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STRONG HYPERCONTRACTIVITY
AND LOGARITHMIC SOBOLEV INEQUALITIES
ON STRATIFIED COMPLEX LIE GROUPS

NATHANIEL ELDREDGE, LEONARD GROSS, AND LAURENT SALOFF-COSTE

ABsTRACT. We show that for a hypoelliptic Dirichlet form operator A on
a stratified complex Lie group, if the logarithmic Sobolev inequality holds,
then a holomorphic projection of A is strongly hypercontractive in the sense
of Janson. This extends previous results of Gross to a setting in which the
operator A is not holomorphic.

1. INTRODUCTION

In [10-13], subsets of the current authors, together with Bruce K. Driver, stud-
ied properties of elliptic and hypoelliptic heat kernels on complex Lie groups and
homogeneous spaces, particularly the Taylor map for L? holomorphic functions.
Generally, it was shown that hypoelliptic heat kernels and their sub-Laplacians of-
ten behave similarly to their elliptic counterparts, such as the Gaussian heat kernel
and standard Laplacian on C". In this paper we turn our attention to the phenom-
enon of strong hypercontractivity in the particular case of stratified complex Lie
groups.

To motivate this study, let us first consider Euclidean space R" equipped with
standard Gaussian measure v. Let Q(f, g) be the Dirichlet form with core C2°(R")
defined by Q(f,g) = [;. Vf - Vgdv, whose generator is the Ornstein-Uhlenbeck
operator Af(z) = —Af(z) + - Vf(z). In [38], E. Nelson discovered that the
semigroup e ‘4 enjoys the following property known as hypercontractivity.

— 2
t > ty, et is a contraction from Li(v) to LP(v).

Theorem 1.1. For 1 < ¢ < p < oo, let ty(p,q) = % log (i‘}%) Then for any

So the semigroup e~*4 improves local integrability of functions with respect to

v; as soon as t exceeds “Nelson’s time” tx(p, q), e ** maps L9 into LP. Moreover,
Nelson’s time is sharp: for ¢ < tx(p,q), e ** is unbounded from L9 to LP. For a
short history of this theorem, see the survey [28].

Now replace v with any smooth measure x on R™ and redefine ) and A accord-
ingly. In [24], the second author introduced the notion of a logarithmic Sobolev
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inequality, which (in its simplest version) is said to be satisfied by p if

(L) [ 11210811 du < QU + 1132, Tk 2260

for all f in the domain of Q.

(Actually, in this paper, we shall study a more general version of (1.1) in which
the coefficient of Q(f) is a constant ¢ other than 1, and in which a term of the
form B||f||2, can be added to the right side. See (7.1). The general version can
also be used in the theorems in this introduction, making appropriate changes to
the constants, but for simplicity we omit the details here.)

It was shown in [24] that in this case the logarithmic Sobolev inequality (1.1) is
essentially equivalent to hypercontractivity.

Theorem 1.2. A smooth measure u on R" satisfies the logarithmic Sobolev in-
equality (1.1) if and only if the corresponding semigroup e~ ** is hypercontractive
(with Nelson’s time ty).

The early history of these two types of inequalities devolves from two different
backgrounds. In 1959 A. J. Stam [40], motivated by problems in information theory,
proved an inequality, based on Lebesgue measure rather than on Gauss measure,
easily transformable into the Gaussian special case of (1.1). In 1966 E. Nelson
[37], motivated by the problem of semiboundedness of Hamiltonian operators in
quantum field theory, proved the first version of the hypercontractivity inequal-
ity of Theorem 1.1 with dimension dependent bounds. In order to encompass a
larger class of Hamiltonians, J. Glimm [21] sharpened Nelson’s inequality in 1968
and removed the dimension dependence, thereby enabling the inequality to work
in infinite dimensions. Subsequently Nelson [38], in 1973, found the best hypercon-
tractivity constants, which are those presented in Theorem 1.1. Pursuing a different
track to semiboundedness of quantum field Hamiltonians, P. Federbush [17] showed
in 1969 that semiboundedness would follow from a logarithmic Sobolev inequality
much more easily than from hypercontractivity. His semiboundedness theorem es-
sentially asserts that a logarithmic Sobolev inequality implies semiboundedness. In
this paper he also gave a derivation of a Gaussian logarithmic Sobolev inequality
using delicate Hermite function expansions in infinitely many variables. Although
his version of a logarithmic Sobolev inequality is not written in this paper, it follows
easily from the identity [17, Equ. (14)] and inequality [17, Equ. (21)]. He thereby
recovered semiboundedness for the class of Hamiltonians originally addressed by
Nelson, though not the class encompassed by Glimm’s improvement. Ironically,
using the semiboundedness theorem of Federbush, the sharp logarithmic Sobolev
inequality of Stam would have yielded semiboundedness of the large class addressed
by Glimm’s improvement. But Stam’s results were not known among this group
of mathematical physicists till 1991, when Eric Carlen [9], discovered Stam’s paper
and made the connection with the Gaussian logarithmic Sobolev inequalities of the
mathematical physics literature. In the meanwhile, the second author [24] proved
in 1975 that a family of hypercontractivity bounds, such as those in Theorem 1.1,
is equivalent to a logarithmic Sobolev inequality. Best constants are preserved in
this equivalence. Theorem 1.2 is a typical case. He also proved the sharp form

(1.1) of the Gaussian logarithmic Sobolev inequality, which Carlen later showed to
he ennivalent tn the FEuclidean form of Stam. With the heln of the eanivalence
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versions of the logarithmic Sobolev inequality: the former is equivalent to the strong
form of Glimm, while the latter is equivalent to the original form of Nelson.

Generalizations of the equivalence Theorem 1.2 are now known to hold in a wide
variety of settings; see [2,25, 28] for surveys and the recent exposition and historical
background in [39].

Let us turn now to the complex setting; replace R™ by C™" and suppose that u is a
standard Gaussian measure on C". S. Janson discovered in [31] that if one restricts
the Ornstein—Uhlenbeck semigroup e %4 to the holomorphic functions #, then one
obtains the property of strong hypercontractivity, in which the improvement
in integrability happens at earlier times:

Theorem 1.3. For0<g<p<oo, letts(p,q) = %log (g) Then, for anyt > t;,
et is a contraction from H N L9(u) to H N LP(p).

Several other proofs of this theorem followed [8,32,46]. Note that “Janson’s
time” ¢;(p,q) is less than Nelson’s time ¢y (p,q) whenever 1 < ¢ < p < o0. More-
over Janson’s strong hypercontractivity also has content for 0 < ¢ < p < 1. Very
roughly, the reason for this is that holomorphic functions are harmonie, and so the
second-order differential operator A, when restricted to H, reduces to the first-order
operator Af(z) = z-Vf(z). Thus it is not surprising that its behavior should be
improved in this case. We note for later reference that in this case A is the holo-
morphic vector field which generates the flow of the dilations ¢;(2) = tz, meaning
that the semigroup e~%4 is simply e *4f(z) = f(e t2).

In the paper [26], the second author studied such Dirichlet form operators over a
complex Riemannian manifold (M, g) equipped with a smooth measure pu, seeking to
relate the logarithmic Sobolev inequality to strong hypercontractivity in a general
holomorphic context. The result was that the former implies the latter, under
fairly mild assumptions. In this result, the spaces H N LP(x) must be replaced with
possibly smaller spaces denoted H LP(u); see Remark 4.6 below for the definitions
used in [26], and see [26] for a complete discussion of the issues involved. As in the
Euclidean case, the Dirichlet form operator A is given by the Laplacian over M
plus a complex vector field Z, so that on holomorphic functions one has Af = Zf.
If Z is a holomorphic vector field or, equivalently, if the operator A maps # into
H, we will say that A is holomorphic. Let Y = i(Z — Z) be the imaginary part
of Z.

Theorem 1.4 ([26, Theorem 2.19]). Suppose that the operator A is holomorphic
and that the real vector field Y is Killing. If the logarithmic Sobolev inequality (1.1)
holds, then for any t > t;(p,q), e *4 is a contraction from HLI(pu) to HLP(u).

A second proof was given in [27], which also allows for certain other types of
boundary conditions in the case that (M, g) is incomplete.

The present paper is an extension of the results of [26,27]. As noted, a key
assumption of those papers was that A should be holomorphic. This assumption is
in some sense natural, since it allows one to work entirely within the holomorphic
category, and it is satisfied by many interesting examples. But there are also

many apparently innocuous settings in which A is not holomorphic. See [26,27,29]
and references therein for examnlea. connterexamnles. and necessarv and sufficient
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To the best of our knowledge, until now, there have been no strong hypercontrac-
tivity results akin to Theorem 1.4 that apply in the case where A is not holomorphic.
As such, our goal here is to begin attacking this case by studying a particular class
of examples in which A is not holomorphie, yet a strong hypercontractivity theorem
can still be proved.

One possible way to approach the case where A is not holomorphic is, as sug-
gested in [27, Section 7], to replace A by B = Py A, its L? orthogonal projection
onto the holomorphic functions ‘H. Unfortunately, this does not always work, and
[27] gives an example of a complex manifold (a cylinder) for which e~*5 is not
strongly hypercontractive and is not even contractive on L?(y) for small p < 1.

In the present paper, we examine a class of spaces in which the operator A is not
holomorphic, and yet we are able to show that e ‘8 is strongly hypercontractive,
where B is (at least on a large class of functions) the holomorphic projection of
A. We work in the setting of complex stratified Lie groups, where we replace
the Laplacian A by the hypoelliptic sub-Laplacian and take as our measure the
corresponding hypoelliptic heat kernel. A key observation is that stratified Lie
groups have a canonical dilation structure, and it turns out that, as in the case of
the Gaussian measure on C", the operator B is essentially the holomorphic vector
field generated by dilations.

The paper is structured as follows.

e In Section 2 we introduce notation and review important properties of strat-
ified complex Lie groups G, their sub-Riemannian geometry, and the hypo-
elliptic heat kernel p,. We also begin a discussion of holomorphic polyno-
mials on G.

e Section 3 defines the Dirichlet form @ and the operators A, B.

e In Section 4, we study the density properties of holomorphic polynomials,
including an orthogonal decomposition of holomorphic functions in L?(p,)
into homogeneous polynomials, and obtain some additional properties of
A, B and their domains. Section 4 also defines the function spaces HLP(p,)
on which we work and discusses related subtleties.

e In Section 5, we show that the operator B is (up to scaling and domain
issues) identical to the holomorphic vector field generated by dilations; we
take advantage of this to show that (except in trivial cases) the operator A
is not holomorphic.

e We then proceed to show in Section 6 that the semigroup e *Z is a con-
traction on LP(p,) for 0 < p < oo; this is the special case of strong hyper-
contractivity with ¢ = p.

e Section 7 contains the proof of our main theorem, showing that if the log-
arithmic Sobolev inequality holds, then the semigroup e B is strongly
hypercontractive.

e In Section 8 we specifically consider the complex Heisenberg group for which
the logarithmic Sobolev inequality does indeed hold.

2. STRATIFIED COMPLEX GROUPS

2.1. Definitions. In this section, we recall the definition of a stratified complex Lie
oronn (reanectivelv. aleehral and its hasie nronerties. A comnrehengive reference
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Definition 2.1. Let g be a finite-dimensional complex Lie algebra. We say g is
stratified of step m if it admits a direct sum decomposition

(2.1) BZ@V}

for which

Vi, Vil = Vi, Vi, V] =0
and V,,, # 0. A complex Lie group G is stratified if it is connected and simply
connected and its Lie algebra g is stratified.

Using the Jacobi identity, it is easy to show that in a stratified Lie algebra,
we have [V, V;] C Vjix, where we take Vi1 = 0 for j + &k > m. (Proceed by
induction on k) In particular, g is nilpotent of step m. As such, the exponential
map exp : g — G is a diffeomorphism, so we may as well take G‘ = g as sets and
let the exponential map be the identity. The group operation on G can then be
written explicitly using the Baker—Campbell-Hausdorff formula. We note that in
G, the identity element e is 0, and the group inverse is given by ¢g~! = —g. We
shall use L, : G — G to denote the left translation map L,(y) = z - y. We identify
g with the tangent space 7. G, and for £ € g, € is the left-invariant vector field on
G with £(e) = €.

Since g is a finite-dimensional vector space, it carries a translation-invariant
Lebesgue measure, which is unique up to scaling. We fix one such measure and
denote it by m; integrals with respect to dx,dy, etc., will also be understood to
refer to this measure. Then m is also a measure on (. It is easy to verify that m
is bi-invariant under the group operation on G, so m is (again up to scaling) the
Haar measure on G.

Notation 2.2. We define convolution on G by
(2.2) (f+9)(= ] fev ey = [ H()a2)as

when the Lebesgue integral exists.

Our motivating examples are the complex Heisenberg and Heisenberg—Weyl
groups.
Example 2.3. The complex Heisenberg Lie algebra is the complex Lie algebra
h$ given by C® with the bracket defined by
(2'3) [(zlu z2133)1 (Zi ; zé! zé)] = (010! zlzfz - zizﬂ)
Taking Vi ={(z1,22,0) : 21,22 € C} and V5 = {(0,0,23) : 25 € C}, it is clear that
bS is stratified of step 2. The complex Heisenberg group HY is then C3 with
the group operation g-h=g+h+ 3 1(g, h], which we may write in coordinates as

1
(21122123) ) (Zi, zés Zé) = (zl + 21, 29 T zé: 23 + zé + Q(zlzé - 2222)).

Some readers may be used to seeing the Heisenberg group as the group of upper
triangular matrices with 1s on the diagonal. Let us note that by mapping the
element (21,22, 23) € HY to the matrix

1 =z zS‘l‘%zle\
1

e
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we have an embedding of the Lie group HY into the Lie group GL(C, 3) of invertible
3 %X 3 complex matrices, whose image is precisely the upper triangular matrices
with 1s on the diagonal. So this realization of the complex Heisenberg group is
isomorphic to ours. (Note that the slightly strange-looking upper right entry of the
matrix above is chosen so that this map is a group homomorphism.)

Example 2.4. Generalizing the previous example, the complex Heisenberg—
Weyl Lie algebra of dimension 2n + 1 is the complex Lie algebra b5, ; given by
C2nt1l with the bracket defined by

n
(2'4) [(zlﬁ e -1z2n+1)! (zia s !zén+l)] = (U! v 10$ ZZEk—lzék - zék—lzﬁk) .
k=1

This again is stratified of step 2, taking Vi = {(z1,...,221,0) : 21,..., 220, € C} and
Vo = {(0,...,0,22n41) : z2n4+1 € C}. The complex Heisenberg—Weyl group
HS,., is again C?"*! with the group operation g-h =g+ h + %[g, hl.

2.2. The dilation semigroup.

Definition 2.5. For A € C, the dilation map on g or G is defined by

(2.5) Ja[vl—l—-quvm):Z)\k“vk, v;eV;, j=1,...,m.
k=1

It is straightforward to verify that for A £ 0, 4, is an algebra automorphism of
g and a group automorphism of G and that

(2.6) Oy =0x090,, ApeC.
Moreover, §) is linear, so the derivative at the identity of é) : G — G is (1)« =
dy:g—g.

We note that §, scales the Lebesgue measure m by
(2.7) m(dx(4)) = [N*Pm(4),
where D = Z;n‘zl Jdimg V; is the homogeneous dimension of G. Thus for an
integrable function f, we have
(2.8) / fodydm= |,\|—QD/ fdm.

G G

We can then consider the vector fields generating this semigroup.

Definition 2.6. We define the real vector fields X,Y on G as

2.9) XNE) = 5|6z, feo=(@),

d (s o]
(2.10) (YA = 2| _f602),  feC™(G)
and the complex vector field Z by

1
(2.11) Z = E(X —iY).
Remark 2.7. To remind the reader of standard conventions, we note that the ¢

appearing in (2.11) does not denote the complex structure on g, but rather ordinary
aealar multinlicatinn for eomnlex vectar fields. Farmallv. 7 is a emonth section of
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space structure with scalar multiplication ¢ - (v, ® ) = v, ® ({n), and in which
TG embeds naturally via vy — v, ® 1.

Lemma 2.8. Z is a holomorphic vector field of type (1,0).

Proof. Let z1,...,2zy be complex coordinates on G = g relative to a basis of g
adapted to the decomposition in (2.1). Then dyz = (...,A%2;,...) for positive
integers ¢y, ..., cy. Hence for any function f € C°°(G) we have
- of of
(Xf)(2) = Z {Cjzj 9z, T Ci% Ej}
=1
and
- of of
j=1
Thus
N of
(2.12) (2)(@) =3 eszar-
— 4
J=1
O

2.3. Holomorphic polynomials and Taylor series.
Notation 2.9. H denotes the vector space of holomorphic functions on G.

The dilations éy on G lead naturally to a notion of homogeneous functions and
polynomials on G. These functions were used extensively in [18] in the context
of real homogeneous groups. For us, they will be used as a convenient class of
holomorphic test functions. In this section, we define these functions and verify a
few key properties that will be important in this paper.

Definition 2.10. Let k be a nonnegative integer. A function f : G — C is
homogeneous of degree k if

(2.13) f(6x2) = A¥f(2) for all z € G and 0 # A € C.

Example 2.11. If G is the complex Heisenberg group with complex coordinates
21,22, 23, then 22, 2,23, 22, 23 are all homogeneous of degree 2.

Note that if f is homogeneous of degree k, then (2.13) and (2.9), (2.10), (2.11)
give

(2.14) X f(2) =kf(2),
(2.15) (Y ) (z) = ikf(2)
and

(2.16) (Zf)(2) =k f(2).

Notation 2.12. Far k=0.1.2. .. we will dennte hv P. the aet of all halamarnhie
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Lemma 2.13. Every holomorphic function f € H has a unique decomposition of
the form

(2.17) @)=t  fr€Ps
k=0

in the sense of pointwise convergence.

Proof. Notice first that the function GxC 3 (2,A) — d,2z € G is holomorphic in the
sense that each coordinate of d)z, in the basis used in Lemma 2.8, is holomorphic.

Suppose f : G — C is holomorphic, so that (z,A) — f(d,2) is holomorphic on
G x C. Fix an arbitrary 2 € G. Then the function u(A) := f(dx2z) is an entire
function on C, and its Taylor expansion

(2.18) u(d) =) Nan(2)

Now if pp € C, then
> Aan(8u2) = f(8r6u2) = f(dauz) = Z (M) @, (2) for all X € C.

Hence
an(0,2) = p"ay(2) for all z € G.

Therefore a,, € P,,. This proves the existence of the functions f; satisfying (2.17).
If {91} is another set satisfying (2.17), then

Z)\kgk ng 6,\2 5,\2 Z J)\Z Z/\kfk(Z)
k=0 k=0

for all A € C. Hence gi(z) = fi(z) for all k and z. O

Notation 2.14. Let P denote the linear span of {P, : k > 0}, i.e., the set of all
finite sums of homogeneous functions (of possibly different degrees).

Lemma 2.15. P is the set of holomorphic polynomials.

=1 f is homogeneous
of degree Z;;l kjc;. Therefore any holornorphlc polynomial lies in P. Conversely,
we need to show that a function f € Py is actually a polynomial. If its power series

expansion is given by

2.19 f(z) = Qg g 2T BN
( 1yl

Epsokn =0

Proof. In the adapted coordinates 21, ..., 2y, & monomial 1__[

then, for all complex A £ 0, we have
(2.20) Nef(2) = f(8a2) = Y ak, ko2 2R AT R,
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Since the coefficient of A" on the right must be zero for all z if r # k we actually

have
(2'21) f(z) = Z akls"'!k_l\’zkl LI zk;\.. )
Sl kjei=k
The subscripts in the sum form a finite set, showing that f is a polynomial. O

Corollary 2.16. Py is finite dimensional.
Lemma 2.17. If f is holomorphic and is given by (2.17), then

(2.22) (Z)(2) =D _kfi(2).
k=0
Proof. Since f(8,2) =3 1oy A fi(2) for all X € C we have
d (= o] . (s o}
(Z2)(2) = (X)) = 5|, D€ fi(e) = D kfi(2).
k=0 k=0
The interchange of derivative and sum is justified since Y 7 , €** fi(z) is the Taylor

series of the holomorphic function u(e®), where u(A) := f(d,2) as in the proof of
Lemma 2.13, and this can be differentiated termwise. O

We remark for future reference that by (2.14) and (2.16), we have

(2.23) Zf=Xf, feP.
Lemma 2.18. Let £ € V; and f € P,. Then gf € Pr—j if k>3, and gf =0if
k<j.

Proof. First, since f is holomorphic and £ is left-invariant, £ f is holomorphic. Next,
since d is a group homomorphism, for any z € G we have L;, (,) =050 L, 0d,-1.

By left-invariance of é" we have
(E£)(832) = (Lo, (2))4E) f
= (6x(L:)+01—8) f

= A9 (0A(L2)E) f since & € V;

= X7I((L2)€)(f 0 83)

= NI((L).E) f since f € Py

= NEf(2).
Thus f € Pr—j. If k—j <0, then the fact that £f is continuous at the identity
leads to the conclusion that f =0. O

2.4. Sub-Riemannian geometry on G. As before, let g be a stratified complex
Lie algebra with its connected, simply connected complex Lie group G. For this
section, we will use J to denote the complex structure on g. In this section, we
collect a number of facts about the sub-Riemannian geometry of G and its hypoel-
liptic Laplacian. Although much of this development is standard, we shall be rather

explicit with our definitions to fix notation and avoid any possible ambiguity.
View a as a real vector snace. and let a* he its dnual anace. Tet h - a* x a®* 3 R
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h as a “dual metric” on the dual g*, despite the fact that it is degenerate, i.e.,
only positive semidefinite instead of positive definite. Suppose further that A is
Hermitian, i.e., h(J*a, J*8) = h(a, 8), where J* is the adjoint of J. (This ensures
that h, in some sense, respects the complex structure of g.)

Let K == {a € g* : h(a,a) = 0} be the null space of h and let H = K° =
(Nacx kera C g be the backward annihilator of K; H is called the horizontal
subspace of g. Note that H is invariant under .J.

Henceforth we assume the following nondegeneracy condition:

Assumption 2.19. H =1].

In particular, Hormander’s condition is satisfied: H generates g. In fact,
Hormander’s condition is satisfied if and only if ¥} C H; we need the opposite
inclusion to ensure that A interacts nicely with the dilation structure on G.

Now h induces a natural real-linear map @ : g* — g defined by a(®8) = h(a, )
with kernel K and image H. (Note that ® = J®J*.) We may then define a
bilinear form g: H x H — R on H by g(®a,®3) = h(a, B), which is easily seen to
be well-defined, Hermitian (i.e., g(v, w) = g(Jv, Jw)), and positive definite.

By left translation, we can extend h to a (degenerate) left-invariant dual metric
(still denoted by h) on T*G, defined by h. (e, 8:) = h(Liey, LLB:) for o, B, €
T;G. Then H extends to a left-invariant sub-bundle of T'G, namely, v, € H, C TG
iff (Ly-—1).v, € H, which happens iff a;(v,) = 0 for every a, € TG satisfying
hy(as,a;) = 0. H, is the horizontal subspace of TG, and vectors v, € H, are
said to be horizontal. The bundle H itself is sometimes called the horizontal dis-
tribution. We can also extend g to a left-invariant positive definite inner product
on H, defined by ¢, (v, w,) = g((Ly—1).vp, (Ly—1),w,) for v,,w, € H,. g is called
a sub-Riemannian metric. If we define &, : T:G — T,G by ®, = (L,).PL%,
then the image of ®, is H,, and we have g,(®,a., ®,8:) = ha(as, B:). Given a
smooth function f : G — R, we can define its left-invariant sub-gradient Vf ¢ H
by Vf(z) = ®(df (z)).

We wish to consider complex functions, one-forms, vector fields, etc., on G, so we
shall now complexify everything in sight. At each z € G, we form the complexified
tangent space T,G ® C, which, as mentioned in Remark 2.7, is a complex vector
space with the complex scalar multiplication ¢ - (v: ® ) = v ® ((n). When taking
this tensor product, we view T, G as a real vector space, forgetting that it already
has the natural complex structure J, = (Ly)s«J(Lg-1). This means that 7,G ® C
now has two distinct complex structures: multiplication by i (i.e., v, ®n — v, ®in)
and J, (which we extend to 7,G ® C by complex linearity: Jyiv, = iJyv;). A
complex vector field can thus be viewed as a smooth section of the complexified
tangent bundle TG ® C. The complexified horizontal bundle H ® C is naturally
contained in TG ® C. We likewise form the complexified cotangent space TG ®@ C
and note that it can be viewed as the complex dual space of T, GQC. If f: G = C
is a complex function, written as f = u + 4w, then its differential df is a complex
one-form, a smooth section of T*G®C given by df = du+idv. T*G®C also has two
complex structures: multiplication by i and J; = L7 _,J*L} (extended by complex
linearity). In particular, if f is holomorphic, then we have the Cauchy-Riemann
equation J*df = idf; that is, df is a complex one-form of type (1,0).

Now we extend h to TG ® C in such a way as to make it complex bilinear with
reanect. to multinlication hv it that is. h.{in. 3. = h.(n. iR\ =ih.(nv. A Sa
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likewise extend @, to a complex linear map ¢, : T,G® C — H, ® C, and then
defining g, analogously as before makes it a complex bilinear form on H, ® C. Note
that g, remains Hermitian with respect to J,. By an abuse of terminology, we shall
continue to call g and h the sub-Riemannian metric and dual metric, respectively.
We now also have the sub-gradient Vf(z) = ®,(df(z)) € T,G ® C defined for
complex functions.

We can describe this geometry more explicitly by choosing a set of left-invariant
real vector fields X4,Y1,..., Xy, Y, which span H, are g-orthonormal, and have
Y; = JX;. Then the sub-gradient is given by

Vi(z) = Z(Xjf)(fc)Xj (z) + (Y5 1) (2)Y; (),

J
and for smooth fi, fo : G — C we have

(2.24) 9(Vf1,VE) = h(dfi,dfs) = ) AX; /i X; o+ Y 1Y, fa}.
J

We shall use |V f|? as shorthand for g(V f, Vf).
Alternatively, letting
1 .
S (X = i),

Z; =
(2.25) :
Z; = 5(X; +1Y))

so that Z; and Z; are complex vector fields of type (1,0) and (0,1) respectively,
we get

(2.26) Vf(z) = 22 ((ij)(a:)Zj (z) + (Z;f) ($)Zj($))1
J
(2.27)  g(Vf1,Vf2) = h(df1,dfz) = ZZ (ijlzjfz -I-ijlzjfz)-

We remark in passing that X; and Y; commute (since, using the fact that g is a
complex Lie algebra, [X;,Y;] = [X;, JX;] = J[X;,X;] = 0), and thus Z; and Z,

gty
commute.
Note that when f is real, we have
(2.28) IVFI? = g(Vf, V) = h(df,df) =4 Y _1Z; fI?,
)

and when f is holomorphic,

(2.29) ViR =2)"1ZfI*
J

Example 2.20. Returning to the example of the complex Heisenberg group begun
in Example 2.3, consider H = C® with its Euclidean coordinates (z1, 2z, 23). Let
h be the left-invariant dual metric given at the identity e = 0 by

he(dzl, dﬁl) = he(d22, d22) = 2,
hg(d,z'3, d23) = 0,
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This makes h Hermitian with respect to the complex structure of HY, so that
he(dzj,dzi) = he(dZ;,dzx) = 0 for all j,k. (The 2 appearing in the first line
ensures that the cotangent vectors dz;, dy; are orthonormal under h..)

From now on, any occurrence of HS will be understood to carry this dual metric
h and the corresponding metric g.

We can choose the left-invariant complex vector fields Z; discussed in (2.25) to
be those which equal aizj at the identity. They are given by

g 1 &
Z E—sza—%s
d 1 a
Zy= o+ 5mo—s
2 322+221823
a
by = —.
3 623

Example 2.21. For the Heisenberg—Weyl group ]Hl;‘:?,l 41 of Example 2.4, we may
similarly define a left-invariant dual metric h by

hg(dzj,de)ZZ 1<5<2n,
he(dz2ﬂ.+11d52n+l) =0,
he(dzj, d,z_'k) = 0, _j ?é k.

Let us see how the dilations interact with the left-invariant real vector fields
X,;,Y,. Ifye Gand A=a+if € C, we have

(02)+X; (1) = (61 Ly)«X;(€)
= (Lo, ()02« X;(€)
= (Lsy))=(aX;(e) + B X;(e))
= aX;(6x(y)) + BJX; (6 (v))-
The same holds for Y;. Thus we get
(6:)+Z3(y) = AZ;(5x(v)),
(6x)Z;(y) = AZ; (A (y)).-
The sub-Laplacian A is defined by

(2.32) A=) X2+Y}=4) Z;Z
j j

(2.30)

(2.31)

It is shown in [44] that A, with domain C2°(G), is a hypoelliptic operator and is
essentially self-adjoint on L?(m). As a consequence of (2.31), we have

(2.33) A(f 06)) = AP(AS) 0 6y,

sAf4

Likewise, if e is the heat semigroup for A, we have

(2.34) esB/4(f 0 6,) = (esM°B/15) o 6.
Finally, we recall the definition of the Carnot—Carathéodory distance on G and

some of its basic properties. Suppose v : [0,1] — G is a smooth path. If 4(t) € H,
for each ¢, we say - is horizontal, and we define its length by

1
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Then for z,y € G, we define the Carnot—Carathéodory distance d by

d(z,y) = inf{€(y) : v horizontal, v(0) = z,v(1) = y}.
Since Hérmander’s condition is satisfied, the Chow—Rashevskii and ball-box the-
orems [35, 36] imply that d(z,y) < oo and that d is a metric which induces the
manifold topology on G (which indeed is just the Euclidean topology on the finite-
dimensional vector space G = g).

Since we are denoting the complex structure on g by J, forv € V; C g =
T.G we have (6a+i)s«V = Oatiz(v) = av + BJv. Thus, for v,w € Vi we have
g((8)+v, (6))+w) = |A|?g(v,w). Since 8y is a group homomorphism and g is left
invariant, it follows that the same holds for v,w € H,. In particular, £(8,(v)) =
[Al£(7), and so d(e, dx(z)) = |Ald(e, z).

By fixing a basis for g, we may linearly identify it (noncanonically) with Eu-
clidean space R4™=8; let |- | denote the pullback of the Euclidean norm onto g. For
v € g, write v = vy + - -+ + vy, With vy € Vj, and let

T
(2.36) s =D Jok[*.
k=1

Note that |dyv];s = |A||v]1. Since we have identified G with g as a set, | - |; also
makes sense on G. It is shown in [6, Proposition 5.1.4] that there is a constant ¢
such that for every z € G we have

1
(2.37) E|:r|1 <d(e,z) < c|x|;.

The proof is simple: since d(e, ) and |- |; have the same scaling with 4§, it suffices
to consider = with |z|; = 1. The set of such z is compact, so d(e,-) attains a finite
maximum and a nonzero minimum on this set.

2.5. Properties of the heat kernel. It is shown in [44] that the Markovian heat
semigroup e*2/4 admits a right convolution kernel p,, i.e., es2/4f = f x p,, which
we shall call the heat kernel; it is also shown that p, is C°° and strictly positive.
Since e*2/4 is Markovian, the heat kernel measure p, dm is a probability measure.

Notation 2.22. For s > 0 and 0 < p < oo, we write L?(ps) as short for
L?(G, psdm). As usual, for 0 < p < 1, the vector space LP(p,) is equipped
with the topology induced by the complete translation-invariant metric d(f, g) =

[ |f = g|P ps dm. Nonetheless | f||zr(o,) will still mean ([ |f|? ps dm)l/p, even for
the case 0 < p < 1 in which it does not define a norm.

Since p; is bounded, and bounded below on compact sets, any sequence converg-
ing in LP(ps) also converges in L (m). As such, if f,, are holomorphic functions
and f, — f in LP(ps), then we also have f, — f uniformly on compact sets, and
so f is holomorphic. Thus LP(ps) N #H is closed in LP(p;).

We record here some estimates for the heat kernel.

Theorem 2.23. For each 0 < € < 1 there are constants C,C" such that for every
z € G ands >0,

¢ —d(e.2)?/(1-¢) ¢ —d(ea)?/(1
Y e e,r €)s S ps(m) S 2 e (e,z)*/{14€)s
m(B(e,/s)) m(B(e, V/s))

ahere mlBle. /& is the Lehesmie (Haar) mensiure nf the d-hall centered nit the

(2.38)

https://remargable.com/pdf.js/generic/web/viewer.html

4/29/19, 9:43 AM

Page 13 of 34



PDF.js viewer

6664 N. ELDREDGE, L. GROSS, AND L. SALOFF-COSTE

Proof. The upper bound is Theorem IV.4.2 of [44]. The lower bound is Theorem
1 of [43]. Note that our choice to consider the semigroup e**/* rather than e®®
accounts for a missing factor of 4 in the exponents compared to the results stated
in [43,44]. |

Theorem 2.24. Suppose £1,...,&; € g. Let m be a nonnegative integer, v > 0,
and 0 < s <t < o0. There is a constant C' such that for ally € G,

(G Bo) -2)

(2.39) sup
d{z,e)<r

< Cp(y).

Proof. This is a special case of Theorem IV.3.1 of [44]. To reduce their statement
to ours, note first that it suffices to assume the &; are all in V; (since, assuming
Hormander’s condition, any other left-invariant vector field may be written as a
linear combination of commutators of vector fields from V;). We can also assume
without loss of generality that the & are orthonormal. Then, in their notation, take
R=1l,a=s,=t,andd=r. O

Lemma 2.25. Let s > 0.

(a) For everyt > s there exists p > 1 such that p;/ps € LP(ps).
(b) For every p > 1 there exists t > s such that p/ps € LP(ps).

Proof. Let € > 0. By Theorem 2.23, for any 0 < s < ¢, any p > 1, and any € > 0
we may find a constant C(s,t,€) such that

pt(x) P

ps(z)

_ pe(x)P
@) = o @y

< C(s,t,€) exp (— ((1 -fe)t - (f__el)g) d(e,zr)g)

where the m(B(e, v/-)) factors have been absorbed into C(s, ,¢€). Let A= A(p, s,t,¢€)

(Tfe—): - {—%) be the bracketed quantity in the exponent. If A > 0, then by

(2.37) the right side will be integrable with respect to m, implying the desired
conclusion.

For (a), suppose t > s is given. Fix any € € (0,1). Asp | 1 we have A — ﬁ >
0, so for any p sufficiently close to 1 we get A > 0 and hence p;/p; € LP(ps).

For (b), suppose s > 0 and p > 1 are given. Without loss of generality we can

assume p > 1 (since L'(ps) D LP(ps) for any p > 1). Choose t with s <t < So1 8

Then as € | 0 we have A — & — p%l > 0, so for any sufficiently small ¢ we get

A>0. a

Lemma 2.26. For any £ € g and any s > 0 we have £log p, € Np>1 LP(ps)-

Proof. Fix p > 1. By Lemma 2.25(b) we can choose t > s such that p;/ps € LP(ps).
Then by Theorem 2.24, taking any r > 0 and z = e, there is a constant C such
that £p; < Cp;. As such, by the chain rule we have

= gps Pt
log ps = < = € LP(p,).
Elogp o = o (ps)
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Lemma 2.27. The heat kernel p; obeys the scaling relation

(2.40) ps(0x(Y)) = [ 727 pyy -2 (v)-
Proof. This follows from the corresponding scaling properties of the semigroup
e*2/4 (2.34) and of the Haar measure m (2.7). O

3. DIRICHLET FORMS AND OPERATORS

For the rest of the paper, fix some a > 0. Henceforward LF by itself will, unless
otherwise specified, refer to L?(p,).

Notation 3.1. Let Q, be the positive quadratic form on L?(p,) defined on the
domain C(G) by

(3.1) Qolf1, f) = fc h(dfs, df) pa dz = fc oV 1,V ) padz

and let @ be its closure, with domain D(Q), so that (Q,D(Q)) is a Dirichlet
form on L?(p,). Note that D(Q) is a Hilbert space under the energy norm
(f19)o = (f,9)L2(p.) + Q(f, g)- Let (A, D(A)) be the generator of Q; i.e., A is the
unique self-adjoint operator on L?(p,) having domain D(A4) C D(Q) and satisfying

fg(Afl)fZ Padz = Q(f1, f2) for all f; € D(A), f, € D(Q).
On smooth functions f € D(A) N C*(G), integration by parts gives

(32)  Af=d'df = —Af —g(V/,Viogp,) = —Af — h(df,dlog o).

The operator A = d*d can be seen as an analogue of the Ornstein—Uhlenbeck
operator in this noncommutative Lie group setting. Such operators have attracted
substantial interest in the literature, including the study of functional inequalities
such as Poincaré inequalities. Papers which study these operators (in the setting
of real Lie groups) include [5,33,34].

Remark 3.2. When g is abelian (i.e., the Lie bracket is 0) then G is Euclidean
space C" (with its usual additive group structure). If we take h to be the usual
positive definite Euclidean inner product, then everything reduces to the Euclidean
case: V and A are the usual gradient and Laplacian, d is Euclidean distance, p; is
the Gaussian heat kernel p,(2) = (rs)"e~/2I°/*, and A is the Ornstein-Uhlenbeck
operator.

Definition 3.3. We will say that A is a holomorphic operator if it maps holo-
morphic functions to holomorphic functions, i.e., A(D(A)NH) C H.

In our setting, the operator A is not holomorphic (except in the abelian case
G = C"); see Theorem 5.10 below. So our setting stands in contrast to that of
[26], in which most of the main results were proved under the hypothesis that the
operator A should be holomorphic.

Since the phenomenon of strong hypercontractivity is quite specific to the holo-
morphic category, it is not reasonable to expect it to hold for an operator that does
not preserve holomorphicity. As such, our main object of study will not be A itself,
but rather the operator B defined as follows.

Notation 3.4. The restriction Q|4 of @ to the domain D(Q)NH is a positive closed
anadratic farm an the Hilhert anace H N T2(n Y. Tet (B DB he its senerator.
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We intend to think of B as the “holomorphic projection” of the operator A. In
Section 4, we shall discuss the precise sense in which this is true. For now, let us
observe that

(3.3) D(A)NH C D(B).

To see this, note that for f € D(A)NH C D(Q)NH and g € D(Q) NH, we have
Q(f,9)| = |(Af, @) 2| £ ||AS|l2]lgl L2, and so f is in the domain of the generator
of Q|y, namely B.

4. DENSITY PROPERTIES OF HOLOMORPHIC POLYNOMIALS
Notation 4.1. H will denote the set of holomorphic functions on G.

Theorem 4.2.

(a) P is dense in HN LP(p,) for 1 < p < oc.

(b) P C D(Q) and is a core for Q|x. In particular, from (a), Q| is densely
defined in H N L%(pa).

(c) Ifj # k, then P; L Py in both L?(p,) and in energy norm.

(d) HNL2(pa) = @R Pr-

() HND(Q) = Pr_y Pr (convergence in energy norm,).

(f) P C D(B) and is a core for B.

Remark 4.3. It is interesting to contrast Theorem 4.2 with [33, Proposition 8]
(credited to W. Hebisch), in which it is shown that the result is typically false if we
drop the word “holomorphic”. Specifically, when G is a (real) stratified Lie group,
the (not necessarily holomorphic) polynomials are dense in L?(p,) if and only if G
has step at most 4.

Proof. The proofs are slight variants of the proof of [26, Lemma 5.4].
For (a), to begin, it follows from the upper bound in Theorem 2.23, using polar
coordinates and the homogeneity of d, that P C LP(p,).

Let
1 n—1 E
— 156
) =g 2. 2. ¢
k=0 j=—k
(4.1) 1 sin?(nf/2)

~ 270 sin?(6/2)
denote Fejer’s kernel [42, §13.31]. We observe that

7

(4.2) F,(6)d6 =1,

(4.3) ] ’ F,(0)e*’ds =0, £>n,

wa)  m [ E@)e(6)d=0), o € C([-m,7]).
Define

https://remargable.com/pdf.js/generic/web/viewer.html Page 16 of 34



PDF.js viewer 4/29/19, 9:43 AM

STRONG HYPERCONTRACTIVITY ON COMPLEX LIE GROUPS 6667

for any function f on G. If f € H and is written f = Y 7c ; fi as in (2.17), with

fr € Py, then
(4.5) (Vaf)(2) = ) e* fi(2)
k=0

The convergence is uniform on 8 € [—m,n] for each 2z € G because the function
0 +— f(8.i02) is smooth and periodic with period 27. Now let

(4.6) 9n(2) = i (0)(Vaf)(z) do

-7

Using (4.5), Fubini’s theorem, and (4.3), we see that g,, is a linear combination of
fo, fiy. -+, fn—1 and is therefore in P. (We can justify the application of Fubini’s
theorem using the fact that 3.7 fr(2) is the Taylor series for u()), as defined in
(2.18), at A = 1, and therefore converges absolutely.) Since the map é.6 : G & G
preserves the measure p,(z)dz (see (2.7), (2.40)), the operators Vj are isometries in
LP(G, po(z)dz) for 0 < p < co. Moreover, the map 6 — Vj is strongly continuous in
L?(p,) for 1 < p < oo: for bounded continuous f : G — R, dominated convergence
gives Vpf — fin LP(p,) as 8 — 0, and the case of general f € LP(p,) follows by
density.
Thus if 1 <p < oo and f € H N LP(p,), then we have

If = gnllLe —Hf 8)(f — Vaf) dHH

(4.7) < f Fo(®)|If — Vofllze db

—+0 as n— o

by Minkowski’s inequality for integrals. This proves part (a).

To prove part (b), recall that by Lemma 2.18, if f € Py and & € Vi, then
£f € Pr_y C L%(p,). Hence |Vf|2 is in L'(p,). Moreover, multiplying f by a
sequence @, of cutoff functions in C2°(G) which converge to 1 boundedly and such
that £p,, — 0 boundedly, one sees that f € D(Q). So P C D(Q). By (2.27) and
(2.31), for any smooth f we have

(4.8) IV(f 080)[(2) = [V [2(6,002).
Since p,(x)dzx is preserved by the map 4.0 it follows that

Q(Vef) =Q(f) forall feD(Q)

and in particular for all f € HND(Q). So Vj is unitary on £ ND(Q) in the energy
norm, [||f[%2. + Q(f)]*/2. Now if f € HND(Q) and we define the polynomials g,
as in (4.6), we can differentiate under the integral sign to see that

- - - rﬁ - - - 4 s r‘r . -a A - -
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Then, similarly to (4.7), we have

s 2., = | [ FoE - eovitn oo

Lv
(4.10) < [ ruo) &5 -evicr], a0
=3 [)_ﬁas n — 0C.

It follows that g, — f in energy norm. Hence P is a core for Q | H.

Now if f € P, and g € Py, then (Vy£)(z) = € f(2) and (Vag)(z) = e*%9(2) by
(2.13). Hence (f,g)r2 = (Vof,Veg)rz = €' ®(f, g) . for all real §. So if n # k,
then (f, g)r2 = 0. Moreover, gf € Pp_1 and Eg € Pr_1 if £ € V1. So if n # k, then
Q(f,g) = 0. This proves part (c). Parts (d) and (e) now follow from parts (a), (b),
and (c).

To prove part (f), assume first that g € P,,. Let f € HND(Q). By part (e) we
may write f = "7 . fi with fi, € Py, by part (e), which also yields

1Qg, /)l = 1Q(g, f)| < Q9)'*Q(fn)/.

Since P, is finite dimensional (Corollary 2.16) there is a constant C,, such that
Q(f.) < C2||fal%:. Since the functions f; are orthogonal in the L? inner product
we have ||fa32 < |[|f]7:- Thus |Q(g, f)| < Q(9)*2Cul|f||z2. Hence g € D(B) and
we have shown P C D(B).

Now suppose that h € D(B). Define h,(z) = [*_F,(6)(Vph)(2) df. As we have
seen, h, € P. We will show that h, — h in the graph norm of B, using the fact
that Vj is unitary in both of the Hilbert spaces HL? and HND(Q). If g € HND(Q),
then

(411) (%Bhs Q) = (Bh‘1 V—Qg) = Q(h! V—Gg) = Q(Vﬂhs 9’)

Since the left side is continuous in g in the L? norm so is Q(Vyh,g). Hence Vyh €
D(B) and

(4.12) VeBh = BVyh, h € D(B).

Although this equality is of interest in itself we will actually use (4.11) a little
differently. Multiply equation (4.11) by F,(f) and integrate over [—m,7]. The

integral can be taken inside both the L? and energy inner products because Vj is
strongly continuous in both spaces. We obtain

(/ﬂ F,.(8)VyBh d{?,g) =Q(hn,g) YgeHND(Q).

=T

So .
] F,(0)VyBhdf = Bh,,.

As n — oo the left side converges to Bh in L? norm. Thus h,, — h and Bh,, — Bh.
Hence P is a core for B. O

Let us remark on the requirement that p > 1 in Theorem 4.2(a). Our proof fails
for 0 < p < 1 because the inequality in (4.7) would go the wrong way.

However, in the Euclidean case G = C" (see Remark 3.2), where p, is the
(Ganagian heat kernel. it is known that in fact P ia denae in TP(n ) for D < n < 1.
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follows that the set £ of holomorphic functions of the form f(z) = E;-n:] aje® i,

with a; € C and w; € C", is dense in L?(p,). Since £ C L', we have that L' is
dense in LP. But since P is dense in L' and the inclusion L' C L? is continuous,
we have P dense in L” as well. Unfortunately for us, Wallstén’s argument relies
heavily on the simple structure of the Gaussian, and it is not clear whether it can
be adapted to a general complex Lie group with a Hérmander metric h.

Question 4.4. For general (G,h), is P dense in LP(p,) for0 <p <17

In light of this issue, we adopt the following function spaces on which to prove
our main results.

Notation 4.5. For 1 < p < o0, let HLP(p,) = H N LP(p,). For 0 < p < 1, let
HLP(p,) be the LP-closure of H M L?(p,), which may or may not equal H N LP(p,).

In particular, by this definition, P is dense in HL?(p,) for every 0 < p < oc.
Also, for 0 < p < g < 0o, HL4 is dense in HLP.

Remark 4.6. Our spaces HLP are defined differently from the spaces HP used in
[26], but in our current setting they are equal.

e For p = 2, [26] defines H? as the L?-closure of H N D(Q); for us, Theorem
4.2(a,b) shows this equals H N L2.

e For p > 2, [26] defines HP as H2NLP; for us this equals HNL2NLP = HNLP.

e For 0 < p < 2, [26] defines HP as the L? closure of H2. For 0 < p < 1 this
is precisely our definition; for 1 < p < 2, this equals H N L? since HL? is
dense in HLP.

In the cases considered by [26], it was possible that H” was very different from
‘H N LP; see the counterexamples in [26, Section 5].

We now return to the question of in what sense B is a “holomorphic projection”
of A. Let Py be an orthogonal projection from L2 onto the closed subspace HL?2.

Proposition 4.7. For f € D(A)ND(B), we have Bf = Py Af.
Proof. For any g € HND(Q), we have

(Bf,9)12 = Q(f, 9) = (Af,g)12 = (PyAS, g) L2
Since H N D(Q) is dense in H N L? we must have Bf = Py Af.

To make the previous proposition more interesting, we should show that D(A) N
D(B) is reasonably large.

Proposition 4.8. P C D(A).

Proof. Let f € P, and let ¢ = —Af — h(df,dlog p,) be the function which, as in
(3.2), ought to equal Af. Integration by parts shows that for any ¢ € C(G) we

have Q(f, %) = [, ©¥pa dm, so if we can show ¢ € L%(p,), we will have |Q(f,v)| <
llollz2l|?] L2, implying that f € D(A) and moreover Af = .
Since f is holomorphic, Af = 0 so we have

(4.13) o = —h(df,dlogpa) = — Y Z; fZ;10g pa
J

using (2.27) and Z,; f = 0. By Lemma 2.18, Z;f € P ¢ N.—. L%(p.). and by Lemma
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(A similar argument would show that any L? holomorphic function with its first
derivatives in L?*¢ is also in D(A).)

In particular we have P C D(A) N D(B), so Bf = Py Af for all polynomials.

In the case that A is holomorphie, we actually have that B is simply the restric-
tion of A to D(A)NH. We already showed in (3.3) that D(A)NH C D(B). For the
other direction, let f € D(B); by Theorem 4.2(f) we can find a sequence p, € P
with p,, — f and Bp,, — Bf in L?. But Bp, = Py Ap, = Ap, if A is holomorphic,
so Ap,, converges, and since A is closed we have f € D(A) and Af = Bf.

It is conceivable that even when A is not holomorphic, we might get D(B) =
D(A) N#H, in which case B is simply the restriction of Py A to D(A) N H, i.e., the
literal holomorphic projection of A. However, we do not have a proof of this.

Question 4.9. Under what conditions does D(B) = D(A)NH?

5. DILATIONS AND THE OPERATOR B

In this subsection, we show that in fact the operator B is just a constant multiple
of the vector field Z introduced in (2.11): B = %Z. Along the way, we establish
some lemmas that will also be useful in future computations.

Remark 5.1. To see that B = %Z is a plausible statement, consider the Euclidean
case G = C" as in Remark 3.2. Here A is the Ornstein—Uhlenbeck operator
Af = —Af + éz - Vf; since this is a holomorphic operator, B is simply the re-
striction of A to holomorphic functions. For holomorphic f we have Af = 0 and
z-Vf = ZZ?:lzjg—;j. On the other hand, as in (2.12), in this case we have

Zf=3"_1% 5%’:—_ (note that all the ¢; are 1).

Notation 5.2. Let us introduce a class of convenient functions with which to work.
We will say a function f : G — C has polynomial growth if there are constants
C, N such that |f(2)] < C(1+ d(e,2))" for all z. Then we let C;(G) denote the
class of all f € C*(G) such that f,&;f,£;&f, X f,Y f all have polynomial growth.

It is immediate that P C C3(G), and if f,g are in C2(g), then so are f o dy,

f, f+g, and fg. Moreover, if u : C — C is a C? function with bounded first
and second derivatives, then u(f) is also in Cf,. This is certainly not the broadest
class of functions for which the results below will hold, but it is sufficient for our
purposes and simplifies several of the arguments.

Lemma 5.3. If f € CE(G), then s — [ f ps dm is differentiable and

- d 1 1
(5.1) ds]gfpsdm—4LAfpsdm—28LXfpsdm.

Proof. Suppose first that f € C°(G). Let a(s) = [, f ps dm. For the first equality,
differentiating under the integral sign and then integrating by parts gives

r d 1T 17
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For the second equality, we use (2.34) to observe

]G (f 0607 podm = eS/4(f 0 6. (e)

= (""" 21 £)(6r(€))
= (5" 2/ f)(e)

Now differentiating under the integral sign with respect to r and then setting r = 0,
we get

a(se’") = 2sd'(s),
r=0

d
/GXfpsdm— £

which establishes the second equality of (5.1).
For the case of general f € Cp(G), let ¥ € C°(G) be a cutoff function which
equals 1 on a neighborhood of e € G, and set ¥, (z) = ¥(d1/,(z)). Then ¥, — 1

boundedly. It follows from (2.30) that &}apn — 0 and fj.aﬁ,bn — 0 boundedly, at
least for £ € V;, and the same for general £ € g by taking commutators. Then since
X,Y commute with §,,,, we also have X, — 0, Y4, — 0 boundedly. Hence
setting f,, = v, f, we have constructed f,, € C%(G) such that, pointwise,

fa— f, Afn — Af, Xfn— Xf,

and moreover such that f,, and its derivatives are controlled by f and its derivatives.
In particular, there exist C, N such that for all n,z we have

[fn(@)] + |Afn()| + | X falz)| < C(1+ d(e, 2))".

Now by integrating (5.1), we have

t £
62 [ fto-pim=3 [ [ Atuppdmdo= [ - [ Xf,p,dmdo.
G 4Js Ja s 20 Jg

By the Gaussian heat kernel upper bounds of Theorem 2.23, we have

f C(1+ d(e,2))N sup po(z)m(dz) < oo,
G

o€|s,t]

and so by Fubini’s theorem and dominated convergence, we can pass to the limit
in (5.2) as n — oo to get

i t
(5.3) /f(pt—ps)dm:l/ /Afpgdmdor:/ i/Xf,oc,f;!fm.ﬁicr.
led 4 g & 5 20- G

Since the two integrals over G are each continuous functions of o, then by the
fundamental theorem of calculus, this is equivalent to the desired result. O
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Proof. This is similar to the previous proof. By (2.34) we have
f (f ©8.10) ps dm = €*2/4(f 0 5.10)(e)
G

= (*1€°*A/4 £) (8,00 (€))
= (e*2/1f)(e)

=/ f ps dm.
G

If f € C%(G) we can differentiate under the integral sign with respect to 6 and set

6 =0toget [,Y fpsdm =0. For f € CZ(G), use cutoff functions. O
Corollary 5.5. Suppose that f,g € P. Then

(5.4) (Zf,9)12(p0) = (J:89) L2(p)-

Proof. —iY (fg) = (Z — Z)(f3) = (Zf)g — fZyg. Since fg € C(G), by Lemma 5.4
the integral with respect to p, dm is zero. O

Theorem 5.6. Let a > 0. We have

(5.5) D(B) ={f e HL*(pa) : Zf € L*(pa)}
and
(5.6) Bf = zz_f forall feD(B).

Proof. We begin by showing that (5.6) holds for f € P. Suppose that f and g are
in P, and let Z; be as defined in (2.25). First observe that

ZiZi(f§) = Z;Z;f -G+ Zif - Z;§ + Zif - Z;9+ [ - 2;2;5 = Z; | - Zjg.
The first, second and fourth terms of the middle expression vanish because Zj f=0

and Z;Z;5 = Z;Z;§ = 0 (since Z; is of type (1,0) and commutes with Z;). So by
(2.27) and (2.32) we have

_ 1 _
h(df, dg) = SA(f9).
Note that fg € Cg(G). Thus multiplying by p, and integrating, we have
(Bf-s g)Lz(pa) = Q(f! g)

= %/Gﬂ(fﬁ)pa dm

= /G X (f3)pa dm by Lemma 5.3
-1 [ (XP)g+ [XgYpo de

— o [{@ng+ fZapuis see223)

= (25,9)1s + (, Zg)
2. . . o~ - -
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Since Bf, Z f are both holomorphic and P is dense in HL?(p,), we conclude that
Bf=2Zf.

Now let f € D(B) be arbitrary. Since P is a core for B, we may find f,, € P with
fn — f and Bf, — Bf in L?, and also uniformly on compact sets. In particular,
Z f,, converges uniformly on compact sets, so its limit must be Zf. We conclude
that Bf = 2Zf and have also shown the C inclusion of (5.5).

For the other inclusion, suppose f, Zf € HL?, and as in (4.6) set

T

g’n(z) = Fy (B)f(éew (z)) dg.
We showed in Theorem 4.2(a) that g, € P and g, — f in L. Since the integral is
over a compact set and f is smooth, we can differentiate under the integral sign to
obtain .

Z9u(2) = | Fu(O)ZE)Gor(2) .

Then as before, we have Zg,, — Zf in L?. Hence Bg,, — 2Zf in L?. Since B is a
closed operator, we have f € D(B). O

Corollary 5.7. We have
(5.7) e tBf=fo0b,2a
for f e HN L?(p,) and t > 0.

Proof. For f € Py, C D(B), by Theorem 5.6 and (2.16), both sides of (5.7) are
equal to e 2t%/a f Hence (5.7) holds for all f € P. Now if f € H N L?(p,), by
Theorem 4.2(a) we may choose f, € P with f, = f in L?(p,). Since e~'Z is a
contraction on L?, we have e *B f,, — e *B f in L?, and also f,06,-2¢/a — f00,-2:/a
pointwise. O

Remark 5.8. In light of Theorem 5.6, our goal of understanding strong hyper-
contractivity for the holomorphic projection of the semigroup e *4 has essentially
reduced to the problem of understanding it for the dilation semigroup on G. A
related study was undertaken in the papers [22,23], in which the authors consider
the dilation semigroup on real Euclidean space. In these papers, the holomorphic
functions are replaced with the class of log-subharmonic functions, and the authors
examine the relationship between an appropriate version of strong hypercontrac-
tivity and a so-called strong logarithmic Sobolev inequality for such functions. In
recent work by the first author [16], these results are extended to real stratified Lie
groups.

Remark 5.9. The dilation semigroup also arises from the Ornstein—Uhlenbeck semi-
group e %4 in another way. In [33], the author introduces a “Mehler semigroup”
etV on a stratified Lie group, defined as follows (after adjusting notation and time
scaling):

5 e N )(z) = —at(x) - : aly) m
68 @N@ = [ 1 (6@ 8 ) puly) midy)

where we take § = 2/a to make our time scaling come out right. The name
“Mehler semigroup” is explained by the fact that when G = R” (i.e., a stratified

Tie eronn of aten 1), then (R.RY ia nreciselvy Mehler’a farmula for the Ornstein—
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G, e *N and e *4 differ, and e *" is a nonsymmetric semigroup on L%(p,). A
simple computation shows that, formally, the generator of e *V is N = —A+8X =
—A+ %X . In particular, when f is holomorphic, we have (still formally)

(5.9) Nfz%sz%Zszﬁ

Thus our main Theorem 7.2 below could be restated as giving the strong hyper-
contractivity of the Mehler semigroup e~ ", still conditionally on the logarithmic
Sobolev inequality (7.1).

As a consequence of Theorem 5.6, we can show:
Theorem 5.10. Fxcept in the abelian case G = C", A is not holomorphic.

Proof. Consider the decomposition g = EB;’;I V; as in (2.1), where V;,, # 0 is the
center of g. Excluding the abelian case G = C", we have m > 1.

Fix a nonzero n € V,,, and let £ : g = C be a complex linear functional with
n)=1land £=00n V; & - & V,,—1. The exponential map exp:g — G is a
holomorphic diffeomorphism, so we can define a holomorphic function f : G —+ C
by f(exp(€)) = £(€). (Previously we took G = g as sets and exp to be the identity,
but for now we shall write exp explicitly.) In fact, f is homogeneous of degree m,
so f € Pp,. We thus have f € D(A)ND(B) by Theorem 4.2(f) and Proposition 4.8.
If Af were holomorphic, by Proposition 4.7 we would have Af = Bf. We show
this is not the case.

Let g = exp(n) € G, so that f(g) = 1. By Theorem 5.6 and (2.16), we have
Bf=2Zf=2"f s Bf(g) = 2.

On the other hand, suppose £ € V;. For any t € R, we have g - exp(t€) =
exp(n) exp(t€) = exp(n + t€), since 1 € V,,, commutes with €. Thus f(g-exp(t€)) =
£(n + t€f) = 1 since & € Vi implies £(§) = 0. Differentiating with respect to ¢
at ¢ = 0, we have Ef(g) = 0. Hence Vf(g) = 0 and so by (3.2) and (2.32),

Af(g) =0# Bf(g). O
As an explicit example, in the complex Heisenberg group HS with coordinates
(21,22,23), one could take f(z) = 23 and verify by direct computation that

Zf(0,0,1) = 2 while Af(0,0,1) =0.

In the case of stratified Lie groups of step 2, explicit integral formulas for the
heat kernel p, are known [20,41]. So in those cases, to show A is not holomorphic,
in light of (3.2) one could compute Zj log p, and check that it is not holomorphic.

6. CONTRACTIVITY OF e B

Theorem 6.1. Let 0 < p < oc. For every f € HLP(p,) and every t > 0 we have

(6.1) | f e be—tllLr(on) < [1fllLo(on)-

In particular, e~*8 extends continuously to HLP(p,) for 0 < p < 2 and is a con-
traction on HLP(p,) for 0 < p < oc.
Proof. First, let us note that for any g € L'(p,), the scaling relation (2.34) implies

r r
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Soifge C';‘; (G) with Ag > 0, then Lemma 5.3 implies that this quantity decreases
with respect to ¢; that is,

63  [@od )pdm< [ gpudm, geCIG). Ag20.
G G

We would now like to replace g with some approximation of |f|P. To achieve
this, let us first suppose that f € P; the general case will then follow from a
density argument. Following [27, Lemma 4.3] we shall introduce a sequence of
“subharmonizing” functions.

Let v € C((0,00)) be nonnegative, and set

t)z/;%/:o(a)dads.

Then it is easy to verify that:
u € C%([0,));
o u>0(;
e o', 4" are bounded;
o tu"(t)+u'(t) =v(t) >0 forall t > 0.
As such, if f € P, then g := u(|f|*) € C3(G). Now using the chain rule and the
fact that f is holomorphic (so that Z; f = 0), we have

1 UL
ZAQ = ZZiju(lflz)

I
Me

Z; [W'(1£11)fZ;]]

3,
I
—

{W" () fZif  £Z;f + /' (1F17)12; £}

Loy
[
N

I [
NGENANGE

(IF1Pa"(F 1) + ' (1F1%)) 125 £ 1.

S,
Il
-

Since tu’(t) + u'(t) > 0, we have Ag > 0 and so (6.3) holds with g = u(|f|?).
Now let v, € C°((0,00)) be a sequence of nonnegative smooth functions with

vp(o) (123)2 oP/2)=1 for ¢ > 0, and as before set u,(t fo vn (o) do ds and
gn = un(|f|?). As before, g, satisfies (6. 3) By monotone convergence,

f / S PID-1 4o gg _ yo/2
o S

and hence g, 1 |f|?. Hence using (6.3) and monotone convergence, we have
(6.4) ] If 08, [P padm < / |£|P pa dm
G G

so that (6.1) holds for f € P.

Now let f € HLP(p,) be arbitrary. As mentioned following Notation 4.5, P is
dense in HLP(p,), so we may find a sequence f,, € P with f,, — f in L? and also
pointwise, so that in particular f, 0d,-« — f o 8. pointwise. Now since (6.1)
holds for £ we see that o od__. is Clanchv in LP. hence converses in I.P. and the
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Since the p-norm is continuous on LP, we can pass to the limit in (6.1) to see that
it holds for f. O

Corollary 6.2. e B is a strongly continuous contraction semigroup on HL”(p,)
for 0 < p < oo.

Proof. As we noted, e *Bf = f o 4,-.. Hence the semigroup property is given
by (2.6), and the previous theorem showed the contractivity. To verify strong
continuity, we note that for f € P, we have fod, . — f pointwise, and |fod, :| =
e t*|f| < |f|]. So by dominated convergence, e *Ff = fod, . — fin LP as t — 0.
By linearity, the same holds for any f € P. For general f € HLP(p,), we use a
familiar triangle inequality argument. Since P is dense in HIL?, for any € we can
choose g € P with ||f — g||» < e. For p > 1, Minkowski’s triangle inequality gives

e Bf — fller < e B(f — g)llzr + lle"Pg — gllzr + g — fll»
<2+ e Pg—g|Le

using the contractivity of e *® on the first term. Since ¢ € P, we know that
le=*Bg—g|lL» — 0 and hence limsup,_,q ||[e"*E f — f||z» < 2¢, implying the desired
result since e is arbitrary. For 0 <p <1, ||+ ||z» is not a norm, but we get the same
result by replacing |- || » with ||-||},, which does satisfy the triangle inequality. O

7. STRONG HYPERCONTRACTIVITY FOR THE DILATION SEMIGROUP

We now state and prove our main theorem.
We say that the heat kernel p, satisfies a logarithmic Sobolev inequality if
there exist ¢ > 0 and 8 > 0 such that

(7.1) L |f|*1og | flpa dm < eQ(F) + BIIfIIL2(p,) + £l 22(o,) Lo | Fll 2o

for all f such that Q(f) < oo. (In the case 8 > 0, (7.1) is sometimes called a
defective logarithmic Sobolev inequality.)

Remark 7.1. To the best of our knowledge, it is currently an open problem to de-
termine whether the logarithmic Sobolev inequality (7.1) is satisfied in all complex
stratified Lie groups G. As such, our main Theorem 7.2 is necessarily conditional
in nature, taking (7.1) as a hypothesis. However, in Section 8 below, we discuss the
particular case of the complex Heisenberg and Heisenberg—Weyl groups, for which
(7.1) is known to hold [14,30] and which therefore serve as a concrete example to
which our theorem applies. It would be of great interest to have additional examples
of groups satisfying (7.1).

For0<g<p< oo let

(7.2) ts(p,q) = glog (g)
and
(7.3) M (p,q) == exp (%’ (% - %)) :

Theorem 7.2. Suppose that the logarithmic Sobolev inequality (7.1) holds and that
0 <g¢g<p<co. Then for every f € HLY(p,) and everyt > t;(p,q),
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Proof. Fix 0 < ¢ < p < occ. We shall concentrate first on the case when f € P;
let us say f has degree D, so f € @f:o Pr. The general case will then follow by a
density argument as in the proof of Theorem 6.1. We also note that it is sufficient
to prove that (7.4) holds for ¢ = ¢,(p,¢), since if this can be shown, then using
Theorem 6.1 we conclude that for any £ > ¢,

le™ fllze = lle™ B e “ P )L < M(p,@)le” P fl|La < M (p, q)||]|e-
We adopt similar notation as in [26, Section 4], which we generally follow. Let

g =e Bf.

Since Py is invariant under B (Corollary 5.7 and Lemma 2.17), g; is a smooth curve
in the finite-dimensional space @f:o Pi- Indeed, if f = 2f=0 [ with f, € Py, we
have g; = Zf:o e 2tk/af,

Fix € > 0 and let

T = (|9t|2 + f)m

r(t) :== getle,
o(t) = ] e(2)" D po(z) m(dz),

a(t) = ”'YtHLr(ﬂ(pa) = 'U(t)lf'r(t}-

Notice that v; € Cg(G) (see Notation 5.2) and in particular v(t), a(t) are finite for
all £. Also notice that r(¢;) = p. Our goal will be to show a(t;) < M(p,q)a(0),
which when taking € — 0 turns into (7.4) with t = ¢;. We will do this by deriving
an appropriate differential inequality for c.

Simple calculus shows

k]

(7.5) o/ (t) = a(t)v(t) ! (r(t)_lfu’(t) - gfu(t) loga(t)) :
To attack this, we differentiate under the integral sign to show
18 (0= [ 7O (FOogr+ ") pudm
G it
(7.7) = QTT@) /G'ﬁ(” 108 Yt pa dm + 7(t) /G'Yf“)_l'vépa dm
(7.8) = 2%@ /G 7" log 7: pa dm — r(t) Re L w2 Bg, - g pa dm.

To check that differentiation under the integral sign is justified, fix a bounded in-
terval [t1,15] containing ¢, and note that since s — g, is a continuous curve in
the holomorphic polynomials of degree D, there is a constant C' so that |gs(z)| +
lgi(z)] £ C(1 + d(e,z))? for all s € [t1,t2]. Since ; is bounded below and
r,v’ are bounded on [t1,%3] by some constant R, it follows that for ¢ € [t1, 9]
the integrand on the right side of (7.6) is dominated by some constant times
(C(1+d(e,x))P) 1 p,(z), which is integrable.

Let I := rRe [,7" 2Bg - g p,dx be the second term in (7.8). (For notational
hygiene, we suppressed the explicit dependence on ¢ and will continue to do so
when eonveniaent Y We wish tn estimate T from helow usine the logarithmie Snhnlev
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Since g is a polynomial, by Theorem 5.6 and (2.23), we have Bg = 2Zg = 2Xg,

a ~a
so that
2r r—2 _
I=—Re | v “Xg-gp.dm.
Q G

But X is a real vector field, so an easy computation shows X[|g|?] = 2Re[Xg - g]
and hence X[y"] = ry""?Re[Xg - g]. Since 4" € CZ(G), by Lemma 5.3 we have

2 - .,,
I= —f Xy ]padm:] Ay pg dm.
aJg a
Now using elementary calculus, we may show:
(7.9) Aly"] = 4 Vy2 R+ rey" 4 Vgl

To see this, let Z; be the vector fields defined in (2.25), which are of type (1,0), so
that A=4) .Z;Z;. We have

4Z,2;[v') = 4Z; [gw’"g ‘ (%‘ g+g- ng)}

r—2

=2 7" (Zi9-G+9 Z:9) (9 Z))

+2ry" (ng Zig+g ;;Zﬁ)
since Z; ng = Zj Z;g = 0. Now rearranging,
4Z;Z;[y"] = r(r — 2)7" 1 Z;g|*|g|* + 2ry" 2| Z;9]?
= 729" Z;9*|91* + 2" Z391* (7 = |9)
= 12474 2,9 % 9|2 + 2rey™ 4| Z;g)2
since ¥2 — |g|? = e. On the other hand,

5 T r—4 —
Zil"? =17 Zig-g
so that B
4Z;Z;[7") = 16| Z;[y" /%) + 2rey™ 4| Z;gI%.
Summing over j and referring to (2.28-2.29), we obtain (7.9).
In particular, since the second term of (7.9) is nonnegative,

AR > 4 V[y?)2,

So integrating gives
I>4Q(™?).
Now, applying the logarithmic Sobolev inequality (7.1) and noting that

H'y:(z)ﬁuig(pn) = o(t), it follows that
1> 28 [ O ogy pudm — Lote) - 2uio)10g ().
¢ Jo c c
Referring back to (7.8), this shows
(7.10) v'(t) < gv(t) + gfu(t) logv(t) = %v(t} + 2T(t)fu(t} log a(t),
and thus from (7.5)
ABev($)
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In other words,

(7.12) %loga(t) < c:—(‘i) = ge—‘“/c,
so, integrating,
713 a() <a@ex (L -e0)) —a@exn (28 (- 5 )).

Now let € | 0, so that 7; | |g;|, and by dominated convergence, a(t) | [|g:|| r#) (,,) =
le=*5 f|| Lrt)(p,)- Taking ¢t =t; and recalling that r(t;) = p, (7.13) becomes

(7.14) le™ fllzo (o) < M2, )| fll (o)

which is precisely (7.4) with ¢ = ¢;. This completes the proof for f € P.

For general f € HL4(p,), proceed as in the last paragraph of the proof of
Theorem 6.1. Choose a sequence f, € P with f, — f in L%norm. Then (7.4)
holds for f,. As m — oo, the right side of (7.4) converges to M (p,q)| fllLa(p.)-
Since e '8 is a contraction on #L? by Theorem 6.1, e~ '8 f,, is Cauchy in LP norm,
so converges in LP to some function which can only be e *® f. Hence the left side
of (7.4) converges to |l *Z f||1»(,,) as desired. O

8. APPLICATION TO THE COMPLEX HEISENBERG GROUP

In order for Theorem 7.2 to have content, we need examples of stratified complex
groups for which the logarithmic Sobolev inequality (7.1) is satisfied. In this section,
we verify that the complex Heisenberg group HS of Examples 2.3 and 2.20 enjoys
that property, as do the complex Heisenberg—Weyl groups Hgn 41 of Examples 2.4
and 2.21. So for these groups, the hypotheses of our Theorem 7.2 are satisfied. On
the other hand, since as shown in Theorem 5.10, the operator A is not holomorphic
in this setting, the results of [26] do not apply, so we have proved something new.

Indeed, the papers [14] and [30] showed independently that so-called H-type Lie
groups satisfy a gradient estimate which is known to imply the logarithmic Sobolev
inequality (7.1). We shall state that result, check that the complex Heisenberg
group IHIE is an H-type Lie group, and sketch in the steps leading to (7.1). The same
argument, mautatis mutandis, also applies to the Heisenberg-Weyl groups HS 41
We omit the details because they add notation but no further insight.

Definition 8.1. Suppose g is a real Lie algebra equipped with a positive definite
inner product (-,-). For u,v € g, define J,v via

(Juv, w) = (u, [v, w]).
Let 3 be the center of g, and b = 3. We say (g, (,-)) is H-type if:
(1) [D! b] = 3; and
(2) for each u € 3 with |ju|| = 1, J, maps v isometrically onto itself.

An H-type Lie group is a connected, simply connected real Lie group G
equipped with an inner product (-,-) on its Lie algebra g such that (g, (,-)) is
H-type in the above sense.

Suppose then that (G, (-, -}) is an H-type Lie group. By item 1 of Definition 8.1,
G is nilpotent, so we may fix a bi-invariant Haar measure m which is simply (a
scalar multivle of) Lebeseue measure. Let &:..... &.. be an orthonormal basis for
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~2 ~2
the sub-Laplacian by A = & +---+ &, . Also, for sufficiently smooth f let
IVf|2:=|&f|2+ -+ |€.f]?. The main theorem of [14] and [30] is:

Theorem 8.2. If (G, (-, -)) is H-type, then following the above notation, there is a
constant K such that for all t > 0 and f € C}(G) we have

(8.1) |Vetd/ f| < Ket24| V£

Lemma 8.3. Consider HS as a 6-dimensional real Lie group. As a set, b = C3 =
RS, so equip it with the Euclidean inner product (-,-). Then (HS, (.,-)) is H-type.

Proof. Let {e;,ie; : j = 1,2, 3} be the standard basis of h5 = C* = RS, which is or-
thonormal with respect to the (real) Euclidean inner product (-, -). Then the center
3 of bY is spanned (over R) by {es,ies}, so b = 3+ is spanned by {e;,ie;, e3,7€5}.
By inspection of the Lie bracket defined in (2.3), we see that [0, b] = 3.

Next, we note that for u,v,w € h$ and a, 8 € C, we have

(82)  (Jau(Bv),w) = (ou, [Bv,w]) = (u, [v, afu]) = (Jyv, 68w) = (B, w)

so that J,v is complex-linear in © and conjugate-linear in v. Together with the
relations J.,e; = ea, Jo,ea = —e;, we easily see that for any a € C with |a| = 1,
we have that J,., is an isometry of v into itself. O

Now we note that when the dual metric h is defined on (h5)* as in Example 2.20,
the backward annihilator H is precisely v, and the metric g is just the restriction
of (-,-) to H. Hence the sub-Laplacian A used in Theorem 8.2 is the same as that
defined in (2.32), and for smooth real f, the squared gradient |V f| of Theorem 8.2
is equal to h(df,df) in the notation of Section 2.4.

Theorem 8.4. It follows from Theorem 8.2 that the logarithmic Sobolev inequality
(7.1) holds for HS, with ¢ = 2K?a and 8 = 0, where K is the constant from
Theorem 8.2.

Proof. This can be proved by an elementary, though clever, argument in the style
of I';-calculus, which can be found in [4, Theorem 6.1]. The essence of this argu-
ment, which is an equivalence between gradient bounds and the logarithmic Sobolev
inequality, goes back to [3]. O

Corollary 8.5. Theorem 7.2 holds for the complex Heisenberg and Heisenberg—
Weyl groups HS, . |, with t;(p,q) = K2alog (%) and M (p,q) = 1, where K is the
constant from Theorem 8.2.

Remark 8.6. The foregoing argument would apply to any complex stratified Lie
group which is H-type. Since the complex stratified groups and the H-type groups
are each rather large classes, one might think there would be many more such
examples. However, there are actually no more: the first author has shown in [15]
that the complex Heisenberg—Weyl Lie algebras are the only complex Lie algebras
which are H-type under a Hermitian inner product.
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