
Learning Design Semantics for Mobile Apps

Thomas F. Liu1 Mark Craft1 Jason Situ1 Ersin Yumer2 Radomir Mech2 Ranjitha Kumar1

1University of Illinois at Urbana-Champaign 2Adobe Systems Inc.
{tfliu2,mscraft2,junsitu2,ranjitha}@illinois.edu, meyumer@gmail.com, rmech@adobe.com

ABSTRACT

Recently, researchers have developed black-box approaches
to mine design and interaction data from mobile apps. Al-
though the data captured during this interaction mining is
descriptive, it does not expose the design semantics of UIs:
what elements on the screen mean and how they are used.
This paper introduces an automatic approach for generating
semantic annotations for mobile app UIs. Through an iter-
ative open coding of 73k UI elements and 720 screens, we
contribute a lexical database of 25 types of UI components,
197 text button concepts, and 135 icon classes shared across
apps. We use this labeled data to learn code-based patterns
to detect UI components and to train a convolutional neural
network that distinguishes between icon classes with 94% ac-
curacy. To demonstrate the efficacy of our approach at scale,
we compute semantic annotations for the 72k unique UIs in
the Rico dataset, assigning labels for 78% of the total visible,
non-redundant elements.

Author Keywords

Design semantics; mobile app design; machine learning

INTRODUCTION

The ubiquity of mobile apps in everyday life — and their
availability in centralized app repositories — make them an
attractive source for mining digital design knowledge [1, 24].
Recently, Deka et al. introduced interaction mining, a black-
box approach for capturing design and interaction data while
an Android app is being used [9]. The data captured during
interaction mining exposes a UI’s screenshot; the elements it
comprises along with their render-time properties (i.e., An-
droid view hierarchy); and the interactions performed on the
screen along with their connections to other UI states in the
app. This data provides a near-complete specification of a UI
that is often sufficient to reverse engineer it, but it fails to ex-
pose the semantics of UIs: what elements on the screen mean
and how users interact with them to accomplish goals.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

UIST ’18, October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5948-1/18/10. . . 15.00

DOI: https://doi.org/10.1145/3242587.3242650

Figure 1: This paper introduces a code- and vision-based approach for
adding semantic annotations to the elements comprising a mobile UI.
Given a UI’s screenshot and view hierarchy, we automatically identify 25
UI component categories, 197 text button concepts, and 99 icon classes.

This paper presents an automated approach for generating se-
mantic annotations for mobile UI elements, given a screen-
shot and view hierarchy (Figure 1). These annotations iden-
tify both the structural roles (e.g., image content, bottom
navigation) and the functional ones (e.g., login button, share
icon) that elements play in the UI’s design. To develop this
approach, we first generated a lexical database of UI compo-
nents and UX concepts (i.e., text buttons and icons) that are
shared across apps through an iterative open coding of 73k UI
elements and 720 screens. Then, we leveraged this database
to learn code-based patterns to detect different components,
and trained a convolutional neural network (CNN) to distin-
guish between icon classes.

To bootstrap this lexical database, we referenced popular de-
sign libraries and app-prototyping tools to create a vocabulary
of UI components and UX concepts. We refined and aug-
mented this vocabulary through unsupervised clustering and
iterative coding of more than 73k elements sampled from the
Rico dataset, which comprises interaction mining data from
9.7k Android apps [8]. Through this process, we identified 25
types of UI components, 197 text button concepts, and 135
icon classes. The resultant database also exposes icon and
text-button synonym sets related to each UX concept, cre-
ating links between the visual and textual elements used in
digital design.

Session 11: Mobile Interactions UIST 2018, October 14–17, 2018, Berlin, Germany

569







Figure 4: The 80 most frequent icon classes, identified through an iterative open coding of 73k elements from the Rico dataset. Given the labeled data
for each icon class, we compute an “average icon” and a set of related text concepts. For each icon class, we also present precision/recall metrics from a
CNN trained to distinguish between 99 common categories, and 10 predicted examples from the test set.

Session 11: Mobile Interactions UIST 2018, October 14–17, 2018, Berlin, Germany

572









Figure 9: Our automated semantic approach applied to different mobile UIs. We extracted code-based patterns to semantically classify 24 out of the
25 types of UI components on a screen. To identify icons, we trained a convolutional neural network and anomaly detection pipeline which distinguishes
between images and 99 common classes of icons.

Annotating Rico

We use the code-based patterns for detecting UI components
and the icon classification pipeline to add semantic annota-
tions to the 72k unique UIs in the Rico dataset. The auto-
mated approach iterates over all elements in a UI’s view hi-
erarchy, and uses code-based properties to identify different
types of UI components and text button concepts. To iden-
tify icons, we pass all small, squarish images found in a UI’s
view hierarchy through the classification and anomaly detec-
tion pipeline.

Once we semantically label the elements in a view hier-
archy, we also generate a semantic version of its screen-
shot and view hierarchy, which are useful representations
for future data-driven applications (Figure 9). The anno-
tated UIs for the Rico dataset are available for download at
http://interactionmining.org/rico.

Training a Semantic Embedding

Deka et al. demonstrated how training an embedding using
UI screens that encode image and text content could power
example-based UI searches to recover visually similar UI
screens [8]. We implement a similar application, using the
semantic versions of the UI screenshots we computed over
the Rico dataset to train a convolutional autoencoder.

An autoencoder is a neural network consisting of two compo-
nents: an encoder that reduces the image down to a lower di-
mensional latent space, and a decoder that attempts to recon-
struct the image from the encoding. By training an autoen-
coder to accurately reproduce images, the architecture learns
a low-dimensional encoding representation for each one.

We downsampled the semantic screenshot images to 256×
128. Our encoder consists of 4 convolutional layers arranged
as 8×3, 16×3, 16×3, and 32×3 (filters × receptive fields).
A max pooling layer of size and stride 2 is applied after every
convolutional layer, resulting in a 32×16×32 encoded rep-
resentation. Our decoder consists of the encoding layers in
reverse order, with upsampling layers instead of max pooling
layers, and a final 3× 3 layer to convert back to the original
RGB input.

After training the autoencoder, we used the encoder to embed
the Rico UIs into the learned latent space, and then inserted
the embedded vectors into a ball tree [26] to run fast nearest
neighbor searches (Figure 10).

We compare the nearest neighbor search results with the ones
demonstrated by Deka et al. [8], which used screenshots en-
coding only text and image regions. Figure 10 shows search
results for both embeddings side-by-side over the same set of
queries. Our results demonstrate that autoencoders trained
with finer element-level semantics learn better screen-level
semantic embeddings.

LIMITATIONS AND FUTURE WORK

One limitation of this work is that many of the UI components
we have identified are specific to Android apps. However,
our vision-based classification pipeline is cross-platform, and
researchers can use this approach to train models that detect
other types of UI components found in other digital domains.

Another limitation is that the current CNN architecture does
not perform well on icons with low support in the training
set. As a result, we could not train a multiclass classifier that
recognized all icon types that we originally identified. Future
work could adapt one-shot image recognition techniques to
train better models for detecting new icons and those with
low support. These algorithms often exploit prior knowledge
learned from classes with large support to predict classes with
fewer training examples [17].

We hope that researchers leverage our semantic data to de-
velop new data-driven design applications. Semantic annota-
tions enable many kinds of design-based search interactions.
Semantic embeddings similar to the one demonstrated in this
paper can be trained to support example-based search over
app screens: designers can query with screens they have de-
signed to see which apps contain similar interactions.

Similarly, icon and text button classification can be used to
enable efficient flow search over large datasets of interaction
mining data. A user flow is a logical sequence of UI screens
for accomplishing a specific task in an app. Prior work has
shown that user flows can be identified in interaction traces by
examining the UI elements that a user has interacted with [9].
For example, if a user taps on a “search” icon, that usually
signifies the beginning of a search flow. Rico’s 72k dataset
of unique UIs comprises 14,495 click interactions, of which
9,461 involve text buttons or images. We are able to classify
57.5% of those interactions based on our set of 197 recog-
nized buttons and 99 icon types, which can serve as a starting
point for indexing flows.

Session 11: Mobile Interactions UIST 2018, October 14–17, 2018, Berlin, Germany

576





Leveraging semantics to train generative models of design
is possibly the most exciting avenue for future work. Re-
searchers have proposed methods for automatically generat-
ing mobile UI code from screenshots [2, 21, 13, 22]. These
approaches seem to only work for simple UIs, and do not ex-
ploit the view hierarchy present in Android apps.

By taking semantic components as input, more powerful
probabilistic generative models of mobile UIs could be
learned. Techniques such as generative adversarial networks
and variational autoencoders could be used to build de-
sign tools that can autocomplete partial specifications of de-
signs [11]. For example, the tool could recognize that a de-
signer is creating a “login” screen based on the central place-
ment of a login button, and suggest adding other elements
such as “username” and “password” input fields. These tools
could translate a set of semantic constraints specified by a de-
signer (e.g., login button) into a cohesive visual layout and
information architecture, as well as suggest UI elements that
are missing from the design.

ACKNOWLEDGMENTS

We thank the reviewers for their helpful comments and sug-
gestions. This work was supported in part by a research do-
nation from Adobe, a Google Faculty Research Award, and
NSF Grant IIS-1750563.

REFERENCES

1. Khalid Alharbi and Tom Yeh. 2015. Collect, decompile,
extract, stats, and diff: Mining design pattern changes in
Android apps. In Proc. MobileHCI.

2. Tony Beltramelli. 2017. pix2code: Generating Code
from a Graphical User Interface Screenshot. arXiv
preprint arXiv:1705.07962 (2017).

3. Elizabeth Boling, Joanne E Beriswill, Richard Xaver,
Christopher Hebb, and others. 1998. Text labels for
hypertext navigation buttons. International Journal of
Instructional Media 25 (1998), 407.

4. Call-Em-All. 2018. Material-UI. (2018).
https://material-ui-next.com/

5. Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen
Giguere, and Thomas Funkhouser. 2013. Attribit:
content creation with semantic attributes. In Proc. UIST.

6. Chun-Ching Chen. 2015. User recognition and
preference of app icon stylization design on the
smartphone. In Proc. HCII. Springer.

7. Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2015. Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs). CoRR
abs/1511.07289 (2015).

8. Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proc.
UIST.

9. Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016.
ERICA: Interaction Mining Mobile Apps. In Proc.
UIST.

10. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale
hierarchical image database. In Proc. CVPR.

11. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In Proc. NIPS.

12. Google. 2017. Material Icons. (2017).
https://material.io/icons/

13. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep Residual Learning for Image
Recognition. CoRR abs/1512.03385 (2015).

14. Ali Jahanian, Shaiyan Keshvari, SVN Vishwanathan,
and Jan P Allebach. 2017. Colors–Messengers of
Concepts: Visual Design Mining for Learning Color
Semantics. In Proc. TOCHI.

15. Charles J Kacmar and Jane M Carey. 1991. Assessing
the usability of icons in user interfaces. Behaviour &
Information Technology 10 (1991).

16. Shigenobu Kobayashi. 1991. Color Image Scale.
Kosdansha International.

17. Gregory Koch, Richard Zemel, and Ruslan
Salakhutdinov. 2015. Siamese neural networks for
one-shot image recognition. In Proc. ICML Deep
Learning Workshop.

18. Alex Krizhevsky and Geoffrey Hinton. 2009. Learning
multiple layers of features from tiny images. Technical
Report. Citeseer.

19. Yann LeCun. 1998. The MNIST database of handwritten
digits. http://yann. lecun. com/exdb/mnist/ (1998).

20. George A Miller. 1995. WordNet: a lexical database for
English. Commun. ACM 38 (1995).

21. Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio,
Richard Bonett, and Denys Poshyvanyk. 2018. Machine
Learning-Based Prototyping of Graphical User
Interfaces for Mobile Apps. arXiv preprint
arXiv:1802.02312 (2018).

22. Siva Natarajan and Christoph Csallner. 2018. P2A: A
Tool for Converting Pixels to Animated Mobile
Application User Interfaces. In Proc. MOBILESoft.

23. Yvonne Rogers. 1989. Icons at the interface: their
usefulness. Interacting with Computers 1 (1989).

24. Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt,
Robin Goldberg, Benjamin Schmidt, and Hansjörg
Schmauder. 2013. Insights into layout patterns of mobile
user interfaces by an automatic analysis of android apps.
In Proc. EICS.

25. scikit-learn developers. 2017a. Gaussian mixture
models. (2017). http:
//scikit-learn.org/stable/modules/mixture.html

Session 11: Mobile Interactions UIST 2018, October 14–17, 2018, Berlin, Germany

578



26. scikit-learn developers. 2017b.
sklearn.neighbors.BallTree. (2017).
http://scikit-learn.org/stable/modules/

generated/sklearn.neighbors.BallTree.html

27. Balsamiq Studios. 2018. basalmiq. (2018).
https://balsamiq.com/

28. Li Yi, Leonidas J. Guibas, Aaron Hertzmann,
Vladimir G. Kim, Hao Su, and Ersin Yumer. 2017.
Learning Hierarchical Shape Segmentation and Labeling
from Online Repositories. In Proc. SIGGRAPH.

Session 11: Mobile Interactions UIST 2018, October 14–17, 2018, Berlin, Germany

579


