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Abstract

Tuning parameter selection is of critical importance for kernel ridge regression. To this

date, data driven tuning method for divide-and-conquer kernel ridge regression (d-KRR)

has been lacking in the literature, which limits the applicability of d-KRR for large data

sets. In this paper, by modifying the Generalized Cross-validation (GCV, Wahba, 1990)

score, we propose a distributed Generalized Cross-Validation (dGCV) as a data-driven

tool for selecting the tuning parameters in d-KRR. Not only the proposed dGCV is

computationally scalable for massive data sets, it is also shown, under mild conditions, to

be asymptotically optimal in the sense that minimizing the dGCV score is equivalent to

minimizing the true global conditional empirical loss of the averaged function estimator,

extending the existing optimality results of GCV to the divide-and-conquer framework.

1 Introduction

Massive data made available in various research areas have imposed new challenges for

data scientists. With a large to massive sample size, many sophisticated statistical tools

are no longer applicable simply due to formidable computational costs and/or memory
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requirements. Even when the computation is possible on more advanced machines, it is

still appealing to develop accurate statistical procedures at much lower computational

costs. The divide-and-conquer strategy has become a popular tool for regression models.

With carefully designed algorithms, such a strategy has proven to be effective in Linear

models (Chen and Xie, 2014; Lu et al., 2016), Partially linear models (Zhao et al., 2016)

and Nonparametric regression models (Zhang et al., 2015; Lin et al., 2017; Shang and

Cheng, 2017; Guo et al., 2017). In this paper, we shall focus on the divide-and-conquer

kernel ridge regression (d-KRR) where the selection of the penalty parameter is of vital

importance but still remains unsettled.

Suppose we have independent and identically distributed samples {(xi, yi) ∈ X ×
R}i=1,...N from a joint probability measure PY,X . The goal is to study the association

between the covariate vector xi and the response yi through the following model

yi = f0(xi) + εi, i = 1, . . . , N, (1)

where f0(·) : X → R is the function of interest and εi is a random error term with mean

zero and a common variance σ2. One popular method to estimate f0(·) is the Kernel

Ridge Regression (Shawe-Taylor and Cristianini, 2004) which essentially aims at finding

a projection of f0(·) into a reproducing kernel Hilbert space (RKHS), denoted as H,

equipped with a norm ‖ · ‖H. Specifically, the KRR estimator is then defined as

f̂ = arg min
f∈H

{
1

N

N∑
i=1

(yi − f(xi))
2 + λ‖f‖2

H

}
, (2)

where λ ≥ 0 controls trade-off between goodness-of-fit and smoothness of f .

It is well known that computing f̂ requires O(N3) floating operations and O(N2)

memory; see (5) for more details. When N is large, such requirements can be

prohibitive. To overcome this, Zhang et al. (2015) proposed the following “divide-

and-conquer” algorithm: (i) Randomly divide the entire sample {(x1, y1), . . . , (xN , yN)}
to m disjoint “smaller” subsets, denoted by S1, . . . , Sm; (ii) For each subset Sk, find

f̂k = arg minf∈H

{
1
nk

∑
i∈Sk(yi − f(xi))

2 + λ‖f‖2
H

}
, where nk is the size of Sk; (iii) The

final nonparametric estimator is given by

f̄(x) =
1

m

m∑
k=1

f̂k(x). (3)

Such a “divide-and-conquer” strategy reduces computing time from O(N3) to O(N3/m2)

and memory usage from O(N2) to O(N2/m2). Both savings may be substantial as m

grows. Furthermore, Zhang et al. (2015) shows that as long as m does not grow too

fast, the averaged estimator f̄ achieves the same minimax optimal estimation rate as

the oracle estimate f̂ , i.e., (2), that utilizes all data points at once. In this sense, the

divide-and-conquer algorithm is quite appealing as it achieves an ideal balance between
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the computational cost and the statistical efficiency.

However, the aforementioned statistical efficiency depends critically on a careful

choice of tuning parameter λ in all sub-samples. The optimal choice of tuning parameter

λ has been well studied for KRR when the entire data set can be fitted at once. Examples

include Mallow’s CP (Mallows, 2000), Generalized cross-validation (GCV, Craven and

Wahba, 1978) and Generalized approximated cross-validation (Xiang and Wahba, 1996).

However, if we naively apply these traditional tuning methods in each sub-sample to pick

an optimal λk in the above step (ii), the averaged function estimator f̄ subsequently

obtained using (3) will be sub-optimal. As pointed out by existing literature (e.g.

Zhang et al., 2015; Blanchard and Mücke, 2016; Chang et al., 2017), the optimal tuning

parameter should be chosen in accordance with the order of the entire sample size, i.e.,

N , such that we intentionally allow the resulting sub-estimator f̂k to over-fit the sub-

sample Sk for each k = 1, . . . ,m. Based on the order of the optimal choice of λ, Zhang

et al. (2015) proposed a heuristic data-driven approach to empirically choose an optimal

λ. However, the theoretical properties of this approach remain unclear. In this paper,

we define a new data-driven criterion named “distributed generalized cross-validation”

(dGCV) to choose tuning parameters for KRR under the divide-and-conquer framework.

The computational cost of the proposed criterion remains the same as O(N3/m2). More

importantly, we show that the proposed method enjoys similar theoretical optimality as

the well-known GCV criterion (Craven and Wahba, 1978) in the sense that the resulting

divide-and-conquer estimate minimizes the true empirical loss function asymptotically.

The rest of paper are organized as follows. Section 2 introduces background on kernel

ridge regression. Section 3 presents the main result of this paper on the dGCV, while

Section 4 gives statistical guarantee for this new tuning procedure. Our method and

theory are backed up by extensive simulation studies in Sections 5, and are applied to

the Million Song Dataset in Section 6, demonstrating significant advantages over Zhang

et al. (2015). All technical proofs are postponed to the Appendix.

2 Kernel Ridge Regression Estimation

In this section, we briefly review kernel ridge regression (Shawe-Taylor and Cristianini,

2004). The reproducing kernel Hilbert space, denoted as H, is a Hilbert space induced

by a symmetric nonnegative definite kernel function K(·, ·) : X × X → R and an inner

product 〈·, ·〉H satisfying

〈g(·), K(x, ·)〉H = g(x) for any g ∈ H.

The kernel function K(·, ·) is called the reproducing kernel of the Hilbert space H
equipped with the norm ‖g‖H =

√
〈g(·), g(·)〉H. Using the Mercer’s theorem, under

some regularity conditions, the kernel function K(·, ·) possesses the expansion K(x, z) =
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∑∞
j=1 µjψj(x)ψj(z), where µ1 ≥ µ2 ≥ . . . is a sequence of decreasing eigenvalues and

{ψ1(·), ψ2(·), . . . } is a family of orthonormal basis functions of L2(PX). The smoothness

of g ∈ H is characterized by the decaying rate of the eigenvalues {µj}∞j=1. There are

three types of estimation considered in this paper, including smoothing spline (Wahba,

1990) as a special case.

Finite rank: There exists some integer r such that µj = 0 for j > r. For example,

with vectors x, z, the polynomial kernel K(x, z) = (1 + xTz)r has a finite rank r + 1,

and induces a space of polynomial functions with degree at most r. This corresponds to

the parametric ridge regression.

Exponentially decaying: There exist some α, r > 0 such that µj � exp(−αjr).
Exponentially decaying kernels include the multivariate Gaussian kernel K(x, z) =

exp(−‖x − z‖2
2/φ

2), where φ > 0 is the scale parameter and ‖ · ‖2 is the Euclidean

norm.

Polynomially decaying: There exists some r > 0 such that µj � j−2r. The

polynomially decaying class includes many smoothing spline kernels of the Sobolev space

(Wahba, 1990). For example, kernel function K(x, z) = 1+min(x, z) induces the Sobolev

space of Lipschitz functions with smoothness ν = 1 and has polynomially decaying

eigenvalues.

2.1 The Representer Theorem

With observed data, using the representer theorem (Wahba, 1990), it can be shown that

the solution to the minimization problem (2) takes the following form

f̂(x) =
N∑
i=1

βiK(xi,x), (4)

where β1, . . . , βN ∈ R. Furthermore, based on the observed sample, the parameter vector

β = (β1, . . . βN)T can be estimated by minimizing the following criterion

1

N
(Y − βTK)T (Y − βTK) + λβTKβ, (5)

where Y = (y1, . . . , yN)T and K = [K(xi,xj)]i,j=1,...,N . The solution to (5) takes the

form of β̂ = (K +NλIN)−1Y, which requires O(N3) operations.

We next apply the above idea to sub-estimation. Denote (y1,x1), . . . , (ym,xm)

as a random partition of the entire data with yk = (yk,1, . . . , yk,nk)
T and xk =

(xk,1, . . . ,xk,nk)
T . Define vectors fk = (f0(xk,1), . . . , f0(xk,nk))

T and εk = yk − fk.

Define the sub-kernel matrices Kkl = [K(xi,xj)]i∈Sk,j∈Sl for l, k = 1, . . . ,m. It is

straightforward to show that the minimizer of (5) with K replaced by Kkk is of the form
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β̂k = (Kkk + nkλIk)
−1yk, and the individual function estimator f̂k(x) can be written as

f̂k(x) =
∑
i∈Sk

β̂k,iK(xi,x), (6)

where β̂k,i is the entry of β̂k corresponding to xk,i, k = 1, . . . ,m.

2.2 Kernel Ridge Regression for Multivariate Functions

In principle, any multivariate function f0(x) in (1), i.e., x ∈ Rp, can be well approximated

if a sufficiently good reproducing kernel K(·, ·) can be identified. However, for a

large p, the excessive risk of the KRR estimator may grow exponentially fast as the

dimension p increases (Györfi et al., 2006), which is often referred to as the “curse

of dimensionality”. One common strategy is to impose some special structures on

the reproducing kernel. For example, the polynomial kernel K(x, z) = (1 + xTz)r

assumes that K(·, ·) depends only on the inner product of x and z and the multivariate

Gaussian kernel K(x, z) = exp(−‖x − z‖2
2/φ

2) assumes that K(·, ·) is determined by

the Euclidean distance between vectors x and z. More sophisticated applications of

Gaussian kernels may also allow the scale parameter φ to vary for different dimensions.

Another popular approach to circumvent the “curse of dimensionality” is to use additive

approximation (Hastie, 2017; Kandasamy and Yu, 2016) to multivariate functions. Let

x = (x1, x2, ·, xp)T , and define the first-order additive approximation of f(x) as

f ∗(x) = f ∗1 (x1) + · · ·+ f ∗p (xp), (7)

where each f ∗j (·) is a univariate function residing in a reproducing kernel Hilbert space

Hk with a reproducing kernel Kj(·, ·), j = 1, · · · , p. The corresponding additive kernel

can be defined as K(x, z) =
∑p

j=1 Kj(xj, zj), and the associated reproducing kernel

Hilbert space is H = H1

⊕
H2

⊕
· · ·
⊕
Hp. For some applications where the first

order approximation (7) is not adequate, higher order additive approximations to the

multivariate function f(x) can be used to achieve better estimation accuracies at similar

computational costs, see Kandasamy and Yu (2016) for more detailed discussions.

3 Tuning Parameter Selection

3.1 Sub-GCV Score: Local Optimality

In this section, we define the GCV score for each sub-estimation, named as sub-GCV

score, and discuss its theoretical property. Define the empirical loss function for f̂k as

follows

Lk(λ|xk) =
1

nk

∑
i∈Sk

wi

{
f̂k(xi)− f0(xi)

}2

, (8)
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where wi ≥ 0 is some weight assigned to each observation (yi, xi) and satisfies
∑

i∈Sk wi =

nk. The introduction of weights in (8) helps reducing computational cost; see Section 3.4.

The tuning parameter λ is referred to as “locally optimal” if it only minimizes local

empirical loss Lk(λ|xk). When only focused on a single sub-data set, such a “locally-

optimal” choice of tuning parameter λ has been well studied in (Craven and Wahba,

1978; Li, 1986; Gu, 2013; Wood, 2004; Gu and Ma, 2005; Xu and Huang, 2012), among

which the Generalized Cross-Validation (Craven and Wahba, 1978) remains to be one

of the most popular approaches.

Using the function estimator f̂k(x), the predicted values for the vector yk can be

written as ŷk = Akk(λ)yk, where Akk(λ) = Kkk(Kkk + nkλIk)
−1. Here the matrix

Akk(λ) is often known as the hat matrix. Using the above notations, the sub-GCV score

is defined as

GCVk(λ) =
n−1
k (ŷk − yk)

TWk(ŷk − yk)

{1 + n−1
k tr{Akk(λ)Wk}}2

, (9)

where Wk = diag{wi, i ∈ Sk}, k = 1, . . . ,m. It is well known that GCVk(λ) enjoys

appealing asymptotic properties. For example, under mild conditions, Gu (2013) showed

that, as nk →∞,

GCVk(λ)− Lk(λ|xk)−
1

nk
εTkWkεk = oPε{Lk(λ|xk)},

k = 1, . . . ,m. This property essentially asserts that, minimizing GCVk(λ) with respect

to λ is asymptotically equivalently to minimizing the local “golden criterion” Lk(λ|xk).

3.2 Local-Optimality v.s. Global-Optimality

In this section, we explain why the use of GCVk(λ) in each subsample does not lead to

an optimal averaged estimate f̄ . We first derive conditional risks for both f̂k and f̄ . For

the former, some basic algebra yields that the conditional risk Rk(λ|xk) = Eε {Lk(λ|xk)}
is of the form

Rk(λ|xk) =
1

nk

∑
i∈Sk

wiVarε

{
f̂k(xi)

}
+

1

nk

∑
i∈Sk

wi

{
Eεf̂k(xi)− f0(xi)

}2

, (10)

where the expectation is taken with respect to the probability measure Pε. As for the

latter, we first define the empirical loss function of f̄ as

L̄(λ|X) =
1

N

N∑
i=1

wi{f̄(xi)− f0(xi)}2, (11)

where X = (x1, . . . ,xm) denotes the collection of all covariates and wi ≥ 0 are

the associated weights with observation i such that
∑N

i=1wi = N . Similarly, the
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corresponding conditional risk R̄(λ|X) = Eε{L̄(λ|X)} has the following form

R̄(λ|X) =
1

N

N∑
i=1

wi

[
1

m

m∑
k=1

{
Eεf̂k(xi)− f0(xi)

}]2

+
1

m2N

m∑
k=1

N∑
i=1

wiVarε

{
f̂k(xi)

}
. (12)

The form of (10) illustrates that, roughly speaking, a “locally optimal” choice of λ

(that minimizes (8)) tries to strike a good balance of variance and bias for each sub-

estimate f̂k. On the contrary, a “globally optimal” λ, which is defined to minimize (11),

puts much less emphasis on the variance of f̂k (by a factor of 1/m) than on the bias of

f̂k; see (12). Consequently, to obtain a “globally optimal” f̄ , one needs to intentionally

choose a “smaller” λ such that each individual function estimator f̂k overfits data set

Sk, which leads to reduced bias Eεf̂k(xi) − f0(xi) and inflated variance Varε

{
f̂k(xi)

}
.

Then by taking f̄ = 1
m

∑m
j=1 f̂j, the variance of f̄ can be effectively reduced by a factor

of 1/m while keeping its bias at the same level as those of individual f̂j’s. The above

risk analysis confirms the heuristics in Zhang et al. (2015).

3.3 Distributed Generalized Cross-Validation

The discussions in Section 3.2 motivate the main result of this paper: distributed GCV

score, denoted by dGCV. This data-driven tool in selecting λ is computationally efficient

for massive data as analyzed in Section 3.4.

Using the solution (6), it is straightforward to show that the predicted values of all

data points yl in the subset Sl using f̂k take the form ŷkl = Aklyk, where Akl(λ) =

KT
kl(Kkk + nkλIk)

−1. Define the pooled vector of responses Y = (yT1 , . . . ,y
T
m)T . Then

the predicted value of Y using the averaged estimator f̄ is of the form

Ŷ =

(
1

m

m∑
k=1

ŷTk1, . . . ,
1

m

m∑
k=1

ŷTkm

)T

= Ām(λ)Y,

where the averaged hat matrix Ām(λ) is defined as follows

Ām(λ) =
1

m


A11(λ) A12(λ) · · · A1m(λ)

A21(λ) A22(λ) · · · A2m(λ)
...

...
. . .

...

Am1(λ) Am2(λ) · · · Amm(λ)

 . (13)

Furthermore, the global conditional risk function (12) can be conveniently re-written as

R̄(λ|X) =
1

N
F T{I− Ām(λ)}TW{I− Ām(λ)}F +

σ2

N
tr
{
ĀT
m(λ)WĀm(λ)

}
, (14)

where vector of true values F = (fT1 , . . . , f
T
m)T and W = diag{w1, . . . , wN}. Obviously

the risk function above cannot be used to select λ in practice since the vector F is
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unknown. Following Gu (2013), we can define an unbiased estimator of R̄(λ|X) + σ2 as

follows

Ū(λ|X) =
1

N
YT{I− Ām(λ)}TW{I− Ām(λ)}Y +

2σ2

N
tr
{
Ām(λ)W

}
. (15)

It is straightforward to show that Eε{Ū(λ|X)} = R̄(λ|X) + σ2. The above Ū(λ|X) can

be viewed as an extension of the Mallow’s CP (Mallows, 2000) to the divide-and-conquer

scenario.

Similar to Gu (2013); Xu and Huang (2012), the Lemma 1 in Section 4 states

that under some mild conditions, minimizing Ū(λ|X) and L̄(λ|X) with respect to λ

is asymptotically equivalent. In this sense, the λ chosen by minimizing Ū(λ|X) is

therefore “globally optimal.” However, a major drawback of Ū(λ|X) is that it utilizes

the knowledge of σ2, which in practice often needs to be estimated. To overcome this,

we propose the following modification of the GCV score

dGCV(λ|X) =
1
N

∑N
i=1 wi

{
yi − f̄(xi)

}2[
1− 1

Nm

∑m
k=1 tr{Akk(λ)Wk}

]2 , (16)

where Wk = diag{wi, i ∈ Sk}. Intuitively, consider σ̃2 = N−1
∑N

i=1wi
{
yi − f̄(xi)

}2
as

an estimator of σ2 and use the fact that (1−x)−2 ≈ 1+2x as x→ 0, the Ū(λ|X) defined

in (15) essentially can be viewed as the first order Taylor expansion of the dGCV(λ|X).

However, in the definition of dGCV(λ|X), it does not require any information of σ2.

Note that dGCV incorporates information across all sub-samples, which explains its

superior empirical performance. In fact, Theorem 1 in Section 4 shows that under some

conditions, minimizing dGCV(λ|X) and the “golden criterion” L̄(λ|X) with respect to

λ are also asymptotically equivalent.

3.4 Computational Complexity of dGCV

The computation of dGCV(λ|X) in (16) for a given λ consists of two parts: the first part

involves computing the trace of individual hat matrices, tr{Akk(λ)Wk}, k = 1, . . . ,m,

which requires O(N3/m2) floating operations and a memory usage of O(N2/m2); the

second part is to evaluate the predicted value of f̄(xi) for which wi 6= 0, which

costs O(NNw) floating operations and a memory usage of O(N), where Nw denotes

the number of nonzero wi’s. Hence, the total computation cost of dGCV(λ|X) is

of the order O(N3/m2 + NNw). In cases when m/
√
N = O(1), one can simply use

w1 = · · · = wN = 1, which results in the computational cost of the order O(N3/m2)

for one evaluation of dGCV(λ|X). This is the same as that of the divide-and-conquer

algorithm proposed in Zhang et al. (2015).

In some applications where m is much larger than
√
N , the computational cost of

dGCV(λ|X) becomes O(NNw). In this case, we may want to only choose m∗ out of m
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sub-data sets for saving computational costs. To achieve that, we need to choose weights

wi’s properly. For example, we can set wi = N/(
∑m∗

k=1 nk) if i ∈ ∪m∗

k=1Sk and wi = 0

otherwise. Under this setting, the dGCV(λ|X) in (16) becomes

dGCV∗(λ|X) =

1
Nm∗

∑
i∈∪m∗

k=1Sk

{
yi − f̄(xi)

}2[
1− 1

mNm∗

∑m∗

k=1 tr{Akk(λ)}
]2 , (17)

where Nm∗ = n1 + · · ·+ nm∗ . Using (17) instead of (16), we only need to evaluate f̄(xi)

for xi’s in m∗ subsets and the computation time is reduced to O(N2m∗/m + N3/m2).

We applied (17) to the Million Song Data set considered in Section 6, which yields good

results in both prediction and computation time.

Optimization of dGCV(λ|X) or dGCV∗(λ|X) can be carried out using a simple

one-dimensional grid search. Since the first and second derivatives of dGCV(λ|X) or

dGCV∗(λ|X) can be easily computed using similar arguments in Wood (2004); Xu and

Huang (2012), it can also be optimized using the Newton-Raphson algorithm with the

same computational costs.

3.5 The Newton-Raphson Implementation

In some applications, not only the penalty parameter λ in (2) needs to be carefully

selected, it is also important to choose other tuning parameters in the kernel function.

For example, the bandwidth parameter φ in the Gaussian kernel K(x, z) = exp(−‖x−
z‖2

2/φ) also plays an important role in the performance of the KRR, as we will illustrate

in the Million Song Dataset in Section 6. In such cases, dGCV can serve as a tool to

choose the optimal tuning parameters θ in the kernel function, as long as conditions C1-

C4 in Section 4.1 are satisfied. One remaining practical issue is that when the dimension

of θ is high, the grid search method for the optimal combination of λ and θ using dGCV

is no longer feasible. Therefore, it is necessary to develop more efficient algorithms such

as the Newton-Raphson type algorithm.

Following Wood (2004), denote η = log λ and dGCV(η,θ) = α(η,θ)/γ(η,θ), where

α(η,θ) =
1

N
YT{I− Ām(η,θ)}TW{I− Ām(λ,θ)}Y,

γ(η,θ) =

[
1− 1

Nm

m∑
k=1

tr{Akk(η,θ)Wk}

]2

,

with Ām(η,θ) and Akk(η,θ)’s defined in (13). Then the first and second partial

derivatives of log [dGCV(η,θ)] can be straightforwardly obtained as

∂ log [dGCV(η,θ)]

∂ϑ
=

1

α(η,θ)

∂α(η,θ)

∂ϑ
− 1

γ(η,θ)

∂γ(η,θ)

∂ϑ
, ϑ = η or θ.
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∂2 log [dGCV(η,θ)]

∂ϑ∂%T
= − 1

α2(η,θ)

[
∂α(η,θ)

∂ϑ

] [
∂α(η,θ)

∂%

]T
+

1

α(η,θ)

∂2α(η,θ)

∂ϑ∂%T

+
1

γ2(η,θ)

[
∂γ(η,θ)

∂ϑ

] [
∂γ(η,θ)

∂%

]T
− 1

γ(η,θ)

∂2γ(η,θ)

∂ϑ∂%T
, ϑ, % = η or θ.

By definitions of α(η,θ) and γ(η,θ), straightforward matrix calculus yields that it

remains to compute partial derivatives of Akl(η,θ) = KT
kl(θ) [Kkk(θ) + nke

ηIk]
−1 with

Kkl = [K(xi,xj;θ)]i∈Sk,j∈Sl for l, k = 1, . . . ,m. It is straightforward to show that

∂Akl(η,θ)

∂η
= −nkeηKT

kl(θ)K‡2kk,
∂Akl(η,θ)

∂θc
=
∂KT

kl(θ)

∂θc
K‡kk −KT

kl(θ)K‡kk
∂Kkk(θ)

∂θc
K‡kk,

∂2Akl(η,θ)

∂η2
= −nkeηKT

kl(θ)K‡2kk + 2n2
ke

2ηKT
kl(θ)K‡3kk,

∂2Akl(η,θ)

∂η∂θc
= −nkeη

{
∂KT

kl(θ)

∂θc
−KT

kl(θ)K‡kk
∂Kkk(θ)

∂θc

}
K‡2kk + nke

ηKT
kl(θ)K‡2kk

∂Kkk(θ)

∂θc
K‡kk,

∂2Akl(η,θ)

∂θc1∂θc2
=
∂2KT

kl(θ)

∂θc1∂θc2
K‡kk −

∂KT
kl(θ)

∂θc1
K‡kk

∂KT
kk(θ)

∂θc2
K‡kk −

∂KT
kl

∂θc2
(θ)K‡kk

∂Kkk(θ)

∂θc1
K‡kk

+KT
kl(θ)K‡kk

∂Kkk(θ)

∂θc2
K‡kk

∂Kkk(θ)

∂θc1
K‡kk −KT

kl(θ)K‡kk
∂2Kkk(θ)

∂θc1∂θc2
K‡kk

+KT
kl(θ)K‡kk

∂Kkk(θ)

∂θc1
K‡kk

∂Kkk(θ)

∂θc2
K‡kk, for θ = (θ1, · · · , θD), c, c1, c2 = 1, · · · , D,

where K‡kk = [Kkk(θ) + nke
ηIk]

−1, k, l = 1, · · · ,m and all matrix derivatives are taken

element-wise.

It is straightforward to show that the computational complexity of first and second

derivatives of log [dGCV(η,θ)] are the same as that of dGCV, which makes the Newton-

Raphson type algorithm feasible. However, it is worth pointing out that log [dGCV(η,θ)]

is not a convex function of η and θ, hence there is no guarantee that a Newton-Raphson

type algorithm will converge to the global minimizer. Numerical suggestions such as

those in Wood (2004) may be useful for developing more efficient algorithms, which will

be an interesting further research topic.

4 Asymptotic Properties

In this section, we will show that the proposed dGCV criterion in (16) is “globally

optimal” under some conditions. We first introduce some notation. Denote PX , Pε, Pε,X
as the probability measures of covariate X, error process ε and their joint probability

measure. Similarly, Eε and Varε denote the expectation and variance under the

probability measure Pε. Let λmax(A) and σmax(A) and tr(A) be the largest eigenvalue

and the largest singular value of the matrix A, respectively. We use
P−→ to denote the

convergence in probability measure P and OP(·), oP(·) as defined in the conventional

way. For any function f(x) : X → R, let ‖f‖sup = supx∈X |f(x)| and Pf =
∫
X f(x) dP.
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Finally, let Pn denote the empirical probability measure based on i.i.d samples of size n

from the probability measure P.

4.1 Asymptotic Optimality of dGCV

The following regularity conditions are needed to show the optimality of dGCV.

[C1] 1
m

∑m
l=1 λmax

{
(Kll + nlλIl)

−2
(

1
m

∑m
k=1 KT

klKkl

)}
= OPX (1);

[C2] NR̄(λ|X)
PX−→∞ as N →∞;

[C3] (a) The weights wi’s are nonnegative such that
∑N

i=1wi = N and that max1≤i≤N wi ≤
W for some constant W > 0; (b) 1

Nm

∑m
k=1 tr{Akk(λ)} = oPX (1) as N →∞.

[C4] [N−1tr{Ām(λ)W}]2

[N−1tr{ĀT
m(λ)WĀm(λ)}]

= oPX (1) as N →∞.

Intuitively, condition C1 requires that some similarities among sub-data sets. If all

Kkl’s are similar to Kll, we can expect λmax

{
(Kll + nlλIl)

−2
(

1
m

∑m
k=1 KT

klKkl

)}
≤ 1,

in which case C1 holds. In Section 4.2, we shall show that one sufficient condition for

C1 to hold is to ensure that the “maximal marginal degrees of freedom” (Bach, 2013)

dλ defined in (20) is sufficiently small compared to N/m. Condition C2 is a widely

used condition to ensure the optimality of the GCV to hold, for example, see Craven

and Wahba (1978); Li (1986); Gu and Ma (2005); Xu and Huang (2012). It is a mild

condition for nonparametric regression problems, where the parametric rate O(N−1)

is unattainable for the estimation risk. For example, for kernel ridge regression models

with polynomially or exponentially decaying kernel functions, condition C2 holds (Zhang

et al., 2015). However, it does raise a flag for the application of the dGCV when a finite

rank kernel is used, in which case the optimal rate of R̄(λ|X) is of the order O(N−1)

(Zhang et al., 2015). Nevertheless, without condition C2, it is questionable whether

there exists an asymptotically optimal selection procedure for the tuning parameter λ

(Li, 1986).

Remark 1. Condition C3(a) has an important implication for the dGCV∗(λ) defined in

Section 3.4. When leaving out a portion of data as suggested in Section 3.4, the resulting

weights become wi = N/(
∑m∗

k=1 nk) if i ∈ ∪m∗

k=1Sk and wi = 0 otherwise. Condition C3(a)

requires that the number of data points remained (i.e.,
∑m∗

k=1 nk) must be of the same

order as N . Therefore, more data points need to be retained as the sample size N grows.

Furthermore, when all sub-datasets under the divide-and-conquer procedure are roughly

of the same size, Condition C3(a) essentially requires that m∗/m = c for some absolute

constant 0 < c ≤ 1. From the computational point of view, it is worth to use a m∗ < m

only when N >> m2. Therefore, a general rule of thumb for the choice of m∗ is that it

should only be used when N >> m2 and if used it cannot be too small compared to m.
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It turns out that, under conditions C1-C2 and C3(a), Ū(λ|X) defined in (15) is

“globally optimal.”

Lemma 1. Under Conditions C1–C2 and C3(a), for a fixed λ, we have that

Ū(λ|X)− L̄(λ|X)− 1

N
εTWε = oPε,X{L̄(λ|X)}. (18)

The proof is given in the Appendix.

Lemma 1 states that when σ2 is known, minimizing Ū(λ|X) with respect to λ

is asymptotically equivalent to minimizing the empirical true loss function L̄(λ|X).

However, it is rarely the case that one has complete knowledge of σ2. In this sense,

the proposed dGCV is more practical and it can be shown to be “globally optimal” as

well, under some additional conditions.

Theorem 1. Under Conditions C1–C4, for a fixed λ, we have that

dGCV(λ|X)− L̄(λ|X)− 1

N
εTWε = oPε,X{(L̄(λ|x)}. (19)

The proof is given in the Appendix.

Similar to Lemma 1, Theorem 1 shows that minimizing dGCV(λ|X) amounts to

minimizing the true conditional loss function L̄(λ|X), although additional conditions

C3(b)-C4 are needed. Condition C3(b) is rather mild in that it essentially requires that

the effective degrees of freedom to be negligible compared to the sample size, which

is typically true for non-parametric function estimators in most settings of interest.

In addition, C3(b) becomes trivial when m → ∞ because by definition we have that

tr{Akk(λ)} ≤ nk, k = 1, . . . ,m. When the entire data set is used at once (m = 1),

condition C4 reduces to the well known condition [N−1tr{A(λ)}]2/[N−1tr{A2(λ)}] =

o(1) in the literature (Craven and Wahba, 1978; Li, 1986; Gu and Ma, 2005; Xu and

Huang, 2012). For example, for smoothing splines, we typically have tr{A(λ)} =

O(λ−1/s) and tr{A2(λ)} � O(λ−1/s) for some s > 1. Then as long as λ−1/s/N → 0, which

covers the most region of practical interest for λ, we have that [N−1tr{A(λ)}]2/[N−1tr{A2(λ)}]→
0 as N → ∞. Condition C4 can be viewed as an extension of this commonly used

condition to the divide-and-conquer regime.

4.2 Low-level Sufficient Conditions for C1 and C4

In this subsection, for simplicity, we only consider uniform weights with w1 = · · · =

wN = 1 and equal sample sizes n1 = · · · = nm = n in this subsection. We first establish

a low-level sufficient condition for C1. Following Bach (2013), define the “maximal

marginal degrees of freedom” as

dλ = N‖diag{K(K +NλIN)−1}‖∞, (20)

12



where ‖ · ‖∞ stands for the matrix infinity norm. Note that A(λ) = K(K+NλIN)−1} is

the hat matrix (13) with m = 1 and dfλ = tr [A(λ)] = ‖diag{K(K+NλIN)−1}‖1 defines

the “effective degrees of freedom” (Gu, 2013) for the KRR using the entire dataset at

once. In this sense, the “maximal marginal degrees of freedom” dλ provides an upper

bound for the “effective degree of freedom” dfλ due to the inequality dfλ ≤ dλ, and

hence gives another measure for the model complexity.

[C1’]Let r = rank(K) and dλ be the “maximal marginal degrees of freedom” defined

in (20), we assume that

mdλ (log r + logm)

N
= oPX (1), (21)

as N →∞ for either a finite m or m→∞.

Condition C1’ ensures that the number of partitions m cannot be too large compared

to the total sample size N , depending on the magnitude of dλ, which is consistent with

findings in the literature (Zhang et al., 2015; Shang and Cheng, 2017). With a large m,

condition C1’ maybe violated if there is a significant number of outliers, leading to a

potentially large dλ.

Lemma 2. Condition C1’ is sufficient for condition C1.

The proof is given in the Appendix.

Next we proceed to derive sufficient conditions for condition C4. When the

entire data set is used at once (m = 1) and conditional on observed covariate X,

condition C4 reduces to the well known condition [N−1tr{A(λ)}]2/[N−1tr{A2(λ)}] =

o(1) in the literature (Craven and Wahba, 1978; Li, 1986; Gu and Ma, 2005; Xu and

Huang, 2012). For example, for smoothing splines, we typically have tr{A(λ)} =

O(λ−1/s) and tr{A2(λ)} � O(λ−1/s) for some s > 1. In this case, as long as

λ−1/s/N → 0, which covers the most region of practical interest for λ, we have that

[N−1tr{A(λ)}]2/[N−1tr{A2(λ)}] → 0 as N → ∞. Condition C4 can be viewed as an

extension of this commonly used condition to the divide-and-conquer regime, whose

justification, however, is much less straightforward.

We first provide some heuristic insights behind our proof. Define

Q(λ|X) =

∫
X

Varε{f̄(x)}2 dPX(x) =
1

m2

m∑
k=1

∫
X

Varε{f̂k(x)} dPX(x). (22)

Let PX,N be the empirical measure based on sample {X1, . . . , XN}, and PX,nk be the

empirical measure based on the k-th sub-sample {Xi}i∈Sk . It is straightforward to show

that

Q1(λ|X) = σ2 tr{ĀT
m(λ)Ām(λ)}
N

=

∫
X

Varε
{
f̄(x)

}2
dPX,N(x), (23)
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Q2(λ|X) = σ2 1

Nm

m∑
k=1

tr{A2
kk(λ)} =

1

m2

m∑
k=1

∫
X

Varε{f̂k(x)} dPX,nk(x). (24)

Intuitively, Q1(λ|X) and Q2(λ|X) are two empirical versions of Q(λ|X) and should

be close to each other. The formal proof utilizes the uniform ratio limit theorems

for empirical processes (Pollard, 1995) to show Q1(λ|X)/Q(λ|X) = 1 + oPX (1) and

Q2(λ|X)/Q(λ|X) = 1 + oPX (1), then with the help of condition C4’(a), we can show

condition C4 holds.

Let N (ε, ‖ · ‖PX,n ,F) be the ε-covering number (Pollard, 1986) of a function class

F with the empirical norm ‖f‖PX,n =
√
n−1

∑n
i=1 f

2(Xi). Following conditions are

sufficient to ensure condition C4.

[C4’](a) 1
m

∑m
k=1

[
1
N

tr{Akk(λ)}
]2
/
[

1
N

tr{A2
kk(λ)}

]
= oPX (1);

[C4’](b) There exists a positive sequence {Vn} such that as Vn → 0, it holds that

Vn

[
1
m

∑m
k=1

∫
X Varε{f̂k(x)} dPX(x)

]−1

= OPX (1), max1≤k≤m ‖Varε{f̂k(x)}‖sup =

OPX (Vn) and nVn →∞ as n→∞;

[C4’](c) There exists a sequence {Hn} such thatHn

[
n
m

∑m
k=1

∫
X Varε{f̂k(x)} dPX(x)

]−1

=

OPX (1), max1≤k≤m[
∫
X Varε{f̂ ′k(x)} dPX(x)/

∫
X Varε{f̂k(x)} dPX(x)] = OPX (H2

n),

and nHnVn − (logm)2 → ∞ as n → ∞. Here, f̂ ′k(x) denotes the derivative of

f̂k(x);

[C4’](d) For the function class F0 = {f : ‖f‖sup ≤ 1, J1(f) =
∫
X {f

′(x)}2 dPX(x) ≤
1}, we have that N (ε, ‖ · ‖PX,n ,F0) ≤ exp(C0/ε) for some constant C0 > 0 with

probability approaching one as n→∞.

Lemma 3. For a tuning parameter λ satisfying conditions C4’(a)-(d), one has that{
1

N
tr(Ām)

}2

/

{
1

N
tr(ĀT

mĀm)

}
= oPX (1).

The proof is given in the Appendix.

Condition C4’(a) is a mild condition as we have discussed at the beginning of this

subsection. Condition C4’(b) essentially states that the supremum norm and the L1

norm of the variance function Varε{f̂k(x)} are of the same order, which is reasonable

when all Varε{f̂k(x)}’s similarly well-behaved within the support of covariate X. In

addition, we should restrict our attention to the range of λ such that nVarε{f̂k(x)} →
∞, k = 1, . . . ,m. Recall the discussion in subsection 3.2, the optimal f̄ can only be

obtained when the risk (10) is dominated by the variance term Varε{f̂k(x)} for each

individual f̂k(x). Hence, letting nVn → ∞ is reasonable based on the condition C2.

Condition C4’(c) essentially asserts that Hn and nVn are of the same order. For the

smoothing spline case, the derivative f̂ ′k is typically more variable than f̂k such that one
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can expect Hn → ∞. For example, Rice and Rosenblatt (1983) gives the exact rates

of convergence for cubic smoothing spline, that is
∫
X Varε{f̂k(x)} dPX(x) � n−1λ−1/4,∫

X Varε{f̂ ′k(x)} dPX(x) � n−1λ−3/4. In this case, we have that Hn � λ−1/4 and nVn �
λ−1/4. A thorough theoretical investigation of Hn and Vn is difficult in general, though

our simulation study (unreported) suggests condition C4’(c) to be reasonable for many

reproducing kernels.

Finally, condition C4’(d) holds when the empirical measure PX,n is replaced by PX ,

see, e.g., van de Geer and van de Geer (2000). One can generally expect it to hold

when the sample size n is large. The upper bound of the random covering number

N (ε, ‖ · ‖PX,n ,F0) determines the rate of convergence of the empirical processes Q1(λ|X)

and Q2(λ|X) to Q(λ|X). And it can be relaxed similarly as given in Theorem 2.1 of

Pollard (1986).

Remark 2. One benefit of using high level conditions such as C1, C2 and C4 is that they

do not involve the response variable and can be computed efficiently using sample data.

To deal with the randomness in covariate X, one can bootstrap/resample/subsample from

the observed data, which is especially suitable when the sample size under consideration

is extremely large. Through this resampling strategy, one can empirically verify C1, C2

and C4, although rigorous justification of such strategy has not been established and will

be an interesting topic for future research.

5 Simulation studies

In this section, we conduct simulation studies to illustrate the effectiveness of dGCV(λ)

in choosing the optimal λ for the d-KRR. The data were simulated from the model

y = 2.4× beta(x, 30, 17) + 1.6× beta(x, 3, 11) + ε, x ∈ [0, 1], (25)

where beta(x, a, b) is the density function of the Beta(a, b) distribution and ε ∼ N(0, 32).

The covariate xi’s were independently generated from the uniform distribution over the

interval [0, 1]. For each simulation run, we first generated a data set of the size N = mn

and then randomly partition the data sets into m sub-data sets of equal sizes. The

divide-and-conquer estimator f̄ was obtained as given in (3).

Let f (ν)(·) be the νth derivative of a smooth function f(·). The true function in

model (25) belongs to the Sobolev Hilbert space of νth order differentiable functions

on [0, 1] satisfying the periodic boundary conditions f (ν)(0) = f (ν)(1) for ν = 1, · · · , 10,

denoted as Wν(per) (Wahba, 1990). If Wν(per) is endowed with the norm ‖f‖2
Wν

={∫ 1

0
f(x) dx

}2

+
∫ 1

0
{f (ν)(x)}2 dx, then it has a reproducing kernel

K(x, z) =
(−1)ν−1

(2ν)!
B2ν([x− z]), x, z ∈ [0, 1], (26)
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where B2ν(·) is the 2νth Bernoulli polynomials (Abramowitz et al., 1972) and [x] is the

fractional part of x. In all simulation runs, the tuning parameter λ was selected by a

grid search for log(λ) over 30 equally-spaced grid points over the interval [−10ν,−5ν].

Three approaches were used for the selection of λ: (i) the distributed GCV (dGCV)

approach proposed in (16); (ii) (ii) the naive GCV (nGCV) approach where a λ̂k is

selected for each individual f̂k by minimizing the sub-GCV score GCVk(λ) defined in

(9) for k = 1, · · · ,m and then the final estimator is obtained by averaging all f̂k’s;

and (iii) the true empirical loss function (TrueLoss) L̄(λ|X) defined in (11). The last

approach is not practically feasible since it requires the knowledge of the truth f0. It

merely serves as the “golden criterion” to show the effectiveness of other two approaches.

For all approaches, we set the weights wi = 1 for all i = 1, . . . , N and used ν = 2 for the

kernel (26) unless otherwise stated.

5.1 Performances with Moderate Sample Sizes

In this subsection, we evaluated performances of the proposed approach with moderate

sample sizes N = 2i, i = 8, 9, 10, 11, 12. In this setting, it is still possible to obtain the

KRR estimator with the entire data set, i.e., m = 1, and enables us to evaluate potential

loss using the divided-and-conquer approach as opposed to using all data at once.

5.1.1 Computational Complexity and Estimation Accuracies

We first simulate data from model (25) for various sample sizes N = 2i, i = 8, 9, 10, 11, 12

and fit the data with divide-and-conquer regression with m = 1, 2, 4, 8, 16, 32. Summary

statistics based on 100 simulation runs were illustrated in Figure 1(a)-(f). Figure 1(a)

illustrates the computational complexity of one evaluation of dGCV(λ) . All simulation

runs were carried out in the software R (R Core Team, 2018) on a cluster of 100 Linux

machines with a total of 100 CPU cores, with each core running at approximately

2 GFLOPS. We can clearly see that by using the divide-and-conquer strategy, the

computational time of the dGCV can be greatly reduced compared to the case when all

data were used at once (i.e., m = 1).

In Figure 1(b)-(c), we give some comparisons of the dGCV method and the nGCV

method. Figure 1(b) shows the scatter plot of true empirical losses, as defined in (11),

of the function estimators obtained by minimizing dGCV(λ) versus minimizing the

unattainable “golden criterion” (11) over 100 simulation runs. As we can see, majority

of points are concentrated around the 45o straight line, which supports our theoretical

findings in Theorem 1. On the contrary, Figure 1(c) shows that true empirical losses

of the function estimator based on the nGCV approach are generally larger than the

minimum possible true losses, indicating that such function estimators are indeed only

“locally” optimal but not “globally optimal.”
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Figure 1: (a) the logarithm of computational time (in seconds) v.s. log(N); (b)-(c):
scatter plots of true empirical losses of function estimators; (d) the logarithm of averages
of selected λ v.s. log(m)/ log(N); (e)-(f): the logarithm of averaged true empirical losses
v.s. log(m)/ log(N). Note that in (d)-(f), λ̂opt in the y-axis denotes one of λ̂dGCV, λ̂nGCV

and λ̂TrueLoss for each curve.

In Figure 1(d)-(f), we used N = 2i and m = 2j for j = 0, 1, . . . , i−2 and i = 8, 10, 12

so that there were at least four data points in each sub-data set. To better understand

the differences between the dGCV and the nGCV approaches, Figure 1(d) shows how

the logarithm of the averages of selected tuning parameters (over 100 simulation runs),

denoted as log(λ̂opt), for each method changes as m increases. As we can see, when

m = 1 they are identical. However, as m increases, the λ selected by the nGCV approach

consistently increases whereas the λ selected by the dGCV method stays about the same

until m gets really large and is always smaller than the λ selected by the nGCV method.

This is consistent with findings in Zhang et al. (2015) where they argue that the locally

optimal rate of λ for each individual f̂k is of the order O(n−4/5) with n = N/m whereas

the globally optimal rate for λ is of the order O(N−4/5).

The y-axis of Figure 1(e)-(f) is the logarithm of estimation errors logL(λ̂opt), where

L(λ̂opt) stands for the averaged true conditional loss defined in (11) over 100 simulation

runs using different selection approaches for λ. We can see from Figure 1(e)-(f) that as

long as m is not too large compare to N , the proposed dGCV(λ) is quite robust in terms

of controlling the estimation error as m grows and is almost identical to that of using the

true loss function, which is considered as a “golden criterion.” This is consistent with

our Theorem 1. In contrast, estimation errors of the nGCV approach quickly inflates as

17



m increases, which is expected according to our discussion in subsection 3.2. Finally, it

is interesting to point out that as the λ selected by the dGCV method starts to drop in

Figure 1(d), the estimation errors in Figure 1(e)-(f) start to inflate as well.

5.1.2 Is It Worth Minimizing dGCV(λ)?

In this subsection, we investigate the issue that whether the extra computational costs

in minimizing dGCV(λ) is worthwhile. The optimal rates of λ for various reproducing

kernels have been well established, see, e.g., Zhang et al. (2015). In the case of the

reproducing kernel (26) used in this simulation, the optimal rate for λ is of the order

O
(
N−

2ν
2ν+1

)
, or in other words, λopt = CN−

2ν
2ν+1 for some constant C. One misconception

is that the choice of C does not matter much because asymptotically any value of C

leads to the same convergence rate for f . However, for a given sample size, this is

far from being true. To illustrate, we fitted the data generated from model (25) using

reproducing kernel (26) with ν = 1 and 2, respectively. Resulting function estimators

based on 100 simulation runs with N = 212 = 4096 and m = 4 were presented in Figure 2

(a)-(b), where it is apparent that by setting C = 1, both KRR estimators based on

reproducing kernel with ν = 1 or 2 yield much worse estimation accuracies than those of

corresponding KRR estimators using λ selected by minimizing the proposed dGCV(λ)

criterion. A closer look at the minimization problem (2), or equivalently (5), suggests

that the optimal choice of the constant C in λopt should depend on (a) the magnitude

of the kernel function K(·, ·); (b) the magnitude of response Y; (c) the sample size N ,

and therefore can be difficult to obtain in practice. As we have illustrated in Figure 2,

for a fixed sample size, a carefully chosen constant C (through dGCV in this case) may

have significant impacts on the quality of resulting KRR estimator, for which reason we

believe that additional computational costs in minimizing dGCV is indeed worthwhile.
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Figure 2: Estimated functions using Divide-and-conquer KRR with a sample size N =
212 and m = 4. Kernel defined in (26) was used with (a) ν = 1 and (b) ν = 2.
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5.1.3 The Choice of Number of Partitions m

One remaining issue that we have not addressed theoretically is that how many partitions

of data (m) should be used in practice for a given sample size N . The general guideline

for the choice of m is clear: as long as m is not too large compared to N , the d-KRR

estimator can achieve the optimal convergence rate (Zhang et al., 2015; Shang and

Cheng, 2017). However, a practical tool to determine whether m is too large is still

lacking. In this subsection, we conducted a simulation study to show that the proposed

dGCV may serve such a purpose.

By its definition (16), dGCV(λ) can also be viewed as a function of m, denoted as

dGCV(λ,m). Then we can define a profiled version of dGCV as follows

dGCVp(m) = dGCV(λ̂,m), (27)

where λ̂ = arg minλ>0 dGCV(λ,m) for a fixed m. We simulated data from model (25)

with N = 212 for 100 times and then fitted each data set using d-KRR with m = 2j for

j = 1, · · · , 9. Figure 3(b) presents patterns of 100 centralized version of dGCVp(m),

defined as dGCVp(m) − 1
9

∑9
j=1 dGCVp(j), as a function of m. As comparison,

Figure 3(a) gives the true empirical loss (11) of each d-KRR estimator using λ̂ =

arg minλ>0 dGCV(λ,m) for each m, where it appears that as long as m ≤ 27, the

estimation accuracy of the fitted function remain roughly the same as using the optimal

λ picked by minimizing dGCV(λ,m). This coincides with existing theoretical findings

in the literature such as Zhang et al. (2015) and Shang and Cheng (2017). More

importantly, the similarity between Figure 3 (a) and (b) suggests that the profiled dGCV

score defined in (27) can capture the sudden drop in the trajectory of empirical loss as

a function of m and therefore determine which m might be too large. We have tried

many other settings and the message remains the same. This implies that, in practical

applications, one can start with a relatively large m and gradually decrease m until

dGCVp(m) defined in (27) stabilizes. Rigorous justifications of such an approach will

be an interesting future research topic.

5.1.4 Performances of dGCV on Multivariate Functions

In this subsection, we investigated the impacts of model dimensionality and correlation

among predictors on the performance of dGCV. Let x = (x1, · · · , xp)T , the data was

simulated from the following model

y = f(x) = 20

(
1− ‖x‖2√

p

)7

+

(
16
‖x‖2

2

p
+ 7
‖x‖2√
p

+ 1

)
+ ε, ε ∼ N(0, 32), x ∈ [0, 1]p,

where ‖·‖2 is the Euclidean norm in Rp, function (r)+ = max(r, 0) and xj’s are uniformly

distributed between [0, 1] for j = 1, · · · , p. To induce correlations among xj’s, let xj =

Φ(zj) where (z1, z2, · · · , zp)T was generated from a p-dimensional multivariate normal
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Figure 3: (a) Empirical true loss defined in (11) using λ picked by dGCV for each m; (b)
Centered optimal dGCV score for each m; based on 100 simulation runs. (N = 4096.)

distribution with mean 0, variance 1 and pairwise correlation coefficient ρ = 0 or 0.8.

f(x) is a variate of Wendland’s function (Schaback and Wendland, 2006). For p ≤ 5, we

performed the KRR with the reproducing Hilbert kernel space equipped with the kernel

K(x, z) =

(
1− ‖x− z‖2√

p

)5

+

(
5
‖x− z‖2

2

p
+ 1

)
, x, z ∈ [0, 1]p,

which is a radial basis function with bounded support for p ≤ 5, see Schaback and

Wendland (2006) for more details. The averaged true empirical losses based on 100

simulation runs are summarized in Figure 4. On one hand, when the dimensionality

of x increases from p = 1 to 5, the averaged empirical losses gradually increase as

expected. However, the averaged empirical losses of d-KRR estimators with λ chosen

by dGCV is almost indistinguishable from those of corresponding estimators with λ

picked by the true empirical loss, regardless of the dimension p. This echoes with our

theoretical findings in Theorem 1. On the other hand, as ρ increases from 0 to 0.8, the

correlations among xj’s seem to have little impact on the estimation accuracies for the

estimated overall mean function f(x). In fact, when ρ = 0.8, the performance of dGCV

is relatively more stable than the case with ρ = 0 as the dimension p increases. This can

be explained by the fact that f(x) only depends on ‖x‖2, which is less variable when p

increases for the case ρ = 0.8. For this reason the estimation of f(x) is less affected by

the dimensionality when ρ = 0.8.

5.2 Performances with a Large Sample Size

In this subsection, we investigated two issues when the sample size N is so large that a

single machine can no longer handle at once: (a) whether the computational/estimation

performance in Section 5.1.1 still persists; (b) what is the impact of the choice of m∗

in (17) on the performance of dGCV∗.
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Figure 4: The logarithm of averaged true empirical losses v.s. log(m)/ log(N) with a
sample size N = 212 and (a) ρ = 0 (b) ρ = 0.8.

5.2.1 Computational Complexity and Estimation Accuracies

To investigate the first issue, we simulated data from model (25) with a sample size

N = 216 = 65, 536 and the d-KRR was carried out using m = 2j for j = 5, · · · , 11.

Summary statistics based on 100 simulation runs are summarized in Figure 5, where

the message is consistent with findings presented in Section 5.1.1: at a much smaller

computational cost, the d-KRR with a λ chosen by minimizing dGCV is as good as

using the λ that minimizes the true empirical loss (11), provided that the m is not too

large.
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Figure 5: (a) the logarithm of computational time (in seconds) v.s. log2(m); (b) the
logarithm of averaged true empirical losses v.s. log2(m); (c) scatter plots of true empirical
losses of function estimators. Note that in (b), λ̂opt in the y-axis denotes one of λ̂dGCV,
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5.2.2 The Impact of the Choice of m∗

When the sample size N is large or even massive, it is inevitable to use a relative large m,

in which case further computational savings can be achieved by choosing a subset of data
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for validation as suggested in (17) of Section 3.4. The question remains that how small

m∗ can be so that Theorem 1 still holds? As we have discussed in Remark 1, a general rule

of thumb for the choice of m∗ is that it cannot be too small compared to m. To shed some

more lights on this issue, for each m, we simulate data from model (25) and then fitted

the d-KRR with the λ that minimizes (17) using m∗ = 1, · · · ,m. Averaged empirical

losses based on 100 simulation runs are plotted in Figure 6, where it indicates that if

m∗ is too small relative to m, the estimation accuracies indeed deteriorate significantly

compared to the optimal performance. However, as long as m∗ is greater than 0.2m, the

choice of m∗ has little impact on the estimation accuracies. Therefore, by setting m∗

as a reasonable percentage of m (such as 20% or 30%), one may indeed achieve a large

reduction in computational cost without sacrificing too much on estimation accuracies.

We want to emphasize again that it is worth to use a m∗ < m only when N >> m2.

And if used, whenever the computational cost is affordable, a larger m∗ is a safer choice

to achieve better performances.
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Figure 6: The logarithm of averaged true empirical losses v.s. m∗/m

6 The Million Song Dataset

In this section, we applied the dGCV∗ tuning method to the Million Song Dataset, which

consists of 463, 715 training examples and 51, 630 testing examples. Each observation is

a song track released between the year 1922 and 2011. The response variable yi is the

year when the song is released and the covariate xi is a 90-dimensional vector, consists of

timbre information of the song. We refer to Bertin-Mahieux et al. (2011) for more details

on this data set. Timbre is the quality of a musical note or sound that distinguishes

different types of musical instruments, or voices (Jehan and DesRoches, 2011). The
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goal is to use the timbre information of the song to predict the year when the song was

released using the KRR. The same dataset has been analyzed by Zhang et al. (2015),

but without addressing the issue of selecting an optimal tuning parameter. Our dGCV∗

method demonstrated significant empirical advantages over theirs.

Following Zhang et al. (2015), the feature vectors were normalized so that they have

mean 0 and standard deviation 1 and the Gaussian kernel function K(x, z) = exp(−‖x−
z‖2

2/φ) was used for the KRR. Seven partitions m ∈ {32, 38, 48, 64, 96, 128, 256} were

used for the d-KRR. Aside from the penalty parameter λ in (2), the bandwidth φ is

also known to have important impact on the prediction accuracy. To find the best

combination of (λ, φ) for each partition m, we perform a 2-dimensional search with

λ ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5}/N and φ ∈ {2, 3, 4, 5, 6, 7} by minimizing (17) with

m∗ = dm/10e, where dae is the smallest integer that is greater than a. See Remark 3

for more details on the choice of m∗. Note that in this case, dGCV∗(λ|X) is also a

function of φ. The experiment was conducted in Matlab using a Windows desktop

computer with 32GB of memory and a 2.6Ghz CPU with 4 CPU cores. To illustrate

that the computation of the proposed dGCV∗(λ|X) can be easily paralleled, Figure 7

gives how averaged computation time changes as the number of CPU cores (in a single

machine) increases. The computation time reduces most when the number of CPU

cores increases from 1 to 2, and the reductions in computation times slow down as the

number of CPU cores continues to increase. Such a trend is probably due to the memory

constraints, communication costs and energy consumption limits on the computer and is

not uncommon for parallel computing conducted in a single machine. Nevertheless, these

computation times are reasonable for a data set with almost half-million observations

and can be further reduced if a computing cluster is available.
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The grid search gave the optimal choice of λ = 0.5/N and φ = 3 for most of case

scenarios. From Figure 8(a)-(b), we can see that the choice of the bandwidth parameter

φ has a great impacts on the dGCV∗ score as well as the penalty parameter λ. It seems

that the latter provides some additional small adjustments after a good value of φ is

chosen.
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In Zhang et al. (2015), the authors used a fixed value λ = 1/N and a φ = 6 chosen

by the cross-validation for their kernel ridge regression model. In Figure 8(c), we can

see that such a choice leads to a much worse prediction mean squared error (PMSE) on

the testing samples. Using the proposed dGCV criterion, our choice of λ and φ yields

almost identical prediction accuracy as the minimum possible PMSE on the testing

samples obtained over all 36 grid points.

Remark 3. Note that for any given combination of (λ, φ), the estimated function f̄λ,φ

used in dGCV∗ is the same for different values of m∗, which is defined in (3). The

agreement between the test PMSE of the dGCV∗ method and the minimum test PMSE

in Figure 8(c) suggests that there is no room to improve over the predictive performance

of f̄λ,φ using tuning parameters selected by dGCV∗, as long as the same multivariate

Gaussian reproducing kernel function is used. This is a strong indication that m∗ =

dm/10e is a good choice for this example, considering that dGCV∗ did not use any

information of the 51, 630 testing examples.

7 Discussion

In this paper, we proposed a data-driven criterion named dGCV that can be used

to empirically selecting the critical tuning parameter λ for d-KRR. Not only the

proposed approach is computationally scalable even for massive data sets, we have also

theoretically shown that it is asymptotically optimal in the sense that minimizing dGCV
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is equivalent to minimizing the true global conditional empirical loss, extending the

existing optimality results of GCV to the divide-and-conquer framework.

There are a few ways to extend the current work. For example, we have so far

presumed a fixed m. One important direction is to investigate the growth rate of m

for some specific kernels under which Theorem 1 still holds, following the framework

proposed in Shang and Cheng (2017). It is also of practical interest to develop a

justifiable data-driven approach to detect the breaking point for m. Another interesting

research direction is to develop a tuning criterion similar to the dGCV for more general

panelized Kernel regression such as Zhang et al. (2016) and Chen et al. (2017). The

definition of dGCV in (16) relies heavily on the closed form solution to the Kernel ridge

regression, which is not available if the loss function or the penalty in (2) are replaced

by the quantile loss or the lasso penalty, respectively. The major difficulty lies in how to

replace the effective degrees of freedom tr {Akk(λ)}’s in the denominator of (16) when

the hat matrices Akk’s do not exist. Although there has been some research on this issue

such as Yuan (2006), much more thorough investigations are needed.
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Appendix

From now on, we suppress the dependence of Akl(λ)’s and Ā(λ) on λ for ease of

presentation and simply use Akl’s and Ā whenever there is no ambiguity.

Lemma A.1. Under the condition C1, we have that λmax(ĀmĀT
m) = OPX (1).

Proof. Define the following matrix

K̄m =
1

m


K11 K12 · · · K1m

K21 K22 · · · K2m

...
...

. . .
...

Km1 Km2 · · · Kmm

 .

Then it is straightforward to see that

ĀmĀT
m = K̄D1K̄

T ,

where D1 = diag{B11, . . . ,Bmm} with Bll = (Kll + nlλIl)
−2, for l = 1, . . . ,m. Then

K̄D1K̄
T =

1

m2


K11

K21

...

Km1

B11(KT
11, . . . ,K

T
m1)+· · ·+ 1

m2


K1m

K2m

...

Kmm

Bmm(KT
1m, . . . ,K

T
mm),

which implies that

λmax(ĀmĀT
m) ≤ 1

m2

m∑
l=1

λmax{


K1l

K2l

...

Kml

Bll(K
T
1l, . . . ,K

T
ml)} =

1

m2

m∑
l=1

λmax(Bll

m∑
k=1

KT
klKkl)

=
1

m

m∑
l=1

λmax

{
(Kll + nlλIl)

−2

(
1

m

m∑
k=1

KT
klKkl

)}
= OPX (1).

The last inequality follows from condition C1.

Lemma A.2. Under the conditions C1-C2 and C3(a), for a fixed λ, we have that

L̄(λ|X)− R̄(λ|X) = oPε,X{R̄(λ|X)}. (A.1)



Proof. Using similar notations in equation (14), it is straightforward to show that

L̄(λ|X) =
1

N

(
ĀmY − F

)T
W
(
ĀmY − F

)
, with Y = F + ε. (A.2)

Using (14), we have that

L̄(λ|X)− R̄(λ|X) = − 2

N
F T (I− Ām)TWĀmε+

1

N
εT ĀT

mWĀmε−
σ2

N
tr(ĀT

mWĀm).

Since the random error ε and the covariate X are independent in model (1), to

show (A.1), it suffices to show the following two equations

Varε

{
1

N
F T (I− Ām)TWĀmε

}
= oPX{R̄2(λ|X)}, (A.3)

Varε

{
1

N
εT ĀT

mWĀmε−
σ2

N
tr(ĀT

mWĀm)

}
= oPX{R̄2(λ|X)}. (A.4)

We first show (A.3). Straightforward algebra yields that

Varε

{
1

N
F T (I− Ām)TWĀmε

}
=

σ2

N2
F T (I− Ām)TW

(
ĀmĀT

m

)
W(I− Ām)F

≤
σ2λmax

(
ĀmĀT

mW
)

N

1

N
F T (I− Ām)TW(I− Ām)F

≤
σ2λmax

(
ĀmĀT

m

)
λmax(W)

NR̄(λ|X)
R̄2(λ|X)

= oPX (1)R̄2(λ|X) = oPX{R̄2(λ|X)},

where the second last equation follows from conditions C2 and C3(a) and Lemma (A.1).

Now we show (A.4). Straightforward algebra yields that

Varε

{
1

N
εT ĀT

mWĀmε−
σ2

N
tr(ĀT

mWĀm)

}
=

Eεε4 − σ4

N2

N∑
i=1

b̄2
ii + 2σ4

∑
i

i 6=j∑
j

b2
ij

≤ K1

N2
tr{(ĀT

mWĀm)2} ≤ K1λmax(ĀT
mWĀm)

N2
tr(ĀT

mWĀm)

≤ K1λmax(ĀT
mWĀm)

Nσ2
R̄(λ|X) ≤ K1λmax(ĀT

mĀm)λmax(W)

σ2NR̄(λ|X)
R̄2(λ|X)

= oPX (1)R̄2(λ|X)

(A.5)

where b̄ij is the (i, j)th element of matrix ĀT
mWĀm and K1 = Eεε4 + σ4. The last

equality follows from conditions C2 and C3(a) and Lemma A.1. Using (A.3)-(A.4), the

equation (A.1) follows from a simple application of the Cauchy-Schwartz inequality and

the Markov’s inequality. The proof is complete.

Proof of Lemma 1. Using (A.2) and (15), we have that

Ū(λ|X)− L̄(λ|X)− 1

N
εTWε =

2

N
F T (I− Ām)TWε− 2

N

{
εT ĀmWε− σ2tr(ĀmW)

}
. (A.6)



Notice that the random error ε and the covariate X are independent in model (1). We

will show (18) using equation (A.1) in Lemma A.2, for which it suffices to show the

following two equations

Varε

{
1

N
F T (I− Ām)TWε

}
= oPX{R̄2(λ|X)}, (A.7)

Varε

{
1

N
εT ĀmWε− σ2

N
tr(ĀmW)

}
= oPX{R̄2(λ|X)}. (A.8)

We first show (A.7). Straightforward algebra yields that

Varε

{
1

N
F T (I− Ām)TWε

}
=

σ2

N2
F T (I− Ām)TW2(I− Ām)F ≤ σ2λmax(W)

NR̄(λ|X)
R̄2(λ|X)

= oPX (1)R̄2(λ|X) = oPX{R̄2(λ|X)},

where the second last equation follows from conditions C2-C3. Next, we show (A.8).

Using condition C2, similar to the inequality (A.5), it is straightforward to show that

Varε

{
1

N
εT ĀmWε

}
≤ K1

N2
tr(ĀT

mW2Ām) ≤ K1λmax(W)

Nσ2
R̄(λ|X)

=
K1λmax(W)

σ2NR̄(λ|X)
R̄2(λ|X) = oPX (1)R̄2(λ|X),

where K1 = Eεε4 +σ4 is bounded. Hence, (A.8) is proved using, again, condition C2-C3.

Using (A.7)-(A.8) and (A.1), the equation (18) follows from a simple application of the

Cauchy-Schwartz inequality and the Markov’s inequality. The proof is complete.

Proof of Theorem 1 . Using Lemma 1 and Lemma A.2, it suffices to show that

dGCVDC(λ|X)− Ū(λ|X) = oPε,X{R̄(λ|X)}. (A.9)

Using the first order Taylor expansion of (1 − x)−2 around x = 0, we have that (1 −
x)−2 = 1 + 2x + 3(1 − x∗)−4x2 for some x∗ ∈ (0, x). Under condition C3, we have that
tr(Ām)

N
= oPX (1) and thus we can consider the following decomposition

dGCV(λ|X)− Ū(λ|X) =

{
1

N
YT{I− Ām(λ)}TW{I− Ām(λ)}Y − σ2

}
2tr(ĀmW)

N︸ ︷︷ ︸
I

+
1

N
YT{I− Ām(λ)}TW{I− Ām(λ)}YOPX

(
{tr(ĀmW)}2

N2

)
︸ ︷︷ ︸

II

Using condition C4, we have that

tr(ĀmW)

N
= oPX{R̄1/2(λ|X)}, (A.10)

which implies that II = oPX (R̄(λ|X)) since 1
N

YT{I − Ām(λ)}TW{I − Ām(λ)}Y is



bounded. For part I, we can write

I =

{
1

N
YT{I− Ām(λ)}TW{I− Ām(λ)}Y − σ2

}
2tr(ĀmW)

N

=

{
Ū(λ|X)− 1

N
εTWε

}
2tr(ĀmW)

N
+

(
1

N
εTWε− σ2

)
2tr(ĀmW)

N
− 4{tr(ĀmW)}2σ2

N2
.

By Lemma 1, we have that Ū(λ|X) − 1
N
εTWε = R̄(λ|X) + oPε,X{R̄(λ|X)}. Under

condition C3, one has that tr(ĀmW)
N

= oPX (1), and thus{
Ū(λ|X)− 1

N
εTWε

}
2tr(ĀmW)

N
= oPε,X{R̄(λ|X)}.

Furthermore, since 1
N
εTWε− σ2 = OPε(N

−1/2) (condition C3 (a)) and NR̄(λ|X)
PX−→∞

(condition C2), we have that 1
N
εTWε − σ2 = oPε,X{R̄1/2(λ|X)}. Using this and

equation (A.10), we have that(
1

N
εTWε− σ2

)
2tr(ĀmW)

N
= oPε,X{R̄(λ|X)}.

The third part of I is oPX{R̄(λ|X)} due to equation (A.10). Therefore, we have shown

that

dGCV(λ|X)− Ū(λ|X) = oPε,X{R̄(λ|X)},

which completes the proof.

Lemma A.3. Define the following class of non-negative functions

F = {f ∈ L2(P) : f ≥ 0, ‖f‖sup ≤ V, J1(f) ≤ V 2H2}, (A.11)

where V > 0 and H > 0 are constants. If condition C4’(d) holds and (εn, γn) satisfy

ε3nγ
2
n ≥

c0(1 +H)V

n
, (A.12)

where c0 > 0 is a constant, then there exists a constant C > 0 such that for all n,

P

(
sup
f∈F

|Pnf − Pf |
Pnf + Pf + γn(Pnf + Pf + 1)

> Cεn

)
≤ exp(−nε2nγn/2).

Proof. Recall the definition of F0 in condition C4’(d). It can be checked that

F ⊆ V (1 +H)F0.

Hence under condition C4’(d), we have that with probability approaching one,

N(εnγn, ‖ · ‖Pn ,F) ≤ N(εnγn, ‖ · ‖Pn , V (1 +H)F0) = N

(
εnγn

V (1 +H)
, ‖ · ‖Pn ,F0

)
≤ exp

{
C0(1 +H)V

εnγn

}
.



By the Theorem given in Pollard (1995) and the Theorem 2.1 of Pollard (1986), there

exists constants C and c0 such that

P

(
sup
f∈F

|Pnf − Pf |
Pnf + Pf + γn(Pnf + Pf + 1)

> Cεn

)
≤ exp

(
c0

(1 +H)V

2εnγn
− nε2nγn

)
≤ exp(−nε2nγn/2).

Proof of Lemma 2. Define the kernel matrix

K =


K11 K12 · · · K1m

K21 K22 · · · K2m

...
...

. . .
...

Km1 Km2 · · · Kmm

 = ΦΦT ,

where Φ is a N × r matrix with r being the rank of K. By this notation, we have that

Kll = ΦlΦ
T
l , l = 1, · · · ,m.

where Φl is a nl × r submatrix of Φ consists of rows corresponding to a subdata set Sl.

Then it is straightforward to show that

λmax

{
(Kll + nlλIl)

−2

(
1

m

m∑
k=1

KT
klKkl

)}
=

1

m
λmax

{
ΦΦT

l (ΦlΦ
T
l + nlλIl)

−2ΦlΦ
T
}
.

Using the Sherman–Morrison formula, we can show that

ΦT
l (ΦlΦ

T
l + nlλIl)

−1 = ΦT
l

[
n−1λ−1I− n−2λ−2Φl(I + n−1λ−1ΦT

l Φl)
−1ΦT

l

]
= n−1λ−1

[
I− n−1λ−1ΦT

l Φl(I + n−1λ−1ΦT
l Φl)

−1
]
ΦT
l

= n−1λ−1
[
(I + n−1λ−1ΦT

l Φl)
−1
]
ΦT
l ,

which gives that

λmax

{
(Kll + nlλIl)

−2

(
1

m

m∑
k=1

KT
klKkl

)}

=
n−2λ−2

m
λmax

{
Φ
[
(I + n−1λ−1ΦT

l Φl)
−1
]
ΦT
l Φl

[
(I + n−1λ−1ΦT

l Φl)
−1
]
ΦT
}

=
n−1λ−1

m
λmax

{
Φ(I + n−1λ−1ΦT

l Φl)
−1ΦT −Φ(I + n−1λ−1ΦT

l Φl)
−2ΦT

}
≤ 1

N
λmax

{
Φ(λI + n−1ΦT

l Φl)
−1ΦT

}
= λmax

{
(λI + n−1ΦT

l Φl)
−1

[
1

N
ΦTΦ

]}
.



Using the following identity from the Appendix B of Bach (2013)

(λI + n−1ΦT
l Φl)

−1 =

(
λI +

1

N
ΦTΦ− 1

N
ΦTΦ + n−1ΦT

l Φl

)−1

=

(
λI +

1

N
ΦTΦ

)−1/2 [
I− 1

N
ΨTΨ +

1

n
ΨT
l Ψl

]−1(
λI +

1

N
ΦTΦ

)−1/2

,

where Ψ = Φ
(
λI + 1

N
ΦTΦ

)−1/2
and Ψl is the submatrix of Ψ, we have that

λmax

{
(Kll + nlλIl)

−2

(
1

m

m∑
k=1

KT
klKkl

)}
≤ λmax

{
(λI + n−1ΦT

l Φl)
−1

[
1

N
ΦTΦ

]}

= λmax

{(
λI +

1

N
ΦTΦ

)−1/2 [
I− 1

N
ΨTΨ +

1

n
ΨT
l Ψl

]−1(
λI +

1

N
ΦTΦ

)−1/2 [
1

N
ΦTΦ

]}

≤ σmax

{[
I− 1

N
ΨTΨ +

1

n
ΨT
l Ψl

]−1
}
λmax

{(
λI +

1

N
ΦTΦ

)−1/2 [
1

N
ΦTΦ

](
λI +

1

N
ΦTΦ

)−1/2
}

≤ σmax

{[
I− 1

N
ΨTΨ +

1

n
ΨT
l Ψl

]−1
}
,

where σmax(A) is the spectral norm of the matrix A.

Therefore, to show condition C1, it suffices to show that

max
l=1,··· ,m

λmax

[
1

N
ΨTΨ− 1

n
ΨT
l Ψl

]
= oPX (1). (A.13)

Using Lemma 2 of Bach (2013), we have that

PI
(
λmax

[
1

N
ΨTΨ− 1

n
ΨT
l Ψl

]
> t

)
≤ r exp

(
−nt2/2

λmax

[
1
N

ΨTΨ
]

(R2 + t/3)

)
, (A.14)

where PI is the probability measure corresponding to the partition of the data, r =

rank(Ψ) = rank(K) and R is the upperbound of L2-norm of all rows of Ψ. In our case,

L2-norm of all rows of Ψ the diagonal elements of matrix

ΨΨT = Φ

(
λI +

1

N
ΦTΦ

)−1

ΦT = NK(K +NλI)−1,

where the last equality follows from the Sherman–Morrison formula. Then, by the

definition of dλ in (20), we have that R2 ≤ dλ. In addition, note that

λmax

(
1

N
ΨTΨ

)
= λmax

(
1

N
Φ

(
λI +

1

N
ΦTΦ

)−1

ΦT

)
≤ 1,



which implies that inequality (A.14) can be further simplified as

PI
(
λmax

[
1

N
ΨTΨ− 1

n
ΨT
l Ψl

]
> t

)
≤ r exp

(
−nt2/2
dλ + t/3

)
,

which further leads to that

PI
(

max
l=1,··· ,m

λmax

[
1

N
ΨTΨ− 1

n
ΨT
l Ψl

]
> t

)
≤ mr exp

(
−nt2/2
dλ + t/3

)
→PX 0,

for any 0 < t < 3dλ under condition C1’, which completes the proof of (A.13).

Proof of Lemma 3. We first consider Q2(λ|X) in (24). Define the function class

Fn =
{
f(x) : ‖f‖sup ≤ C1Vn, J1(f) ≤ C2V

2
nH

2
n

}
,

where Vn and Hn are as defined in Conditions C4’(b)-(c) and C1, C2 are some constants.

Applying Lemma A.3 to the function class Fn with εn = ε and γn =
√

c0(1+Hn)Vn
n

, which

satisfy (A.12) under Conditions C4’(b)-(c), we have that

P

(
sup
f∈Vn

|Pnf − Pf |
Pnf + Pf + γn

> Cε

)
≤ exp(−nε2γn/2). (A.15)

Let vk(x) = Varε

{
f̂k(x)

}
, k = 1, . . . ,m. It is straightforward to show that the first

derivative of vk(x) are bounded as follows

|v′k(x)| = 2
∣∣∣Covε

{
f̂k(x), f̂ ′k(x)

}∣∣∣ ≤ 2
√
vk(x)

√
Varε{f̂ ′k(x)},

which further implies that

J1(vk) =

∫
X
{v′k(x)}2 dPX(x) ≤ 4‖vk‖sup

∫
X

Varε{f̂ ′k(x)} dPX(x)

≤ 4‖vk‖2
sup

∫
X Varε{f̂ ′k(x)} dPX(x)∫

X vk(x) dPX(x)
= OPX (V 2

nH
2
n).

Therefore, under conditions C4’(a)-(b), we have that

v1(x), . . . , vm(x) ∈ Fn in probability measure PX .

For simplicity, from now on, we use Q for Q(λ|X) in (22) and Qj for Qj(λ|X), j = 1, 2,

in (23) and (24) whenever there is no ambiguity. Using the facts that Q = 1
m2

∑m
k=1 Pvk

and Q2 = 1
m2

∑m
k=1 Pnkvk, a direct application of (A.15) gives that

P

(
|Q2 −Q|

Q2 +Q+ 1
m
γn

> Cε

)
≤ P

( 1
m

∑m
k=1 |Pnkvk − Pnkvk|

1
m

∑m
k=1(Pnkvk + Pnkvk) + γn

> Cε

)
≤ P

(
max

1≤k≤m

(
|Pnkvk − Pnkvk|

Pnkvk + Pnkvk + γn

)
> Cε

)
≤ m exp(−nε2γn/2)→ 0,



where the last step follows from condition C4’(c). In addition, by conditions C4’(b)-(c),

we have that γn
mQ

=
√

c0(1+Hn)Vn
mNQ2 = OPX (1). Hence we conclude that

Q2(λ|X) = Q(λ|X) + oPXQ{(λ|X)}. (A.16)

Now we turn to the quantity Q1(λ|X). Define another function class

F̄n =

{
f(x) : ‖f‖sup ≤ C1

Vn
m
, J1(f) ≤ C2

V 2
nH

2
n

m2

}
,

where Vn and Hn are as defined in Conditions C4’(b)-(c) and C1, C2 are some constants.

By applying Lemma A.3 to the function class F̄n with εn = ε and γN =
√

c0(1+Hn)Vn
mN

,

which satisfy (A.12) under Conditions C4’(b)-(c), we have that

P

(
sup
f∈VN

|PNf − Pf |
PNf + Pf + γN

> Cε

)
≤ exp(−Nε2γN/2). (A.17)

Define another function

v̄(x) = Varε{f̄(x)} =
1

m2

m∑
k=1

vk(x),

whose derivative is bounded as

|v̄′(x)| = 2
∣∣Covε

{
f̄(x), f̄ ′(x)

}∣∣ ≤ 2

m

√
Varε{f̄(x)}

√
Varε{f̄ ′(x)}

≤ 2

m

√√√√ 1

m

m∑
k=1

vk(x)

√√√√ 1

m

m∑
k=1

Varε{f̂ ′k(x)}.

From the above two equations/inequalities, under conditions C4’(b)-(c), one has that

‖v̄‖sup ≤
1

m2

m∑
k=1

‖vk‖sup
1

m
OPX (Vn),

and that

J1(v̄) =

∫
X
{v̄′k(x)}2 dPX(x)v̄ ≤ 4

m2

∫
X

{
1

m

m∑
k=1

vk(x)

}2
1
m

∑m
k=1 Varε{f̂ ′k(x)}

1
m

∑m
k=1 vk(x)

dPX(x)

≤ 4

m2

{
max

1≤k≤m
‖vk‖sup

}2 ∫
X

max
1≤k≤m

Varε{f̂ ′k(x)}
vk(x)

dPX(x) =
1

m2
OPX (V 2

nH
2
n)

Therefore, under conditions C4’(a)-(b), we have that

v̄(x) ∈ F̄n in probability measure PX .



Using the facts that Q = Pv̄ and Q1 = PN v̄, a direct application of (A.17) gives that

P

(
|Q1 −Q|

Q1 +Q+ γN
> Cε

)
= P

(
sup
v̄∈V̄N

|PN v̄ − Pv̄|
PN v̄ + Pv̄ + γN

> Cε

)
≤ exp(−Nε2γN/2)→ 0,

where the last step follows from condition C4’(c). Furthermore, by conditions C4’(b)-(c),

we have that γN
Q

=
√

c0(1+Hn)Vn
mNQ2 = OPX (1). Hence we conclude that

Q1(λ|X) = Q(λ|X) + oPX{Q(λ|X)}. (A.18)

Combining equations (A.16)–(A.18), we have that

1
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k=1 tr(A2

kk)
tr(ĀT

mĀm)
N

=
Q1(λ|X)

Q2(λ|X)
= OPX (1). (A.19)

By the definition of Ām, it is straightforward to show that
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tr(Ām)}2

1
Nm

∑m
k=1 tr(A2

kk)
=

1

N

{ 1
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kk)

=
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m
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{N−1tr(Akk)}2

N−1tr(A2
kk)

,

where the second last inequality follows from Cauchy-Schwartz inequality. Combining

the above inequality and (A.19), under condition C4’(a), we finally have that
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tr(Ām)}2

{ 1
N

tr(ĀT
mĀm)}

=
{ 1
N

tr(Ām)}2

1
Nm
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k=1 tr(A2
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1
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kk)

{ 1
N

tr(ĀT
mĀm)}

= oPX (1),

which completes the proof.


