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• We introduce a simple approach for incorporating dissipative

forces into such optimization integrators through the use of

dissipation functions, a concept from classical mechanics that

has only recently begun finding use in computer graphics

[Karamouzas et al. 2017; Sánchez-Banderas and Otaduy 2017].

We show that the simple approach is first-order accurate, but

can be elevated to second-order accuracy by the addition of

a correction term.

• We provide dissipation functions for many dissipation models

traditionally used in computer animation, and demonstrate

some novel nonlinear dissipation models that enable artistic

damping effects. Our fully coupled formulation enables im-

plicit handling of frictional contact with kinematic obstacles

in optimization-based integration.

• Finally, we propose a general method for modifying arbitrary

dissipation models to conserve linear and angular momentum.

In particular, our modification eliminates the artificial angular

momentum loss caused by Rayleigh damping.

2 RELATED WORK

2.1 Time Integration

Implicit integration techniques are commonly used in computer

graphics. Among these, a particularly prevalent choice is backward

Euler, which is a first-order accurate backward differentiation for-

mula with exceptional stability properties [Baraff and Witkin 1998;

Terzopoulos et al. 1987]. However, backward Euler is also notori-

ous for artificial damping, which can grow unacceptably large with

large timesteps in stiff systems. Its second-order variant, the BDF2

method, has been used in some previous work [Choi and Ko 2002;

English and Bridson 2008] to maintain stability while reducing the

amount of numerical dissipation. Recently, Xu and Barbič [2017]

introduced to graphics the TR-BDF2 method [Bank et al. 1985; Bathe

2007; Bathe and Baig 2005] which combines the trapezoidal rule

and BDF2, resulting in a stable integrator with even lower artificial

dissipation.

In problems with even moderate complexity, standard iterative

schemes for carrying out implicit integration are either prohibitively

expensive or take too long to converge for interactive applications.

One widely used alternative is position-based dynamics [Bender

et al. 2015; Müller et al. 2007], which deals only with positions. In

this method, forces are treated as hard constraints and the state is

updatedwith Gauss-Seidel iterations. This approachwas generalized

by XPBD [Macklin et al. 2016] to enable the use of finite stiffness

constraints for better modeling of elastic forces.

Another strategy is to recast implicit integration as a numerical

optimization problem [Gast et al. 2015; Kharevych et al. 2006; Martin

et al. 2011]. Recent work has focused on local-global approaches for

solving the resulting optimization problem, which offer computa-

tionally cheap descent iterations with rapid initial progress.

A block coordinate descent technique was used by Liu et al. [2013]

for mass-spring systems. Bouaziz et al. [2014] generalized this ap-

proach to simulate a broader class of constraints and finite elements,

and termed it projective dynamics. This approach has subsequently

been applied to SPH fluids [Weiler et al. 2016] and character skinning

[Komaritzan and Botsch 2018]. A number of acceleration techniques

have been proposed to further speed up projective dynamics, in-

cluding the Chebyshev semi-iterative method [Wang et al. 2015],

parallel graph-colored Gauss-Seidel [Fratarcangeli et al. 2016], L-

BFGS [Liu et al. 2016], and model reduction [Brandt et al. 2018]. In

the closely related area of geometric optimization, many novel tech-

niques have recently been introduced that dramatically accelerate

the convergence of numerical optimization [Claici et al. 2017; Ko-

valsky et al. 2016; Peng et al. 2018; Rabinovich et al. 2017; Shtengel

et al. 2017; Zhu et al. 2018]. As demonstrated by Peng et al. [2018],

these methods can be useful for simulation problems as well.

Projective dynamics has been further generalized to nonlinear

constitutive models by interpreting it as an instance of ADMM

[Overby et al. 2017] or quasi-Newton optimization [Liu et al. 2016].

The ADMM formulation has been applied to skin slide simulation

[Saito and Yuen 2017] and to character self-intersection removal for

cloth simulation [Minor 2018].

Recently, Dinev et al. [2018a,b] have proposed two energy-conserving

algorithms for deformable body simulation. Both approaches enable

exact energy conservation for conservative systems, but require dis-

sipative forces to be applied in a separate step decoupled from the

conservative force integration. By contrast, we formulate a single op-

timization problem that combines the conservative and dissipative

forces into a single objective.

2.2 Damping

Damping in graphics dates back to early work in deformable body

simulation [Terzopoulos and Witkin 1988], where velocity-based

damping was applied directly to each node. In finite element sim-

ulations, local damping forces are commonly computed using the

strain-rate tensor [Debunne et al. 2001; O’Brien and Hodgins 1999;

Platt and Barr 1988]. For cloth, Baraff and Witkin [1998] model

damping using the time derivative of constraint functions.

Rayleigh damping, in which the damping forces are proportional

to the product of the stiffness matrix and the (generalized) velocities,

is another widely used model in computer graphics [Barbič and

James 2005; Gast et al. 2015; Ren et al. 2013; Sifakis and Barbič 2012;

Wang et al. 2015]. However, unlike the earlier strain-rate approaches,

Rayleigh damping does not always conserve angular momentum.

Some direct and iterative techniques to impose angular momentum

conservation were proposed by Schmedding et al. [2009].

In the context of optimization-based integration, Kharevych et al.

[2006] added stiffness-proportional damping forces by defining them

in terms of the object’s potential energy function. To obtain forces

proportional to velocities, they defined the energy in terms of the

strain measured relative to the current state. Gast et al. [2015] use

a lagged version of Rayleigh damping to define a damping energy

function for optimization-based integration. While the method of

Kharevych et al. [2006] conserves angular momentum, the Rayleigh

damping model used by Gast et al. [2015] does not.

Data-driven damping methods have also been used to obtain

more realistic damping behavior. For cloth simulation, parameter

optimization from data measurements was used for spring-based

damping [Bhat et al. 2003] and for modeling internal friction [Miguel

et al. 2013]. Recently, an example-based method [Xu and Barbič
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2017] has been used which optimizes parameters for nonlinear

damping.

Dissipation functions [Goldstein et al. 2002; Marsden and Ratiu

1999] are a technique for modeling non-conservative forces in La-

grangian mechanics. In graphics, Karamouzas et al. [2017] intro-

duced a dissipation function to model anticipatory collision avoid-

ance between pedestrians for implicit crowd simulation. Concur-

rently, Sánchez-Banderas and Otaduy [2017] modeled damping in

yarn-level cloth simulation using dissipation functions, permitting

fine-grained control over the damping of stretching, bending, and

shear modes. As pointed out by these works, the damping models

proposed earlier by Baraff and Witkin [1998] and Kharevych et al.

[2006] are also closely related to dissipation functions.

2.3 Friction

There is a long history of frictional contact simulation in computer

graphics, dating back to seminal work by Baraff [1991]. Usually,

an isotropic Coulomb friction model is used, although models for

anisotropic and asymmetric frictional forces have also been pro-

posed [Pabst et al. 2009]. In this section, we focus primarily on

frictional contact solvers applicable to deformable bodies, which is

the setting of our work.

A classical approach is to apply contact forces in a separate col-

lision resolution step, decoupled from the time integration of the

internal dynamics [Bridson et al. 2002; Provot 1997]. However, as

this is inadequate for systems with strong coupling between the

elastic, normal, and frictional forces, there has been much work on

implicit frictional contact algorithms which compute all these forces

simultaneously. One approach is to approximate the equations of

frictional contact as a linear complementarity problem [Duriez et al.

2006; Otaduy et al. 2009] or second-order cone complementarity

problem [Daviet et al. 2011], and solve it using Gauss-Seidel itera-

tions. Kaufman et al. [2008] proposed a staggered projection method

in which normal and frictional forces are determined by two coupled

minimizations computed alternately. Frictional dynamics in granular

flows have also been modeled using staggered projections [Narain

et al. 2010], Gauss-Seidel solvers [Daviet and Bertails-Descoubes

2016], or plastic flow models [Klár et al. 2016]. Recently, Jiang et al.

[2017] applied a continuum plasticity model to simulate frictional

contact in cloth using the material point method.

Many optimization-based methods in graphics do not incorpo-

rate friction into the optimization, applying it instead as a separate

post-optimization update to the velocities [Bouaziz et al. 2014; Gast

et al. 2015; Müller et al. 2007]. Recently, Overby et al. [2017] simu-

lated friction by varying the external force term as the optimization

proceeds. In our work, we model friction fully implicitly as an addi-

tional dissipative term in the optimization, allowing us to accurately

reproduce dynamic and static frictional phenomena.

3 BACKGROUND

Notation. For brevity, we introduce compact notation which is

used in the rest of this paper unless otherwise noted. We use su-

perscripts on functions to denote the same superscript on each

of the function’s arguments; e.g. fn = f(xn, vn ). Subscripts on

norms denote the norm weighted by a matrix; e.g, ‖x − x̃‖2
M
=

(x − x̃)TM(x − x̃) = ‖M 1
2 (x − x̃)‖2.

For functions of multiple vector arguments, we use ∇i to denote

the gradient with respect to the ith argument; e.g. ∇2R(x, v) is the
vector [ ∂R

∂v1
, . . . , ∂R

∂vn
]T . We adopt the convention that differenti-

ating a scalar with respect to a (column) vector yields a column

vector; e.g.
dU (x)
dx
= ∇U (x), and d

dv
R(x,Av) = AT ∇2R(x,Av).

3.1 Dynamical model

Time evolution in physical systems is governed by Newton’s second

law, which describes the relation between dynamics and kinematics.

In simulations which utilize the finite element method, objects are

represented by discrete mesh elements, and forces are applied on

mesh vertices. In a system with n vertices, enforcing Newton’s law

is tantamount to solving a 6n-dimensional ordinary differential

equation,

Ûx = v, (1a)

MÛv = f(x, v), (1b)

whereM ∈ R3n×3n is the system mass matrix, and x ∈ R3n and v ∈
R
3n are the system displacement and velocity vectors, respectively.

We assume that the total force vector, f ∈ R3n , can be decom-

posed as the sum of three terms: external forces fext (e.g. gravity),

conservative internal forces fc (x), and dissipative forces fd (x, v)
respectively. We take the external forces fext to be constant over a

single time step. Conservative forces, such as internal elastic forces,

are of the form

fc (x) = −∇U (x) (2)

for some potential energy function U . For dissipative forces, we

restrict our attention to those which can be expressed as the gradient

of a dissipation function R via

fd (x, v) = −∇2R(x, v). (3)

Thus, our force model takes the form

f(x, v) = fext − ∇U (x) − ∇2R(x, v). (4)

If the dissipation function is independent of x, we may simply write

it as R(v), with the corresponding force being fd (v) = −∇R(v).
Assuming the existence of a dissipation function is not too severe

a restriction, since many commonly used dissipative forces in me-

chanics can be expressed in this form, including Rayleigh damping

and Coulomb friction. Furthermore, this subset of forces is naturally

suited for inclusion in optimization-based integrators. In Section 4

we show that a first-order accurate method can be obtained by

simply adding a scalar multiple of R to the objective function.

In case the potential functions U and R are nonsmooth, the dy-

namics can be expressed in terms of subdifferentials [Rockafellar

1970]. We assume that U is the sum of a convex nonsmooth term

U ns and a smooth termU s . Then the conservative forces satisfy

fc (x) ∈ −∇U s (x) − ∂U ns (x), (5)

where ∂U ns (x) is the subdifferential ofU ns at x, i.e. the set of all vec-

tors g such thatU ns (y)−U ns (x) ≥ gT (y−x) for all y. An analogous

property holds for the dissipative forces, with the subdifferential

taken with respect to v.
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Table 1. Some common time integration schemes expressed in the form (6).

Method yp α yq

Forward Euler yn 1 yn

Backward Euler yn 1 yn+1

Implicit midpoint yn 1 1
2 (yn + yn+1)

Trapezoidal yn + 1
2∆tϕ(yn ) 1/2 yn+1

BDF2 4
3y

n − 1
3y

n−1 2/3 yn+1

3.2 Implicit integration

For simplicity, let us first consider a generic first-order ODE Ûy =
ϕ(y), where y ∈ Rd . Many one-stage time integration schemes are

of the form

yn+1 = yp + α∆tϕ(yq ) (6)

where α ∈ R is a constant, yp ∈ Rd is fixed at the beginning of the

time step, and the quadrature point yq ∈ Rd depends linearly on

yn+1. Backward Euler, for example, is obtained by setting α = 1,

yp = yn , and yq = yn+1; other examples are listed in Table 1. For

simplicity, in this paper we will focus on the case yq = yn+1, which

includes backward Euler, the trapezoidal scheme, and BDF2, but

omits implicit midpoint.

Applied to the equations of motion (1), such a time integration

scheme yields the equations

xn+1 = xp + α∆tvn+1, (7a)

Mvn+1 = Mvp + α∆tf(xn+1, vn+1). (7b)

This method is implicit, since future state information appears on

both sides of these equations. As previously discussed, such meth-

ods generally require solving large nonlinear systems of equations

every timestep. However, when the forces are expressible as gra-

dients of potentials, one can recast this system of equations as an

optimization problem. For example, in the absence of dissipative

forces, the backward Euler update equations are equivalent to

xn+1 = argmin
x

( 1

2∆t2
‖x − x̃n+1BE ‖2M +U (x)

)

, (8a)

vn+1 =
1

∆t
(xn+1 − xn ), (8b)

where x̃n+1
BE
= xn +∆tvn +∆t2M−1fext is the predicted future state

without the contribution of fn+1 [Gast et al. 2015; Martin et al. 2011].

An analogous optimization formulation for the implicit midpoint

scheme has recently been provided by Dinev et al. [2018a].

For the general family of integrators (7), it is useful to define the

discretized time derivative operator

δ(y) = 1

α∆t
(y − yp ), (9)

so that the time integration equations are simply

δ(xn+1) = vn+1, (10a)

Mδ(vn+1) = f(xn+1, vn+1). (10b)

If all the forces are nondissipative, i.e. f(x, v) = fext −∇U (x), we can
eliminate vn+1 from the second equation to obtain

1

α2∆t2
M
(

xn+1 − (xp + α∆tvp )
)

= fext − ∇U (xn+1). (11)

This corresponds to the minimization

xn+1 = argmin
x

( 1

2α2∆t2
‖x − x̃n+1‖M +U (x)

)

(12a)

where x̃n+1 = xp + α∆tvp + α2∆t2M−1fext. (12b)

Similar to the backward Euler case, x̃n+1 is the predicted future state

without fn+1. Therefore, time integration for a nondissipative sys-

tem is exactly equivalent to solving the minimization (12a) followed

by setting vn+1 = δ(xn+1). In Section 4, we extend this formulation

to support dissipative forces.

3.3 ADMM for local-global optimization

The objective functions in (8a) and (12a) are optimized over the

entire global displacement vector x ∈ R3n . This global solve is

expensive to compute. When applicable, using a local-global ap-

proach can greatly improve the performance. Overby et al. [2017]

expressed the backward Euler optimization in a form compatible

with the ADMM optimization algorithm [Boyd et al. 2011]. We

briefly review their approach here. In Section 4 we will do this more

generally for the higher-order TR-BDF2 integrator we use in this

work.

First, we assume that the potentials U are the sum of several

terms of the form

U (x) =
∑

i

Ui (Dix) = U∗(Dx), (13)

where eachUi depends only on a low-dimensional vector of local

coordinates xi = Dix. Here, each Di is a matrix which encodes the

linear mapping from global coordinates of the entire system to the

local coordinates relevant for the particular energy term, such as

the edge vector for a spring or the deformation gradient for a finite

element. The aggregate transformation D is obtained by vertically

concatenating the individual Di matrices.

Equipped with this notation, we rewrite the optimization problem

in (8a) as

min
x

(

1

2∆t2
‖x − x̃n+1BE ‖2M +U∗(Dx)

)

. (14)

Treating Dx as an independent variable x, this can be expressed in

the form

min
x,x

1

2∆t2
‖x − x̃n+1BE ‖2M +U∗(x)

s.t.W(Dx − x) = 0, (15)

whereW is an invertible matrix that acts as a weighting of different

potential terms. This form permits the use of the ADMM algorithm

[Boyd et al. 2011], which solves the optimization problem itera-

tively, alternating between x and x updates until convergence. Good

heuristics for choosing W are discussed by Overby et al. [2017]. In

brief, we choose W to be a block diagonal matrix where each block

specifies the relative weight of the corresponding local energy term,

with stiffer energies receiving larger weights.
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Finally, the ADMM update equations which solve (15) are

x(k+1) = argmin
x

( 1

2∆t2
‖x−x̃n+1‖2M +

1

2
‖W(Dx−x(k )+ū(k ))‖2

)

,

(16a)

x(k+1) = argmin
x

(

U∗(x) +
1

2
‖W(Dx(k+1) − x + ū(k ))‖2

)

, (16b)

ū(k+1) = ū(k ) + Dx(k+1) − x(k+1), (16c)

wherek denotes the iteration number, ū is a new variable introduced

for ADMM, and the initial guesses are x(0) = x̃n+1, x(0) = Dx̃n+1,

and ū(0) = 0. The benefit of ADMM is that each of these steps

can be carried out efficiently. The objective in (16a) is a quadratic

form with a constant Hessian matrix, which be minimized using

a prefactored linear solve. The minimization in (16b) splits into

separate low-dimensional minimizations

x
(k+1)
i = argmin

xi

(

Ui (xi ) +
1

2
‖W(Dix

(k+1) − xi + ū
(k )
i )‖2

)

, (17)

which can be performed in parallel, and for which closed-form

solutions may be available.

4 METHOD

In this section, we first set up the first-order generalized optimization-

based integration problem with the dissipation function R added.

We show that the method is first-order accurate. In the next section,

we derive a correction term that can be added to raise the accuracy

to second order. Finally, in the following section we present the full

second-order TR-BDF2 scheme.

4.1 Optimization integration with dissipative forces

In the presence of a nontrivial dissipation function R, the equation

for xn+1 analogous to (11) is

1

α2∆t2
M
(

xn+1 − (xp + α∆tvp )
)

= f(xn+1, δ(xn+1))
= fext − ∇U (xn+1) − ∇2R(xn+1, δ(xn+1)). (18)

To lighten the notation, we will often abbreviate f(xn+1, δ(xn+1)),
U (xn+1), and R(xn+1, δ(xn+1)) as fn+1,U n+1, and Rn+1 respectively.

Let us consider the optimization-based scheme

x̃n+1 = xp + α∆tvp + ∆t2α2M−1fext, (19a)

xn+1 = argmin
x

( 1

2α2∆t2
‖x − x̃n+1‖2M +U (x) + α∆tR(x, δ(x))

)

,

(19b)

vn+1 = δ(xn+1). (19c)

The optimality condition for (19b) is

1

α2∆t2
M(xn+1 − x̃n+1) + ∇U n+1

+ α∆t∇1R
n+1
+ ∇2R

n+1
= 0,

(20)

or equivalently

Mδ(vn+1) = fn+1 − α∆t∇1R
n+1. (21)

The velocity update obtained from this integrator is therefore

vn+1 = vp + α∆tM−1fn+1 − ∆t2α2M−1∇1R
n+1, (22)

in which the final term is an O(∆t2) error proportional to ∇1R.

From this analysis, it is clear that if the dissipative term R is in-

dependent of its first argument x, this optimization problem yields

the exact solution to (18). Even when this is not the case, for most

dissipative forces the dependence of R on positions is much weaker

than that on velocities, so in practice the associated error usually

is dominated by the error due to the time integration itself. There-

fore, we believe that this first-order scheme for dissipative forces is

sufficiently accurate for the large time steps used in graphics.

It is true in principle that theO(∆t2) error incurred by this method

prevents it from being second-order accurate even if the underlying

integrator is. We describe in the following section a modified scheme

that provides theoretical second-order accuracy, at the cost of an

additional objective term.

4.2 A�aining second-order accuracy

The additional error in the previous method arises because the term

α∆tR in the objective function gives rise to forces

d

dx
α∆tR(x, δ(x)) = α∆t∇1R + α∆t∇2R

dδ(x)
dx

(23)

= α∆t∇1R + ∇2R, (24)

despite the actual dissipative force in the physical model being ∇2R

alone. If we wish to elevate the method to second-order accuracy,

we should replace the term α∆tR in the objective with a different

term S such that

d

dx
S(x, δ(x)) = ∇2R(x, δ(x)) +O(∆t2). (25)

In particular, we choose

S(x, v) = α∆t
(

R(x, v) − R(x, vn )
)

, (26)

which yields

d

dx
S(x, δ(x)) = ∇2R(x, δ(x)) + α∆t(∇1R(x, δ(x)) − ∇1R(x, vn ))

= ∇2R(x, δ(x)) + α∆t O(δ(x) − vn )
= ∇2R(x, δ(x)) +O(∆t2). (27)

This reduces the error term on the velocity update in (22) toO(∆t3).
This strategy improves the theoretical order of accuracy of the

method, but it introduces higher-order errors arising from theR(x, vn )
term. As we show in Section 7.1, this can be a net negative in cases

where the original α∆t∇1R error is not significant. We have pre-

sented it here primarily for theoretical completeness, and as a start-

ing point for future work.

We now summarize our optimization-based time stepping scheme.

For convenience, in the following scheme we combine the conser-

vative and dissipative potentials to define an “effective potential”

which is either

Φ(x) = U (x) + α∆tR(x, δ(x)) (28)
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Fig. 2. A sheet of cloth, modeled with strain-limited linear elasticity and

quadratic bending elements [Bergou et al. 2006], swings under the influ-

ence of gravity. Energy and angular momentum are quickly damped using

Backward Euler (le�). Both BDF2 (middle) and TR-BDF2 (right) result in

a minimally damped swing, but the TR-BDF2 result exhibits visibly more

wrinkles. For comparable computational cost, we have run TR-BDF2 with

twice the time step size (40 ms) as compared to backward Euler and BDF2.

for the first-order accurate method, or

Φ(x) = U (x) + S(x, δ(x)) (29)

= U (x) + α∆t
(

R(x, δ(x)) − R(x, vn )
)

(30)

for second order. Then, our generic time-stepping scheme is

x̃n+1 = xp + α∆tvp + ∆t2α2M−1fext, (31a)

xn+1 = argmin
x

( 1

2α2∆t2
‖x − x̃n+1‖2M + Φ(x)

)

, (31b)

vn+1 = δ(xn+1) = 1

α∆t
(xn+1 − xp ). (31c)

4.3 Optimization-based TR-BDF2

TR-BDF2 is a composite integrator which combines the trapezoidal

method (TR) and the second-order backward difference formula

(BDF2). This combination yields an L-stable time integration scheme

which shows excellent conservation of energy and angular momen-

tum, as illustrated in Figure 2.

Applied to the generic ODE Ûy = ϕ(y), TR-BDF2 proceeds by first

using the trapezoidal method to obtain a mid-step prediction for

the state yn+γ at time t + γ∆t , where γ ∈ (0, 1) is a parameter:

yn+γ = yn +
1

2
γ∆tϕ(yn ) + 1

2
γ∆tϕ(yn+1). (32)

Then a three-point backward difference formula is applied at t ,

t+γ∆t , and t+∆t to determine the final state at t+∆t . The backward

difference formula takes the form

δBDF2(yn+1) =
1

∆t
(c1yn + c2yn+γ + c3yn+1) (33)

where c1 =
1−γ
γ , c2 = − 1

γ (1−γ ) , and c3 =
2−γ
1−γ , yielding the time

integration equation

yn+1 = −c2
c3

yn+γ − c1

c3
yn +

1

c3
∆tϕ(yn+1)

=

1

γ (2 − γ )y
n+γ − (1 − γ 2)

γ (2 − γ )y
n
+

1 − γ
2 − γ ∆tϕ(y

n+1). (34)

Since both the TR and BDF2 stages are of the form (6), it is straight-

forward to derive optimization formulations for them using (31).

For the TR stage, we have

α =
γ

2
, (35a)

xp = xn +
1

2
γ∆tvn, (35b)

vp = vn +
1

2
γ∆tM−1fn, (35c)

and for BDF2,

α =
1 − γ
2 − γ , (36a)

xp =
1

γ (2 − γ )x
n+γ − (1 − γ )2

γ (2 − γ )x
n, (36b)

vp =
1

γ (2 − γ )v
n+γ − (1 − γ )2

γ (2 − γ )v
n . (36c)

While some previous work has usedγ = 1
2 [Bathe 2007; Bathe and

Baig 2005; Xu and Barbič 2017], we follow the original formulation

of TR-BDF2 [Bank et al. 1985] in using γ = 2 −
√
2, which is the

only choice for which TR-BDF2 is L-stable [Hosea and Shampine

1996]. This choice also yields the same value of α for both stages,

permitting the global matrix in ADMM to be reused.

Finally, the TR stage requires the total force vector fn at the

beginning of the time step. Computing this explicitly is unreliable

in the presence of nonsmooth potentials. We do so only for the

first time step, assuming that the system is initialized away from

nonsmooth states. Subsequently, we compute the force at the end

of each BDF2 stage using the impulse-momentum theorem,

fn+1 = MδBDF2(vn+1), (37)

and store it for use in the TR stage of the next time step.

4.4 Local-global optimization

In section 3.3, we took advantage of the separability of the conserva-

tive potential U to permit a local-global optimization for backward

Euler. The same strategy can be applied in our setting, this time

using effective potentials Φ instead ofU . The effective potential Φ

is again assumed to be a sum of local potentials Φi via

Φ(x) =
∑

i

Φi (Dix) = Φ∗(Dx), (38)

where Φi (xi ) = Ui (xi ) + Si (xi , δ(xi )), (39)

defined in terms of local conservative and dissipative potentials Ui
and Si respectively. Here δ(xi ) denotes the time-discretized local

velocity, equal to Diδ(xi ) = 1
α∆t (xi − Dix

p ). With this effective

potential, the ADMM iterations still have the same structure as (16),

but with local updates

x
(k+1)
i = argmin

xi

(

Φi (xi ) +
1

2
‖W(Dix

(k+1) − xi + ū
(k )
i )‖2

)

. (40)

There is some freedom in the choice of the termsΦi . For a damped

elastic object, we may create a single local potential Φi for each

element that includes both the elastic energy and the dissipation

function, or two independent local potentials, one equalling Ui
and the other equalling Si . The choice is determined largely by

performance considerations: using separate terms may take more
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iterations to converge, but the tradeoff is often worthwhile if each

local optimization (40) can be solved more efficiently.

5 FORCES

In the following subsections, we provide local dissipation functions

Ri (xi , vi ) for a variety of dissipative forces. From these functions

one can use (26) to compute Si if needed for second-order accuracy.

Whenever possible, we also discuss closed-form minimizers or fast

iterative methods for (40) with these dissipation functions.

To lighten the notational burden, we will omit the subscript i on

local quantities when it does not hurt clarity.

5.1 Viscous damping

First, we discuss damping models for finite-element elastic objects.

In this setting, the local coordinates x and v contain the entries of

the deformation gradient F and its time derivative ÛF in vectorized

form, and gradients of local potentials represent Piola-Kirchhoff

stresses, e.g. P = dU
dF

. For clarity, we will express the dissipation

function as R(F, ÛF) instead of R(x, v) when convenient.

5.1.1 Strain-rate proportional damping. In an elastic material with

deformation gradient F, the Green strain tensor E = 1
2 (FT F − I) is a

rotation-invariant measure of the instantaneous elastic deformation.

Its time derivative, the strain rate tensor

ÛE = 1

2
(ÛFT F + FT ÛF), (41)

is invariant to rigid motions and measures the rate at which the

elastic deformation is changing. A simple model for viscous damp-

ing can be obtained by assuming that the damping forces depends

linearly and isotropically on ÛE [O’Brien and Hodgins 1999]. In this

case, the viscous Piola-Kirchhoff stress is of the form

P = F(2ψ ÛE + ϕtr( ÛE)I), (42)

whereψ and ϕ are material parameters controlling shear and bulk

damping. This damping model corresponds to a dissipation function

R(F, ÛF) = ψ ‖ ÛE(F, ÛF)‖2 + ϕ
2
tr2 ÛE(F, ÛF). (43)

We have ∇2R(F, ÛF) = P as desired, while

∇1R(F, ÛF) = ÛF(2ψ ÛE + ϕtr( ÛE)I). (44)

On the face of it, computing the local step with this model re-

quires a 9-dimensional optimization, since F is a 3 × 3 matrix. In

Appendix A, we show how the rotation invariance of E allows us to

simplify this to a 6-dimensional minimization coupled with a polar

decomposition.

5.1.2 Rayleigh damping. An alternative to strain-rate proportional

damping is Rayleigh damping, in which the damping forces due to

each element are

f(x, v) = βK(x)v, (45)

where β is a scaling parameter and K(x) is a matrix characterizing

the element’s stiffness in local coordinates, usually taken to be the

tangent stiffness matrix −∂2U /∂x2.

For fully implicit Rayleigh damping, we define the dissipation

function

R(x, v) = β

2
vTK(x)v. (46)

Its gradients are

∇2R(x, v) = βK(x)v, (47)

∇1R(x, v) =
β

2

[

vT
∂K(x)
∂x i

v

]

i=1,2,3

. (48)

Differentiating K with respect to x may be difficult to compute in

general. However, the gradient in (48) only requires the product

of the derivative with v, which can in fact be computed using the

time-derivative of K:

vT
∂K

∂x i
v = −

∑

j ,k

vj

(

∂

∂xi

∂2U

∂x j∂xk

)

vk (49)

= −
∑

j

vj

∑

k

(

∂

∂xk

∂2U

∂xi∂x j

)

vk = vT ÛK. (50)

We further approximate ÛK by employing the same scheme used in

the time integrator,

ÛK ≈ δ(K) = 1

α∆t
(K(x) − K(xp )). (51)

One little-discussed drawback of Rayleigh damping with the tan-

gent stiffness matrix is that the resulting forces may not conserve

angular momentum. In Section 6 we discuss this phenomenon and

propose a simple correction scheme that ensures that the forces are

angular momentum conserving.

5.1.3 Damping of principal strains. In isotropic hyperelastic models,

the potential Ui can be viewed as a function only of the principal

strains, i.e. the 3 singular values of F, rather than on the full 3×3 ma-

trix F. Then it is possible to reduce the local step to a 3-dimensional

optimization, leading to a significant speedup [Overby et al. 2017].

To achieve the same speedup in dissipative models, we propose a

simplified damping model that acts directly on the rate of change

of principal strains. Let σ be the vector of principal strains, ob-

tained from F via the singular value decomposition. Applying the

discretized time derivative directly to σ , we can approximate

Ûσ ≈ δ(σ ) := 1

α∆t
(σ − σp ), (52)

where σp contains the singular values of the matrix corresponding

to xp .

By analogy with Rayleigh damping, we would like to define dissi-

pative forces of strength βKσ (σ ) Ûσ along the principal strain direc-

tions, where Kσ = ∂
2Ui/∂σ2 is the Hessian of the element’s elastic

energy with respect to principal strains. One way to do this is to

define a dissipation function R(σ , Ûσ ) = β
2
ÛσTKσ Ûσ , although this

would then require a second-order correction. Instead, inspired by

Gast et al. [2015], we define the effective potential

Φ(σ ) = β
(

δ(σ )T ∇Ui (σ ) −
1

α∆t
Ui (σ )

)

, (53)

which has exactly the correct gradient with respect to σ . Since this

depends only on the singular values of F, we can treat this the same
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Fig. 3. Energy behavior of power-law damping on an elastic pendulum.

The strength of damping is chosen so that each model damps roughly the

same amount of kinetic energy in the first swing. To make the behavior

more clearly visible, we plot the square root of kinetic energy, which is

proportional to the RMS velocity.

way as an isotropic hyperelastic energy. In particular, in the local

step (40), the singular vectors of F must be the same as those of the

matrix corresponding to Dix
(k+1)

+ ū
(k )
i , so the objective can be

minimized over σ alone.

Note that this model achieves its simplicity by ignoring changes

in V, so motions in which the principal strain axes rotate within the

material will not be damped by this model. However, since it also

ignores changes in U, it conserves angular momentum and does not

damp out rigid motions unlike Rayleigh damping. In practice we

find this to be a worthwhile tradeoff.

5.2 Nonlinear damping

While the viscous damping forces described above are linear in the

velocities v, many other dissipative forces in nature have a nonlinear

relationship with velocity. In this section, we discuss some nonlinear

models which enable more interesting damping effects than are

possible with viscous damping.

5.2.1 Power-law damping. Consider a dissipation function R(x, v)
which is quadratic in v and so gives rise to linear damping forces;

each of the models in Section 5.1 falls into this category. We define

its power-law variant by raising it to an exponent q = (p + 1)/2,

R′(x, v) = A1−qR(x, v)q , (54)

whereA is a proportionality constant with the same units as R. As an

illustrative example, if we take R = ‖v‖2 and A = 1, the dissipation

function and its associated forces are simply

R′(x, v) = ‖v‖p+1 (55)

=⇒ ∇2R
′(x, v) = (p + 1)‖v‖p

v

‖v‖ , (56)

showing the desired power-law behavior of the force magnitude.

The power-law model will inherit properties such as isotropy, ro-

tation invariance, and angular momentum conservation from the

underlying linear model R.

The local minimization for power-law damping can be numer-

ically challenging, especially for the p = 0 case in which R′(x, v)
is nonsmooth at v = 0. In Appendix B, we show that for a certain

choice of underlying linear model, a fast update can be performed

using only a one-dimensional root finding step.

The power-law damping model enables a range of qualitatively

distinct energy beahviors, as demonstrated in Figure 3. In the three

cases p < 1, p = 1, and p > 1, the kinetic energy of the system

decays superexponentially, exponentially, and subexponentially re-

spectively. Thus, using the parameter p the user can control whether

the system should come to rest in finite time, show lively long-lived

oscillations, or anything in between.

5.2.2 Spline-based damping. Inspired by recent work on artistic

design of elasticity [Xu et al. 2015] and damping [Xu and Barbič

2017], we propose a simple spline-based method to give the user

direct control over nonlinear damping properties. The user provides

a spline function s : R → R specifying a damping multiplier as a

function of principal strain. For each element, we apply s to the three

singular values and use the resulting multipliers to modulate an

existing dissipation function R. This is similar to the example-based

damping design approach of Xu and Barbič [2017], but applied to

per-element deformations rather than modal bases.

One simple method that works for a generic R is to combine them

into a single multiplier:

R′(F, ÛF) = ( max
j=1,2,3

s(σj ))R(F, ÛF). (57)

Many alternative approaches are possible. In the context of principal

strain damping, one could scale the damping of each principal strain

value separately using R′ = β
2
ÛσT S1/2Kσ S

1/2 Ûσ , where S is the di-
agonal matrix with entries s(σj ). One could also apply the spline

function to the principal strain rates Ûσ instead of to the strains σ

themselves, causing the damping to be nonlinear in velocity.

5.3 Coulomb Friction

Friction is a dissipative force which acts to reduce the tangential

velocity of objects in contact. According to the dry Coulomb model,

the force of friction ff between two contacting objects lies in the

tangent plane at the point of contact and satisfies
{

‖ff ‖ ≤ µ‖fn ‖ if vt = 0,

ff = −µ‖fn ‖ vt
‖vt ‖ otherwise.

(58)

Here, µ is the coefficient of friction, fn is the normal force, and vt is

the tangential relative velocity. As is typical in graphics, we have

assumed that µ is the same for both static and kinetic friction.

To model friction in our optimization framework, we create for

each contact pair a dissipative term such that Div gives the relative

velocity at the point of contact. The dissipation function for Coulomb

friction is

R(v) = µ‖fn ‖‖Tv‖, (59)

where the matrix T performs orthogonal projection to the contact

tangent plane. The subdifferential of R is

∂R(v) =
{

{Tf : ‖f ‖ ≤ µ‖fn ‖} if Tv = 0,
{

µ‖fn ‖
Tv

‖Tv‖
}

otherwise,
(60)

so ff ∈ −∂R(v) is equivalent to the desired Coulomb law. Further-

more, the nonsmoothness of the dissipation function (59) does not

pose a problem for us, since the local optimization (40) has a simple

closed form in this case.
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If CTC is not invertible due to the points xi not being in general

position, we retain only the linearly independent column(s) of C

and solve the problem in the reduced space.

Since most forces of interest act only on a small subset of vertices

involved in the local coordinates xi = Dix and vi = Div, we rewrite

these conditions in terms of the local coordinates. The local rigid

velocity, vri = Div
r , lies in the column space of Ci = DiC. The local

coordinates are typically translation-invariant, in which case the

first three columns of DiC become zero. Therefore, we retain only

the remaining nonzero columns in Ci . We then define the nonrigid

projection in local space Pnri analogously to (66), and obtain the

corrected dissipation function R̄i (xi , vi ) = Ri (xi , Pnri vi ).

6.3 Velocity gradient approach for volumetric elements

When the deformation gradient is a square matrix, as is the case

when simulating volumetric objects, a simpler angular momentum

conservation strategy may be employed. In this case, we can define

the velocity gradient L = ÛFF−1, an Eulerian quantitywhichmeasures

how velocity varies with position. Its symmetric part,D = 1
2 (L+LT ),

is the rate of deformation tensor, and entirely encodes the nonrigid

component of the motion. Since this is precisely the component we

seek to isolate for angular momentum conservation, we propose

substituting D in place of L in the equation L = ÛFF−1. Doing so

yields the nonrigid component of ÛF as

ÛFnr = DF =
1

2
(ÛF + F−T ÛFT F). (67)

This method can also be derived in a different way, revealing a

connection to strain-rate proportional damping. We wish to con-

struct a mapping from ÛF to some velocity ÛFnr that is invariant to
rigid velocities. We may proceed by first computing an intermediate

quantity that exhibits this invariance, then deriving ÛFnr from it.

Choosing the intermediate quantity to be ÛE = 1
2 (ÛFT F + FT ÛF), and

setting ÛFnr = F−T ÛE yields exactly the above definition. Thus, this ap-

proach can be viewed as importing rigid invariance from strain-rate

proportional damping to an arbitrary dissipation function.

Having defined the nonrigid velocity ÛFnr , our corrected dissipa-

tion function is

R̄(F, ÛF) = R(F, ÛFnr ), (68)

where ÛFnr depends on both F and ÛF. To perform optimization, we

will need the gradient of R̄ with respect to both arguments. This is

most easily expressed in terms of matrix differentials:

δR̄ = ∇1R : δF + ∇2R : δ ÛFnr , (69)

δ ÛFnr = 1

2
(F−T ÛFT δF − F−T δF−T F−T ÛFT F
+ δ ÛF + F−T δ ÛFT F).

(70)

7 RESULTS

We implemented our method on top of an ADMM solver for hyper-

elastic materials [Overby et al. 2017]. To speed up the computation,

we computed the primal and dual residuals [Boyd et al. 2011] at

each ADMM iteration and terminated early if they were below a

chosen threshold. In this section, we demonstrate our method on

a variety of validation tests and complex examples. We encourage
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Fig. 6. An undamped elastic beam undergoing rotation and stretching,

simulated with various methods. TR-BDF2 exhibits the best energy and

angular momentum conservation for comparable computational cost.
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Fig. 7. A damped elastic beam simulated with TR-BDF2, using Rayleigh

damping with and without our angular momentum correction. With correc-

tion, the remaining angular momentum loss is primarily that caused by the

integrator itself.

the reader to view the animated results in the supplementary video,

since the effects of damping are difficult to convey in static images.

7.1 Validation tests

We use the example shown in Figure 6 for several of our validation

tests. This example consists of an elastic beam given initial veloc-

ities that induce rapid spinning and elongation. In the undamped

case, the total energy and angular momentum of the system should

remain conserved, but in practice most implicit integrators fail to

do so exactly. As shown in the figure, backward Euler rapidly loses

both energy and angular momentum. BDF2 performs significantly

better, while TR-BDF2 does best of all. For a fair comparison, we

ran backward Euler and BDF2 with half the time step used for TR-

BDF2, since the latter must solve two optimization problems per

time step. From here on, all further examples are simulated only

with TR-BDF2.

We evaluate the same example with damping forces added in

Figure 7. As shown, Rayleigh damping quickly slows down the

rotation of the bar in a non-physical manner. Applying our angular

momentum correction dramatically improves its behavior.

Finally, we validate the second-order accuracy of our method in

Figure 8. We performed two tests using strain-rate proportional

damping and Rayleigh damping, and compared our results against

a reference solution computed using the 4th-order Runge-Kutta

scheme with ∆t = 10−6 s. TR-BDF2 with our correction term de-

scribed in Section 4.2 achieves second-order convergence in both

tests, while the unmodified method is only first-order accurate in

the dissipative forces. However, if the error term ∇1R is negligible,

as in the case of strain-rate proportional damping, the method still
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Table 2. Performance data for the examples in Section 7.2. A timestep of ∆t = 40ms was used for all examples.

Example #nodes

#energy

terms

ADMM

iters

Avg. global

step (ms)

Avg. local

step (ms)

Time per

frame (ms)

Terrain (Fig. 1) 2278 16574 72 4.2 7.3 3050

Drape (Fig. 10) 1522 11657 33 13.1 1.0 1032

Ball (Fig. 5) 642 2423 35 1.4 0.6 164

Power-law (Fig. 11), p = 0 2435 20654 52 3.0 1.0 491

p = 2 2435 18926 5 133.7 9.9 1727

Dragon (Fig. 12) 5388 35878 11 13.8 77.0 2622
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A LOW-DIMENSIONAL OPTIMIZATION FOR

STRAIN-RATE PROPORTIONAL DAMPING

Let the polar decomposition of the deformation gradient be F = RS,

where R is a matrix with orthonormal columns, and S is a symmetric

matrix called the stretch tensor. We begin by noting that the strain

rate ÛE depends only on S and its time derivative ÛS, since

E =
1

2
(S2 − I), (71)

ÛE = 1

2
(SÛS + ÛSS). (72)

We apply the discretized time derivative operator to S, defining

ÛS ≈ δ(S) := 1

α∆t
(S − Sp ) (73)

where Sp is obtained from the polar decomposition of Fp arising

from the time integration rule (6). Then, the strain-rate proportional

damping term can be viewed as a function Φ(S) independent of R.
Plugging this into the local optimization step (40), and substitut-

ing F = RS, we obtain the problem

argmin
R ortho.,
S sym.

Φ(S) + w
2

2
‖RS − F̃‖2, (74)

where F̃ is the matrix whose vectorization is Dix
(k+1)

+ ū(k ). We

solve this by alternately minimizing over R and S. Minimization

over R is an orthogonal Procrustes problem, argminR ‖RS− F̃‖2, for
which theminimizer is the rotational part in the polar decomposition

of F̃S. Minimization over S is a 6-dimensional optimization which we

perform using L-BFGS. Typically, few iterations of this alternating

are necessary, and the total cost is cheaper than a full 9-dimensional

optimization over F.

B FAST UPDATES FOR POWER-LAW DAMPING

We take a simple power-law damping model,

R(ÛS) = β ‖ ÛS‖p+1 = β(‖ ÛS‖2)(p+1)/2 (75)

for some exponent p ≥ 1. Note that this dissipation function is

rigid-invariant and so conserves linear and angular momentum for

any p. The local optimization problem is then

argmin
R ortho.
S sym.

β(‖ 1
α∆t (S − Sp )‖2)(p+1)/2 +

w2

2
‖RS − F̃‖2. (76)

Taking the differential with respect to S and simplifying, we obtain
(

β(p + 1)
(α∆t)p+1

‖S − Sp ‖p−1

︸                       ︷︷                       ︸

c(S)

(S − Sp ) +w2(S − RT F̃)
)

: δS = 0. (77)

Since δS is an arbitrary symmetric matrix, the symmetric part of

c(S)(S − Sp ) +w2(S − RT F̃) must be zero, i.e.

c(S)(S − Sp ) +w2(S − sym(RT F̃)) = 0 (78)
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where symA = 1
2 (A + AT ). Denote Ŝ = sym(RT F̃). Equation (78)

implies that S− Sp and S− Ŝ are linearly dependent, so Smust lie on

the line segment between Sp and Ŝ, and can be found via bisection

or Newton’s method in one dimension.
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