy > O - dﬁ(; 312 (EC.47)

Z‘X’ log((—=1)/(ko—1)) ify=C

j=k j1+C

where the convergence to Z* is guaranteed by Theorem 4. Note that (EC.47) implies that

) m ifo<y<C -
7> 7, — ﬁ —aB x c—oGncen—e E7>C - ;j_ 1
W ify=C
i . m if0<y<C
S (k—1)° FX s neeae 7> C
W ify=C

where D =a*K, E=aA/C and F =aB. This gives (28).
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Proof of Lemma 2 Consider first a fixed a. When a(1 —w) > 1, (29) reduces to % A ﬁ

B—pa—(=2 4
2(B+1)

ﬁ is decreasing in §, the maximizer of 2=£2==2 A _L_ occurs

Since 2(8+1) B+1

s increasing in 8 and
at the intersection of % and ﬁ, which is 8 = pa + ¢ + 4. The associated value of (29) is

1
pa+(C+5°

When a(1 —w) <1, (29) reduces to “(ﬁl:’ N ;fg;f; 2. By a similar argument, the maximizer is

B=a(2—2w+ p)+(+2, with the value of (29) equal to m
Thus, overall, given a, the optimal choice of § is f=pa+ (+2+2((a(l —w)) A1), with the

which is

value of (29) given by (a(l-w)) Al 5- When a(l —w) > 1, the value of (29) is

1
pa+¢+3+2((a(l—w))Al pa+C+5

decreasing in a, whereas when a(1 —w) <1, the value of (29) is - all—w)

m which is increasing

in a. Thus the maximum occurs when a(1 —w) =1, or a = ——. The associated value of (29) is

l-w’
-1
P/ (—w)+CF5"

REMARK EC.1. Suppose that Assumption 4 is replaced by letting

[v(&) = v(&)l < L& — &

hold for any &;,&, € RY. Then, in the proof of Theorem 5, the inequality (EC.34) can be replaced
by

< FE|( —)' (di — dy)|
B o

kY - X
< Q\/E[Hwk — 4 ||?|E[|ldx — di||?] by the Cauchy-Schwarz inequality

P(&)

KL -
< TE[Hzpk —.||?] by the relaxed Assumption 4
LM?*TNE
< LMTTNEY [J(1=¢)™" by following the derivation in (EC.30) and (EC.31)
RkQ(S =1

Consequently, equation (EC.37) becomes
ko—1

L MPTN 1 L
[[a-o= (192(6 ~pa— D)o~ 1P 1 g(B 7~ pa— 1) (ko - 1)5“>

j=1

if Condition 6 is replaced by

B>v+pa+1
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Correspondingly, Condition 7 needs to be replaced by
ko—1

 M?TN 1 L
L= (Wﬁ—pa— ko — D1 @(5—7—1)@-1)(%—1)‘9‘”‘1) N

Jj=1

The results in Theorem 5 and Corollary 1 then retain. Under these modified Conditions 6 and
7, discussion point 3(b) in Section 6.2 then gives =~ + pa + 1 + ¢ for some ¢ >0 and v =
B8 — pa — ¢ — 1. In discussion point 4, the convergence rate in terms of replications becomes

1/W((“(1_W))/\(6_/Ja_<_1)/\1)/(B+1) By maleIZlng

(a(l=w)A(B—pa—C—1)A1
B+1

(EC.48)

like in (29) by Lemma 2 (see Lemma EC.2 right after this remark), we get

1
a=——, =1L 4¢+2
1—w 1—w

and the optimal value is

1
p/(l-w)+(¢+3

So, following the argument there, we choose ¢ and v, and hence w, to be small, and we choose p
to be close to 1. This gives rise to the approximate choice that a ~1+w and S~ 3+ ( +w. The
convergence rate is then O(W~Y/(+¢+)) Jeading to our claim in Section 6.2 that the complexity

can improve to O(1/e*T¢%) if Assumption 4 is relaxed.

LEMMA EC.2. The mazimizer of (EC.48) is given by

1
a=1——, B=1—+(+2
1l-—w
and the optimal value is

1
p/(l=w)+(¢+3

Proof of Lemma EC.2 Consider first a fixed a. When a(l — w) > 1, (EC.48) reduces to

Bopa—¢1 A L Gince £=£2=¢=1 i5 increasing in S and ﬁ

A1 Al 511 is decreasing in 3, the maximizer of
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B—pa—(=1 o _1_ : : B—pa—(—1 1 bl e B —
5 /\ g7 occurs at the intersection of 511 and S which is 8 = pa + ¢ + 2. The asso-

. . 1
ciated value of (EC.48) is .

When a(1 —w) <1, (EC.48) reduces to a(ﬁtlw N _”B“Jr_f_l. By a similar argument, the maximizer

is f=a(l—w+p)++1, with the value of (EC.48) equal to %
Thus, overall, given a, the optimal choice of 5 is f=pa+(+ 1+ (a(l —w)) A1, with the value

which is

of (EC.48) given by (a(1—w))Al When a(1 —w) > 1, the value of (EC.48) is

1
pa+C+2+(a(l—w))AL " pa+C+3

a(l—w)

m which is mcreasing

decreasing in a, whereas when a(1 —w) <1, the value of (29) is

in a. Thus the maximum occurs when a(l —w) =1, or a = ——. The associated value of (EC.48) is

l1—w”

1
p/(1—w)+(+3°

EC.2. Additional Details of the Numerical Results
EC.2.1. Multi-start Initialization

The results in Section 7.1 are implemented with an initialization that assigns equal probabilities
to the support points. To test the procedure under different initializations, we repeat ten runs of
the FWSA algorithm where the initial probability masses for the support points (held constant
for all runs) are sampled uniformly independently with appropriate normalization. Figure EC.1
provides a box-plot of the identified optima. The sample size for moment constraint generation is
N, =50 and the discretization support size is n = 30. The returned optimal solutions for each of
the minimization and maximization formulations all agree up to the first two digits (the box plot
shows the small spread of the max values, while the min values are very clustered and they appear
to all overlap at the same point). This indicates that the formulations have a unique global optimal
solution or similar local optimal solutions. Note that the bounds generated from this setting are

quite loose with a small V.

EC.2.2. Details of the Benchmark Steady-State Formulation in Section 7.2

We consider the depicted Z(p) in Section 7.2. As T grows, the average waiting time converges to

the corresponding steady-state value, which, when the traffic intensity p, = E,[X,] is less than 1,
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. +ﬂ+

0 5 10 15 20
Weighed Average Waiting Time

* min

Figure EC.1 Returned optimal solutions from 10 runs on n = 30, M = 50, exponential for discretization

is given in closed form by the Pollaczek-Khinchine formula (Khintchine (1932)) as:

ppEp[X1] 4+ Vary(Xy)

Zoo(p) = 2(1 - pp)

So, when T is large, an approximation Z* to the worst-case performance estimate can be obtained
by replacing Z(p) with Z,(p). (In experiments, a choice of T'= 500 seems to show close agree-
ment.) With Ep[Xi] = > p;y; and E [X7] = > p,y;, the steady-state approximation to (32) is
given by (SS) below, which is equivalent to (SS’) via variable substitutions (see p.191 in Boyd

and Vandenberghe (2009)):
: 2 SS/
S (5%)
s.t. Zw]— log (twj ) <nt
; Pv.j g
: 2 -2 wjy; =1
> pi=1 ’
j ij —y
J

0<p; <1, Vj=1,....,n

> PiY7
P 2(1-2,p95) (89)

0<w;<t VYj=1,...,n
EC.2.3. Shape of the Obtained Optimal Distributions in Section 7.2

Continuing with the example in Section 7.2, Figure EC.2 shows the form of the optimal distributions
p* identified by the FWSA algorithm for the minimization (Figure EC.2a) and maximization
(Figure EC.2b) problems under (32). The optimal distributions follow a similar bimodal structure
as the baseline distribution p,. The maximization version assigns probability masses in an unequal

manner to the two modes in order to drive up both the mean and the variance of p, as (SS)
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(in Appendix EC.2.2) leads us to expect, whereas the minimization version on the other hand
makes the mass allocation more equal in order to minimize the mean and the variance of p while

maintaining the maximum allowed KL divergence.

T T T T T T T T T T T
0.02 - = 0.02 - =
: :
= =
= =
3 ]
] @
e €
2 0.01 - = S 0.01 - =
0 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Distribution Support Distribution Support
(a) (min) p, from beta-mixture (b) (max) p, from beta-mixture

Figure EC.2 Optimal solutions p* identified by the FWSA algorithm with n =100 and n = 0.05, setting a =

1.5,8 =2.75. The gray bars represent the baseline p.m.f. py.



