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Abstract

Tuning parameter selection is of critical importance for kernel ridge regression. To this
date, data driven tuning method for divide-and-conquer kernel ridge regression (d-KRR)
has been lacking in the literature, which limits the applicability of d-KRR for large data
sets. In this paper, by modifying the Generalized Cross-validation (GCV, Wahba, 1990)
score, we propose a distributed Generalized Cross-Validation (dGCV) as a data-driven
tool for selecting the tuning parameters in d-KRR. Not only the proposed dGCV is
computationally scalable for massive data sets, it is also shown, under mild conditions, to
be asymptotically optimal in the sense that minimizing the dGCV score is equivalent to
minimizing the true global conditional empirical loss of the averaged function estimator,

extending the existing optimality results of GCV to the divide-and-conquer framework.

1 Introduction

Massive data made available in various research areas have imposed new challenges for
data scientists. With a large to massive sample size, many sophisticated statistical tools
are no longer applicable simply due to formidable computational costs and/or memory
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requirements. Even when the computation is possible on more advanced machines, it is
still appealing to develop accurate statistical procedures at much lower computational
costs. The divide-and-conquer strategy has become a popular tool for regression models.
With carefully designed algorithms, such a strategy has proven to be effective in Linear
models (Chen and Xie, 2014; Lu et al., 2016), Partially linear models (Zhao et al., 2016)
and Nonparametric regression models (Zhang et al., 2015; Lin et al., 2017; Shang and
Cheng, 2017; Guo et al., 2017). In this paper, we shall focus on the divide-and-conquer
kernel ridge regression (d-KRR) where the selection of the penalty parameter is of vital
importance but still remains unsettled.

Suppose we have independent and identically distributed samples {(z;,y;) € X X
R};—1, n from a joint probability measure Py x. The goal is to study the association
between the covariate vector x; and the response y; through the following model

vi = folxi)+¢e;, i=1,...,N, (1)

where fo(-) : X — R is the function of interest and ¢; is a random error term with mean

zero and a common variance 0'2

. One popular method to estimate fy(-) is the Kernel
Ridge Regression (Shawe-Taylor and Cristianini, 2004) which essentially aims at finding
a projection of fy(-) into a reproducing kernel Hilbert space (RKHS), denoted as H,

equipped with a norm || - ||. Specifically, the KRR estimator is then defined as

N
~ 1 )
= inq — i — i A1 2
f arglj}gg{]\,;(y fl@)” + ||f||7-t}7 (2)
where A > 0 controls trade-off between goodness-of-fit and smoothness of f.

It is well known that computing frequires O(N?) floating operations and O(N?)
memory; see (5) for more details. When N is large, such requirements can be
prohibitive. To overcome this, Zhang et al. (2015) proposed the following “divide-
and-conquer” algorithm: (i) Randomly divide the entire sample {(x1,41), ..., (TN, yn)}
to m disjoint “smaller” subsets, denoted by Si,...,Sn,; (ii) For each subset Sk, find
fr =argmingey {i D ies, (Wi — f=:)? + )\||f||§{}, where ny, is the size of Sy; (iii) The
final nonparametric estimator is given by

fle) = > Rl Q)

Such a “divide-and-conquer” strategy reduces computing time from O(N?) to O(N?/m?)
and memory usage from O(N?) to O(N?/m?). Both savings may be substantial as m
grows. Furthermore, Zhang et al. (2015) shows that as long as m does not grow too
fast, the averaged estimator f achieves the same minimax optimal estimation rate as
the oracle estimate ]/‘\, i.e., (2), that utilizes all data points at once. In this sense, the

divide-and-conquer algorithm is quite appealing as it achieves an ideal balance between



the computational cost and the statistical efficiency.

However, the aforementioned statistical efficiency depends critically on a careful
choice of tuning parameter X in all sub-samples. The optimal choice of tuning parameter
A has been well studied for KRR when the entire data set can be fitted at once. Examples
include Mallow’s CP (Mallows, 2000), Generalized cross-validation (GCV, Craven and
Wahba, 1978) and Generalized approximated cross-validation (Xiang and Wahba, 1996).
However, if we naively apply these traditional tuning methods in each sub-sample to pick
an optimal ), in the above step (ii), the averaged function estimator f subsequently
obtained using (3) will be sub-optimal. As pointed out by existing literature (e.g.
Zhang et al., 2015; Blanchard and Miicke, 2016; Chang et al., 2017), the optimal tuning
parameter should be chosen in accordance with the order of the entire sample size, i.e.,
N, such that we intentionally allow the resulting sub-estimator fk to over-fit the sub-
sample Sy for each kK =1,...,m. Based on the order of the optimal choice of A\, Zhang
et al. (2015) proposed a heuristic data-driven approach to empirically choose an optimal
A. However, the theoretical properties of this approach remain unclear. In this paper,
we define a new data-driven criterion named “distributed generalized cross-validation”
(dGCV) to choose tuning parameters for KRR under the divide-and-conquer framework.
The computational cost of the proposed criterion remains the same as O(N?3/m?). More
importantly, we show that the proposed method enjoys similar theoretical optimality as
the well-known GCV criterion (Craven and Wahba, 1978) in the sense that the resulting
divide-and-conquer estimate minimizes the true empirical loss function asymptotically.

The rest of paper are organized as follows. Section 2 introduces background on kernel
ridge regression. Section 3 presents the main result of this paper on the dGCV, while
Section 4 gives statistical guarantee for this new tuning procedure. Our method and
theory are backed up by extensive simulation studies in Sections 5, and are applied to
the Million Song Dataset in Section 6, demonstrating significant advantages over Zhang
et al. (2015). All technical proofs are postponed to the Appendix.

2 Kernel Ridge Regression Estimation

In this section, we briefly review kernel ridge regression (Shawe-Taylor and Cristianini,
2004). The reproducing kernel Hilbert space, denoted as H, is a Hilbert space induced
by a symmetric nonnegative definite kernel function K(-,-) : X x X — R and an inner
product (-, )3 satisfying

(9(+), K(x,-))n = g(x) for any g € H.

The kernel function K(-,-) is called the reproducing kernel of the Hilbert space H

equipped with the norm ||g|lx = v/{(9(),9(-))%. Using the Mercer’s theorem, under
some regularity conditions, the kernel function K'(-, -) possesses the expansion K (x, z) =



> ey Hii(x)(2), where pp > g > ... is a sequence of decreasing eigenvalues and
{1(+),2(+), ... } is a family of orthonormal basis functions of L?(Px). The smoothness
of g € H is characterized by the decaying rate of the eigenvalues {y;}32,. There are
three types of estimation considered in this paper, including smoothing spline (Wahba,
1990) as a special case.

Finite rank: There exists some integer r such that p; = 0 for j > r. For example,
with vectors @, z, the polynomial kernel K (z, z) = (1 + ”2)" has a finite rank r + 1,
and induces a space of polynomial functions with degree at most r. This corresponds to
the parametric ridge regression.

Exponentially decaying: There exist some o, > 0 such that p; < exp(—aj").
Exponentially decaying kernels include the multivariate Gaussian kernel K(x,z) =
exp(—|lx — z||3/¢?), where ¢ > 0 is the scale parameter and | - ||» is the Euclidean
norm.

Polynomially decaying: There exists some r > 0 such that u; =< j=*. The
polynomially decaying class includes many smoothing spline kernels of the Sobolev space
(Wahba, 1990). For example, kernel function K (z, z) = 1+min(z, z) induces the Sobolev
space of Lipschitz functions with smoothness ¥ = 1 and has polynomially decaying

eigenvalues.

2.1 The Representer Theorem

With observed data, using the representer theorem (Wahba, 1990), it can be shown that
the solution to the minimization problem (2) takes the following form

J/C\(w) = Z BZK<;EH w)? (4>

where 1, ..., By € R. Furthermore, based on the observed sample, the parameter vector
B = (B1,...0xn)T can be estimated by minimizing the following criterion

LY~ ATKY(Y ~ BTK) 4 A0TK, o)

where Y = (y1,...,yn)" and K = [K(x;,x;)]ij=1..~. The solution to (5) takes the
form of B = (K + NAIy)~'Y, which requires O(N?) operations.
We next apply the above idea to sub-estimation. Denote (yi,X1),..., (¥m,Xm)

as a random partition of the entire data with y, = (yk,1,~-7yk,nk)T and x; =
(Tk1y. - Xem,). Define vectors f, = (fo(@r1), .-, fo(@rn,))’ and e, = yr — f.
Define the sub-kernel matrices Ky = [K (@, T;j)];cq, jeg, for Lk = 1,...,m. It is

straightforward to show that the minimizer of (5) with K replaced by Ky is of the form



Bk = (Kix + neAI;) "y, and the individual function estimator ﬁ(x) can be written as

1€SE

where B;” is the entry of Bk corresponding to zy;, k=1,...,m.

2.2 Kernel Ridge Regression for Multivariate Functions

In principle, any multivariate function fo(x) in (1), i.e., € RP, can be well approximated
if a sufficiently good reproducing kernel K(-,-) can be identified. However, for a
large p, the excessive risk of the KRR estimator may grow exponentially fast as the
dimension p increases (Gyorfi et al., 2006), which is often referred to as the “curse
of dimensionality”. One common strategy is to impose some special structures on
the reproducing kernel. For example, the polynomial kernel K(x,z) = (1 + x’2)"
assumes that K (-, -) depends only on the inner product of « and z and the multivariate
Gaussian kernel K(x,z) = exp(—||@ — z||3/¢?) assumes that K(-,-) is determined by
the Euclidean distance between vectors & and z. More sophisticated applications of
Gaussian kernels may also allow the scale parameter ¢ to vary for different dimensions.
Another popular approach to circumvent the “curse of dimensionality” is to use additive
approximation (Hastie, 2017; Kandasamy and Yu, 2016) to multivariate functions. Let

x = (x1,T9,-,7,)7, and define the first-order additive approximation of f(zx) as

fr(@) = fi(@y) + -+ fr (), (7)

where each f7(-) is a univariate function residing in a reproducing kernel Hilbert space
H, with a reproducing kernel K;(-,-), j = 1,---,p. The corresponding additive kernel
can be defined as K(x,z) = >°¥_| K;(z;,2;), and the associated reproducing kernel
Hilbert space is H = HiPH2P--- P H,. For some applications where the first
order approximation (7) is not adequate, higher order additive approximations to the
multivariate function f(x) can be used to achieve better estimation accuracies at similar

computational costs, see Kandasamy and Yu (2016) for more detailed discussions.

3 Tuning Parameter Selection

3.1 Sub-GCV Score: Local Optimality

In this section, we define the GCV score for each sub-estimation, named as sub-GCV
score, and discuss its theoretical property. Define the empirical loss function for f; as

follows

LB = — 3w {fuwn) — fofan)} 0

k 1€SE



where w; > 0 is some weight assigned to each observation (y;, z;) and satisfies ), cs, Wi =
ng. The introduction of weights in (8) helps reducing computational cost; see Section 3.4.
The tuning parameter X is referred to as “locally optimal” if it only minimizes local
empirical loss Li(A|xx). When only focused on a single sub-data set, such a “locally-
optimal” choice of tuning parameter A has been well studied in (Craven and Wahba,
1978; Li, 1986; Gu, 2013; Wood, 2004; Gu and Ma, 2005; Xu and Huang, 2012), among
which the Generalized Cross-Validation (Craven and Wahba, 1978) remains to be one
of the most popular approaches.

Using the function estimator ﬁ(:c), the predicted values for the vector y, can be
written as y, = Apx(N)yr, where App(\) = Kip(Kpr + npAL) 7t Here the matrix
A (M) is often known as the hat matrix. Using the above notations, the sub-GCV score
is defined as

o (Y — ye) T We(Tk — i)
GCVi(N) = (T4, AW 2 9)

where Wy, = diag{w;,7 € S}, k = 1,...,m. It is well known that GCVy(\) enjoys
appealing asymptotic properties. For example, under mild conditions, Gu (2013) showed

that, as n, — oo,
1
chk()\) — Lk()\’Xk) — n—kéfgwké"k = O]P’E{Lk()\‘xk)};

k =1,...,m. This property essentially asserts that, minimizing GCV()) with respect
to A is asymptotically equivalently to minimizing the local “golden criterion” Ly (A|xy).

3.2 Local-Optimality v.s. Global-Optimality

In this section, we explain why the use of GCVy()) in each subsample does not lead to
an optimal averaged estimate f. We first derive conditional risks for both ﬁ and f. For
the former, some basic algebra yields that the conditional risk Ri(A|xx) = E. {Lx(A|xx)}
is of the form

Ri(\[x;) = Z w; Var. {fk(:cz)} + L Z w; {Esfk(:ci) - fo(fcz’)}Q , (10)

’iGSk

where the expectation is taken with respect to the probability measure P.. As for the

latter, we first define the empirical loss function of f as

LX) = sz{f ;) — fo(z:)}?, (11)

where X = (xi,...,X;,,) denotes the collection of all covariates and w; > 0 are
the associated weights with observation ¢ such that Zfil w; = N. Similarly, the



corresponding conditional risk R(A\|X) = E.{L(A|X)} has the following form

RO\X) = sz [—Z{Esfk(lﬁi)—fo(%)} +miNiinar€{ﬁ<xi>}. (12)

The form of (10) illustrates that, roughly speaking, a “locally optimal” choice of A

(that minimizes (8)) tries to strike a good balance of variance and bias for each sub-
estimate ]?k On the contrary, a “globally optimal” A, which is defined to minimize (11),
puts much less emphasis on the variance of ﬁ; (by a factor of 1/m) than on the bias of
]?k; see (12). Consequently, to obtain a “globally optimal” f, one needs to intentionally
choose a “smaller” A\ such that each individual function estimator ﬁ overfits data set

Sk, which leads to reduced bias E J?k( ;) — fo(z;) and inflated variance Var. {ﬁ(xz)}

Then by taking f = Z i1 f], the variance of f can be effectively reduced by a factor
of 1/m while keepmg its bias at the same level as those of individual fJ s. The above
risk analysis confirms the heuristics in Zhang et al. (2015).

3.3 Distributed Generalized Cross-Validation

The discussions in Section 3.2 motivate the main result of this paper: distributed GCV
score, denoted by dGCV. This data-driven tool in selecting A is computationally efficient
for massive data as analyzed in Section 3.4.

Using the solution (6), it is straightforward to show that the predicted values of all
data points y; in the subset S; using fk take the form yp = Apyr, where Ay () =
K7, (K + ngAly) "t Define the pooled vector of responses Y = (y7,...,y5)". Then

the predicted value of Y using the averaged estimator f is of the form

( ZYk17"' Zykm) =An(NY,

where the averaged hat matrix A,,()\) is defined as follows

AN Ap(A) - AN
Am<)\) _ % A21:(/\) A22:(/\) AQTr.L()\) (13)
Aml()\) AmQ(/\) e Amm()‘>

Furthermore, the global conditional risk function (12) can be conveniently re-written as

_ 1 _ _ 2 _ _
ROX) = S F {1 - A ()} W{L - &, (\V}F + Tt {ALWWA, ()}, (14)
where vector of true values F' = (f],... f1)T and W = diag{w, ..., wy}. Obviously

the risk function above cannot be used to select A in practice since the vector F' is



unknown. Following Gu (2013), we can define an unbiased estimator of R(A|X) + o? as

follows
U\X) = %YT{I — A, WV W{I-A,A\)Y + %‘Ztr {A, (M)W}, (15)

It is straightforward to show that E.{U (M X)} = R(A|X) + ¢%. The above U()\|X) can
be viewed as an extension of the Mallow’s CP (Mallows, 2000) to the divide-and-conquer
scenario.

Similar to Gu (2013); Xu and Huang (2012), the Lemma 1 in Section 4 states
that under some mild conditions, minimizing U(A\|X) and L(A|X) with respect to A
is asymptotically equivalent. In this sense, the A chosen by minimizing U(\X) is
therefore “globally optimal.” However, a major drawback of U()\X) is that it utilizes
the knowledge of o2, which in practice often needs to be estimated. To overcome this,
we propose the following modification of the GCV score

" 2
v S wi {vi — fl@)}
m 27
(1= w0 20 tr{Aw (V) Wi}
where W;, = diag{w;,7 € Si}. Intuitively, consider 62 = N~! Zf\il w; {yi — f(:vl)}2 as
an estimator of 02 and use the fact that (1—2z)72 ~ 1+2z as z — 0, the U(\|X) defined
in (15) essentially can be viewed as the first order Taylor expansion of the dGCV(A|X).

dGCV(AX) =

(16)

However, in the definition of dGCV(A|X), it does not require any information of o?.
Note that dGCV incorporates information across all sub-samples, which explains its
superior empirical performance. In fact, Theorem 1 in Section 4 shows that under some
conditions, minimizing dGCV(A|X) and the “golden criterion” L(A|X) with respect to
A are also asymptotically equivalent.

3.4 Computational Complexity of dGCV

The computation of dGCV(A|X) in (16) for a given A consists of two parts: the first part
involves computing the trace of individual hat matrices, tr{ Ay (N Wi}, k= 1,...,m,
which requires O(N3/m?) floating operations and a memory usage of O(N?/m?); the
second part is to evaluate the predicted value of f(z;) for which w; # 0, which
costs O(NN,,) floating operations and a memory usage of O(N), where N,, denotes
the number of nonzero w;’s. Hence, the total computation cost of dGCV(A|X) is
of the order O(N?/m? + NN,)). In cases when m/v/N = O(1), one can simply use
w; = --- = wy = 1, which results in the computational cost of the order O(N3/m?)
for one evaluation of dGCV(A|X). This is the same as that of the divide-and-conquer
algorithm proposed in Zhang et al. (2015).

In some applications where m is much larger than /N, the computational cost of

dGCV(A|X) becomes O(NN,,). In this case, we may want to only choose m* out of m



sub-data sets for saving computational costs. To achieve that, we need to choose weights
w;’s properly. For example, we can set w; = N/(X7, ng) if i € U, Sy, and w; = 0
otherwise. Under this setting, the dGCV(A|X) in (16) becomes

NLm* Zieugﬁlsk {yz - f(%)}Q
1 e S A

where N« = ny + - - - + n,,-. Using (17) instead of (16), we only need to evaluate f(x;)
for z;’s in m* subsets and the computation time is reduced to O(N?m*/m + N3/m?).

dGCV*(\|X) =

2 (17)

We applied (17) to the Million Song Data set considered in Section 6, which yields good
results in both prediction and computation time.

Optimization of dGCV(A|X) or dGCV*(A|X) can be carried out using a simple
one-dimensional grid search. Since the first and second derivatives of dGCV(A|X) or
dGCV*(\|X) can be easily computed using similar arguments in Wood (2004); Xu and
Huang (2012), it can also be optimized using the Newton-Raphson algorithm with the
same computational costs.

3.5 The Newton-Raphson Implementation

In some applications, not only the penalty parameter A in (2) needs to be carefully
selected, it is also important to choose other tuning parameters in the kernel function.
For example, the bandwidth parameter ¢ in the Gaussian kernel K (x, z) = exp(—||x —
z||3/¢) also plays an important role in the performance of the KRR, as we will illustrate
in the Million Song Dataset in Section 6. In such cases, dGCV can serve as a tool to
choose the optimal tuning parameters 8 in the kernel function, as long as conditions C1-
(C4 in Section 4.1 are satisfied. One remaining practical issue is that when the dimension
of @ is high, the grid search method for the optimal combination of A and 6 using dGCV
is no longer feasible. Therefore, it is necessary to develop more efficient algorithms such
as the Newton-Raphson type algorithm.

Following Wood (2004), denote n = log A and dGCV(n, 0) = «(n,0)/v(n, ), where

o(1.6) %YT{I—M 0)} WL~ A, (1,0)}Y

2

m

v(n,0) = Z tr{ Ay (n, O)Wi }
ma=
with A,,(n,0) and Ayi(n,0)’s defined in (13). Then the first and second partial
derivatives of log [dGCV(n, 8)] can be straightforwardly obtained as
9log [dGCV(n,0)] 1 da(n,0) 1 9v(n.0)

99 “an 0 00 ame oo o U-1or®




8%1og [dGCV (1, 0)] 1 lf)a(n,e)} [aa(n,e)]TJr (1 d%a(n, 0)

0v0o" T a2(n,0) oV do a(n,8) 99T
1 [07(n,0)] [ov(.0)]" 1 3*4(n,0) B
" 0,0) [ o 00 S08) dvogr 0 e=mord

By definitions of «(n,0) and ~(n, @), straightforward matrix calculus yields that it
remains to compute partial derivatives of Ay(n,0) = K% (0) [Kik(0) 4 npe’l;] " with
Ky = [K(x;,z;;0)] for I,k =1,...,m. It is straightforward to show that

1€SE,JES)]
A o
855—77(2”’) = "KL (0)K + 2n2e” KL (0)K
9*Ari(n,0) IK},(0) 0K (6) 0K,,(0)
onoe. _”’“en{ 20, KHOKL—5= }Kik + e K (00K 5 — Kl
PAumn,0)  OPKy(0) v OKy(0) v IK(0) . IKj ¢ 0K (6) oot
’ = K;, — K, K;, — OK;, ————K
90,00, 00,,00., ™ 0., d0.., HE08,, (0K, 0., Kk
0K 1 (0) 0K 1 (0) 0?K(0)
+K4 (0K, 20, Ki, 20, Kj, — Kzl(e)Kikaik
K K
+K£(0)K£ka kk(e)Kika kk(e)Kik, for @ = (64, -+ ,0p),c,c1,c0=1,--- | D,
0., d0..,
where K}, = [Kj(0) +ne] ", k1 =1,--- m and all matrix derivatives are taken

element-wise.

It is straightforward to show that the computational complexity of first and second
derivatives of log [dGCV(n, 8)] are the same as that of dGCV, which makes the Newton-
Raphson type algorithm feasible. However, it is worth pointing out that log [dGCV(n, 8)]
is not a convex function of 17 and @, hence there is no guarantee that a Newton-Raphson
type algorithm will converge to the global minimizer. Numerical suggestions such as
those in Wood (2004) may be useful for developing more efficient algorithms, which will
be an interesting further research topic.

4 Asymptotic Properties

In this section, we will show that the proposed dGCV criterion in (16) is “globally
optimal” under some conditions. We first introduce some notation. Denote Px, P., P, x
as the probability measures of covariate X, error process € and their joint probability
measure. Similarly, E. and Var. denote the expectation and variance under the
probability measure P.. Let Apax(A) and omax(A) and tr(A) be the largest eigenvalue
and the largest singular value of the matrix A, respectively. We use % to denote the
convergence in probability measure P and Op(+), op(:) as defined in the conventional
way. For any function f(z) : X — R, let || f|lsup = Supgex |f(2)| and Pf = [, f(x) dP.

10



Finally, let IP,, denote the empirical probability measure based on i.i.d samples of size n

from the probability measure P.

4.1 Asymptotic Optimality of dGCV

The following regularity conditions are needed to show the optimality of dGCV.
[C1] % 3702 A { (K + L) 72 (4 3000 KKw) | = Opy (1)

[C2] NR()\|X) X 00 as N — o0y

[C3] (a) The weights w;’s are nonnegative such that >~  w; = N and that max; <<y w; <
W for some constant W > 0; (b) 5= >0, tr{Ag(N)} = op, (1) as N — oo.

[N~ {A, (AN W)2
[C4] [N-1TT{AL ()WA.(V}

] =op,(1) as N — oc.

Intuitively, condition C1 requires that some similarities among sub-data sets. If all
K,,;’s are similar to Kj;, we can expect Apax {(K” + m L) 72 (% >, K}QKM)} <1,
in which case C1 holds. In Section 4.2, we shall show that one sufficient condition for
C1 to hold is to ensure that the “maximal marginal degrees of freedom” (Bach, 2013)
dy defined in (20) is sufficiently small compared to N/m. Condition C2 is a widely
used condition to ensure the optimality of the GCV to hold, for example, see Craven
and Wahba (1978); Li (1986); Gu and Ma (2005); Xu and Huang (2012). It is a mild
condition for nonparametric regression problems, where the parametric rate O(N 1)
is unattainable for the estimation risk. For example, for kernel ridge regression models
with polynomially or exponentially decaying kernel functions, condition C2 holds (Zhang
et al., 2015). However, it does raise a flag for the application of the dGCV when a finite
rank kernel is used, in which case the optimal rate of R(\|X) is of the order O(N~!)
(Zhang et al., 2015). Nevertheless, without condition C2, it is questionable whether
there exists an asymptotically optimal selection procedure for the tuning parameter A

(Li, 1986).

Remark 1. Condition C3(a) has an important implication for the dGCV*(X) defined in
Section 3.4. When leaving out a portion of data as suggested in Section 3.4, the resulting
weights become w; = N/(ZZZI ng) if i € UM, Sy and w; = 0 otherwise. Condition C3(a)
requires that the number of data points remained (i.e., ZZ; ng) must be of the same
order as N. Therefore, more data points need to be retained as the sample size N grows.
Furthermore, when all sub-datasets under the divide-and-conquer procedure are roughly
of the same size, Condition C3(a) essentially requires that m*/m = c for some absolute
constant 0 < ¢ < 1. From the computational point of view, it is worth to use a m* < m
only when N >> m?2. Therefore, a general rule of thumb for the choice of m* is that it

should only be used when N >> m? and if used it cannot be too small compared to m.

11



It turns out that, under conditions C1-C2 and C3(a), U(\X) defined in (15) is
“globally optimal.”

Lemma 1. Under Conditions C1-C2 and C3(a), for a fivzed A\, we have that
_ _ 1 _
UAX) = LX) = 5" We = o, { LX)} (18)

The proof is given in the Appendix.

Lemma 1 states that when ¢? is known, minimizing U(A\|X) with respect to A
is asymptotically equivalent to minimizing the empirical true loss function L(\|X).
However, it is rarely the case that one has complete knowledge of o2. In this sense,
the proposed dGCV is more practical and it can be shown to be “globally optimal” as
well, under some additional conditions.

Theorem 1. Under Conditions C1-C4, for a fized \, we have that

1

AGCV(X) = LX) -

e"We =op_ {(L(\x)}. (19)

The proof is given in the Appendix.

Similar to Lemma 1, Theorem 1 shows that minimizing dGCV(A|X) amounts to
minimizing the true conditional loss function L(A|X), although additional conditions
C3(b)-C4 are needed. Condition C3(b) is rather mild in that it essentially requires that
the effective degrees of freedom to be negligible compared to the sample size, which
is typically true for non-parametric function estimators in most settings of interest.
In addition, C3(b) becomes trivial when m — oo because by definition we have that
tr{Ag(N)} < ng, & = 1,...,m. When the entire data set is used at once (m = 1),
condition C4 reduces to the well known condition [N~'tr{A(A\)}]?/[N~tr{A%(\)}] =
o(1) in the literature (Craven and Wahba, 1978; Li, 1986; Gu and Ma, 2005; Xu and
Huang, 2012). For example, for smoothing splines, we typically have tr{A(\)} =
O(A~Y#) and tr{A%(\)} < O(\~Y/*) for some s > 1. Then as long as A™*/*/N — 0, which
covers the most region of practical interest for A, we have that [N ~1tr{ A(\)}]?/[N " 'tr{A%2(\)}] —
0 as N — oo. Condition C4 can be viewed as an extension of this commonly used

condition to the divide-and-conquer regime.

4.2 Low-level Sufficient Conditions for C1 and C4

In this subsection, for simplicity, we only consider uniform weights with w; = --- =
wy = 1 and equal sample sizes n; = - -+ = n,, = n in this subsection. We first establish
a low-level sufficient condition for C1. Following Bach (2013), define the “maximal
marginal degrees of freedom” as

dy = N||diag{K(K + NAXIx) " }H|oo, (20)
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where || - || stands for the matrix infinity norm. Note that A(\) = K(K+ NAy) '} is
the hat matrix (13) with m = 1 and df, = tr[A(\)] = ||diag{K(K+ NXIy)'}||; defines
the “effective degrees of freedom” (Gu, 2013) for the KRR using the entire dataset at
once. In this sense, the “maximal marginal degrees of freedom” d) provides an upper
bound for the “effective degree of freedom” df, due to the inequality df, < d,, and

hence gives another measure for the model complexity.

[C1’]Let r = rank(K) and dy be the “maximal marginal degrees of freedom” defined
in (20), we assume that

mdy (logr + logm)
N

as N — oo for either a finite m or m — oo.

= opx (1), (21)

Condition C1’ ensures that the number of partitions m cannot be too large compared
to the total sample size N, depending on the magnitude of dy, which is consistent with
findings in the literature (Zhang et al., 2015; Shang and Cheng, 2017). With a large m,
condition C1’ maybe violated if there is a significant number of outliers, leading to a
potentially large d.

Lemma 2. Condition C1’ s sufficient for condition C1.

The proof is given in the Appendix.

Next we proceed to derive sufficient conditions for condition C4. When the
entire data set is used at once (m = 1) and conditional on observed covariate X,
condition C4 reduces to the well known condition [N~'tr{A(A\)}]?/[N~"tr{A%(\)}] =
o(1) in the literature (Craven and Wahba, 1978; Li, 1986; Gu and Ma, 2005; Xu and
Huang, 2012). For example, for smoothing splines, we typically have tr{A(\)} =
OAY#) and tr{A%(\)} =< O(A"Y*) for some s > 1. In this case, as long as
A"Y$/N — 0, which covers the most region of practical interest for A, we have that
[N"Hr{A(N)}?/[N " "r{A%(N)}] — 0 as N — oo. Condition C4 can be viewed as an
extension of this commonly used condition to the divide-and-conquer regime, whose
justification, however, is much less straightforward.

We first provide some heuristic insights behind our proof. Define
_ 1 & ~
QAX) = [ Vo f@)P dx(a) = o3> [ Varffle) dbxle). @2
X o Jx

Let Px y be the empirical measure based on sample {X,..., Xy}, and Px,, be the
empirical measure based on the k-th sub-sample {X;}ics,. It is straightforward to show
that

Qi(AX) = UQtr{Aﬂ?\)fAm(A)} — /X Var, { f(2)}” dPx v (2), (23)
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Intuitively, @Q1(A\X) and Q9(A|X) are two empirical versions of Q(A|X) and should
be close to each other. The formal proof utilizes the uniform ratio limit theorems
for empirical processes (Pollard, 1995) to show Q;(AX)/Q(AX) = 1 + op, (1) and
Q2(AX)/Q(ANX) = 1+ op, (1), then with the help of condition C4’(a), we can show
condition C4 holds.

Let N(¢, || - [lpy..,F) be the e-covering number (Pollard, 1986) of a function class
F with the empirical norm || f|lp,, = /n~ 1>, f2(X;). Following conditions are
sufficient to ensure condition C4.

(C4)(a) 3 S0 [Ftr{An O]/ [Rr{AR Y] = 02, (1);
[C4’](b) There exists a positive sequence {V,,} such that as V,, — 0, it holds that

~ 1 ~
Vo | £ S0 o Var{fu@)} dPx(2)] = Ory (1), maxiguen [ Var{ful@)} o =
Op, (V,,) and nV,, — oo as n — o0;

[C4’](c) There exists a sequence { H,, } such that H, [% Yot [y Varg{ﬁc(m)} dPx(x)

Ok (1), maxichem| [y Var{ fi(2)} dPx ()] [ Var{ fu(x)} dPx(2)] = Osy (H2).
and nH,V, — (logm)* — oo as n — oo. Here, f(z) denotes the derivative of

fe(x);

[C4’](d) For the function class Fo = {f : |[fllswp < 1, 51(f) = [y {f'(2)}* dPx(z) <
1}, we have that N(e, || - [[py..,Fo) < exp(Cy/e) for some constant Cy > 0 with
probability approaching one as n — co.

Lemma 3. For a tuning parameter X satisfying conditions C4’(a)-(d), one has that
1 - X2 (1, ~ra
Nt’l"(Am) / Ntr(AmAm) = O]pX(]_).

The proof is given in the Appendix.

Condition C4’(a) is a mild condition as we have discussed at the beginning of this
subsection. Condition C4’(b) essentially states that the supremum norm and the L,
norm of the variance function Vars{ﬁ(:v)} are of the same order, which is reasonable
when all Vara{ﬁ(x)}’s similarly well-behaved within the support of covariate X. In
addition, we should restrict our attention to the range of A\ such that nVarE{ﬂ(a:)} —
00, k = 1,...,m. Recall the discussion in subsection 3.2, the optimal f can only be
obtained when the risk (10) is dominated by the variance term Vars{ﬁ(x)} for each
individual ﬁ;(:v) Hence, letting nV,, — oo is reasonable based on the condition C2.
Condition C4’(c) essentially asserts that H, and nV,, are of the same order. For the
smoothing spline case, the derivative f,; is typically more variable than ﬁ such that one
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can expect H,, — oo. For example, Rice and Rosenblatt (1983) gives the exact rates
of convergence for cubic smoothing spline, that is [, Var.{ fi(2)} dPx (z) < n~IA~1/4,
I Var.{f}(z)} dPx(z) =< n~'A=3*_ In this case, we have that H, =< A4 and nV, =
A1/ A thorough theoretical investigation of H, and Vj, is difficult in general, though
our simulation study (unreported) suggests condition C4’(c) to be reasonable for many
reproducing kernels.

Finally, condition C4’(d) holds when the empirical measure Py, is replaced by Px,
see, e.g., van de Geer and van de Geer (2000). One can generally expect it to hold
when the sample size n is large. The upper bound of the random covering number
N (e || lpx..» Fo) determines the rate of convergence of the empirical processes Q1(A|X)
and Q2(A\|X) to Q(AX). And it can be relaxed similarly as given in Theorem 2.1 of
Pollard (1986).

Remark 2. One benefit of using high level conditions such as C1, C2 and C4 is that they
do not involve the response variable and can be computed efficiently using sample data.
To deal with the randomness in covariate X, one can bootstrap /resample/subsample from
the observed data, which is especially suitable when the sample size under consideration
is extremely large. Through this resampling strategy, one can empirically verify C1, C2
and C4, although rigorous justification of such strategy has not been established and will

be an interesting topic for future research.

5 Simulation studies

In this section, we conduct simulation studies to illustrate the effectiveness of dGCV(\)
in choosing the optimal A for the d-KRR. The data were simulated from the model

y = 2.4 x beta(z,30,17) + 1.6 x beta(z,3,11) +¢, =z € [0,1], (25)

where beta(x, a, b) is the density function of the Beta(a, b) distribution and € ~ N(0, 3?).
The covariate x;’s were independently generated from the uniform distribution over the
interval [0, 1]. For each simulation run, we first generated a data set of the size N = mn
and then randomly partition the data sets into m sub-data sets of equal sizes. The
divide-and-conquer estimator f was obtained as given in (3).

Let f®)(.) be the vth derivative of a smooth function f(-). The true function in
model (25) belongs to the Sobolev Hilbert space of vth order differentiable functions
on [0, 1] satisfying the periodic boundary conditions f*)(0) = f*)(1) for v =1, --- , 10,
denoted as W, (per) (Wahba, 1990). If W, (per) is endowed with the norm | f|3,, =

2
{fol f(x) dx} + fol{f(”) (x)}? dz, then it has a reproducing kernel

K(z,2) = %BQV(@ _2), wze0 1), (26)
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where By, (+) is the 2vth Bernoulli polynomials (Abramowitz et al., 1972) and [z] is the
fractional part of x. In all simulation runs, the tuning parameter A was selected by a
grid search for log(A) over 30 equally-spaced grid points over the interval [—10v, —5v].
Three approaches were used for the selection of A\: (i) the distributed GCV (dGCV)
approach proposed in (16); (i) (ii) the naive GCV (nGCV) approach where a Ay is
selected for each individual ﬁ; by minimizing the sub-GCV score GCV () defined in
(9) for £ = 1,--- ,;m and then the final estimator is obtained by averaging all fk’s;
and (iii) the true empirical loss function (TrueLoss) L(A|X) defined in (11). The last
approach is not practically feasible since it requires the knowledge of the truth f,. It
merely serves as the “golden criterion” to show the effectiveness of other two approaches.
For all approaches, we set the weights w; = 1 for all+=1,..., N and used v = 2 for the
kernel (26) unless otherwise stated.

5.1 Performances with Moderate Sample Sizes

In this subsection, we evaluated performances of the proposed approach with moderate
sample sizes N = 2¢, i = 8,9,10,11,12. In this setting, it is still possible to obtain the
KRR estimator with the entire data set, i.e., m = 1, and enables us to evaluate potential
loss using the divided-and-conquer approach as opposed to using all data at once.

5.1.1 Computational Complexity and Estimation Accuracies

We first simulate data from model (25) for various sample sizes N = 2, i = 8,9,10,11,12
and fit the data with divide-and-conquer regression with m = 1,2, 4, 8,16, 32. Summary
statistics based on 100 simulation runs were illustrated in Figure 1(a)-(f). Figure 1(a)
illustrates the computational complexity of one evaluation of dGCV(A) . All simulation
runs were carried out in the software R (R Core Team, 2018) on a cluster of 100 Linux
machines with a total of 100 CPU cores, with each core running at approximately
2 GFLOPS. We can clearly see that by using the divide-and-conquer strategy, the
computational time of the dGCV can be greatly reduced compared to the case when all
data were used at once (i.e., m = 1).

In Figure 1(b)-(c), we give some comparisons of the dGCV method and the nGCV
method. Figure 1(b) shows the scatter plot of true empirical losses, as defined in (11),
of the function estimators obtained by minimizing dGCV(A) versus minimizing the
unattainable “golden criterion” (11) over 100 simulation runs. As we can see, majority
of points are concentrated around the 45° straight line, which supports our theoretical
findings in Theorem 1. On the contrary, Figure 1(c) shows that true empirical losses
of the function estimator based on the nGCV approach are generally larger than the
minimum possible true losses, indicating that such function estimators are indeed only

“locally” optimal but not “globally optimal.”
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Figure 1: (a) the logarithm of computational time (in seconds) v.s. log(N); (b)-(c):
scatter plots of true empirical losses of function estimators; (d) the logarithm of averages
of selected A v.s. log(m)/log(N); (e)-(f): the logarithm of averaged true empirical losses
v.s. log(m)/log(N). Note that in (d)-(f), Aep in the y-axis denotes one of Adggev, Angey

and ATyueLoss for each curve.

In Figure 1(d)-(f), we used N = 2 and m = 27 for j = 0,1,...,i—2 and i = 8,10, 12
so that there were at least four data points in each sub-data set. To better understand
the differences between the dGCV and the nGCV approaches, Figure 1(d) shows how
the logarithm of the averages of selected tuning parameters (over 100 simulation runs),
denoted as log(xopt), for each method changes as m increases. As we can see, when
m = 1 they are identical. However, as m increases, the A selected by the nGCV approach
consistently increases whereas the A selected by the dGCV method stays about the same
until m gets really large and is always smaller than the A selected by the nGCV method.
This is consistent with findings in Zhang et al. (2015) where they argue that the locally
optimal rate of A for each individual fj is of the order O(n=%°) with n = N/m whereas
the globally optimal rate for \ is of the order O(N~%/%).

The y-axis of Figure 1(e)-(f) is the logarithm of estimation errors log f(/):opt), where
Z(Xopt) stands for the averaged true conditional loss defined in (11) over 100 simulation
runs using different selection approaches for \. We can see from Figure 1(e)-(f) that as
long as m is not too large compare to IV, the proposed dGCV () is quite robust in terms
of controlling the estimation error as m grows and is almost identical to that of using the
true loss function, which is considered as a “golden criterion.” This is consistent with

our Theorem 1. In contrast, estimation errors of the nGCV approach quickly inflates as
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m increases, which is expected according to our discussion in subsection 3.2. Finally, it
is interesting to point out that as the A selected by the dGCV method starts to drop in
Figure 1(d), the estimation errors in Figure 1(e)-(f) start to inflate as well.

5.1.2 Is It Worth Minimizing dGCV(\)?

In this subsection, we investigate the issue that whether the extra computational costs
in minimizing dGCV(A) is worthwhile. The optimal rates of A for various reproducing
kernels have been well established, see, e.g., Zhang et al. (2015). In the case of the
reproducing kernel (26) used in this simulation, the optimal rate for X is of the order
O (N WB%), or in other words, A,y = CN ~%41 for some constant C'. One misconception
is that the choice of C' does not matter much because asymptotically any value of C'
leads to the same convergence rate for f. However, for a given sample size, this is
far from being true. To illustrate, we fitted the data generated from model (25) using
reproducing kernel (26) with v = 1 and 2, respectively. Resulting function estimators
based on 100 simulation runs with N = 22 = 4096 and m = 4 were presented in Figure 2
(a)-(b), where it is apparent that by setting C' = 1, both KRR estimators based on
reproducing kernel with v = 1 or 2 yield much worse estimation accuracies than those of
corresponding KRR estimators using A selected by minimizing the proposed dGCV(\)
criterion. A closer look at the minimization problem (2), or equivalently (5), suggests
that the optimal choice of the constant C' in A, should depend on (a) the magnitude
of the kernel function K(-,-); (b) the magnitude of response Y; (c) the sample size N,
and therefore can be difficult to obtain in practice. As we have illustrated in Figure 2,
for a fixed sample size, a carefully chosen constant C' (through dGCV in this case) may
have significant impacts on the quality of resulting KRR estimator, for which reason we
believe that additional computational costs in minimizing dGCV is indeed worthwhile.

(a)v="1 (b)v=2

fo(x)
A

- A = argmin, dGCV(})
c— a=N2P

fo(x)
A
o | A = argmin, dGCV(1)
-
P N

)
LTI

Figure 2: Estimated functions using Divide-and-conquer KRR with a sample size N =
2'2 and m = 4. Kernel defined in (26) was used with (a) v =1 and (b) v = 2.
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5.1.3 The Choice of Number of Partitions m

One remaining issue that we have not addressed theoretically is that how many partitions
of data (m) should be used in practice for a given sample size N. The general guideline
for the choice of m is clear: as long as m is not too large compared to N, the d-KRR
estimator can achieve the optimal convergence rate (Zhang et al., 2015; Shang and
Cheng, 2017). However, a practical tool to determine whether m is too large is still
lacking. In this subsection, we conducted a simulation study to show that the proposed
dGCV may serve such a purpose.

By its definition (16), dGCV(\) can also be viewed as a function of m, denoted as
dGCV(A,m). Then we can define a profiled version of dGCV as follows

dGCV,(m) = dGCV(X, m), (27)

where A = arg miny-o dGCV(X,m) for a fixed m. We simulated data from model (25)
with V = 2! for 100 times and then fitted each data set using d-KRR with m = 27 for
j =1,---,9. Figure 3(b) presents patterns of 100 centralized version of dGCV,(m),
defined as dGCV,(m) — %Z?Zl dGCV,(j), as a function of m. As comparifon,
Figure 3(a) gives the true empirical loss (11) of each d-KRR estimator using A =
argminy~o dGCV(\,m) for each m, where it appears that as long as m < 27, the
estimation accuracy of the fitted function remain roughly the same as using the optimal
A picked by minimizing dGCV(A,;m). This coincides with existing theoretical findings
in the literature such as Zhang et al. (2015) and Shang and Cheng (2017). More
importantly, the similarity between Figure 3 (a) and (b) suggests that the profiled dGCV
score defined in (27) can capture the sudden drop in the trajectory of empirical loss as
a function of m and therefore determine which m might be too large. We have tried
many other settings and the message remains the same. This implies that, in practical
applications, one can start with a relatively large m and gradually decrease m until
dGCV,(m) defined in (27) stabilizes. Rigorous justifications of such an approach will

be an interesting future research topic.

5.1.4 Performances of dGCV on Multivariate Functions

In this subsection, we investigated the impacts of model dimensionality and correlation
among predictors on the performance of dGCV. Let & = (x1,--- ,z,)", the data was
simulated from the following model

lzl\" (=13 -l 2
y:f(w):20(1—— 16 +7 +1)+e, e~ N(0,3°), xe€][0,1,
VP /. p VP

where |[|-||2 is the Euclidean norm in R?, function (r); = max(r,0) and x;’s are uniformly
distributed between [0, 1] for j = 1,---,p. To induce correlations among z;’s, let z; =

T

®(z;) where (21,29, ,2,)" was generated from a p-dimensional multivariate normal
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Figure 3: (a) Empirical true loss defined in (11) using A picked by dGCV for each m; (b)
Centered optimal dGCV score for each m; based on 100 simulation runs. (N = 4096.)

distribution with mean 0, variance 1 and pairwise correlation coefficient p = 0 or 0.8.
f(x) is a variate of Wendland’s function (Schaback and Wendland, 2006). For p < 5, we
performed the KRR with the reproducing Hilbert kernel space equipped with the kernel

_ 5 — ~||2
Kz, z) = <1—w> (5M+1>, x,z € [0,1]7,
P/, P

which is a radial basis function with bounded support for p < 5, see Schaback and
Wendland (2006) for more details. The averaged true empirical losses based on 100
simulation runs are summarized in Figure 4. On one hand, when the dimensionality
of x increases from p = 1 to 5, the averaged empirical losses gradually increase as
expected. However, the averaged empirical losses of d-KRR estimators with A chosen
by dGCV is almost indistinguishable from those of corresponding estimators with A
picked by the true empirical loss, regardless of the dimension p. This echoes with our
theoretical findings in Theorem 1. On the other hand, as p increases from 0 to 0.8, the
correlations among z;’s seem to have little impact on the estimation accuracies for the
estimated overall mean function f(x). In fact, when p = 0.8, the performance of dGCV
is relatively more stable than the case with p = 0 as the dimension p increases. This can
be explained by the fact that f(x) only depends on ||&||2, which is less variable when p
increases for the case p = 0.8. For this reason the estimation of f(x) is less affected by
the dimensionality when p = 0.8.

5.2 Performances with a Large Sample Size

In this subsection, we investigated two issues when the sample size NN is so large that a
single machine can no longer handle at once: (a) whether the computational /estimation
performance in Section 5.1.1 still persists; (b) what is the impact of the choice of m*
in (17) on the performance of dGCV™.
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Figure 4: The logarithm of averaged true empirical losses v.s. log(m)/log(N) with a
sample size N = 2'2 and (a) p =0 (b) p=0.8.

5.2.1 Computational Complexity and Estimation Accuracies

To investigate the first issue, we simulated data from model (25) with a sample size
N = 2% = 65,536 and the d-KRR was carried out using m = 27 for j = 5,--- ,11.
Summary statistics based on 100 simulation runs are summarized in Figure 5, where
the message is consistent with findings presented in Section 5.1.1: at a much smaller
computational cost, the d-KRR with a A chosen by minimizing dGCV is as good as
using the A that minimizes the true empirical loss (11), provided that the m is not too

large.
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Figure 5: (a) the logarithm of computational time (in seconds) v.s. log,(m); (b) the
logarithm of averaged true empirical losses v.s. logQ( ); (c) scatter plots of true empirical
losses of function estimators. Note that in (b), )\Opt in the y-axis denotes one of )\dgcv,

Ancgov and AyueLoss for each curve.

5.2.2 The Impact of the Choice of m*

When the sample size N is large or even massive, it is inevitable to use a relative large m,
in which case further computational savings can be achieved by choosing a subset of data
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for validation as suggested in (17) of Section 3.4. The question remains that how small
m* can be so that Theorem 1 still holds? As we have discussed in Remark 1, a general rule
of thumb for the choice of m* is that it cannot be too small compared to m. To shed some
more lights on this issue, for each m, we simulate data from model (25) and then fitted
the d-KRR with the A that minimizes (17) using m* = 1,--- ,;m. Averaged empirical
losses based on 100 simulation runs are plotted in Figure 6, where it indicates that if
m* is too small relative to m, the estimation accuracies indeed deteriorate significantly
compared to the optimal performance. However, as long as m* is greater than 0.2m, the
choice of m* has little impact on the estimation accuracies. Therefore, by setting m*
as a reasonable percentage of m (such as 20% or 30%), one may indeed achieve a large
reduction in computational cost without sacrificing too much on estimation accuracies.
We want to emphasize again that it is worth to use a m* < m only when N >> m?2.
And if used, whenever the computational cost is affordable, a larger m* is a safer choice

to achieve better performances.
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Figure 6: The logarithm of averaged true empirical losses v.s. m*/m

6 The Million Song Dataset

In this section, we applied the dGCV™ tuning method to the Million Song Dataset, which
consists of 463, 715 training examples and 51, 630 testing examples. Each observation is
a song track released between the year 1922 and 2011. The response variable y; is the
year when the song is released and the covariate z; is a 90-dimensional vector, consists of
timbre information of the song. We refer to Bertin-Mahieux et al. (2011) for more details
on this data set. Timbre is the quality of a musical note or sound that distinguishes
different types of musical instruments, or voices (Jehan and DesRoches, 2011). The
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goal is to use the timbre information of the song to predict the year when the song was
released using the KRR. The same dataset has been analyzed by Zhang et al. (2015),
but without addressing the issue of selecting an optimal tuning parameter. Our dGCV*
method demonstrated significant empirical advantages over theirs.

Following Zhang et al. (2015), the feature vectors were normalized so that they have
mean 0 and standard deviation 1 and the Gaussian kernel function K (z, z) = exp(—||z—
z||3/¢) was used for the KRR. Seven partitions m € {32,38,48,64,96, 128,256} were
used for the d-KRR. Aside from the penalty parameter A in (2), the bandwidth ¢ is
also known to have important impact on the prediction accuracy. To find the best
combination of (A, ¢) for each partition m, we perform a 2-dimensional search with
A € {0.25,0.5,0.75,1.0,1.25,1.5} /N and ¢ € {2,3,4,5,6,7} by minimizing (17) with
m* = [m/10], where [a] is the smallest integer that is greater than a. See Remark 3
for more details on the choice of m*. Note that in this case, dGCV*(A|X) is also a
function of ¢. The experiment was conducted in Matlab using a Windows desktop
computer with 32GB of memory and a 2.6Ghz CPU with 4 CPU cores. To illustrate
that the computation of the proposed dGCV*(A|X) can be easily paralleled, Figure 7
gives how averaged computation time changes as the number of CPU cores (in a single
machine) increases. The computation time reduces most when the number of CPU
cores increases from 1 to 2, and the reductions in computation times slow down as the
number of CPU cores continues to increase. Such a trend is probably due to the memory
constraints, communication costs and energy consumption limits on the computer and is
not uncommon for parallel computing conducted in a single machine. Nevertheless, these
computation times are reasonable for a data set with almost half-million observations
and can be further reduced if a computing cluster is available.
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Figure 7: Computing times v.s. Number of CPU cores



The grid search gave the optimal choice of A = 0.5/N and ¢ = 3 for most of case
scenarios. From Figure 8(a)-(b), we can see that the choice of the bandwidth parameter
¢ has a great impacts on the dGCV™* score as well as the penalty parameter \. It seems
that the latter provides some additional small adjustments after a good value of ¢ is

chosen.
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Figure 8: (a) dGCV score v.s. N with m = 32 (the bottommost) to m = 128 (the
uppermost); (b) dGCV score v.s. ¢ with m = 32 (the bottommost) to m = 256 (the
uppermost); (c¢) The prediction mean squared errors on the testing samples v.s. log(m).

In Zhang et al. (2015), the authors used a fixed value A = 1/N and a ¢ = 6 chosen
by the cross-validation for their kernel ridge regression model. In Figure 8(c), we can
see that such a choice leads to a much worse prediction mean squared error (PMSE) on
the testing samples. Using the proposed dGCV criterion, our choice of A\ and ¢ yields
almost identical prediction accuracy as the minimum possible PMSE on the testing

samples obtained over all 36 grid points.

Remark 3. Note that for any given combination of (X, ), the estimated function fy 4
used in dAGCV™ is the same for different values of m*, which is defined in (3). The
agreement between the test PMSE of the dGCV™ method and the minimum test PMSE
in Figure 8(c) suggests that there is no room to improve over the predictive performance
of fA,¢ using tuning parameters selected by dAGCV™, as long as the same multivariate
Gaussian reproducing kernel function is used. This is a strong indication that m* =
[m/10] is a good choice for this example, considering that dAGCV™ did not use any
information of the 51,630 testing examples.

7 Discussion

In this paper, we proposed a data-driven criterion named dGCV that can be used
to empirically selecting the critical tuning parameter A for d-KRR. Not only the
proposed approach is computationally scalable even for massive data sets, we have also
theoretically shown that it is asymptotically optimal in the sense that minimizing dGCV
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is equivalent to minimizing the true global conditional empirical loss, extending the
existing optimality results of GCV to the divide-and-conquer framework.

There are a few ways to extend the current work. For example, we have so far
presumed a fixed m. One important direction is to investigate the growth rate of m
for some specific kernels under which Theorem 1 still holds, following the framework
proposed in Shang and Cheng (2017). It is also of practical interest to develop a
justifiable data-driven approach to detect the breaking point for m. Another interesting
research direction is to develop a tuning criterion similar to the dGCV for more general
panelized Kernel regression such as Zhang et al. (2016) and Chen et al. (2017). The
definition of dGCV in (16) relies heavily on the closed form solution to the Kernel ridge
regression, which is not available if the loss function or the penalty in (2) are replaced
by the quantile loss or the lasso penalty, respectively. The major difficulty lies in how to
replace the effective degrees of freedom tr { Ay, (A)}’s in the denominator of (16) when
the hat matrices Ag;’s do not exist. Although there has been some research on this issue

such as Yuan (2006), much more thorough investigations are needed.
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Appendix

From now on, we suppress the dependence of Ay ()\)’s and A(A\) on A for ease of
presentation and simply use Ay’s and A whenever there is no ambiguity.

Lemma A.1. Under the condition C1, we have that Apaz(AnAL) = Op, (1).

Proof. Define the following matrix

K Kip - Ky

Km _ l I<'21 K.22 T K2m
m :

Kml Km2 Kmm

Then it is straightforward to see that
A, AT — KD,K,

where Dy = diag{B, ..., By} with By = (K +m L) 72, for [ =1,...,m. Then

Ky Kim
_ _ 1 K21 1 K2m
KD, K" = — _ B (Ki),... K} )+ +—; _ B, (KL ... KL ),
m : m .
Kml Kmm
which implies that
Ky
= 1 & Ky T T 1 & "
A AnAL) < —5 > A | [ Bu(Kl KL = =5 Y Awax(Bu ) KLK)
=1 ' =1 k=1
Kml
1 & 1 &
= =) Mnax {(K” + L) 2 (- > K{ZKM> } = Op,(1).
M3 M=
The last inequality follows from condition C1. O

Lemma A.2. Under the conditions C1-C2 and C3(a), for a fized X\, we have that

L(AX) = R(AIX) = o,  {R(AX)}. (A1)



Proof. Using similar notations in equation (14), it is straightforward to show that
LX) = % (AnY — F)TW (A Y —F), with Y = F +e. (A.2)
Using (14), we have that
LX) — ROAX) = —%FT(I —A,)TWA e+ %eTA,TnWAms — %Qtr(AgwAm).

Since the random error ¢ and the covariate X are independent in model (1), to

show (A.1), it suffices to show the following two equations

1 _ _ _
Var, {NFT(I - Am)TWAme} = op, { R*(\X)}, (A.3)
2
Var, {%STA,THWAms = %tr(AﬁwAm)} = op, {R*(\X)}. (A.4)

We first show (A.3). Straightforward algebra yields that

1 : i 2 , o ,
Var, {NFT(I - Am)TWAms} = %FT(I —A,)"W (A, AT)W(I - A,,)F

o Amax (A ATW) 1 _ -

< max m<im 5T . T .

< N NF I-A,)"WI-A,)F
0-2)\max (Am A T) )\max(w) =

< nm R2(\X

< NEOX) (AIX)

= opy (1) R*(\|X) = op, { R*(A\X)},

where the second last equation follows from conditions C2 and C3(a) and Lemma (A.1).
Now we show (A.4). Straightforward algebra yields that

]. T—T e 0-2 —T - E€€4_0-4 N *2 4 7’7&] 2
Var, {Ne ATWA, e — ﬁtr(AmWAm)} == ;b +20 Z ; b,

K max(ATWA,,)

K _ _ _ _

< F;t:f{(JALZ@WAm)Z} < 7 tr(ATWA,,) (A5)
KlAmax(ATWAm) = Kl)\maX(AT Am)Amax(W) =2

< UC R\X) < m_ R*(\X

= No? (%) < ZNR(\X) (%)

= op, () R*(\[X)

where b;; is the (i,)th element of matrix ALWA,, and K; = E.e* + o*. The last
equality follows from conditions C2 and C3(a) and Lemma A.1. Using (A.3)-(A.4), the
equation (A.1) follows from a simple application of the Cauchy-Schwartz inequality and
the Markov’s inequality. The proof is complete. O

Proof of Lemma 1. Using (A.2) and (15), we have that

N ~—

UAX) — LAIX) — ieTWs =

_ ) _ _
L Tt T AT 2 A6
~ FF I A) " We — = {e"A, We — o*tr(A,, W)} . (A.6)



Notice that the random error ¢ and the covariate X are independent in model (1). We
will show (18) using equation (A.1) in Lemma A.2, for which it suffices to show the
following two equations

1 _ _
Var, {NFT(I - Am)TWs} = op {R*(N\[X)}, (A7)

1 - 2 —
Var, {NsTAmWs — %tr(AmW)} = op, { R*(\X)}. (A.8)

We first show (A.7). Straightforward algebra yields that
1 _ _ _ 0 Anax(W)

Var. —FT(I-A,)"W _—FT I-A,)"W(I-A,)F <222 RY(\X
o { GFT 0 A,)TWe b = CFTI- A,) WA - A, F < TR R OUX)

= op, (1) R*(\|X) = op, { R*(N|X)},

where the second last equation follows from conditions C2-C3. Next, we show (A.8).
Using condition C2, similar to the inequality (A.5), it is straightforward to show that

1 T K1 xT n Kl)\max(”) D
Var, {NE A, W 5} < mtr<Am vV 2Am> < No?2 R()\|X>
K, max( ) 2 D2
= ———— " R*(\X) = 1) R*(M\X
P S ROX) = or, (DX,

where K| = E.e?+ 0 is bounded. Hence, (A.8) is proved using, again, condition C2-C3.
Using (A.7)-(A.8) and (A.1), the equation (18) follows from a simple application of the
Cauchy-Schwartz inequality and the Markov’s inequality. The proof is complete. O]

Proof of Theorem 1 . Using Lemma 1 and Lemma A.2, it suffices to show that
dGCVpe(AX) — U(AX) = op, {R(AX)}. (A.9)

Using the first order Taylor expansion of (1 — x)™2 around z = 0, we have that (1 —

)72 =1+ 2z + 3(1 — 2*)"*2? for some z* € (0,z). Under condition C3, we have that

w = op, (1) and thus we can consider the following decomposition

dGCV(\X) = U\X) = {%YT{I — A,V W{I-A,N}Y - 02} M

P YT A0 W= A, 000, (LR
Using condition C4, we have that

M = op, {R*(NX)}, (A.10)

which implies that 17 = op, (R(A\X)) since ~Y7{I — A,,,(A\)}"W{I — A,,(\)}Y is



bounded. For part I, we can write

I= {%YT{I — AW W{I-A,(\)}Y - 02} —Qtr(‘?\[mw)
_ {U(A|X) - %w} 2B W) (%W B 02) 2tr<?vmW> B W(A?%ZV)} o

By Lemma 1, we have that U(AX) — +e"We = R(AX) + op, . {R(A\|X)}. Under

condition C3, one has that tr(Aj\}"W) = op, (1), and thus

{U(MX) - %eTWs} M — op, {ROX)}.

Furthermore, since ~e’We — ¢? = Op_(N~/?) (condition C3 (a)) and NR(AX) 200
(condition C2), we have that ~e”We — o? = op_ {RY*(A\|X)}. Using this and
equation (A.10), we have that

The third part of I is op, { R(A\|X)} due to equation (A.10). Therefore, we have shown
that

dGCV(AIX) — U(AIX) = op.  {R(AX)},
which completes the proof. O

Lemma A.3. Define the following class of non-negative functions
F={f€La(P): f >0, fllswp < V. i(f) < VZH?}, (A.11)

where V-> 0 and H > 0 are constants. If condition C4’(d) holds and (€,,y,) satisfy

iz > QLT HV (A.12)
n

where ¢y > 0 is a constant, then there exists a constant C' > 0 such that for all n,

p ( [P.f — P/

Ssu
rer Pof + P+ yu(Bof +Pf +1

Proof. Recall the definition of Fy in condition C4’(d). It can be checked that

] > C’en) < exp(—ne2y,/2).

F CV(1+ H)Fo.
Hence under condition C4’(d), we have that with probability approaching one,

En n
Vel e 7)< Nl -l V4 )R =N (3220 e, o)
. exp{co(HH)V}

€nYn



By the Theorem given in Pollard (1995) and the Theorem 2.1 of Pollard (1986), there
exists constants C' and ¢q such that

IP.f — Pf] (1+H)V
P(?‘é}'il@ FBf 3 (®uf TPF 1) >C€”) = o (00—_"63’””)

< exp(—neyn/2).

Proof of Lemma 2. Define the kernel matrix

Kll K12 o Klm
K — I<.21 :[{'22 : K2m _ @‘I’T,
I<ml I(mQ o I<mm

where ® is a N X r matrix with r being the rank of K. By this notation, we have that
Kll:(I'ﬁI)ZT, lzl,---,m.

where ®; is a n; X r submatrix of ® consists of rows corresponding to a subdata set ;.
Then it is straightforward to show that

1
Amax {(Kll +mAL)” < Z K Kkl) } m)\max {®2®] (2,®] + nAL) @, 8" }.

Using the Sherman—Morrison formula, we can show that

@/ (@@ + L) =@ [nTIATT—n AR I+ N ) @) D]
=n N I-n"'AR[ R (I+n A0 ®) | @)
=n I\ [T+ AR )] @,

which gives that

/\max{(K”Jrnl)\Il < ZK Kkl>}

—2y—2
A e (B [T A BT ) ] BT, [(1 4+ n A @7 ) 1] @7

—1)\—1
= T { @I+ 0T B @) BT — (LA B @) 0T )

1 1
< hmax {P I+ n '@/ @) '®"} = A\pax {()\I +n ol P! [NQTQ} } :



Using the following identity from the Appendix B of Bach (2013)

1 1
M+n'dTd) = (N + - — —
l

-1
N N<I>T<I> + n1<I>,T<I>l>

1. —-1/2 1 - -1 1. —-1/2
=(N[+—=P' P I-—9v'v+ -9 W AN+ —d' P
(rogore) - [royoresfora] (e gore)

—-1/2

where ¥ = & ()\I + %@TCP) and W, is the submatrix of ¥, we have that

1 & 1
/\max {(K” + nl)\Il)_Q (E Z KglKkl> } S )\max {()\I + n_lq)lT(I)l)_l {N@T@} }
k=1

1 . -1/2 1 . 1 . —1 1 . —-1/2 1 .
- 1+ -7 - 0"+ 0/, | (M+—0"® —3"d
e (00 y978) [t e (e gae) e

1 . 1 . —1 1 . —1/2 1 . 1 . —1/2
< 0T 4 T I+—37d —oTd| (NI + —TP
= Omax [I Ny YW l} Amax (A TN ) [N } (A TN )

1 1 -t
< Omax { [I — N\IIT\II + E\If}ﬂpl] } ,

where op,ax(A) is the spectral norm of the matrix A.
Therefore, to show condition C1, it suffices to show that

1 1
NAX Ao {N\PT\I’ — E\Ilf\lll] = op,(1). (A.13)

Using Lemma 2 of Bach (2013), we have that

Py (A |~ BT W 1\1:7“\1'} > t) <re —nt/2 (A.14)
max | a7 - ~ X , .
! N noto! P\ N [S07 0] (R2 1 1/3)

where P; is the probability measure corresponding to the partition of the data, r =

rank(¥) = rank(K) and R is the upperbound of L2-norm of all rows of ¥. In our case,
L2-norm of all rows of ¥ the diagonal elements of matrix

1 -1
vl =@ (/\I - N@T@> ®" = NK(K + NAI) !,

where the last equality follows from the Sherman-Morrison formula. Then, by the
definition of dy in (20), we have that R? < d. In addition, note that

1. 1 1\
max | 7 = Amax | X7 —d' P P S 17
A (N\If \I/) A (N‘I) (/\I—i— N )



which implies that inequality (A.14) can be further simplified as

1 1 —nt?/2
P [ Max | =0T — —07T0, | >¢t) <
I( {N n! l] )_reXp(dwt/i’v)’

which further leads to that

1 1
P; ( max  Amax [—\IIT\IJ — —vlw,
I=1,,m N n

—nt? /2
> t) < mrexp (d Z—t//i}) —Px,
A

for any 0 < ¢t < 3d, under condition C1’; which completes the proof of (A.13). O

Proof of Lemma 3. We first consider Q2(A|X) in (24). Define the function class
Fo={f(@) : |flwp < CiVa, Ji(f) < CVIHL

where V,, and H,, are as defined in Conditions C4’(b)-(c) and C}, Cy are some constants.

Applying Lemma A.3 to the function class F, with €, = € and ~,, = M , which
satisfy (A.12) under Conditions C4’(b)-(c), we have that

fEVn ]Pnf + I[Df + Tn

> C’e) < exp(—ne*y,/2). (A.15)

Let vg(x) = Var, {ﬁc(aj)}, k=1,...,m. It is straightforward to show that the first

derivative of vy (z) are bounded as follows

|vy.(z)] = 2 ‘Cov{5 {fk( H < 2y/ug(z \/Vara{fk

which further implies that

Ti () = /X {04(2)? dPx (1) < 4]0k aup /X Var,{ ()} dPx ()
2y Vare{m )} dPx (x)

<4 = Op, (V2H?).

< Al A e TN = 0 (2
Therefore, under conditions C4’(a)-(b), we have that

vi(z), ..., vn(z) € F, in probability measure Px.

For simplicity, from now on, we use @ for Q(A|X) in (22) and @Q; for Q;(A\X), j =1, 2,
in (23) and (24) whenever there is no ambiguity. Using the facts that QQ = # Yo Py,
and Q2 = =5 >" | P, vy, a direct application of (A.15) gives that

P (Q ’Q2 Q' > CE) S P ( - m Zk=1| x Uk kvkl > CE)

2 +Q+ %7” EZ?:l(Pnkvk +Pnkvk> + Tn

]P)n - ]P)n
1<k<m \ P, v + Ppy vk + 0

< mexp(—ne*y,/2) — 0,




where the last step follows from condition C4’(c). In addition, by conditions C4’(b)-(c),
we have that ;2% = @/%%Q)V" = Op, (1). Hence we conclude that
Q2(AIX) = Q(AIX) + op, Q{(A[X)}. (A.16)

Now we turn to the quantity Q1(A|X). Define another function class

m2

27172
Fo = { 1051w < O (1) < oV L

where V,, and H,, are as defined in Conditions C4’(b)-(c) and C, Cy are some constants.

By applying Lemma A.3 to the function class F,, with €, = € and vy = CO(I;—HN’LM
which satisfy (A.12) under Conditions C4’(b)-(c), we have that
Pnf —Pf] ) 2
P su > (Ce | <exp(—DNe 2). A7
(fevI])V Pnf+Pf+w < exp( w/2) ( )

Define another function

o(r) = Var{f(@)) = 5 3 wela

k=1

whose derivative is bounded as

9(@)| = 2|Cov. {F(2), F(2)}| < 2/Var{F()}Var{F ()
S IEION S S FHE)

From the above two equations/inequalities, under conditions C4’(b)-(c), one has that

- 1 — 1
||U||Sup < m2 ; Hvk”supEOPx(Vn)v

and that

1o = [ Gy o< = [ {12 }EZk:lxara{fk(x)}dPx(x)

X mi3 %Zk:l vg(z)
4 i Var.{ f;(x)} 1 -
< m2 {lg}ﬁaf ||Uk||sup} Xl%@%#dpxm) = WOPX (V2H?)

Therefore, under conditions C4’(a)-(b), we have that

v(x) € F, in probability measure Py.



Using the facts that Q = Pv and Q1 = Pyv, a direct application of (A.17) gives that

Q1 — Q) ) |Pno — Py ,
Pl————————>Ce| =P su > (Ce | <exp(—DNe 2) = 0
(Ql"‘@‘f"YN veVII)\, Pnv 4+ PU + N = p( ’YN/ )

where the last step follows from condition C4’(c). Furthermore, by conditions C4’(b)-(c),

we have that 5 = % Op, (1). Hence we conclude that
QiAIX) = QAIX) + op, {QAX)}. (A.18)

Combining equations (A.16)—(A.18), we have that

1 Z 1tr( kk) Ql(MX) N
@ = 0x) O

(A.19)

By the definition of A,,, it is straightforward to show that

{Ntr( m) 1 {2 1t1"(Akk }2 {tr(Aw)}* {NV" e (Ag)
[ < Nm Z Kk Z ek

Ctr(AZ) N-tr(A2,)

Nm Zk:l r(A kk) N 1 Zk 1tr(

where the second last inequality follows from Cauchy-Schwartz inequality. Combining

the above inequality and (A.19), under condition C4’(a), we finally have that

(A (A} g S AR
Fu(ATA} oL o, u(AL) (Fu(ALA,)} 7

which completes the proof. O




