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Fig. 1. A Neo-Hookean armadillo falls down a complex terrain with different friction coefficients, left: g = 0, center: p = 0.15, right: g = 0.45.

We propose a method for accurately simulating dissipative forces in de-
formable bodies when using optimization-based integrators. We represent
such forces using dissipation functions which may be nonlinear in both
positions and velocities, enabling us to model a range of dissipative ef-
fects including Coulomb friction, Rayleigh damping, and power-law dissi-
pation. We propose a general method for incorporating dissipative forces
into optimization-based time integration schemes, which hitherto have been
applied almost exclusively to systems with only conservative forces. To im-
prove accuracy and minimize artificial damping, we provide an optimization-
based version of the second-order accurate TR-BDF2 integrator. Finally, we
present a method for modifying arbitrary dissipation functions to conserve
linear and angular momentum, allowing us to eliminate the artificial angular
momentum loss caused by Rayleigh damping.

CCS Concepts: « Computing methodologies — Physical simulation;

Additional Key Words and Phrases: Implicit integration, dissipation func-
tions, nonlinear damping, friction, angular momentum

1 INTRODUCTION

Dissipative forces are ubiquitous in the natural world. Frictional
contact in solids and granular materials, air resistance, viscosity, and
internal damping in deformable bodies are just a few examples. In
physics-based animation, a long-standing goal has been to produce
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visually plausible representations of these phenomena. Recently,
researchers in graphics have begun exploring nonlinear damping
[Xu and Barbi¢ 2017], which has enabled the simulation of especially
realistic damping effects.

In animation applications, there is also an ever-increasing need
to extend the complexity of simulations that can be carried out
in a fast and stable manner. However, achieving both speed and
stability when modeling nonlinear phenomena is a challenging
problem. Commonly used explicit integration methods are fast and
simple but require small time steps for stability. Implicit methods
such as backward Euler can be used instead, enabling larger time
steps with much greater stability. Even so, most existing methods
require solving a large system of equations every time step, whose
computational expense increases steeply with the complexity of the
simulation.

Optimization-based algorithms [Bouaziz et al. 2014; Liu et al.
2013, 2016; Overby et al. 2017] have been used to achieve inter-
active simulation rates for complex dynamical systems. However,
most such methods are designed specifically for modeling conser-
vative forces, with only some very simple dissipative forces added
as an afterthought. Karamouzas et al. [2017] successfully modeled
highly nonlinear, non-conservative interaction forces within their
optimization-based framework. However, they based their method
on the backward Euler scheme, which produces excessive artificial
dissipation at large time steps that often overwhelms the desired
dissipative behavior.

In this work, we present a novel approach for optimization-based
simulation of systems with dissipative forces. Our contributions are
summarized as follows:

e We provide an optimization-based formulation for a broad
class of implicit time integrators, including the second-order
TR-BDF2 scheme which has excellent momentum and energy
conservation properties.
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e We introduce a simple approach for incorporating dissipative
forces into such optimization integrators through the use of
dissipation functions, a concept from classical mechanics that
has only recently begun finding use in computer graphics
[Karamouzas et al. 2017; Sanchez-Banderas and Otaduy 2017].
We show that the simple approach is first-order accurate, but
can be elevated to second-order accuracy by the addition of
a correction term.

We provide dissipation functions for many dissipation models
traditionally used in computer animation, and demonstrate
some novel nonlinear dissipation models that enable artistic
damping effects. Our fully coupled formulation enables im-
plicit handling of frictional contact with kinematic obstacles
in optimization-based integration.

Finally, we propose a general method for modifying arbitrary
dissipation models to conserve linear and angular momentum.
In particular, our modification eliminates the artificial angular
momentum loss caused by Rayleigh damping.

2 RELATED WORK
2.1 Time Integration

Implicit integration techniques are commonly used in computer
graphics. Among these, a particularly prevalent choice is backward
Euler, which is a first-order accurate backward differentiation for-
mula with exceptional stability properties [Baraff and Witkin 1998;
Terzopoulos et al. 1987]. However, backward Euler is also notori-
ous for artificial damping, which can grow unacceptably large with
large timesteps in stiff systems. Its second-order variant, the BDF2
method, has been used in some previous work [Choi and Ko 2002;
English and Bridson 2008] to maintain stability while reducing the
amount of numerical dissipation. Recently, Xu and Barbi¢ [2017]
introduced to graphics the TR-BDF2 method [Bank et al. 1985; Bathe
2007; Bathe and Baig 2005] which combines the trapezoidal rule
and BDF2, resulting in a stable integrator with even lower artificial
dissipation.

In problems with even moderate complexity, standard iterative
schemes for carrying out implicit integration are either prohibitively
expensive or take too long to converge for interactive applications.
One widely used alternative is position-based dynamics [Bender
et al. 2015; Miller et al. 2007], which deals only with positions. In
this method, forces are treated as hard constraints and the state is
updated with Gauss-Seidel iterations. This approach was generalized
by XPBD [Macklin et al. 2016] to enable the use of finite stiffness
constraints for better modeling of elastic forces.

Another strategy is to recast implicit integration as a numerical
optimization problem [Gast et al. 2015; Kharevych et al. 2006; Martin
et al. 2011]. Recent work has focused on local-global approaches for
solving the resulting optimization problem, which offer computa-
tionally cheap descent iterations with rapid initial progress.

A block coordinate descent technique was used by Liu et al. [2013]
for mass-spring systems. Bouaziz et al. [2014] generalized this ap-
proach to simulate a broader class of constraints and finite elements,
and termed it projective dynamics. This approach has subsequently
been applied to SPH fluids [Weiler et al. 2016] and character skinning
[Komaritzan and Botsch 2018]. A number of acceleration techniques
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have been proposed to further speed up projective dynamics, in-
cluding the Chebyshev semi-iterative method [Wang et al. 2015],
parallel graph-colored Gauss-Seidel [Fratarcangeli et al. 2016], L-
BFGS [Liu et al. 2016], and model reduction [Brandt et al. 2018]. In
the closely related area of geometric optimization, many novel tech-
niques have recently been introduced that dramatically accelerate
the convergence of numerical optimization [Claici et al. 2017; Ko-
valsky et al. 2016; Peng et al. 2018; Rabinovich et al. 2017; Shtengel
et al. 2017; Zhu et al. 2018]. As demonstrated by Peng et al. [2018],
these methods can be useful for simulation problems as well.

Projective dynamics has been further generalized to nonlinear
constitutive models by interpreting it as an instance of ADMM
[Overby et al. 2017] or quasi-Newton optimization [Liu et al. 2016].
The ADMM formulation has been applied to skin slide simulation
[Saito and Yuen 2017] and to character self-intersection removal for
cloth simulation [Minor 2018].

Recently, Dinev et al. [2018a,b] have proposed two energy-conserving

algorithms for deformable body simulation. Both approaches enable
exact energy conservation for conservative systems, but require dis-
sipative forces to be applied in a separate step decoupled from the
conservative force integration. By contrast, we formulate a single op-
timization problem that combines the conservative and dissipative
forces into a single objective.

2.2 Damping

Damping in graphics dates back to early work in deformable body
simulation [Terzopoulos and Witkin 1988], where velocity-based
damping was applied directly to each node. In finite element sim-
ulations, local damping forces are commonly computed using the
strain-rate tensor [Debunne et al. 2001; O’Brien and Hodgins 1999;
Platt and Barr 1988]. For cloth, Baraff and Witkin [1998] model
damping using the time derivative of constraint functions.

Rayleigh damping, in which the damping forces are proportional
to the product of the stiffness matrix and the (generalized) velocities,
is another widely used model in computer graphics [Barbi¢ and
James 2005; Gast et al. 2015; Ren et al. 2013; Sifakis and Barbic¢ 2012;
Wang et al. 2015]. However, unlike the earlier strain-rate approaches,
Rayleigh damping does not always conserve angular momentum.
Some direct and iterative techniques to impose angular momentum
conservation were proposed by Schmedding et al. [2009].

In the context of optimization-based integration, Kharevych et al.
[2006] added stiffness-proportional damping forces by defining them
in terms of the object’s potential energy function. To obtain forces
proportional to velocities, they defined the energy in terms of the
strain measured relative to the current state. Gast et al. [2015] use
a lagged version of Rayleigh damping to define a damping energy
function for optimization-based integration. While the method of
Kharevych et al. [2006] conserves angular momentum, the Rayleigh
damping model used by Gast et al. [2015] does not.

Data-driven damping methods have also been used to obtain
more realistic damping behavior. For cloth simulation, parameter
optimization from data measurements was used for spring-based
damping [Bhat et al. 2003] and for modeling internal friction [Miguel
et al. 2013]. Recently, an example-based method [Xu and Barbi¢



2017] has been used which optimizes parameters for nonlinear
damping.

Dissipation functions [Goldstein et al. 2002; Marsden and Ratiu
1999] are a technique for modeling non-conservative forces in La-
grangian mechanics. In graphics, Karamouzas et al. [2017] intro-
duced a dissipation function to model anticipatory collision avoid-
ance between pedestrians for implicit crowd simulation. Concur-
rently, Sanchez-Banderas and Otaduy [2017] modeled damping in
yarn-level cloth simulation using dissipation functions, permitting
fine-grained control over the damping of stretching, bending, and
shear modes. As pointed out by these works, the damping models
proposed earlier by Baraff and Witkin [1998] and Kharevych et al.
[2006] are also closely related to dissipation functions.

2.3 Friction

There is a long history of frictional contact simulation in computer
graphics, dating back to seminal work by Baraff [1991]. Usually,
an isotropic Coulomb friction model is used, although models for
anisotropic and asymmetric frictional forces have also been pro-
posed [Pabst et al. 2009]. In this section, we focus primarily on
frictional contact solvers applicable to deformable bodies, which is
the setting of our work.

A classical approach is to apply contact forces in a separate col-
lision resolution step, decoupled from the time integration of the
internal dynamics [Bridson et al. 2002; Provot 1997]. However, as
this is inadequate for systems with strong coupling between the
elastic, normal, and frictional forces, there has been much work on
implicit frictional contact algorithms which compute all these forces
simultaneously. One approach is to approximate the equations of
frictional contact as a linear complementarity problem [Duriez et al.
2006; Otaduy et al. 2009] or second-order cone complementarity
problem [Daviet et al. 2011], and solve it using Gauss-Seidel itera-
tions. Kaufman et al. [2008] proposed a staggered projection method
in which normal and frictional forces are determined by two coupled
minimizations computed alternately. Frictional dynamics in granular
flows have also been modeled using staggered projections [Narain
et al. 2010], Gauss-Seidel solvers [Daviet and Bertails-Descoubes
2016], or plastic flow models [Klar et al. 2016]. Recently, Jiang et al.
[2017] applied a continuum plasticity model to simulate frictional
contact in cloth using the material point method.

Many optimization-based methods in graphics do not incorpo-
rate friction into the optimization, applying it instead as a separate
post-optimization update to the velocities [Bouaziz et al. 2014; Gast
et al. 2015; Miiller et al. 2007]. Recently, Overby et al. [2017] simu-
lated friction by varying the external force term as the optimization
proceeds. In our work, we model friction fully implicitly as an addi-
tional dissipative term in the optimization, allowing us to accurately
reproduce dynamic and static frictional phenomena.

3 BACKGROUND

Notation. For brevity, we introduce compact notation which is
used in the rest of this paper unless otherwise noted. We use su-
perscripts on functions to denote the same superscript on each
of the function’s arguments; e.g. f* = f(x",v"). Subscripts on
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norms denote the norm weighted by a matrix; e.g, ||x — 5(||12vI =
(x =) M(x - %) = M2 (x = DI

For functions of multiple vector arguments, we use V; to denote
the gradient with respect to the ith argument; e.g. VoR(x, v) is the
vector [3_51’ cees g—:;]T We adopt the convention that differenti-
ating a scalar with respect to a (column) vector yields a column

vector; e.g. d[d])((x) = VU(x), and %R(X, Av) = ATV,R(x, Av).

3.1 Dynamical model

Time evolution in physical systems is governed by Newton’s second
law, which describes the relation between dynamics and kinematics.
In simulations which utilize the finite element method, objects are
represented by discrete mesh elements, and forces are applied on
mesh vertices. In a system with n vertices, enforcing Newton’s law
is tantamount to solving a 6n-dimensional ordinary differential
equation,

xX=v, (1a)

Mv = f(x, v), (1b)

where M € R37%37 g the system mass matrix, and x € R3" andv e
R3" are the system displacement and velocity vectors, respectively.

We assume that the total force vector, f € R3", can be decom-
posed as the sum of three terms: external forces fey; (e.g. gravity),
conservative internal forces f.(x), and dissipative forces f;(x, v)
respectively. We take the external forces fex; to be constant over a
single time step. Conservative forces, such as internal elastic forces,
are of the form

fe(x) = -VU(x) @
for some potential energy function U. For dissipative forces, we

restrict our attention to those which can be expressed as the gradient
of a dissipation function R via

f (x,v) = =V3R(x, V). 3)
Thus, our force model takes the form
f(x,v) = fext — VU(x) = V2R(x, V). (4)

If the dissipation function is independent of x, we may simply write
it as R(v), with the corresponding force being f;(v) = —VR(v).

Assuming the existence of a dissipation function is not too severe
a restriction, since many commonly used dissipative forces in me-
chanics can be expressed in this form, including Rayleigh damping
and Coulomb friction. Furthermore, this subset of forces is naturally
suited for inclusion in optimization-based integrators. In Section 4
we show that a first-order accurate method can be obtained by
simply adding a scalar multiple of R to the objective function.

In case the potential functions U and R are nonsmooth, the dy-
namics can be expressed in terms of subdifferentials [Rockafellar
1970]. We assume that U is the sum of a convex nonsmooth term
U™ and a smooth term U®. Then the conservative forces satisfy

fo(x) € =VU* (x) — U™ (x), (5)
where U™ (x) is the subdifferential of U"* at x, i.e. the set of all vec-
tors g such that U™ (y) - U™ (x) > g’ (y —x) for all y. An analogous

property holds for the dissipative forces, with the subdifferential
taken with respect to v.
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Table 1. Some common time integration schemes expressed in the form (6).

Method yP a y?
Forward Euler y"? 1 y"?
Backward Euler y" 1 y"+1
Implicit midpoint y" 1 %(y” +y™th)
Trapezoidal y"*+ %Atd)(y") 1/2 yHl
BDF2 %lyn _ %yn—l 2/3 yn+1

3.2 Implicit integration

For simplicity, let us first consider a generic first-order ODE y =
¢(y), where y € R4, Many one-stage time integration schemes are
of the form

Yy = yP + altg(y?) (6)

where « € R is a constant, y? € RY is fixed at the beginning of the
time step, and the quadrature point y? € R4 depends linearly on
y™*1. Backward Euler, for example, is obtained by setting a = 1,
y? = y", and y? = y"*1; other examples are listed in Table 1. For
simplicity, in this paper we will focus on the case y? = y™**!, which
includes backward Euler, the trapezoidal scheme, and BDF2, but
omits implicit midpoint.

Applied to the equations of motion (1), such a time integration
scheme yields the equations

" = xP + oA, (7a)

MVrH—1 = MV‘D + OlAtf(Xn+1, Vn+1)- (7b)

This method is implicit, since future state information appears on
both sides of these equations. As previously discussed, such meth-
ods generally require solving large nonlinear systems of equations
every timestep. However, when the forces are expressible as gra-
dients of potentials, one can recast this system of equations as an
optimization problem. For example, in the absence of dissipative
forces, the backward Euler update equations are equivalent to

1
+1 _ . on+12
x" = arg;nln (2At2 |x — XSE Il + U(x)), (8a)
1
n+1 n+1 n
= - X 8b
v At(x x) (8b)

where igg L= x™ + Atv™ + At>M ™ ey is the predicted future state

without the contribution of f**1 [Gast et al. 2015; Martin et al. 2011].
An analogous optimization formulation for the implicit midpoint
scheme has recently been provided by Dinev et al. [2018a].

For the general family of integrators (7), it is useful to define the
discretized time derivative operator

1
3(y) = —(y — yP), 9
¥ ==y ©
so that the time integration equations are simply
5(Xn+1) — Vn+1, (103.)
Ma(v™1) = f(x™HL v, (10b)
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If all the forces are nondissipative, i.e. f(x, v) = fext — VU(x), we can
eliminate v**! from the second equation to obtain
1
a’At?

This corresponds to the minimization

M(Xn+1 _ (X[I + aAth)) = fext — VU(anrl). (11)

X" = arg min( Ix — %" |Im + U(x)) (12a)
X

1
2a2At?
where x™1 = x” + aAtvP + a? AP M Moy (12b)

Similar to the backward Euler case, ¥+ is the predicted future state

without f"*1. Therefore, time integration for a nondissipative sys-
tem is exactly equivalent to solving the minimization (12a) followed
by setting v = §(x"*1). In Section 4, we extend this formulation
to support dissipative forces.

3.3 ADMM for local-global optimization

The objective functions in (8a) and (12a) are optimized over the
entire global displacement vector x € R3". This global solve is
expensive to compute. When applicable, using a local-global ap-
proach can greatly improve the performance. Overby et al. [2017]
expressed the backward Euler optimization in a form compatible
with the ADMM optimization algorithm [Boyd et al. 2011]. We
briefly review their approach here. In Section 4 we will do this more
generally for the higher-order TR-BDF?2 integrator we use in this
work.

First, we assume that the potentials U are the sum of several
terms of the form

UG = ) Ui(Dix) = Us(Dx), (13)

where each U; depends only on a low-dimensional vector of local
coordinates x; = D;x. Here, each D; is a matrix which encodes the
linear mapping from global coordinates of the entire system to the
local coordinates relevant for the particular energy term, such as
the edge vector for a spring or the deformation gradient for a finite
element. The aggregate transformation D is obtained by vertically
concatenating the individual D; matrices.
Equipped with this notation, we rewrite the optimization problem
in (8a) as
1 n+1)2
min m”x —Xpp |y + U«(Dx)| . (14)

Treating Dx as an independent variable x, this can be expressed in
the form

: cn+12
I)T(l’lzn N lIx - XBE ”M + Ui(x)
s.t. W(Dx - x) = 0, (15)

where W is an invertible matrix that acts as a weighting of different
potential terms. This form permits the use of the ADMM algorithm
[Boyd et al. 2011], which solves the optimization problem itera-
tively, alternating between x and x updates until convergence. Good
heuristics for choosing W are discussed by Overby et al. [2017]. In
brief, we choose W to be a block diagonal matrix where each block
specifies the relative weight of the corresponding local energy term,
with stiffer energies receiving larger weights.



Finally, the ADMM update equations which solve (15) are
K+l X 1 ~n+1y2 1 k), =(k)yj 2
<k+D) arg;nm(zATHx_er 112, + §||W(Dx_§( )yl ))” )’
(16a)
x**D = arg min(U*(g) + %”W(Dx(kﬂ) -x+ ﬁ(k))Hz)’ (16b)
X
2k — G0 4 pyk+D) E(k‘rl)’ (16c)

where k denotes the iteration number, @ is a new variable introduced
for ADMM, and the initial guesses are x(© = gn+1 g(o) = Dx"*1,
and @® = 0. The benefit of ADMM is that each of these steps
can be carried out efficiently. The objective in (16a) is a quadratic
form with a constant Hessian matrix, which be minimized using
a prefactored linear solve. The minimization in (16b) splits into
separate low-dimensional minimizations

k . 1 _(k
x( 1) = arg min(Ui(x,) + S IWOx D —x, +a{9)12). (17)
X;
which can be performed in parallel, and for which closed-form
solutions may be available.

4 METHOD

In this section, we first set up the first-order generalized optimization-
based integration problem with the dissipation function R added.
We show that the method is first-order accurate. In the next section,
we derive a correction term that can be added to raise the accuracy
to second order. Finally, in the following section we present the full
second-order TR-BDF2 scheme.

4.1 Optimization integration with dissipative forces

In the presence of a nontrivial dissipation function R, the equation

for x"™1 analogous to (11) is
1
M(x" — xP + aAtvP
a?At? ( ( )

— f(er-I’ 5(Xn+1))
= fext — VU"™) = VR, 8(x™*1)). - (18)
To lighten the notation, we will often abbreviate f(x"*1, 5(x**1)),

U(x™*1), and R(x™ 1, 5(x**1)) as £*+1, U™+, and R*™! respectively.

Let us consider the optimization-based scheme

" = xP 4 aAtvP + AP aPM T oy, (19a)
1
n+l _ . _gn+1y2
X" = arg min (an F2 1 U(x) + aAtR(x, 5(x))),
(19b)
v = s(x™ ). (19¢)

The optimality condition for (19b) is

T M — ") £ VU™ 4+ gAtVR*T + VR = g,
24
(

20)
or equivalently

M) = £+ g APV R (21)
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The velocity update obtained from this integrator is therefore
VL = VP 4 gAML - A2 ?MTI VY RTT (22)

in which the final term is an O(At?) error proportional to V1R.

From this analysis, it is clear that if the dissipative term R is in-
dependent of its first argument x, this optimization problem yields
the exact solution to (18). Even when this is not the case, for most
dissipative forces the dependence of R on positions is much weaker
than that on velocities, so in practice the associated error usually
is dominated by the error due to the time integration itself. There-
fore, we believe that this first-order scheme for dissipative forces is
sufficiently accurate for the large time steps used in graphics.

It is true in principle that the O(At?) error incurred by this method
prevents it from being second-order accurate even if the underlying
integrator is. We describe in the following section a modified scheme
that provides theoretical second-order accuracy, at the cost of an
additional objective term.

4.2 Attaining second-order accuracy
The additional error in the previous method arises because the term
aAtR in the objective function gives rise to forces

d ds
4 AR 5(x)) = aAtV1R + aArvR X (23)
dx dx

= aAtViR + V3R, (29)

despite the actual dissipative force in the physical model being V3R
alone. If we wish to elevate the method to second-order accuracy,
we should replace the term aAtR in the objective with a different
term S such that

%S(X, 5(x)) = VoR(x, 8(x)) + O(At?). (25)
In particular, we choose
S(x,v) = aAt(R(x,v) — R(x, v")), (26)

which yields

%S(x, 5(x)) = VoR(x, 8(x)) + aAt(V1R(x, 5(x)) — V1R(x, v'™))
= VaR(x, 8(x)) + aAt O(8(x) — v™)
= V3R(x, 8(x)) + O(AL?). (27)

This reduces the error term on the velocity update in (22) to O(A£?).

This strategy improves the theoretical order of accuracy of the
method, but it introduces higher-order errors arising from the R(x, v'*)
term. As we show in Section 7.1, this can be a net negative in cases
where the original aAtV{R error is not significant. We have pre-
sented it here primarily for theoretical completeness, and as a start-
ing point for future work.

We now summarize our optimization-based time stepping scheme.
For convenience, in the following scheme we combine the conser-
vative and dissipative potentials to define an “effective potential”
which is either

d(x) = U(x) + aAtR(x, 8(x)) (28)
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)

Fig. 2. A sheet of cloth, modeled with strain-limited linear elasticity and
quadratic bending elements [Bergou et al. 2006], swings under the influ-
ence of gravity. Energy and angular momentum are quickly damped using
Backward Euler (left). Both BDF2 (middle) and TR-BDF2 (right) result in
a minimally damped swing, but the TR-BDF2 result exhibits visibly more
wrinkles. For comparable computational cost, we have run TR-BDF2 with
twice the time step size (40 ms) as compared to backward Euler and BDF2.

for the first-order accurate method, or

®(x) = U(x) + S(x, 5(x)) (29)
= U(x) + aAt(R(x, §(x)) — R(x, v"™)) (30)

for second order. Then, our generic time-stepping scheme is

= xP 4 g AV + AP AP M ey, (31a)
1
X! = arg min (— x — &2 +CDX), 31b
gl AL Il [y + P(x) (31b)
1
vl = 5(Xn+l) — (Xn+1 —_ XP). (31¢)
alt

4.3 Optimization-based TR-BDF2

TR-BDF?2 is a composite integrator which combines the trapezoidal
method (TR) and the second-order backward difference formula
(BDF2). This combination yields an L-stable time integration scheme
which shows excellent conservation of energy and angular momen-
tum, as illustrated in Figure 2.

Applied to the generic ODE y = ¢(y), TR-BDF2 proceeds by first
using the trapezoidal method to obtain a mid-step prediction for
the state y"*V at time t + yAt, where y € (0, 1) is a parameter:

1 1
YU =yt SyAgly") + EyAtqﬁ(y"“). (32)

Then a three-point backward difference formula is applied at ¢,
t+yAt, and t+ At to determine the final state at ¢+ At. The backward
difference formula takes the form

1
Sppr2(y" ') = E(Clyn + oy +e3y™) (33)

where ¢; = I_Ty co = —ﬁ, and c3 = f:—s’: yielding the time

integration equation
co c1 1
yn+1 — __yn+y _ _yn + _At¢(yn+1)
c3 c3 c3
1 n+y (1- Yz) n, 1Y n+1
= ———y" -y —Aip(y"). (39)
y2-y) y2-y) 2-y

Since both the TR and BDF2 stages are of the form (6), it is straight-
forward to derive optimization formulations for them using (31).
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For the TR stage, we have

Y
=Y 35
a=t (352)
1
xP =x"+ EyAtv", (35b)
1
vl =v" 4 EyAtM_lf", (35¢)
and for BDF2,
1 —
a=—Y, (36a)
2-y
1 1-y)?
= —x"Y ﬂx", (36b)
y(2-y) y(2-y)
1 1-y)?
P = Y ﬂv". (36¢)
y(2-y) y2-y)

While some previous work has used y = % [Bathe 2007; Bathe and
Baig 2005; Xu and Barbi¢ 2017], we follow the original formulation
of TR-BDF2 [Bank et al. 1985] in using y = 2 — V2, which is the
only choice for which TR-BDF2 is L-stable [Hosea and Shampine
1996]. This choice also yields the same value of « for both stages,
permitting the global matrix in ADMM to be reused.

Finally, the TR stage requires the total force vector f” at the
beginning of the time step. Computing this explicitly is unreliable
in the presence of nonsmooth potentials. We do so only for the
first time step, assuming that the system is initialized away from
nonsmooth states. Subsequently, we compute the force at the end
of each BDF2 stage using the impulse-momentum theorem,

£7*1 = Mégppa (v, (37)

and store it for use in the TR stage of the next time step.

4.4 Local-global optimization

In section 3.3, we took advantage of the separability of the conserva-
tive potential U to permit a local-global optimization for backward
Euler. The same strategy can be applied in our setting, this time
using effective potentials @ instead of U. The effective potential ®
is again assumed to be a sum of local potentials ®; via

O(x) = ) @i(Dix) = ©,(Dx), (38)

where  ®;(x;) = Ui(x;) + Si(x;, 8(x;)), (39)

defined in terms of local conservative and dissipative potentials U;
and S; respectively. Here 8(x;) denotes the time-discretized local
velocity, equal to D;0(x;) = ﬁ(gi — D;x”). With this effective
potential, the ADMM iterations still have the same structure as (16),
but with local updates

1
D) - argmin(@i(gi) + 5||W(D,~x(k+1) —x, + agk>)||2). (40)
X;

There is some freedom in the choice of the terms ®;. For a damped
elastic object, we may create a single local potential ®; for each
element that includes both the elastic energy and the dissipation
function, or two independent local potentials, one equalling U;
and the other equalling S;. The choice is determined largely by
performance considerations: using separate terms may take more



iterations to converge, but the tradeoff is often worthwhile if each
local optimization (40) can be solved more efficiently.

5 FORCES

In the following subsections, we provide local dissipation functions
Rj(x;,v;) for a variety of dissipative forces. From these functions
one can use (26) to compute S; if needed for second-order accuracy.
Whenever possible, we also discuss closed-form minimizers or fast
iterative methods for (40) with these dissipation functions.

To lighten the notational burden, we will omit the subscript i on
local quantities when it does not hurt clarity.

5.1 Viscous damping

First, we discuss damping models for finite-element elastic objects.
In this setting, the local coordinates x and v contain the entries of
the deformation gradient F and its time derivative F in vectorized
form, and gradients of local potentials represent Piola-Kirchhoff
stresses, e.g. P = C({i_ll{ For clarity, we will express the dissipation
function as R(F, F) instead of R(x, v) when convenient.

5.1.1 Strain-rate proportional damping. In an elastic material with
deformation gradient F, the Green strain tensor E = %(FTF —Iisa
rotation-invariant measure of the instantaneous elastic deformation.
Its time derivative, the strain rate tensor

. 1. .
E= 5(FTF +FTF), (41)

is invariant to rigid motions and measures the rate at which the
elastic deformation is changing. A simple model for viscous damp-
ing can be obtained by assuming that the damping forces depends
linearly and isotropically on E [O’Brien and Hodgins 1999]. In this
case, the viscous Piola-Kirchhoff stress is of the form

P = F2yE + $tr(B)I), (42)

where i and ¢ are material parameters controlling shear and bulk
damping. This damping model corresponds to a dissipation function

¢
2
We have V,R(F, F) = P as desired, while

R(F,F) = Y||E(F, F)||? + Ztr®E(F, F). (43)

ViR(E, F) = FyE + pte(E)D). (44)

On the face of it, computing the local step with this model re-
quires a 9-dimensional optimization, since F is a 3 X 3 matrix. In
Appendix A, we show how the rotation invariance of E allows us to
simplify this to a 6-dimensional minimization coupled with a polar
decomposition.

5.1.2  Rayleigh damping. An alternative to strain-rate proportional
damping is Rayleigh damping, in which the damping forces due to
each element are

f(x,v) = fK®)y, (45)

where f is a scaling parameter and K(x) is a matrix characterizing
the element’s stiffness in local coordinates, usually taken to be the
tangent stiffness matrix —92U /9x>.

Accurate Dissipative Forces in Optimization Integrators « 282:7

For fully implicit Rayleigh damping, we define the dissipation
function

R v = Dy Ky, (46)
Its gradients are
VaR(x,v) = fK(®)v, (47)
0K
ViR y) = B [T K@ . (48)
o207 0% Tlisas

Differentiating K with respect to x may be difficult to compute in
general. However, the gradient in (48) only requires the product
of the derivative with v, which can in fact be computed using the
time-derivative of K:

K Y
T
—v=- | —— 49
¥ ox.v Zk‘lv] (axi axj[‘)xk)vk (49)

Zi
a 0*U T
_—;szk:(am)vk—g K. (50)

We further approximate K by employing the same scheme used in
the time integrator,

K~ 8(K) = — (K - K6)). 61

One little-discussed drawback of Rayleigh damping with the tan-
gent stiffness matrix is that the resulting forces may not conserve
angular momentum. In Section 6 we discuss this phenomenon and
propose a simple correction scheme that ensures that the forces are
angular momentum conserving.

5.1.3  Damping of principal strains. In isotropic hyperelastic models,
the potential U; can be viewed as a function only of the principal
strains, i.e. the 3 singular values of F, rather than on the full 3 3 ma-
trix F. Then it is possible to reduce the local step to a 3-dimensional
optimization, leading to a significant speedup [Overby et al. 2017].
To achieve the same speedup in dissipative models, we propose a
simplified damping model that acts directly on the rate of change
of principal strains. Let o be the vector of principal strains, ob-
tained from F via the singular value decomposition. Applying the
discretized time derivative directly to o, we can approximate

&~ 8(c) = ﬁ(o — o), (52)

where o? contains the singular values of the matrix corresponding
to xP.

By analogy with Rayleigh damping, we would like to define dissi-
pative forces of strength fK4(0)o along the principal strain direc-
tions, where Ko = 82U; / 00? is the Hessian of the element’s elastic
energy with respect to principal strains. One way to do this is to
define a dissipation function R(o, 6) = gc’rTKJ o, although this
would then require a second-order correction. Instead, inspired by
Gast et al. [2015], we define the effective potential

a(0) = B (3(0) VU(0) - —Ui(or)]. (53)

which has exactly the correct gradient with respect to o. Since this
depends only on the singular values of F, we can treat this the same
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(Kinetic energy) /2

Time (5)

Fig. 3. Energy behavior of power-law damping on an elastic pendulum.
The strength of damping is chosen so that each model damps roughly the
same amount of kinetic energy in the first swing. To make the behavior
more clearly visible, we plot the square root of kinetic energy, which is
proportional to the RMS velocity.

way as an isotropic hyperelastic energy. In particular, in the local
step (40), the singular vectors of F must be the same as those of the
matrix corresponding to D;x(k+D) 4 ﬁgk), so the objective can be
minimized over o alone.

Note that this model achieves its simplicity by ignoring changes
in V, so motions in which the principal strain axes rotate within the
material will not be damped by this model. However, since it also
ignores changes in U, it conserves angular momentum and does not
damp out rigid motions unlike Rayleigh damping. In practice we
find this to be a worthwhile tradeoft.

5.2 Nonlinear damping

While the viscous damping forces described above are linear in the
velocities v, many other dissipative forces in nature have a nonlinear
relationship with velocity. In this section, we discuss some nonlinear
models which enable more interesting damping effects than are
possible with viscous damping.

5.2.1 Power-law damping. Consider a dissipation function R(x, v)
which is quadratic in v and so gives rise to linear damping forces;
each of the models in Section 5.1 falls into this category. We define
its power-law variant by raising it to an exponent q = (p + 1)/2,

R'(x,v) = A79R(x v)Y, (54)

where A is a proportionality constant with the same units as R. As an
illustrative example, if we take R = ||v||? and A = 1, the dissipation
function and its associated forces are simply

R'(x,v) = [v||P*! (55)

v

= VoR'(xv) = (p+ Dyl Tk (56)
showing the desired power-law behavior of the force magnitude.
The power-law model will inherit properties such as isotropy, ro-
tation invariance, and angular momentum conservation from the
underlying linear model R.

The local minimization for power-law damping can be numer-
ically challenging, especially for the p = 0 case in which R’(x, v)
is nonsmooth at v = 0. In Appendix B, we show that for a certain
choice of underlying linear model, a fast update can be performed
using only a one-dimensional root finding step.
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The power-law damping model enables a range of qualitatively
distinct energy beahviors, as demonstrated in Figure 3. In the three
casesp < 1,p = 1, and p > 1, the kinetic energy of the system
decays superexponentially, exponentially, and subexponentially re-
spectively. Thus, using the parameter p the user can control whether
the system should come to rest in finite time, show lively long-lived
oscillations, or anything in between.

5.2.2 Spline-based damping. Inspired by recent work on artistic
design of elasticity [Xu et al. 2015] and damping [Xu and Barbi¢
2017], we propose a simple spline-based method to give the user
direct control over nonlinear damping properties. The user provides
a spline function s : R — R specifying a damping multiplier as a
function of principal strain. For each element, we apply s to the three
singular values and use the resulting multipliers to modulate an
existing dissipation function R. This is similar to the example-based
damping design approach of Xu and Barbi¢ [2017], but applied to
per-element deformations rather than modal bases.

One simple method that works for a generic R is to combine them
into a single multiplier:

R'(F,F) = (. max_s(o;))R(F,F). (57)
j=1,2,3

Many alternative approaches are possible. In the context of principal
strain damping, one could scale the damping of each principal strain
value separately using R’ = ngsl/zKGS”zd, where § is the di-
agonal matrix with entries s(cj). One could also apply the spline
function to the principal strain rates ¢ instead of to the strains o
themselves, causing the damping to be nonlinear in velocity.

5.3 Coulomb Friction

Friction is a dissipative force which acts to reduce the tangential
velocity of objects in contact. According to the dry Coulomb model,
the force of friction ff between two contacting objects lies in the
tangent plane at the point of contact and satisfies

{uffn < plifall

fr = —,u||f,,||ﬁ otherwise.

if Vi = 0,
(58)

Here, p is the coefficient of friction, f;, is the normal force, and v; is
the tangential relative velocity. As is typical in graphics, we have
assumed that p is the same for both static and kinetic friction.

To model friction in our optimization framework, we create for
each contact pair a dissipative term such that D;v gives the relative
velocity at the point of contact. The dissipation function for Coulomb
friction is

R) = plifalllITyll, (59)

where the matrix T performs orthogonal projection to the contact
tangent plane. The subdifferential of R is

{Tf : Ifll < plifall} if Tv =0,

T ) (60)
{Il||fn [ IIT_EII} otherwise,

OR(v) = {
so ff € —9R(v) is equivalent to the desired Coulomb law. Further-
more, the nonsmoothness of the dissipation function (59) does not
pose a problem for us, since the local optimization (40) has a simple
closed form in this case.
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Fig. 4. Dynamic friction validation. An undamped elastic box slides along
a horizontal surface and decelerates due to friction (z = 0.2). The rate
of deceleration matches the physical prediction for different numbers of
ADMM iterations.

O
O

Fig. 5. A spinning elastic ball is dropped onto a flat surface. Due to fric-
tional contact with the surface the ball picks up net horizontal velocity and
subsequently bounces and rolls off to the side.

The definition of the frictional dissipation function requires knowl-
edge of the normal forces f;,. We assume these can be obtained from
the collision solver as in Overby et al. [2017]. In our implementa-
tion the normal forces are recomputed after each global step, and
the updated values are used for all friction computations in the
subsequent local step. Technically, under this scheme, we are no
longer solving an optimization problem, since the objective term (59)
changes at each iteration. However, in practice we find the method
still converges to physically valid behavior in all tested cases.

In Figure 4 we demonstrate the convergence of the method rela-
tive to an analytical prediction. Another example is shown in Figure
5, where a spinning ball dropped onto a flat surface picks up net
motion in the direction tangent to the contact normal.

6 CONSERVATION OF ANGULAR MOMENTUM

It is a well-known consequence of Noether’s theorem that conser-
vative forces preserve linear and angular momentum if and only if
the associated potential is invariant to translation and rotation. The
analogous condition does not hold for dissipative forces. In partic-
ular, the dissipation function for Rayleigh damping is invariant to
translation and rotation, but Rayleigh damping fails to conserve an-
gular momentum even in the continuous-time case. In this section,
we derive the theoretical requirements for a dissipation function to
conserve angular momentum, and propose techniques to modify
any dissipation function to satisfy these requirements.
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6.1 Theory

Consider an arbitrary dissipation function R, giving rise to forces
f = V3R. For linear and angular momentum to be conserved, the
net force and net torque must be zero, that is,

Zf" =0, (61a)
i
in xf; = 0. (61b)
i

This is true if and only if f is orthogonal to all rigid velocities v",
that is, all velocities of the form

t+wXx
v = : (62)
t+wXx,

determined by a linear and an angular velocity t,w € R3. Since
f = V3R, this implies that R must be invariant to addition of rigid
velocities: R(x,v) = R(x, v + v") for any rigid v". Conversely, if R
has this invariance property, then V2R automatically satisfies the
conservation equations (61).

One natural way to construct such a dissipation function R is
as follows. Suppose s(x) is a translation- and rotation-invariant
function of the positions x. One can show that its time derivative
$(x,v) = % v is invariant to addition of rigid velocities. By our
result above, any dissipation function R that depends solely on §
conserves linear and angular momentum. For example, strain-rate
proportional damping is of this form with s = E, as is principal
strain damping with s = X; this verifies again the fact that these
models conserve linear and angular momentum.

If we are given a user-specified dissipation function R that is not
of this form, how can we modify it to guarantee angular momentum
conservation? It suffices to choose a decomposition of velocities
into rigid and nonrigid components, v = v" + v"*", and to define the
corrected dissipation function

R(x,v) = R(x,v"""). (63)

As long as the nonrigid velocity v yielded by the decomposition
is unchanged upon adding any rigid velocity to v, our corrected
function R will conserve linear and angular momentum. Below,
we present one method to do so in general, and another method
specialized for volumetric finite element models.

6.2 General method
Define the matrix
Iz —[xi]x
c=]: : , (64)
I —[xnlx
so that rigid velocities v/ = C [;] form the column space of C.

Given a velocity v, a natural choice of decomposition is via the
orthogonal projection to this space,

v =P'v:=ccTc)y'cTy, (65)
v =Py .= (I-c(CcTc)tcTv. (66)
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If CTC is not invertible due to the points x; not being in general
position, we retain only the linearly independent column(s) of C
and solve the problem in the reduced space.

Since most forces of interest act only on a small subset of vertices
involved in the local coordinates x; = Dix and v ; = Div, we rewrite
these conditions in terms of the local coordinates. The local rigid
velocity, vi = D;v", lies in the column space of C; = D;C. The local
coordinates are typically translation-invariant, in which case the
first three columns of D;C become zero. Therefore, we retain only
the remaining nonzero columns in C;. We then define the nonrigid
projection in local space P}" analogously to (66), and obtain the
corrected dissipation function R;(x;,v;) = Ri(x;, PI"v;).

6.3 Velocity gradient approach for volumetric elements

When the deformation gradient is a square matrix, as is the case
when simulating volumetric objects, a simpler angular momentum
conservation strategy may be employed. In this case, we can define
the velocity gradient L = FF~!, an Eulerian quantity which measures
how velocity varies with position. Its symmetric part, D = %(L-ﬁ-LT),
is the rate of deformation tensor, and entirely encodes the nonrigid
component of the motion. Since this is precisely the component we
seek to isolate for angular momentum conservation, we propose
substituting D in place of L in the equation L = FF~. Doing so
yields the nonrigid component of F as

. 1 . .
F"" = DF = S(F+ FTETF). (67)

This method can also be derived in a different way, revealing a
connection to strain-rate proportional damping. We wish to con-
struct a mapping from F to some velocity F" that is invariant to
rigid velocities. We may proceed by first computing an intermediate
quantity that exhibits this invariance, then deriving F*" from it.
Choosing the intermediate quantity to be E = %(FTF +FTF), and
setting " = F~TE yields exactly the above definition. Thus, this ap-
proach can be viewed as importing rigid invariance from strain-rate
proportional damping to an arbitrary dissipation function.

Having defined the nonrigid velocity F*", our corrected dissipa-
tion function is

R(F,F) = R(F, F™""), (68)

where F*" depends on both F and F. To perform optimization, we
will need the gradient of R with respect to both arguments. This is
most easily expressed in terms of matrix differentials:

SR = ViR :6F + VaR : F™, (69)
. 1 . .
SE = 5(F‘TFTaF —F TspTF TRTF (70)
+6F+ FT8FTF).

7 RESULTS

We implemented our method on top of an ADMM solver for hyper-
elastic materials [Overby et al. 2017]. To speed up the computation,
we computed the primal and dual residuals [Boyd et al. 2011] at
each ADMM iteration and terminated early if they were below a
chosen threshold. In this section, we demonstrate our method on
a variety of validation tests and complex examples. We encourage
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Fig. 6. An undamped elastic beam undergoing rotation and stretching,
simulated with various methods. TR-BDF2 exhibits the best energy and
angular momentum conservation for comparable computational cost.
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Fig. 7. A damped elastic beam simulated with TR-BDF2, using Rayleigh
damping with and without our angular momentum correction. With correc-
tion, the remaining angular momentum loss is primarily that caused by the
integrator itself.

the reader to view the animated results in the supplementary video,
since the effects of damping are difficult to convey in static images.

7.1 Validation tests

We use the example shown in Figure 6 for several of our validation
tests. This example consists of an elastic beam given initial veloc-
ities that induce rapid spinning and elongation. In the undamped
case, the total energy and angular momentum of the system should
remain conserved, but in practice most implicit integrators fail to
do so exactly. As shown in the figure, backward Euler rapidly loses
both energy and angular momentum. BDF2 performs significantly
better, while TR-BDF2 does best of all. For a fair comparison, we
ran backward Euler and BDF2 with half the time step used for TR-
BDF?2, since the latter must solve two optimization problems per
time step. From here on, all further examples are simulated only
with TR-BDF2.

We evaluate the same example with damping forces added in
Figure 7. As shown, Rayleigh damping quickly slows down the
rotation of the bar in a non-physical manner. Applying our angular
momentum correction dramatically improves its behavior.

Finally, we validate the second-order accuracy of our method in
Figure 8. We performed two tests using strain-rate proportional
damping and Rayleigh damping, and compared our results against
a reference solution computed using the 4th-order Runge-Kutta
scheme with At = 107% s. TR-BDF2 with our correction term de-
scribed in Section 4.2 achieves second-order convergence in both
tests, while the unmodified method is only first-order accurate in
the dissipative forces. However, if the error term VR is negligible,
as in the case of strain-rate proportional damping, the method still
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Fig. 8. Validation of the second-order accuracy of our method on (left) a
stretching beam with strain-rate damping, and (right) an oscillating tetra-
hedron with Rayleigh damping. In both cases, the final state is compared
to a reference solution obtained using RK4 with At = 107° 5. Dashed lines
indicate first-order and second-order slopes.

Fig. 9. An elastic block leaning against a wall due to static friction. Initial
angles: 30°, 50°, 70° (bottom, middle, top rows). Friction coefficients: 0.2,
0.4, 0.6 (left, middle, right columns). Theory predicts the block to stay up
only for the cases in the diagonal and upper triangle of this table.

exhibits second-order convergence without the correction term. In
this case, the error is in fact lower than with the correction.

In the supplementary video, we show a comparison with a tra-
ditional implicit solver applied to TR-BDF2, which directly solves
the discretized equations of motion (7) using Newton’s method.
The difference in error between the original integrator and our
optimization-based formulation is visually unnoticeable.

We validate our Coulomb friction model using two tests for which
analytical predictions are available. First, we tested dynamic friction
by simulating an elastic block sliding across a flat plane with (Fig. 4).
The expected horizontal deceleration is —ug, where g = 9.81 m/s?
is the acceleration due to gravity, and p was chosen to be 0.2. The
resulting motion of the block closely matches the theoretical pre-
diction, apart from some elastic oscillations once it comes to rest.

We exercise static friction more heavily in the following example.
A stiff elastic block with friction coefficient y is initialized leaning
at an angle 6 to the vertical against a static wall. Theoretically, a
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Fig. 10. A sheet of cloth draped on a sphere, showing frictional contact. The
cloth stays on the sphere due to friction (left), but falls without it (right).

Fig. 11. An elastic object with power-law damping. Top row: Soft material
model with (from left to right) no damping, p = 0 nonlinear damping, and
p = 1linear damping. Bottom row: Stiffer material with (from left to right)
no damping, p = 2 nonlinear damping, and p = 1 linear damping.

rigid rod in such a configuration will remain at rest when tan 6 <
(1 = 1*)/(2p), and will slide down otherwise. As shown in Figure 9,
the results of our method agree with the theoretical predictions.

7.2 Other examples

In Figure 1, we showed an example of a neo-Hookean elastic ob-
ject sliding down a complex terrain, with strain-rate proportional
damping and Coulomb friction for contact with the terrain. More
examples of frictional behavior are shown in Figures 5 and 10.

In Figure 5 we show a spinning elastic ball being dropped onto
a flat surface. Due to friction, the ball picks up horizontal velocity
while in contact with the surface and subsequently rolls off to the
side.

In Figure 10, a sheet of cloth with strain-limited linear elasticity
for in-plane forces and the quadratic bending model [Bergou et al.
2006] for bending forces is dropped on a static sphere. In the absence
of friction, the cloth easily slides off the sphere, but with friction, it
stays on and creates realistic wrinkles as it comes to rest. Since the
collision tests in our implementation are volumetric, we do not yet
handle cloth self-collisions.

The qualitative effects of power-law damping are demonstrated
in Figure 11. First, a highly compliant bunny is dropped onto a
flat surface. The p = 0 case yields behavior similar to soft clay,
permitting rapid deformation but ultimately bringing the object
completely to rest in a deformed state. Linear damping with p =
1 cannot reproduce this unique behavior, and the motion decays
only gradually as the object settles. Second, an elastic bunny is
shaken violently via kinematic pins on its bottom surface. Power-law
damping with p = 2 prevents excessive shearing and stretching of
the object due to these rapid motions, while offering little resistance
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Spline damping parameter vs. principal stretch

log(B3(e))

Fig. 12. Artistic control of dissipation with spline damping. A spline is de-
signed to strongly damp velocities in the deformed state, and only minimally
damp when near the rest configuration. This is used to simulate nonlinear
effects in an elastic dragon model.

to the swinging of the ears and other small oscillations persisting
afterwards. In the linear case, the parameter f must be chosen
very large in order to suppress the deformations to a similar extent,
causing the rest of the oscillations to also be heavily damped.

Finally, in Figure 12 we show an example inspired by [Xu and
Barbi¢ 2017], in which nonlinear damping is applied to a dragon
model to better match the desired relaxation behavior. While they
apply a spline damping curve to modal coefficients of a reduced
model, we apply a spline directly to the principal strains of each
element to control the element’s damping forces, as described in
Section 5.2.2. Spline-based damping allows the user to design arbi-
trary nonlinear damping behaviors that cannot be achieved simply
by changing the Rayleigh damping coefficient.

Performance. Performance information for our examples is pre-
sented in Table 2. This data was collected using an Intel i9-7980XE
CPU. In our software we took advantage of parallel structure to
accelerate the local step of the algorithm. However, as a whole our
implementation has not yet been well optimized. We believe that a
more efficient implementation could make the performance of our
method competitive with other approaches.

8 LIMITATIONS AND FUTURE WORK

Although TR-BDF2 conserves energy and angular momentum far
better than backward Euler, it has a smaller region of stability. As
a consequence, in some cases when especially stiff hyperelastic
materials are used, it may be necessary to either perform more
ADMM iterations or lower the time step. As is the case with other
local-global optimization-based methods [Overby et al. 2017], it can
be challenging to determine the suitable values for the weights. If
weights are chosen poorly convergence may be greatly worsened.
This issue is exacerbated in our context, since weights have to be
chosen carefully for both conservative and dissipative forces. In
the future, we would like to determine a more robust method for
estimating good weight values. With a better heuristic, our method
would require less tuning and convergence could be improved.
Our correction term cancels out the second-order error term
caused by the dependence of R on x, but it does introduce some
error of its own. In practice, if the dissipative forces are only weakly
dependent on x, the net effect of the correction term can be harm-
ful to the total error for large time steps. In the future, we would
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like to remove this drawback, as it would render the second-order
correction a more practically useful technique.

In our method, we represent collisions as inequality constraints,
modeled via infinite barrier potentials in the optimization. The draw-
back of this model is that we have little control over the restitution
behavior of the collisions. While backward Euler yields purely in-
elastic collisions, we have observed that TR-BDF2 causes collisions
to bounce, even when undesired like in a cloth-solid collision.

Our implementation currently only handles frictional contact
with static obstacles, but does not handle frictional self-contact and
multi-body contact. We believe that these can be included via non-
penetration penalties using a Gauss-Seidel solver [Fratarcangeli
et al. 2016; Overby et al. 2017]. However, this requires additional
tuning of the penalty strength and associated ADMM weights, and
we were not able to obtain successful results by the time of publi-
cation. Once these issues are resolved, it remains to be seen how
our optimization-based formulation for implicit frictional contact
compares in practice to existing approaches for this problem [Daviet
et al. 2011; Kaufman et al. 2008; Otaduy et al. 2009]. It would be
valuable to study the relative performance of these methods on chal-
lenging multi-body deformable systems, especially with multiple
contacts and constraints. We hope to investigate this question in
future work.

In principle, there is no theoretical requirement in our method to
apply spline damping solely to individual elements. If we define the
mapping D; to correspond to a deformation mode in an arbitrary
modal basis, the local coordinates x; and v; yield the magnitude and
velocity of that mode. In this way, we could apply spline damping
directly on any global deformation mode as advocated by Xu and
Barbi¢ [2017], on top of an existing full-resolution simulation. We
have not tested this possibility, and we leave its investigation to
future work.

There are many other damping phenomena which could be inves-
tigated in future work. Our power-law damping model with p = 1
yields behaviors reminiscent of the plastic deformation of soft clay,
and we would like to explore extensions to general elastoplastic
materials in the future. We would also like to apply ADMM to fluid
simulations, inspired by projective fluids [Weiler et al. 2016]. In this
context, nonlinear dissipation could model Coulomb friction in gran-
ular materials, and shear-dependent viscosity in non-Newtonian
fluids like paints, gels, and foams.
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A  LOW-DIMENSIONAL OPTIMIZATION FOR
STRAIN-RATE PROPORTIONAL DAMPING

Let the polar decomposition of the deformation gradient be F = RS,
where R is a matrix with orthonormal columns, and S is a symmetric
matrix called the stretch tensor. We begin by noting that the strain
rate E depends only on S and its time derivative S, since

1
E= 5(52 -1, (71)
R 1 . .
E= (55 +39). (72)
We apply the discretized time derivative operator to S, defining
. 1
S~ 8(S):=——(6-S 73
()= ——(5-3p) 73)

where S, is obtained from the polar decomposition of F? arising
from the time integration rule (6). Then, the strain-rate proportional
damping term can be viewed as a function ®(S) independent of R.

Plugging this into the local optimization step (40), and substitut-
ing F = RS, we obtain the problem

2
arg min &(S) + —||RS - F||, (74)
R ortho., 2
S sym.

where F is the matrix whose vectorization is D;x**D + a(k), we
solve this by alternately minimizing over R and S. Minimization
over R is an orthogonal Procrustes problem, arg ming ||RS — F||2, for
which the minimizer is the rotational part in the polar decomposition
of FS. Minimization over S is a 6-dimensional optimization which we
perform using L-BFGS. Typically, few iterations of this alternating
are necessary, and the total cost is cheaper than a full 9-dimensional
optimization over F.

B FAST UPDATES FOR POWER-LAW DAMPING

We take a simple power-law damping model,
R($) = BISIP* = pUIS|H e/ (75)

for some exponent p > 1. Note that this dissipation function is
rigid-invariant and so conserves linear and angular momentum for
any p. The local optimization problem is then

2
. w -
argmin (| 77 (S - $p)|2)P /2 + = IRS 2. (76)
R ortho.

S sym.

Taking the differential with respect to S and simplifying, we obtain

pp+1)

( At)P+1”S—¢||P’I(S—SP)+WZ(S—RTF) :88=0. (77)
[24

c(S)
Since 48 is an arbitrary symmetric matrix, the symmetric part of
¢(S)(S — SP) + w2(S — RTF) must be zero, i.e.

c(S)(S = $P) + w?(S — symRTE)) = 0 (78)



where symA = %(A + AT). Denote § = sym(RTF). Equation (78)
implies that S — S? and S — S are linearly dependent, so S must lie on

the line segment between S? and S and can be found via bisection
or Newton’s method in one dimension.
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