Taxonomic synthesis of the eastern North American millipede genus *Pseudopolydesmus* Attems, 1898 (Diplopoda: Polydesmida: Polydesmidae), utilizing high-detail ultraviolet
 fluorescence imaging

- 5 Running title: Genus review of *Pseudopolydesmus*
- 6 7

8

4

9 Petra Sierwald¹, Derek A. Hennen², Xavier Jacob Zahnle³, Stephanie Ware¹, Paul Edward 10 Marek²

¹ Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
 ² Department of Entomology, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
 ³ Department of Entomology and Nematology, University of California, Davis, USA

- 16
- 17

18 INTRODUCTION

19 The millipede genus Polydesmus Latreille, 1802 is among the first five described 20 genera of the Diplopoda. It is the name-bearing genus of the family Polydesmidae Leach, 21 1815, which itself occupies most of the temperate Holarctic region, excluding Central Asia 22 and Mongolia (Golovatch, 1991). Over its history, the genus has accumulated about 480 23 specific names, of which over 250 remain. The other species have been moved to other 24 genera and families or are of uncertain status (Sierwald, MilliBase 2018). Polydesmidae 25 continues to need revision despite its 200-year-old usage and the recent acceleration of 26 species description within it, particularly of cave taxa from East Asia (e.g. Golovatch & 27 Geoffroy, 2006; Golovatch, 2013). Although some initial efforts have been made (Withrow, 28 1988; Djursvoll et al., 2000), a comprehensive phylogenetic analysis addressing genus-level 29 relationships within Polydesmidae remains missing. According to Hoffman (1980): "The 30 Palearctic fauna of this family is in complete chaos [and] nothing short of an overall revision 31 will bring any kind of order". Shear (2012) characterizes the family as "a meaningless 32 wastebasket" in its current state.

33 This disorder in Polydesmidae makes it difficult to unambiguously define the Nearctic 34 genus Pseudopolydesmus Attems, 1898 in reference to its Palearctic relatives, and to the 35 family's name-bearing genus *Polydesmus* in particular. The diversity of gonopodal structures 36 (copulatory organs in males) and the lack of a standardized terminology based on explicit 37 homology hypotheses among members of Polydesmidae hampers the comparison of taxa 38 within it. For example, the pattern of seta-bearing dorsal blisters as well as gonopods of 39 Pseudopolydesmus strongly resemble those of the Palearctic species Polydesmus inconstans 40 Latzel, 1883 and Polydesmus complanatus (Linnaeus, 1761). However, since it is dubious 41 that all nominal members of *Polydesmus* are monophyletic, comparisons with other taxa in 42 this paper are restricted to these two species.

43 Pseudopolvdesmus is one of seven (Shear & Reddell, 2017) currently recognized 44 native North American genera of the family Polydesmidae, occupying most of eastern North 45 America from eastern Texas north to southeastern Ontario and east to the Atlantic coast, 46 excluding the Florida peninsula. They are common in forests throughout the eastern and 47 central United States and are among the widest-ranging of the North American millipede 48 genera. These medium-sized millipedes (up to about 35 mm in length) are commonly 49 encountered under leaf litter and detritus in mixed forests. Their coloration varies from pink 50 to brick red to brown, and their shallowly raised dorsal blisters give them the flat-backed 51 appearance typical of other millipedes in the order Polydesmida (Fig. 1, Fig. 2).

A total of 32 species names have been described in or assigned to *Pseudopolydesmus* at various times over the past century. The genus was revised by Withrow (1988) in an unpublished Ph.D. thesis. Withrow recognized nine species in two species groups and suggested several synonymies. Hoffman, in his checklist of North American millipedes (1999), recognized 12 *Pseudopolydesmus* species and introduced a number of new synonymies, differing partly from those by Withrow. Hoffman emphasized that confirmation of these taxonomic changes was needed. This ubiquitous millipede taxon, widespread in
North American forests, is clearly in need of a taxonomic synthesis as a context for the
description of biodiversity and as a basis for a biologically informative classification.

61 Our analysis of gonopodal and somatic characters was enhanced by inducing 62 ultraviolet (UV) fluorescence in the cuticle of specimens. UV fluorescence images can 63 provide additional information about seta distribution and cuticular structures. In particular, 64 the translucent cuticle of Pseudopolydesmus gonopods make some processes and flanges 65 difficult to distinguish using white light. Induced fluorescence of the cuticle or integument 66 has also been documented in numerous orders of centipedes, arachnids, insects, and 67 crustaceans (Lawrence, 1954; Rubin et al., 2017; Welch et al., 2012). Therefore, we believe 68 our methods can be easily adapted for imaging a broad range of arthropod taxa.

For the review of the genus provided here, we examined all available type material and imaged specimens using various macrophotographic techniques, including the use of ultraviolet (UV) fluorescence of the cuticle to provide false-color images with enhanced detail. We also used scanning electron microscopy (SEM) to provide high-detail images. Gonopod structures are illustrated and annotated employing explicitly defined terminology. We recognize eight species, and provide complete literature citations and synonymy lists for the taxa in the genus.

76

77

78 MATERIAL AND METHODS

79 Field-collected material

80 Material for this study comprised specimens borrowed from natural history museums 81 and individuals that were recently field-collected using the methods employed by Means *et* 82 *al.* (2015). The live collected specimens were collected under permit from the Virginia 83 Department of Game and Inland Fisheries, VADGIF Permit No. 056958. Field-collected 84 Pseudopolydesmus individuals were typically uncovered in forests with decomposing logs 85 and moist layers of leaf litter covering the soil, though individuals were also found in swamps 86 and dry forests. Leaf litter was turned over with a millipede rake or a small three-pronged 87 garden cultivator, and logs and rocks were flipped to uncover millipedes. Pseudopolydesmus 88 were found most often at the soil-leaf litter interface, but were sometimes also found clinging 89 to the bark underneath logs or between matted leaves at the edges of swamps.

90

91

Light microscopy & ultraviolet imaging

92 High depth of field (HDOF) photographs of gonopods and somatic characters were 93 obtained using visible and ultraviolet light. Ultraviolet-induced fluorescence photography 94 was adapted for focus-stacking photographic methods and equipment. Because of the small 95 size and pale, uniform color of the preserved material, some morphological features were 96 difficult to see in visible light photographs. Under UV light, we found that setae, claws, teeth, 97 gonopods, and vulvae emitted a green fluorescence, which provided high contrast to the blue 98 fluorescence of the rest of the animal, thereby highlighting many details not seen in visible 99 light photographs (Marek, 2017).

100 Ultraviolet-induced fluorescent imaging of P. paludicolus (gonopod images) and P. 101 collinus (gonopod and tergite images) was carried out according to methods already 102 described by Marek (2017). All other HDOF and UV-induced fluorescence imaging was 103 carried out in the Field Museum's Collaborative Invertebrate Laboratories, employing the 104 following techniques. To obtain HDOF photographs, we employed a focus stacking 105 technique using a Microptics system equipped with a Nikon D5100 DSLR camera body, 106 outfitted with an Infinity Photo-Optical K2 Long-Distance Microscope system and a variety 107 of Infinity Photo-Optical objectives: CF2, CF3, CF4, 5x Achrovid and 10x Achrovid 108 (Visionary Digital/Dun, Inc., Ashland, VA; Infinity Photo-Optical, Boulder, CO). 109 Specimens were secured in a 50 mm glass Petri dish embedded in a drop of clear hand 110 sanitizer and then covered with 70% alcohol. A stage with a magnetic lock (Visionary 111 Digital/Dunn, Inc., Ashland, VA) mounted on a steel base plate was used to control vibration 112 and prevent blurring in the images at higher magnifications, particularly under UV lighting. 113 A Pyrex dish (No. 3140) was used as a pedestal on top of the stage. This allowed for some 114 under-lighting of the specimens during visible light photography, which helped add 115 additional light at high magnification. A black card was used for the background to contrast 116 with the color of the specimens. CamLift version 2.6.0 (Visionary Digital/Dun, Inc., Ashland, 117 VA) was used to control the motorized lift of the system. Control My Nikon version 4.3 was 118 used to control the camera, and set shutter, aperture, and other settings. 119 Visible light photographs were taken using a Microptics ML-1000 Flash Fiber Optic 120 Illumination System (Visionary Digital/Dun, Inc., Ashland, VA) connected to a Dynalite 121 M2000DR Power Pack (Dynalite, Union, NJ). Dynalite output settings varied from 250 122 watts/second for lower magnification to 1000 watts/second for higher magnification. The K2 123 aperture was set to 4, providing high depth of field, but reducing resolution and increasing 124 vignetting in the images. Cylindrical diffusers were constructed from white copy-machine

paper to mitigate glare. The camera was set to ISO 100 with a shutter speed of 1/200 and autowhite balance.

Ultraviolet illumination was from three Convoy S2+ Nichia 365 nm LED flashlights
(Shenzhen Convoy Electronics Co., Ltd., China) which contain a Nichia NCSU276A U365
UV LED emitter (Nichia Corporation, Tokushima, Japan) with a peak emission spectrum of
365 nm. The lights were held in place with test-tube clamp lab stands and arranged radially
around the stage at a distance of approximately 10 cm from the specimen, shining straight

down to ensure that there was no glass between the light source and the specimen. No
diffuser was used for UV photography. It is important to note that UV-blocking eye goggles
and sun screen should be used, as the UV light from will burn the eyes and skin. A hood
constructed of heavy black canvas was used to block ambient light. The K2 aperture was set
to 6 for UV photography. The camera was set to ISO 100 with a variable shutter speeds (from
one-third second to two seconds) and auto white balance. All photos were saved in TIFF
format.

139 Focal stacks were imported into Adobe Lightroom version 5.7. Each finished 140 composited photograph consisted of between 10 (low magnification) to 50 (high 141 magnification) individual photos. Visible light stacks were subjected to a 20-increment 142 addition of luminance to decrease noise. Varying degrees of vignetting compensation and 143 minor exposure compensation were implemented if necessary. UV stacks were subjected to a 144 temperature adjustment to 10,000 Kelvin to render more clarity and detail. If necessary, UV 145 stacks were subjected to minor exposure compensation and a 20-increment addition of 146 luminance to decrease noise.

147 Helicon Focus Proversion 6.7.1 was used to create the composite photographs taken 148 at different focal planes. For both UV and visible light photographs, the preferred rendering 149 method was Method C (pyramid) at full resolution (for the images of P. collinus and P. 150 paludicolus, Method B (weighted average) was used). The composited images were saved in 151 uncompressed TIFF format. Adobe Photoshop CS6 was used to despeckle and clean the 152 background. High pass filters were used to adjust white balance: 2.0-3.0 high pass for visible 153 light and 5.0-6.0 high pass for UV. Scale bars were inserted before cropping and saving the 154 final images.

155

156 Scanning electron microscopy

Scanning electron micrographs were taken with a Leo SEM (Carl Zeiss SMT,
Peabody, MA). First, samples were ultrasonically cleaned, and dehydrated in an ethanol
series (80%, 90%, 95% and two times in 100%) and then air-dried overnight. The specimens
were mounted on aluminum stubs and coated with gold in a sputter coater for 240 seconds.
Adobe Photoshop CS6 was used to clean image backgrounds, and a 2.0-3.0 high pass filter
was applied to adjust white balance of the images.

163

164 Institutional abbreviations

165 Institutional abbreviations used in this paper are as follows: Academy of Natural 166 Sciences of Drexel University, Philadelphia (ANSP); Natural History Museum [British Museum of Natural History], London (BMNH); Field Museum of Natural History, Chicago 167 (FMNH); Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 168 169 (MCZ); Muséum d'Histoire Naturelle de Genève, Switzerland (MHNG); National Museum of 170 Natural History, Smithsonian Institution, Washington DC (USNM); Virginia Museum of 171 Natural History, Martinsville, Virginia (VMNH); Virginia Polytechnic Institute Insect 172 Collection, Blacksburg, Virginia (VTEC). 173 Specimen catalog numbers are accompanied by institutional and collection 174 abbreviations as follows. FMNH INS: Field Museum Division of Insects; VMNH PSE: 175 Virginia Museum of Natural History Pseudopolydesmus specimens; VTEC MPE: Virginia Tech Insect Collection millipede specimens. Type material is abbreviated in literature 176 177 citations and type notes as follows: Holotype (HT); Syntype (ST); Paratype (PT). 178 179 180 RESULTS

181 **Taxonomic history of the genus** *Pseudopolydesmus*

182 Beginning with Thomas Say's 1821 description of *P. serratus*, 32 species names have 183 been associated with the genus *Pseudopolydesmus*. Described variously in the genera 184 Polydesmus, Pseudopolydesmus, and Dixidesmus Chamberlin, 1943, many of these species 185 names have proven redundant. Chamberlin & Loomis (1948), Causey (1952), and Shelley 186 (1988) all published species-level synonymies correcting many of the redundancies in their comparisons of various species of Pseudopolydesmus. These synonymies often addressed 187 188 species names originally based on minute variations in gonopod morphology. In some cases, 189 the original author may have viewed a gonopod from different angles, causing them to 190 erroneously designate new species (Withrow, 1988: 4). Chamberlin alone named 18 species 191 between 1942-1951, 13 of which have been previously synonymized. Here we synonymize 192 four of the remaining five.

193 The first two species of *Pseudopolydesmus* described, incidentally two of the most 194 widespread and commonly-collected ones, were placed in the genus *Polydesmus* in the early 195 1800s. Pseudopolydesmus serratus (Say, 1821) was found by the American entomologist 196 Thomas Say while collecting on the Eastern Shore of Virginia. The second species, 197 Pseudopolydesmus canadensis (Newport, 1844), was supposedly collected from the Hudson 198 Bay area in Ontario, Canada—though the actual type locality has been contested (Hoffman 199 1999). There has been some confusion surrounding these two names. Many early authors (as 200 late as Attems, 1940) published descriptions and gonopod illustrations of P. canadensis that 201 more closely match *P. serratus*, leading Bollman (1887b) to mistakenly refer to *P.* 202 canadensis as a junior synonym of P. serratus and create the species name Polydesmus 203 branneri in its stead. Consequently, P. canadensis is instead often referred to as Polydesmus 204 branneri, Pseudopolydesmus branneri, or Dixidesmus branneri in late nineteenth and early 205 twentieth century literature.

206 Attems (1898) established the genus *Pseudopolydesmus* with the type species 207 Pseudopolydesmus canadensis, thereby separating the North American species from the 208 Eurasian genus Polydesmus. The definition of Pseudopolydesmus was erroneously based on 209 Attems' conclusion that the gonopod of P. canadensis lacks a seminal chamber and a pulvillus ('Samenblase' and 'Haarpolster' respectively, in Attems, 1940: 3) in contrast with 210 211 the gonopods of the family Polydesmidae as then understood. Attems (1914) then placed 212 Pseudopolydesmus in the new family Vanhoeffeniidae, which was also defined by its lack of 213 both a seminal chamber and pulvillus. Neither Brölemann (1916) nor Verhoeff (1929) 214 subsequently recognized Vanhoeffeniidae (see also Jeekel, 1965: 236). Verhoeff (1931) later 215 examined freshly preserved Pseudopolydesmus specimens (most likely P. serratus) from 216 which he described both an unusually large seminal chamber and a well-developed pulvillus. 217 Verhoeff (1931: 308) thus concluded that poor preservation of Attems' Pseudopolydesmus 218 specimens had resulted in the decision to place *Pseudopolydesmus* in the new family. 219 Later, Chamberlin (1943c) erected the genus Dixidesmus for members of 220 *Pseudopolydesmus* whose gonopod telopodites feature an elongate process distal to the 221 pulvillus and a recurved ectal process. *Dixidesmus* roughly corresponds with Withrow's 222 (1988) canadensis species group (see below). Hoffman (1974) homologized these processes 223 as e1 and e2, respectively, and pointed out that while the telopodite of Pseudopolydesmus 224 collinus has a recurved e2 process like Dixidesmus, it lacks an elongate e1. He therefore 225 synonymized Dixidesmus as a junior synonym of Pseudopolydesmus. 226 Withrow (1988) recognized nine species in two groups: the *canadensis* group 227 comprising *pinetorum*, tallulanus, erasus, canadensis, and collinus; and the serratus group 228 comprising *serratus*, *minor*, *caddo*, and *paludicola* [sic]. Withrow also suggested numerous 229 synonymies. Hoffman, in his 1999 checklist, recognized 12 Pseudopolydesmus species and

230 introduced a number of new synonymies. Hoffman did not examine type specimens, basing

his classification solely on material conserved in the Virginia Museum of Natural History.

Some of his accepted species names differ from those of Withrow (1988), who did examine type material. However, Withrow's dissertation was never published in accordance with the International Code of Zoological Nomenclature (ICZN 1999, Article 9.12; see discussion in Shelley, 1996). Therefore, those of Withrow's subjective species name snynonymies that we affirm are considered new synonymies as of this publication. In our taxonomic section, we use square brackets to indicate Withrow's invalid taxonomic assignments.

238

239 Gonopod Terminology in *Pseudopolydesmus*

In the order Polydesmida, the anterior leg pair of the seventh body ring (eighth leg pair) in males is modified into a pair of sperm transfer organs called gonopods. The ninth leg pair remains as normal walking legs. Attems (1894) was the first to define separate sections within the gonopods, and discussed possible homologies with leg podomeres. The putative associations of leg podomeres with parts of the male gonopod have shifted over time due to the difficulty in assigning homology to the podomeres distal from the coxa, resulting in several terms that have multiple precise definitions.

247 Moreover, gonopod terminology varies within the family Polydesmidae between 248 genera and among different authors (as discussed by Hoffman, 1974). Eurasian polydesmids 249 often have comparably more complex gonopods, with additional processes and branches compared to American representatives. These branches and processes have often been 250 251 assigned names across various genera without discussing homology hypotheses. As a result, 252 the names for these structures have proliferated wildly, and the existing nomenclature for the 253 gonopods is unwieldy. Various schemes of alphanumeric labeling of gonopod processes have 254 been adopted more or less de novo for each newly discovered form. This has made

descriptions of similar taxa difficult to compare and discerning homology between genera
challenging (*e.g.* Djursvoll *et al.*, 2000; Djursvoll, 2008; Golovatch, 2013).

Regarding the North American Polydesmidae, the presence of fewer species and simpler gonopod morphology have resulted in a more uniform set of terms, but there are still cases in which identical terms refer to different structures. For example, Shelley (1993, figs 5-6) used the term endomerite for the entire caudal branch carrying the pulvillus (see below) in *Scytonotus*, whereas Hoffman (1950: fig. 4; 1974: 349) used the term for only the pulvillus in *Pseudopolydesmus*. Djursvoll *et al.* (2000) used the descriptive term pulvillus

263 ('Haarpolster' of Attems, 1940) instead of endomerite.

264 The *Pseudopolydesmus* gonopod consists of a moveable telopodite with a single distal 265 branch (acropodite) subtended by a large coxa and cannula typical of Polydesmida. Verhoeff 266 (1931) recognized three sections of the telopodite: the basal prefemoral region carrying setae, 267 the femoral region lacking setae, and the terminal region which he called the tibiotarsus. We 268 emphasize caution when using these terms because they imply false homologies with 269 podomeres of the walking legs (Petit, 1976). The sperm groove (or seminal canal) originates 270 at the medial insertion of the cannula in the basal "prefemur", then runs distad while twisting 271 around cephalically to the ectal (lateral) side of the femoral section, then curving caudad 272 before opening at the base of the pulvillus ('Haarpolster' in Attems, 1940 and Verhoeff, 273 1931; 'endomerite' in Hoffman, 1974 and others). The functional morphology of the 'large 274 seminal chamber' and its relationship, if any, with the sperm groove is uncertain and deserves 275 further anatomical study (see Verhoeff, 1928, 1931; Carl 1941).

In his paper describing *Pseudopolydesmus collinus*, Hoffman (1974) introduced a standardized system for denoting the processes along the distal region of the acropodite, accompanied by a detailed drawing (see Fig. 3, after Hoffman, 1974). He designated processes on the ectal side of the gonopod *e1* through *e4*, and those on the medial (mesal) 280 side *m1* through *m4*, enabling comparison between species. Shelley & Snyder (2012, figs 2-3) 281 and Withrow (1988) adopted Hoffman's system, which currently provides a standardized 282 method for denoting the processes and to differentiate species of *Pseudopolydesmus*. 283 Withrow applied the system to each of his recognized species; however, in his re-284 descriptions, key to Pseudopolydesmus species, and character matrix for phylogenetic 285 analysis, Hoffman's system is not consistently used. For example, in step 1a of his key to 286 species, Withrow identifies the *canadensis* group by the presence of process e3 and the 287 absence of m2. However, in contradiction, step 3a identifies P. erasus and P. tallulanus (both 288 members of the *canadensis* group according to Withrow) by the presence of m2, while step 289 4a identifies *P. erasus* by the absence of *e3*. Furthermore, his illustrations of gonopods do not 290 unambiguously show the characters cited for species identification, nor are the structures 291 labelled.

292 Under Hoffman's (1974) system, homology hypotheses for acropodite processes are 293 based on: a) position and b) to a lesser degree on special similarity (Remane, 1952). For 294 example, a medial process between m2 and m4 must be labelled m3 based on position, while 295 m4 is recognized by a tuft of special bristles which do not arise from sockets as setae, but 296 project continuously from the cuticle. Such bristles are also located at the apical tip of the 297 telopodite. Uncertainty concerning homology arises for processes m2, m3, e2 and e3 in 298 species where one or more of these acropodite processes are absent. Due to its unique 299 position, offset ectad from the edge of the telopodite, we hypothesize that m3 is only present 300 in P. canadensis, and that the intermediate medial process in P. caddo and P. serratus is 301 homologous with m2. We describe position and special similarity of each process in Table 1, 302 and in Table 2 we summarize which processes occur in each species of *Pseudopolydesmus*.

303

304 **Table 1.**

305 Summary of telopodite processes in *Pseudopolydesmus*

el	Thin spine arising on distal flange of pulvillus, present in <i>P. erasus</i> and <i>P.</i>
	canadensis, present but reduced in P. collinus
<i>e2</i>	Rather large, recurved spine, arising on combined stalk with e3 in P. canadensis and
	P. collinus; forms transverse ridge to m2 in P. caddo and P. serratus
е3	Medium sized spine, arising at or close to base of e^2 mostly opposite of m^2
<i>e4</i>	Small, most apical spine, usually hidden within tuft of terminal bristles
ml	Flat spine with broad base, spade to claw-shaped, arising at or near proximal flange
	of pulvillus
<i>m2</i>	Medium to large spine, mostly opposite to e2 and e3
<i>m3</i>	Small to medium spine, in P. canadensis offset laterad from the medial edge towards
	the center line of acropodite, in <i>P. paludicolus</i> pointed slightly medially
<i>m4</i>	Medium sized spine, positioned proximal to e4, with a tuft comprising only a few
	bristles located at the proximal side of its base

307 Table 2.

308 Telopodite processes of *Pseudopolydesmus* species in key order.

Key ID	Species	el	е2	e3	<i>e4</i>	ml	<i>m2</i>	<i>m3</i>	<i>m4</i>
2a.	P. erasus	Y	Y	Ya	Y	Y	Y	-	Y
3a.	P. canadensis	Y	Y	Y	Y	Y	Y	Y	Y
3b.	P. collinus	Y ^b	Y	Y	Y	Y	Y	-	Y
4a.	P. pinetorum	-	Y	Y	Y	Y	Y	-	Y
6a.	P. minor	-	Y ^b	_ ^c	Y	Y	Y	-	Y
6b.	P. caddo	-	-	Y	-	Y	Y	-	Y
7a.	P. paludicolus	-	Y	-	Y	Y	Y	Y	-
7b.	P. serratus	-	Y	-	Y	Y	Y	-	-

³⁰⁹ ^aProcess *e3* was present in all specimens observed by the authors (*tallulanus* morphotype),

but varies in size and may be absent in some specimens (*erasus* morphotype).
 ^bProcess is present, but owing to its small size may not be visible under dissecting

312 microscope.

³¹³ ^cAn ectal flange is present, and may be homologous to process *e3*.

314

315 Tergal Sculpture Pattern:

316 Members of the family Polydesmidae possess groups of elevated tergal blisters of

317 differing sizes and shapes. The descriptive terminology for these features has varied over

318 time: 'Beule' and 'Buckel' (Attems, 1940), 'convex areas' (Hoffman, 1974), and 'convex

bosses' (Withrow, 1988) or 'boss' (Nguyen, 2009, fig. 2); we opt for the term 'blisters.'

320 Verhoeff noted the close similarity of the tergal sculpture pattern ('Rückenskulptur' Verhoeff,

321 1931: 308) between *Polydesmus* and *Pseudopolydesmus*. The blisters are arranged in

322 transverse rows, and are slightly to moderately inflated, appearing like a cobblestone road.

323 The blisters are reasonably well circumscribed, and each typically carries a short seta on its

most elevated surface or, in the posterior blister row, directed caudad from the blister's
posterior apex. In *Pseudopolydesmus*, these setae are very small and often difficult to
distinguish even under SEM, except in posterior body rings, or in small-bodied species, such
as *P. paludicolus*.

328 In all *Pseudopolydesmus* species, the blisters are arranged in an identical pattern: 329 three transverse rows of blisters on the metazonite with a central and lateral blister on each 330 paranotum (Fig. 4). The anterior row consists of two large rectangular blisters (AB) that each 331 bear two setae. The median row consists of four subquadrate blisters (MB1, MB2), and the 332 posterior row of six (PB1, PB2, PB3). Blisters are numbered incrementally from medial to 333 lateral. The posterior blister row is wider across the tergite than the median row, although the 334 PB3 blisters may be very slight and not immediately obvious. Each paranotum has two 335 blisters: one large round central blister (CB) bearing two setae, and one longitudinally 336 elongated lateral blister (LB) carrying one seta near its posterior end. The paired LB 337 additionally bear the ozopores on ozoporous body rings.

In general, each blister carries one seta, although the AB and CB each carry two. However, a slight longitudinal furrow may sometimes be visible separating the setae of each AB, suggesting that the AB each represent two subquadrate blisters that have merged. Similarly, a very slight transverse furrow may sometimes separate the two setae of the CB, suggesting that the CB represent a merging of blisters from the anterior and median rows.

343

344 Paranota Morphology

345 Several *Pseudopolydesmus* species can be easily distinguished by the shape and size
346 of the paranota. This is especially useful in diagnosing adult females. We therefore introduce
347 four "landmarks" in order to reduce paranota shape complexity to a simple quadrilateral (Fig.
348 4, described in Table 3). The anterior medial (AMC) and posterior medial (PMC) corners

349	define the connection	point of the	paranota to the tergite,	while the anterior	lateral (ALC) and

- 350 posterior lateral (PLC) corners delimit the outer edge of the paranota. Connecting these four
- 351 points allows overall paranota dimensions to be described as a square, rectangular,
- 352 trapezoidal, parallelogram-shaped, or rhomboid. The four edges of this quadrilateral are
- 353 referred to in this paper as the anterior edge (between AMC and ALC), posterior edge (PMC
- to PLC), medial edge (AMC to PMC), and lateral edge (ALC to PLC).

357

Table 3.

Table 5.				
Definitions of paranotal landmarks				
Point of inflection between paranotum and tergite				
Tip of anteriormost denticle				
Acute caudal corner of paranotum				
Caudal tip of posterior blister 3 (PB3)				

358

359	Furthermore, to describe the silhouette of the paranota in addition to their overall
360	dimensions, we introduce the terms leading margin, trailing margin, and distal margin. Like
361	the quadrilateral edges, the paranota margins connect two corners, but follow the shape of the
362	actual paranotum margin rather than using a straight-line path. In Pseudopolydesmus, the
363	leading margin (AMC to ALC) and distal margin (ALC to PLC) are usually convex and the
364	trailing margin (PLC to PMC) is concave.
365	The distal margin bears serrated denticles which occur in a predictable pattern. All
366	non-ozoporous body rings bear three denticles along each paranotum, while ozoporous
367	segments bear four denticles. In either case, all denticles bear one seta except the
368	anteriormost denticle (ALC), which bears none. The posterior lateral corner (PLC) also bears
369	a seta. While the authors have occasionally observed specimens with, for example, an
370	ozoporous paranotum that bears only three apparent denticles, or even one that bears five,
371	these are infrequent exceptions to the rule.
372	

374 TAXONOMIC SECTION

- 375 Order **Polydesmida** Leach, 1815
- 376 Family **Polydesmidae** Leach, 1815
- 377

378 Genus *Pseudopolydesmus* Attems, 1898

- 379 Pseudopolydesmus Attems, 1898. Denkschriften der Kaiserlichen Akademie der
- 380 Wissenschaften, Mathematisch-Naturwissenschaftliche Classe 67: 270, 479. Type
- 381 species: *Polydesmus canadensis* Newport, 1844, by monotypy; synonymized under
- 382 *Polydesmus* in a footnote by Carl, 1902: 613; revalidated by Verhoeff, 1931: 305.
- 383 Pseudopolydesmus: -- Attems, 1914. Archiv für Naturgeschichte, Abteilung A 80(4): 161.
- 384 Pseudopolydesmus:-- Brölemann, 1916. Annales de la Société Entomologique de France 84:
 385 569.
- 386 *Pseudopolydesmus:--* Attems, 1926. *Handbuch der Zoologie* 4(1): 139.
- 387 Pseudopolydesmus:-- Verhoeff, 1929. Zoologische Jahrbücher, Abteilung für Systematik,
- 388 Ökologie und Geographie der Tiere 57: 619.
- 389 Pseudopolydesmus:-- Verhoeff, 1931. Zoologischer Anzeiger 94(11-12): 305, figs. 1-7.
- 390 Definition of genus *Pseudopolydesmus*, detailed examination of *Pseudopolydesmus* 391 *serratus* gonopod.
- 392 Pseudopolydesmus:-- Attems, 1940. Das Tierreich 70: 139, figs. 201-202.
- 393 Pseudopolydesmus:-- Carl, 1941. Zoologischer Anzeiger 133(11-12): 291-295, figs. 1-2.
- 394 Detailed examination of *Pseudopolydesmus pinetorum* gonopod.
- 395 *Pseudopolydesmus:--* Chamberlin, 1943c. *Bulletin of the University of Utah* 34(6): 17.
- 396 *Pseudopolydesmus:--* Hoffman, 1950. *The Virginia Journal of Science* 1(3): 222, fig. 4.

397	Pseudopolydesmus: Hoffman, 1974. Proceedings of the Biological Society of Washington
398	87(31): 346.
399	[Pseudopolydesmus: Withrow, 1988. Unpublished D. Phil. thesis, Ohio State University:
400	64. Recognized nine species and proposed 20 species-level synonymies.]
401	Pseudopolydesmus: Hoffman, 1999. Virginia Museum of Natural History Special
402	Publication 8: 442. Recognized 12 species, established 15 new species-level
403	synonymies.
404	Pseudopolydesmus: Djursvoll et al., 2000. Fragmenta Faunistica 43, Supplement: 40.
405	
406	Dixidesmus Chamberlin, 1943c. Bulletin of the University of Utah 34(6): 18. Type species: D.
407	tallulanus Chamberlin, by original designation. Synonymized by Hoffman, 1974: 346.
408	Dixidesmus Chamberlin & Hoffman, 1958. Bulletin of the United States National Museum
409	212: 65.
410	
411	Diagnosis:
412	Body form: Adult members of the genus Pseudopolydesmus always with 20 body
413	rings including telson (never 19). Lateral corners of collum equal or exceed maximum width
414	of mandibular stipites (narrower in Polydesmus and Brachydesmus, e.g. Djursvoll et al.,
415	2000: 43, fig. 2A), except in Pseudopolydesmus paludicolus. Color of adults in life ranging
416	from dark brick red (Fig. 1A) to light chestnut brown (Fig. 1B).
417	Paranota and tergal sculpture: Paranota mostly level, extending horizontally (Fig. 2).
418	Leading margin flexed antero-dorsad, forming a narrow rim. Tergal sculpture pattern
419	(described above, Fig. 4) very similar to other members of Polydesmidae, such as
420	Polydesmus inconstans and Polydesmus complanatus, the latter of which is the type species
421	of Polydesmus. Tergal blister pattern in Pseudopolydesmus less distinct than the strongly

422 impressed pattern of *Polydesmus*. Unlike *Po. inconstans* and *Po. complanatus*, tergal setae
423 not usually visible under dissecting microscope except in *Ps. paludicolus*, but may be visible
424 with UV enhancement.

Gonopod: Gonocoxae large, with two long setae at the ventro-medial margin. 425 426 Posterior margin of gonocoxa divided into ventral and dorsal plate-like lobes that partially surround the telopodite basally. Ventral lobe with one or two gonocoxal plates stacked 427 428 dorsoventrally. Telopodite falcate. Seminal canal originating medially before looping laterad, 429 debouching at ectal base of pulvillus. Pulvillus entirely covered in bristles (Fig. 3). Seminal 430 chamber large, with an associated duct (duct of the telopodite gland according to Verhoeff, 431 1931). Acropodite bearing between four and eight dentate to laminar processes along its ectal and medial surfaces; subterminally bearing from about 10 to 60 terminal bristles (Fig. 5, not 432 433 socketed like true setae) similar in appearance to a toothbrush; terminally bifurcating into 434 small ectal and medial processes or laminae too small to distinguish under dissecting 435 microscope.

436 Somatic male characters: Prefemora of all walking legs beginning with leg pair 3 437 (body ring 4) strongly swollen dorsad in *Pseudopolydesmus* males (Fig. 6), much more than 438 in *Polydesmus* males. Male sterna with prominent paired lobes or tubercles of various shapes 439 between leg pairs of body rings 5, 6, 7, and 8 (Fig. 7), which carry stiff, peg-like setae, 440 differing from the unmodified setae of the walking legs. Leg pair 3 (body ring 4) with a pair of low lobes in some species; leg pairs 4 and 5 (body ring 5) with prominent lobes; leg pair 6 441 442 (anterior legs of body ring 6) with strongly elongated tubercles; leg pair 7 with small tuft of 443 peg-like setae; leg pair 9 (directly posterior to gonopods) with tubercles flattened into 444 longitudinal ridges (Fig. 8); leg pair 10 (anterior leg pair of body ring 8) with prominent 445 ventrad-directed tubercles. This is unlike male *Polydesmus*, in which tubercles of leg pairs 9

446	and 10	(the first two leg pairs directly posterior of the gonopods) are absent or very slight. In
447	some s	species (<i>e.g.</i> in <i>P. erasus</i>) there is an additional pair of lobes at the base of leg pair 11.
448		
449		
450	Key to	o species of <i>Pseudopolydesmus</i> males
451		
452	1.	a. Large recurved e^2 process or fused recurved $e^{2}+e^{3}$ process
453		b. Non-recurved <i>e2</i> process
454		
455	2. (1)	a. Large recurved e2 process not fused with e3 process or e3 process absent P. erasus
456		b. Fused <i>e</i> 2+ <i>e</i> 3 process
457		
458	3. (2)	a. <i>m3</i> process disto-laterad of <i>m2</i> process; elongate <i>e1</i> process <i>P. canadensis</i>
459		b. <i>m3</i> process absent; <i>e1</i> process absent or severely reduced <i>P. collinus</i>
460		
461	4. (1)	a. Large, spike-shaped <i>e3</i> process; large rounded pulvillus <i>P. pinetorum</i>
462		b. Ectal processes subtriangular or flanged; pointed pulvillus5
463		
464	5. (4)	a. Ectal surface strongly flanged, <i>m4</i> process present
465		b. Ectal surface not flanged, with or without strongly flanged medial surface7
466		
467	6. (5)	a. Large triangular <i>m2</i> located proximal to smooth ectal flange <i>P. minor</i>
468		b. No process between <i>e3</i> -bearing ectal flange and pulvillus <i>P. caddo</i>
469		
470	7. (5)	a. Strongly flanged medial surface bearing processes <i>m2</i> and <i>m3</i>

b. Not flanged, with pronounced transverse ridge connecting *e2* and *m2.....P. serratus*

473	The species entries that form the remainder of the taxonomic section are presented in the
474	order they appear in the above key to species. Each species name is given a comprehensive
475	bibliography of published literature, including its junior synonyms and instances in which the
476	name was misapplied. Specimen numbers of millipedes pictured in this paper that are not part
477	of a type series are notated in bold with an asterisk, <i>e.g.</i> FMNH INS312685*.
478	
479	
480	Pseudopolydesmus erasus (Loomis, 1943)
481	Polydesmus erasus Loomis, 1943. Bulletin of the Museum of Comparative Zoology 92(7):
482	406, fig. 17, pl. 1: fig. 5. MALE HT (MCZ, non vidi) from Huntsville, Madison Co.,
483	Alabama. According to Loomis' description, the e3 process was completely absent in
484	P. erasus. No such specimen has been seen by the authors; more likely Loomis
485	overlooked the process or his specimen was damaged.
486	Dixidesmus erasus: Chamberlin, 1943c. Bulletin of the University of Utah 34(6): 18.
487	Dixidesmus erasus: Causey, 1952. The Chicago Academy of Sciences Natural History
488	Miscellanea 106: 7.
489	Dixidesmus erasus: Chamberlin & Hoffman, 1958. Bulletin of the United States National
490	Museum 212: 66.
491	[Pseudopolydesmus erasus: Withrow, 1988. Unpublished D. Phil. Thesis, Ohio State
492	University: 84, figs. 19, 84, 88, 92, 108, 113, 122-126, map 5, tables 9-11.]
493	Pseudopolydesmus erasus: Hoffman, 1999. Virginia Museum of Natural History Special
494	Publication 8: 444.
495	

496	Dixidesmus tallulanus Chamberlin, 1943c. Bulletin of the University of Utah 34(6): 19, fig.
497	34. MALE HT (USNM, vidi) and males and females from a site between Clayton and
498	Tallulah Falls, Rabun Co., Georgia, collected by W. Ivie, 28 April, 1943; MALE PT
499	Tallulah Falls, collected by W. Ivie, 27 April 1943. Synonymized by Hoffman, 1999:
500	444 under erasus (listed as syn. nov.).
501	Dixidesmus tallulanus: Chamberlin & Hoffman, 1958. Bulletin of the United States
502	National Museum 212: 67.
503	[Pseudopolydesmus tallulanus: Withrow, 1988. Unpublished D. Phil. Thesis, Ohio State
504	University: 79, figs. 75, 83, 87, 91, 107, 112, 122-128, map 5, tables 9-11.]
505	Considered a valid, separate species.
506	
507	Dixidesmus penicillus Chamberlin, 1943c. Bulletin of the University of Utah 34(6): 19, fig.
508	35. (USNM, vidi) from north and northwest of Clarkesville, Habersham Co., Georgia,
509	unspecified number of males and females, collected by W. Ivie, 27 April 1943.
510	Synonymized [under tallulanus by Withrow, 1988: 79;] under erasus by Hoffman,
511	1999: 444 (listed as syn. nov.).
512	Dixidesmus penicillus: Chamberlin & Hoffman, 1958. Bulletin of the United States
513	National Museum 212: 67.
514	
515	Dixidesmus humilidens Chamberlin, 1943c. Bulletin of the University of Utah 34(6): 20, fig.
516	36. (USNM, vidi) two males and two females from Gainesville, Hall Co., Georgia,
517	collected 24 April 1943 by W. Ivie. Synonymized under Dixidesmus erasus by
518	Causey, 1952: 7 and by Hoffman & Chamberlin, 1958: 66; [under Pseudopolydesmus
519	tallulanus by Withrow, 1988: 79;] listed under Pseudopolydesmus erasus by
520	Hoffman, 1999: 444.

522 Type Notes:

Dixidesmus tallulanus (USNM, *vidi*): Two vials with Chamberlin labels, labelled *Polydesmus tallulanus*. Type Lot 1 labelled HT, contains one male in fragments and gonopods in
 genitalia vial, identifiable as *erasus*; Type Lot 2 labelled PT, with one intact male
 identifiable as *erasus*.

- *Dixidesmus penicillus* (USNM, *vidi*): 2 Chamberlin vials. Type Lot 1: vial labelled 'Types'
 contains small vial with HT label (by Withrow?) with male in fragments, 2 dissected
 gonopods in genitalia vial, identifiable as *erasus*; small vial with 'Lectoallotype' label
 (by Withrow?) with female in fragments; and 2 intact males and two females in
 fragments. Type Lot 2: vial labeled 'Paratypes' with two females and eight males,
- 532 some males with damaged gonopods, all males identifiable as *erasus*.
- 533 Dixidesmus humilidens (USNM, vidi): One Chamberlin vial, labelled by Withrow as
- 534 Holotype and Lectoallotype in two small vials. Withrow label identifies *erasus*
- 535 Lectoallotype: adult female with everted vulvae. Male holotype in fragments in small
- 536 vial, gonopods in vial, identifiable as *erasus*, plus one female, one fragment (female

538

537

539 **Diagnosis:**

most likely in vial).

540 Size: Large to medium-large, with length ranging from 15.8 mm to 31.8 mm and an 541 average body length of 21.4 mm (n=143, Withrow, 1988: 83, 88, 199). Size variable,

542 comparable to *P. canadensis*, *P. collinus*, and *P. serratus*. Usually larger than *P. pinetorum*.

- 543 Paranota and tergal sculpture (Fig. 9): Corners of paranota forming a trapezoid, with
- the anterior (AMC to ALC) edge longer than the posterior (PMC to PLC) edge. Ratio of
- 545 anterior to posterior edge length smaller than in *P. serratus*. Leading and distal margins

546	moderately curved, similar to P. serratus but less curved than P. canadensis and P. collinus.
547	Denticles weak to obliterated. Trailing margin only slightly concave, nearly straight. Anterior
548	blister (AB) row medially much thicker than median blister row (MB), narrowing laterally to
549	become much narrower than MB. MB2 much larger in area than MB1. MB row thicker than
550	posterior blister row (PB). Central paranotal blisters (CB) occupying medial two-thirds of
551	paranota. Lateral blisters (LB) anteriorly extending mediad.
552	Gonopod (Figs. 10, 11, 12): Gonocoxa ventral lobe with single gonocoxal plate.
553	Telopodite basally curved, more or less straight between pulvillus and process $m4$, terminally
554	curved, basal half of acropodite distinctly thickened. Pulvillus large and pointed, midway
555	between base and terminus of acropodite. Process $m3$ absent. Process $e1$ elongate and
556	straight, arising from thickened area; e2 large and recurved, originating close to base of e3;
557	e3 subtriangular, varies from large to miniscule; e4 nearly identical to m4 in size and shape
558	(Figs. 10A, 11A, 12A). Process <i>m1</i> conspicuous, medial of pulvillus; <i>m2</i> large, subtriangular;
559	m4 typically shaped, well separated from larger m2 (Figs. 10B, 11B, 12B).
560	
561	Range: Southern Appalachian Mountains, west through Tennessee and Kentucky into
562	southern Illinois, and south through Alabama to the coast of the Gulf of Mexico.
563	
564	Additional specimens examined: FMNH INS1554, 1556, 3120684, 3120685*
565	
566	
567	Pseudopolydesmus canadensis (Newport, 1844)
568	Polydesmus canadensis Newport, 1844. The Annals and Magazine of Natural History 13:
569	265. Immature FEMALE HT (BMNH, non vidi, type presumed extant) from Albany

570	River, Hudson Bay, Ontario, Canada. Synonymized under serratus by Bollman,
571	1887b: 620; resurrected by [Withrow, 1988: 89 and] Hoffman, 1999: 443.
572	Polydesmus canadensis: Gervais, 1847. Histoire naturelle des Insectes. Aptères 4: 106.
573	Polydesmus canadensis: Saussure & Humbert, 1870. Mission scientifique au Mexique et
574	dans l'Amérique centrale: Recherches Zoologiques 6(2): 52.
575	[Pseudopolydesmus canadensis: Withrow, 1988. Unpublished D. Phil. Thesis, Ohio State
576	University: 89, figs. 55, 61, 70-73, 76, 109, 114, 122-126, map 6, tables 9-11.]
577	Pseudopolydesmus canadensis: Hoffman, 1999. Virginia Museum of Natural History
578	Special Publication 8: 443.
579	Pseudopolydesmus canadensis: Shelley, 2000. Insecta Mundi 14(4): 246.
580	
581	Polydesmus glaucescens C.L. Koch, 1847. Kritische Revision der Insectenfaune
582	Deutschlands 3: 133. Location of types, if extant, unknown, labeled only
583	'Nordamerika.' Synonymized under serratus in a footnote by Bollman, 1887b: 620;
584	under canadensis by Hoffman, 1999: 443.
585	Polydesmus glaucescens: C.L. Koch, 1863. Die Myriapoden. Getreu nach der Natur
586	abgebildet und beschrieben. Band 1: 59, pl. 26: fig. 51.
587	Pseudopolydesmus glaucesens: Attems, 1940. Das Tierreich 70: 141. Uncertain placement.
588	
589	Polydesmus branneri Bollman, 1887b. Proceedings of the United States National Museum
590	10: 620. MALE HT (USNM, vidi) from Mossy Creek (now Jefferson City), Jefferson
591	Co., Tennessee. Synonymized by [Withrow, 1988: 89 and] Hoffman, 1999: 443
592	(listed as syn. nov.).
593	Polydesmus branneri: Loomis, 1943. Bulletin of the Museum of Comparative Zoology
594	92(7): 405, fig. 16, pl. 1: fig. 4.

595	Dixidesmus branneri: Loomis & Hoffman, 1948. Proceedings of the Biological Society of
596	Washington 61: 54.
597	Dixidesmus branneri: Hoffman, 1950. The Virginia Journal of Science 1(3): 223.
598	Dixidesmus branneri: Causey, 1952. The Chicago Academy of Sciences Natural History
599	Miscellanea 106: 7.
600	Dixidesmus branneri: Chamberlin & Hoffman, 1958. Bulletin of the United States National
601	Museum 212: 65.
602	Pseudopolydesmus branneri: Hoffman, 1974. Proceedings of the Biological Society of
603	Washington 87(31): 346, fig. 3.
604	Pseudopolydesmus branneri: Shelley, 1988. Canadian Journal of Zoology 66: 1651, figs.
605	27, 31.
606	
607	Polydesmus nitidus Bollman, 1887a. Entomologica Americana 3(3): 45. Location of type
608	material unknown (not located at USNM), 15 specimens from Pensacola, Escambia
609	Co., Florida. Synonymized by [Withrow, 1988: 89 and] Hoffman, 1999: 443 (listed as
610	syn. nov.).
611	Dixidesmus nitidus: Chamberlin & Hoffman, 1958. Bulletin of the United States National
612	Museum 212: 67.
613	
614	Polydesmus echinogon Chamberlin, 1942b. Bulletin of the University of Utah 32(8): 10, fig.
615	33. MALE HT (USNM, vidi) from Shawanese (a village on Harveys Lake), Luzerne
616	Co., Pennsylvania, four specimens collected by F. C. Paulmier, 23 September 1905.
617	Synonymized by [Withrow, 1988: 89 and] Hoffman, 1999: 443 (listed as syn. nov.).
618	Dixidesmus echinogon: Chamberlin, 1943c. Bulletin of the University of Utah 34(6): 18.

619	Dixidesmus echinogon: Chamberlin & Hoffman, 1958. Bulletin of the United States
620	National Museum 212: 66.
621	
622	Polydesmus conlatus Chamberlin, 1943b. Proceedings of the Biological Society of
623	Washington 56: 36, fig. 5. MALE HT (FMNH INS977, vidi) from Gatlingburg, Sevier
624	Co., Tennessee, collected by H. Dybas, 13-19 June 1942. Type images available
625	online. MALE PT (USNM, vidi) from Greenbrier Cove, Tennessee. Synonymized
626	under Dixidesmus branneri by Loomis & Hoffman, 1948: 54; under
627	Pseudopolydesmus canadensis by [Withrow, 1988: 89 and] Hoffman, 1999: 443
628	(listed as syn. nov.).
629	Dixidesmus conlatus: Chamberlin, 1943c. Bulletin of the University of Utah 34(6): 18.
630	Polydesmus conlatus: Sierwald et al., 2005. Zootaxa 1005: 40.
631	
632	Dixidesmus sylvicolens Chamberlin, 1943c. Bulletin of the University of Utah 34(6): 20, fig.
633	37-38. MALE HT (USNM, vidi) from seven miles north of Sylvania, Screven Co.,
634	Georgia, collected by W. Ivie, 12 April 1943, numerous specimens. Synonymized by
635	[Withrow, 1988: 89 and] Hoffman, 1999: 443 (listed as syn. nov.).
636	Dixidesmus sylvicolens: Chamberlin & Hoffman, 1958. Bulletin of the United States
637	National Museum 212: 67.
638	
639	Dixidesmus christianus Chamberlin, 1946. Proceedings of the Biological Society of
640	Washington 59: 140, fig. 4. MALE HT (USNM, vidi), three females, and immatures
641	from Pass Christian, Harrison Co., Mississippi, collected by J. Rapp & W. Rapp, 15
642	Feb 1946. Synonymized under Dixidesmus branneri by Loomis & Hoffman, 1948:

643	54; under P. canadensis by [Withrow, 1988: 89 and] Hoffman, 1999: 443 (listed as
644	syn. nov.).
645	Dixidesmus christianus: Chamberlin & Hoffman, 1958. Bulletin of the United States
646	National Museum 212: 66.
647	
648	Dixidesmus catskillus Chamberlin, 1947. Proceedings of the Academy of Natural Sciences of
649	Philadelphia 99: 24, fig. 2. MALE HT (ANSP, non vidi) from Catskill, Greene Co.,
650	New York. Synonymized under branneri by Shelley, 1988: 1652; under canadensis
651	by [Withrow, 1988: 90 and] Hoffman, 1999: 443 (listed as syn. nov.).
652	Dixidesmus catskillus: Chamberlin & Hoffman, 1958. Bulletin of the United States National
653	Museum 66.
654	
655	Dixidesmus phanus Chamberlin, 1951. Great Basin Naturalist 11(1-2): 27, fig. 1. MALE HT
656	(USNM, vidi) from Suwanee River, Florida, without further locality, five specimens,
657	collected by D.E. Beck, 15 April 1950. Synonymized by [Withrow, 1988: 90 and]
658	Hoffman, 1999: 443 (listed as syn. nov.).
659	Dixidesmus phanus: Chamberlin & Hoffman, 1958. Bulletin of the United States National
660	Museum 212: 67.
661	
662	Dixidesmus gausodicrorhachus Johnson, 1954. The Chicago Academy of Sciences Natural
663	History Miscellanea 137: 1, fig. 1. MALE HT (USNM, vidi) from west side of Garnet
664	Lake, Mackinaw Co., Michigan. Synonymized under branneri by Shelley, 1988:
665	1652; under canadensis by [Withrow, 1988: 90 and] Hoffman, 1999: 443 (listed as
666	syn. nov.).

- 667 *Dixidesmus gausodicrorhachus:--* Chamberlin & Hoffman, 1958. *Bulletin of the United*668 *States National Museum* 212: 66.
- 669

670 **Type Notes:**

- 671 *Polydesmus branneri* MALE HT (USNM, *vidi*): Vial with single male and one dissected
 672 gonopod, tip of gonopod damaged.
- 673 *Polydesmus echinogon* (USNM, *vidi*): Two type lots labelled 'Types' by Chamberlin located
 674 at USNM. Type lots contain an older label identifying the specimens erroneously as
- 675 *P. serratus.* Type Lot 1: MALE HT (vial with label by Withrow) with single gonopod
- 676 *in situ* and two dissected gonopods (one damaged), identifiable as *P. canadensis*.
- 677 Single male specimen with single gonopod *in situ*, one female and one vial with
- 678 fragmented female labeled Lectoallotype by Withrow. All male specimens in Type
- 679 Lot 1 identifiable as *canadensis*. Type Lot 2, same locality: five females and female
- fragments, single male with single gonopod *in situ* identifiable as *canadensis*, one
- 681 genitalia vial with single gonopod identifiable as *canadensis*; separated two males
- 682 with gonopods *in situ* identifiable as *P. serratus* from Type Lot 2.
- 683 Polydesmus conlatus MALE HT (FMNH INS977 vidi): Adult, intact, gonopods in situ; with 684 two adult females. Images available online. MALE PT (USNM, vidi): the vial located at the USNM is labeled paratype, and contains several specimens, at least one adult 685 female and one adult male with a single gonopod in a separate genitalia vial. The 686 687 specimens are from Greenbrier Cove, a locality that is not listed for types of this 688 species in the original description. The male gonopod is identifiable as *canadensis*. 689 Dixidesmus sylvicolens MALE ST (USNM, vidi): One type lot with several specimens, 690 Chamberlin label, Withrow label identifies lot as *branneri*, males clearly identifiable
- 691 as *canadensis*.

692	Dixidesmus christianus MALE HI (USNM, viai): One dissected male in fragments with
693	single gonopod, labeled HT, two intact males and five small specimens. Males
694	identifiable as canadensis; Withrow label identifies lot as branneri.
695	Dixidesmus phanus MALE HT (USNM, vidi): Two type lots with Chamberlin labels. Male
696	HT in Type Lot 1 identifiable as <i>canadensis</i> , Withrow label identifies lot as <i>branneri</i> .
697	Type Lot 2 with several female specimens.
698	Dixidesmus gausodicrorhachus MALE HT and PT (USNM, vidi): Male HT with single

. 1.

gonopod and male PT identifiable as *canadensis*, one female PT with everted vulva.

. 1

• /1

700

699

701 **Diagnosis:**

D · · 1

(0)

. .

Size: Usually large, with length ranging from 11.8 mm to 28.6 mm (Withrow, 1988:
199) and an average body length of 22.2 mm (n=162, Withrow, 1988: 94). Comparable in
size or slightly larger than *P. erasus* and *P. serratus*. Often larger than *P. collinus*. Usually
larger than *P. pinetorum*.

706 Paranota and tergal sculpture (Fig. 13): Corners of paranota forming a roughly 707 rhomboid quadrilateral, with anterior lateral corner (ALC) posterior to anterior medial corner 708 (AMC) and lateral to posterior lateral corner (PLC). Edges meeting at ALC and posterior 709 medial corner (PMC) forming right angles, with posterior edge shorter than in *P. collinus*. 710 Leading and distal margins very rounded, denticles weak to obliterated. Angle of curve along 711 distal margin and lateral portion of leading margin uniform from PLC past ALC. Trailing 712 margin moderately concave, less so than P. serratus. Anterior (AB), median (MB), and 713 posterior (PB) blister rows subequal in thickness. AB narrowing only slightly at lateral ends. 714 Individual MB and PB subequal in area. Central paranotal blisters (CB) large, occupying over 715 two-thirds of paranotal breadth, as wide as long. Lateral blisters (LB) anteriorly widening 716 laterad.

717	Gonopod (Figs. 7, 14): Gonocoxa ventral lobe with single gonocoxal plate. Telopodite
718	shallowly curved except at thickened section basal to pulvillus, with subterminal kink
719	followed by straight terminal section. Pulvillus medium-sized, midway between base and
720	terminus of acropodite. Process $e1$ elongate and kinked; processes $e2+e3$ large, joined at base
721	into elongate stalk (Fig. 7), sometimes connected by a lamina; e4 small (Fig. 14A). Process
722	m1 small, medial of pulvillus; $m2$, $m3$, and $m4$ all large, subtriangular, equidistant from each
723	other; <i>m3</i> offset laterad from <i>m2</i> and <i>m4</i> (Fig. 14B).
724	
725	Range: Northern Wisconsin east through southeastern Ontario and southern Quebec to the
726	Atlantic Coast, south through the Appalachian Mountains to the Gulf Coast as far west as
727	southern Mississippi.
728	
729	Additional specimens examined: FMNH INS1421, 1455, 1461, 1465, 1552, 1569, 3574,
730	6934 *, 7632, 7699, 14219, 3120683 *
731	
732	
733	Pseudopolydesmus collinus Hoffman, 1974
734	Pseudopolydesmus collinus Hoffman, 1974. Proceedings of the Biological Society of
735	Washington 87(31): 346, figs. 1-2. MALE HT (VMNH, non vidi but see type notes)
736	from Pinnacles of Dan, ca. four miles southwest of Vesta, Patrick Co., Virginia,
737	collected 22 April 1972.
738	[Pseudopolydesmus collinus: Withrow, 1988. Unpublished D. Phil. Thesis, Ohio State
739	University: 98, figs. 85, 89, 93, 110, 115, 122-126, map 7, tables 9-11.]
740	Pseudopolydesmus collinus: Hoffman, 1999. Virginia Museum of Natural History Special
741	Publication 8: 444.

743

Type Notes: *Pseudopolydesmus collinus* (VMNH, *non vidi*): a jar labeled PARATYPE was
found at VMNH. It contained a vial of 5 male paratypes (VMNH PSE00044) and a
vial of 8 female paratypes (VMNH PSE00043). The holotype may have been included
in the vial of male paratypes without a label. Two male paratype specimens from vial
VMNH PSE00044 were individually relabeled and imaged (VMNH PSE00202*,
VMNH PSE00203*).

750

751 **Diagnosis:**

Size: Medium-large, with length ranging from 12.9 mm to 25.3 mm (Withrow, 1988:
199) with an average length of 19 mm (n=40, Withrow, 1988: 101). Often smaller than *P. canadensis* and *P. serratus*. Comparable in size or slightly smaller than *P. erasus*. Usually
larger than *P. pinetorum*.

756 Paranota and tergal sculpture (Fig. 15): Corners of paranota forming a roughly 757 rhomboid quadrilateral, with anterior lateral corner (ALC) posterior to anterior medial corner (AMC) and lateral to posterior lateral corner (PLC). Edges meeting at ALC and posterior 758 759 medial corner (PMC) forming right angles, with posterior edge longer than in P. canadensis. 760 Leading and distal margins very rounded, denticles weak. Angle of curve along distal margin and lateral portion of leading margin uniform from PLC past ALC. Trailing margin 761 762 moderately concave, less so than P. serratus. Anterior blister row (AB) medially thicker than 763 median blister row (MB), narrowing only slightly at lateral ends. MB row thicker than 764 posterior blister row (PB). Central paranotal blisters (CB) large, occupying over two-thirds of 765 paranotal breadth, as wide as long. Lateral blisters (LB) anteriorly widening laterad.

766	Gonopod (Fig. 16): Gonocoxa ventral lobe with single gonocoxal plate. Telopodite
767	curved and slightly thickened basal to pulvillus, nearly straight beyond pulvillus, with a
768	subterminal kink followed by straight terminal section. Pulvillus medium-sized, midway
769	between base and terminus of acropodite. Process $m3$ absent. Process $e1$ reduced to near
770	absence; e2 large, recurved, combined on short, thick stalk with large, subtriangular e3 (Fig.
771	16C); e4 small (Fig. 16A). Process m1 small, medial of pulvillus; m2 large, subtriangular; m4
772	typically shaped, well separated from similarly sized $m2$ (Fig. 16B).
773	
774	Range: Southern Indiana east to West Virginia, south to central Virginia and north-central
775	South Carolina. Williams & Hefner (1928) reported Polydesmus moniliaris C.L. Koch, 1847
776	as common and abundant throughout the state of Ohio. Based on their figure (fig. 13),
777	Withrow (1988) suggested this was a misidentification of <i>P. collinus</i> , though the figure lacks
778	detail and most likely depicts P. canadensis, which also occurs in Ohio.
779	
780	
781	
782	Pseudopolydesmus pinetorum (Bollman, 1888)
783	Polydesmus pinetorum Bollman, 1888. Entomologica Americana 4(1): 3. MALE HT
784	(USNM, non vidi, type lost) from Little Rock, Pulaski Co., Arkansas.
785	Pseudopolydesmus pinetorum: Causey, 1952. The Chicago Academy of Sciences Natural
786	History Miscellanea 106: 6, fig. 5.
787	Pseudopolydesmus pinetorum: Chamberlin & Hoffman, 1958. Bulletin of the United States
788	National Museum 212: 70.
789	[Pseudopolydesmus pinetorum: Withrow, 1988. Unpublished D. Phil. Thesis, Ohio State
790	University: 72, figs 74, 80, 82, 86, 90, 106, 111, 122-128, map 4, tables 9-11.]

791	Pseudopolydesmus pinetorum: Hoffman, 1999. Virginia Museum of Natural History
792	Special Publication 8: 445.
793	
794	Polydesmus americanus Carl, 1902. Revue Suisse de Zoologie 10: 611, pl. 11: fig. 37. MALE
795	HT (MHNG, non vidi) from Texas without further locality. Synonymized by Causey,
796	1952: 6.
797	Pseudopolydesmus americanus: Attems, 1940 Das Tierreich 70: 140, fig. 202.
798	Pseudopolydesmus americanus: Carl, 1941. Zoologischer Anzeiger 133(11-12): 292-293,
799	figs. 1-2.
800	
801	Polydesmus natchitoches Chamberlin, 1942b. Bulletin of the University of Utah 32(8): 10,
802	figs. 34-35. MALE HT (USNM, vidi) with three specimens from two miles south of
803	Saline, Natchitoches Par., Louisiana, 12 April 1936; one male from four miles north
804	of Chestnut, 14 April 1936 (non vidi, missing, November 2015); all collected by L.
805	Hubricht. [Synonymized by Withrow, 1988: 72.] New synonymy!
806	Pseudopolydesmus natchitoches: Chamberlin & Hoffman, 1958. Bulletin of the United
807	States National Museum 212: 70.
808	Pseudopolydesmus natchitoches: Hoffman, 1999. Virginia Museum of Natural History
809	Special Publication 8: 445.
810	
811	Polydesmus paroicus Chamberlin, 1942b. Bulletin of the University of Utah 32(8): 11, figs.
812	37-38. MALE HT (USNM, vidi) from 1.5 miles north of Clay, Jackson Par.,
813	Louisiana, five specimens collected by L. Hubricht, 12 April 1936. Synonymized by
814	Causey, 1952: 6; [synonymy accepted by Withrow, 1988: 72;] treated as valid by
815	Chamberlin & Hoffman, 1958: 70 and Hoffman, 1999: 445.

816	<i>Pseudopolydesmus paroicus:</i> Chamberlin, 1943c. <i>Bulletin of the University of Utah</i> 34(6):
817	18.
818	Pseudopolydesmus paroicus: Chamberlin & Hoffman, 1958. Bulletin of the United States
819	National Museum 212: 70.
820	Pseudopolydesmus paroicus: Hoffman, 1999. Virginia Museum of Natural History Special
821	Publication 8: 445.
822	
823	Polydesmus hubrichti Chamberlin, 1943a. Entomological News 54(1): 15, figs. 1-2. MALE
824	HT (USNM, vidi) together with 12 specimens from University City, St. Louis Co.,
825	Missouri. One female from Creve Coeur Lake Park, 8 March 1936. Three males and
826	one female from Arbuckle Mountains, Murray Co., two miles east of Gowen,
827	Oklahoma, 26 April 1936. All collected by L. Hubricht, some paratype specimens
828	apparently deposited in ANSP. Synonymized by Causey, 1952: 6.
829	Pseudopolydesmus hubrichti: Chamberlin, 1943c. Bulletin of the University of Utah 34(6):
830	18.
831	
832	Polydesmus modocus Chamberlin, 1943b. Proceedings of the Biological Society of
833	Washington 56: 36, fig. 6. MALE HT (FMNH INS927, vidi) from a site between
834	Modoc and Roots, Randolph Co., Illinois, collected by K.P. Schmidt 14 April 1936.
835	Type images <u>available online</u> . Synonymized by Causey, 1952: 6.
836	Pseudopolydesmus modocus: Chamberlin, 1943c. Bulletin of the University of Utah 34(6):
837	18.
838	Polydesmus modocus: Sierwald et al., 2005. Zootaxa 1005: 40.
839	
840	Type Notes:

841 *Polydesmus pinetorum* MALE HT (USNM, *non vidi*, type lost): Apparently, Withrow

examined the type of *pinetorum* (USNM); no type material was located in the USNMcollection (Sierwald, November 2015).

Polydesmus natchitoches MALE HT (USNM, vidi): Type series consists of a single vial with
Chamberlin label and damaged locality label, containing numerous male and female
fragments. Specimens sorted into three vials. Vial 1: fragmented male, gonopods
missing, and a genitalia vial containing two gonopods (most likely not from the same
male); Vial 2: two fragmented females, one with everted vulva; Vial 3: several
specimen fragments.

850 Polydesmus paroicus MALE HT (USNM, vidi): Single type lot with Chamberlin label and 851 Hubricht locality label, which agrees with published locality data. Contains fragments 852 of two females and two males with gonopods in situ, one male with dissected 853 gonopods but intact body ring 7, and one genitalia vial with fragments of body ring 7 854 and at least one gonopod, most likely not belonging to the male in this vial. 855 *Polvdesmus hubrichti* (USNM, *vidi*): USNM collection contains three vials labelled by 856 Chamberlin [with the nomenclaturally invalid manuscript name Polydesmus 857 scholasticus]. All specimens collected by Hubricht and identified by him as P. 858 serratus. Vial labelled 'Types' collected March 29, 1936 from University City, 859 Missouri, containing at least 14 specimens: male labelled 'Lectotype' with one 860 dissected gonopod in a genitalia vial and 13 adult males, most with intact gonopods in 861 situ. Vial labelled 'Paratype' contains a single female collected March, 1936 under 862 logs, from 4.3 miles northwest of Glencoe Station, St. Louis Co., Missouri. Vial 863 labelled 'Paratypes' collected March 8, 1936, from Creve Coeur Lake Park, St. Louis 864 Co., Missouri, containing seven specimens belonging to three species: two males of P. 865 *pinetorum* (both with gonopods *in situ*, one with a single intact gonopod), two females

866	of <i>P. pinetorum</i> , two males of <i>P. minor</i> (gonopods intact <i>in situ</i>), and one female <i>P.</i>
867	serratus (with everted vulva). Despite labelling three vials as types [for P.
868	scholasticus], Chamberlin (1943a) nominated only the material from University City
869	(vial labelled 'Types') in the type series of <i>P. hubrichti</i> .
870	Polydesmus modocus MALE HT (FMNH INS927, vidi): Male HT in fragments, single
871	gonopod in genitalia vial, identifiable as <i>pinetorum</i> ; Withrow label. Images available
872	online.

874 **Diagnosis:**

875 Size: Medium, with body length ranging from 13.6 mm to 25.6 mm, and an average

body length of 18.6 mm (n=212, Withrow, 1988: 76, 199). Usually smaller than *P*.

canadensis, *P. collinus*, *P. erasus*, and *P. serratus*. Clearly larger than its small sympatric
congeners *P. minor* and *P. caddo*.

879 Paranota and tergal sculpture (Fig. 17): Corners of paranota forming a broad 880 rectangle, nearer to a square than any other *Pseudopolydesmus* species. Leading and distal 881 margins weakly curved compared to P. erasus and P. serratus, denticles always distinct. 882 Trailing margin concave, strongly curved. Anterior blister row (AB) much thicker than 883 median (MB) and posterior (PB) blister rows, which are subequal in thickness. MB2 and PB2 884 subequal in area, and much larger than MB1 and PB1. Central paranotal blisters (CB) large, occupying over two-thirds of paranotal breadth, as wide as long. Lateral blisters (LB) 885 886 anteriorly widening laterad.

Gonopod (Figs. 18, 19, 20): Gonocoxa ventral lobe with single gonocoxal plate.
Telopodite entirely arcuate and fishhook-shaped, section distal of pulvillus tightly curved.
Pulvillus large, rounded, closer to terminus of acropodite than base. Processes *e1*, *m3* absent.
Process *e2* lobelike, recurved, separate from *e3*; process *e3* very large, subtriangular to spike-

891	shaped; process e4 small and laminate, proximal to terminal tuft of bristles (Figs. 18A, 19A,					
892	20A). Process $m1$ small, hidden at base of pulvillus; $m2$ small, subtriangular; $m4$ medium-					
893	sized, subtriangular, close to m2 (Figs. 18B, 19B, 20B).					
894						
895	Range: Louisiana north to southern Iowa, east through Alabama and Tennessee. Most					
896	commonly collected west of the Mississippi River.					
897						
898	Additional specimens examined: FMNH INS1435, 1438, 1445*					
899						
900						
901	Pseudopolydesmus minor (Bollman, 1888)					
902	Polydesmus minor Bollman, 1888. Entomologica Americana 4(1): 2. MALE HT (USNM,					
903	non vidi, type lost) from Little Rock, Pulaski Co., Arkansas.					
904	Polydesmus minor: Chamberlin, 1942b. Bulletin of the University of Utah 32(8): 19, fig. 32.					
905	Pseudopolydesmus minor: Chamberlin, 1943c. Bulletin of the University of Utah 34(6): 18.					
906	Pseudopolydesmus minor: Chamberlin & Hoffman, 1958. Bulletin of the United States					
907	National Museum 212: 70.					
908	Pseudopolydesmus minor: Loomis, 1959. Journal of the Washington Academy of Sciences					
909	49(5): 161, fig. 9.					
910	[Pseudopolydesmus minor: Withrow, 1988. Unpublished D. Phil. Thesis, Ohio State					
911	University: 120, figs 62, 79, 97, 101, 105, 117, 119, 122-126, map 9, tables 9-11.]					
912	Pseudopolydesmus minor: Hoffman, 1999. Virginia Museum of Natural History Special					
913	Publication 8: 444.					
914						

915	Polydesmus neoterus Chamberlin, 1942b. Bulletin of the University of Utah 32(8): 10, figs.
916	30-31. MALE HT (USNM, vidi) from New Orleans, Louisiana, collected with two
917	females by L. Hubricht, 17 April 1936. [Synonymized by Withrow, 1988: 120.] New
918	Synonymy!
919	Pseudopolydesmus neoterus: Chamberlin, 1943c. Bulletin of the University of Utah 34(6):
920	18.
921	Pseudopolydesmus neoterus: Chamberlin & Hoffman, 1958. Bulletin of the United States
922	National Museum 212: 70.
923	Pseudopolydesmus neoterus: Hoffman, 1999. Virginia Museum of Natural History Special
924	Publication 8: 445. Listed as a valid species.
925	
926	Polydesmus euthetus Chamberlin, 1942b. Bulletin of the University of Utah 32(8): 11, fig. 36.
927	MALE HT (USNM, vidi) from Buder Park, one mile southeast of Valley Park, St.
928	Louis Co., Missouri, collected with one female by L. Hubricht, 15 March 1956.
929	[Synonymized by Withrow, 1988: 120.] New Synonymy!
930	Pseudopolydesmus euthetus: Chamberlin, 1943c. Bulletin of the University of Utah 34(6):
931	18.
932	Pseudopolydesmus euthetus: Chamberlin & Hoffman, 1958. Bulletin of the United States
933	National Museum 212: 70.
934	Pseudopolydesmus euthetus: Hoffman, 1999. Virginia Museum of Natural History Special
935	Publication 8: Listed as a valid species.
936	
937	Type Notes:
938	Polydesmus minor MALE HT (non vidi, type lost): No type specimens of minor were located
939	in the USNM collection (Sierwald, November 2015).

Polydesmus neoterus MALE HT (USNM, *vidi*): Type lot contains two female specimens and
one male holotype. The gonopods are dissected, a single broken gonopod was found
in the vial; the endomerite/pulvillus is missing, only the distal zone of the telopodite
was found. The gonopod remains do not allow unequivocal identification of the
specimen. However, the body form and sculpture of the *bidens* and *caddo* specimens
are distinctive and differ clearly from the *neoterus* specimen; sculpture, body form,
and body size of adult male agree with *minor*.

947 *Polydesmus euthetus* MALE HT (USNM, *vidi*): Type lot contains one adult male (HT) with a
948 single dissected gonopod and one adult female labelled Lectoallotype.

949

950 **Diagnosis:**

951 Size: Small, with body length ranging from 8.8 mm to 12.7 mm and an average body
952 length of 10.5 mm (n=31, Withrow, 1988: 124, 199). Comparable in size to *P. caddo* and *P. paludicolus*. Clearly smaller than all other congeneric species.

954 Paranota and tergal sculpture (Figs. 21, 22): Corners of paranota forming a narrow 955 parallelogram, with medial and lateral edges roughly twice as long as anterior and posterior 956 edges. Anterior lateral (ALC) and posterior lateral (PLC) corners posterior to anterior medial 957 (AMC) and posterior medial (PMC) corners, respectively, giving characteristic swept-back 958 appearance. Leading and distal margins highly variable, ranging from moderately to weakly 959 curved. ALC and denticles ranging from moderate to obliterated. Trailing margin concave, 960 strongly curved. Anterior blister row (AB) as thick as median (MB) and posterior (PB) rows 961 combined. Individual MB and PB subequal in area. Central paranotal blisters (CB), 962 occupying two-thirds of paranotal breadth. Lateral blisters (LB) unusually distinct, extending 963 anteriorly past all setiferous denticles, aligned with longitudinal axis.

964	Gonopod (Figs. 23, 24, 25): Gonocoxa ventral lobe with two gonocoxal plates stacked					
965	dorsoventrally (Fig. 25A). Telopodite uniformly curved. Pulvillus elongate, pointed, much					
966	closer to base of acropodite than terminus. Processes e1, e3, m3 absent. Process e2 very					
967	small, lobelike (Fig. 25A); e4 medium-sized, unusually prominent, basal to terminal bristles.					
968	Ectal surface also with large flange (possibly homologous to $e3$) between processes $m2$ and					
969	m4 (Figs. 23A, 24A, 25A). Process m1 unusually large, subtriangular, proximal to pulvillus;					
970	m2 large, subtriangular, midway between base and terminus of acropodite; m4 small (Fig.					
971	23B, 24B, 25B).					
972						
973	Range: Southern Arkansas northward through Missouri and Illinois to Lake Michigan. Most					
974	commonly collected near the Mississippi River and its tributaries.					
975						
976	Additional specimens examined: FMNH INS7107*					
977						
978						
979	Pseudopolydesmus caddo Chamberlin, 1949					
980	Pseudopolydesmus caddo Chamberlin, 1949. Journal of the Washington Academy of Sciences					
981	39(3): 97, fig. 11. MALE HT (USNM, vidi) from five miles northwest of Shreveport,					
982	Caddo Par., Louisiana, collected by L. Hubricht, 13 April 1936. The original					
983	description lists two males and one female.					
984	Pseudopolydesmus caddo: Chamberlin & Hoffman, 1958. Bulletin of the United States					
985	National Museum 212: 69.					
986	[Pseudopolydesmus caddo: Withrow, 1988. Unpublished D. Phil. Thesis, Ohio State					
987	University: 115, figs. 50, 77, 96, 100, 104, 116, 118, 122-126, map 9, tables 9-11.]					

988	Pseudopolydesmus caddo: Hoffman, 1999. Virginia Museum of Natural History Special					
989	Publication 8: 442.					
990						
991	Pseudopolydesmus bidens Loomis, 1959. Journal of the Washington Academy of Sciences 49:					
992	161, fig. 8. MALE HT (USNM, vidi) from site beside U.S. Highway 190, between					
993	Kinder and Le Blanc, Allen Par., Louisiana, collected by E.M. Loomis & H.F.					
994	Loomis, 20 December 1958. Original description lists seven males and five females.					
995	Synonymized by [Withrow, 1988: 115 and] Hoffman, 1999: 442 (listed as syn. nov.).					
996						
997	Type Notes:					
998	Pseudopolydesmus caddo MALE HT (USNM, vidi): caddo type lot contains one female					
999	specimen, labeled Lectoallotype, and two male specimens as reported by Chamberlin					
1000	in the original description. In both males, the gonopods are dissected out; they are					
1001	missing from one male specimen. In the male specimen labeled HT, the gonopods are					
1002	separated in a small vial; the tip of the telopodite of the left gonopod is broken off.					
1003	Pseudopolydesmus bidens MALE HT (USNM, vidi): bidens type lot consists of one intact					
1004	female specimen and three males. One male specimen is intact, with both gonopods in					
1005	situ; one male's dissected gonopods are stored in a genitalia vial. One male in a tube					
1006	labeled Holotype contains a complete specimen and two separated dissected					
1007	gonopods.					
1008						
1009	Diagnosis:					
1010	Size: Small, with body length ranging from 7.5 to 13.3 mm and an average body					
1011	length of 10.0 mm (n=28, Withrow, 1988: 119). Comparable in size to <i>P. minor</i> and <i>P.</i>					
1012	paludicolus. Clearly smaller than all other congeneric species.					

1013	Paranota and tergal sculpture (Fig. 26): Corners of paranota forming a roughly						
1014	trapezoidal quadrilateral, with lateral edge longer than medial edge, giving the paranota a						
1015	characteristic flared-out appearance. Leading margin moderately curved, distal margin nearly						
1016	straight, trailing margin strongly concave. Anterior lateral corner (ALC) and denticles always						
1017	strongly distinct. Anterior blister row (AB) thicker medially than median blister row (MB),						
1018	MB thicker than posterior blister row (PB). MB2 much larger in area than MB1. Tergal						
1019	blisters poorly differentiated, PB row nearly obliterated except lateral sulcus of PB3. Central						
1020	paranotal blisters (CB), occupying two-thirds of paranotal breadth. Lateral blisters (LB)						
1021	aligned with longitudinal axis.						
1022	Gonopod (Figs. 27, 28): Gonocoxa ventral lobe with single gonocoxal plate.						
1023	Telopodite uniformly curved. Pulvillus elongate, pointed, midway between base and terminus						
1024	of acropodite. Processes e1, e2, e4, m3 absent. Process e3 projecting from a flanged ectal						
1025	lamina (Fig. 28B). Processes m1, m2, m4 all medium-sized, subtriangular; m1 at base of						
1026	pulvillus; m2 connected to e2 via weak transverse ridge (not as distinct as in P. serratus); m4						
1027	proximal to terminal bristles. Our process $m4$ may actually be homologous to $e4$ in other						
1028	Pseudopolydesmus: it is located subterminally on the acropodite and, in both the bidens and						
1029	caddo type specimens, does not bear proximal bristles (though the specimens may have been						
1030	damaged).						
1031							
1032	Range: Coast and coastal plain of the Gulf of Mexico, from eastern Texas to southern						
1033	Mississippi.						
1034							
1035							
1036	Pseudopolydesmus paludicolus Hoffman, 1950						

- 1037 Pseudopolydesmus paludicolus Hoffman, 1950. The Virginia Journal of Science 1(3): 222,
- fig. 4. MALE HT (USNM, *vidi*) from Sand Bridge, City of Virginia Beach, Princess
 Anne Co., Virginia, collected by L.M. Carter, H.I. Kleinpeter & R.L. Hoffman, 8 May
 1040 1949.
- 1041 *Pseudopolydesmus paludicolus:--* Chamberlin & Hoffman, 1958. *Bulletin of the United*1042 *States National Museum* 212: 70.
- 1043 [*Pseudopolydesmus paludicola* [sic]:-- Withrow, 1988. Unpublished D. Phil. Thesis, Ohio
 1044 State University: 111, figs. 95, 99, 103, 126, map 9, table 11.]
- 1045 Pseudopolydesmus paludicolus:-- Hoffman, 1999. Virginia Museum of Natural History
 1046 Special Publication 8: 445.
- 1047
- Type Notes: *Pseudopolydesmus paludicolus* MALE HT (USNM, *vidi*): Single intact male in
 vial, gonopods missing (Sierwald, November 2015).
- 1050

1051 **Diagnosis:**

1052 Size: Small, with male body length measured at 11 and 13 mm (n=2, Withrow, 1988: 1053 111). Comparable in size to *P. minor* and *P. caddo*. Clearly smaller than all other congeneric 1054 species. May be mistaken *e.g.* for the similarly sized *Polydesmus inconstans* because, unlike 1055 in most *Pseudopolydesmus*, the collum is narrower than the mandibles and tergal setae are 1056 clearly visible under dissecting microscope.

Paranota and tergal sculpture (Fig. 29): Corners of paranota forming a longitudinally oblong rectangle. Leading and distal margins moderately curved. Denticles strongly distinct with unusually long, easily visible setae, but anterior lateral corner (ALC) indistinct. Trailing margin concave, strongly curved. Anterior blister row (AB) thicker than median blister row (MB) along its entire breadth, MB row thicker than posterior blister row (PB). Individual MB

1062	subequal in area, as are individual PB. Central paranotal blisters (CB), occupying two-thirds					
1063	of paranotal breadth. Lateral blisters (LB) aligned with longitudinal axis. Tergal and					
1064	paranotal blisters also with unusually long, easily visible setae.					
1065	Gonopod (Figs. 30, 31): Gonocoxa ventral lobe with two gonocoxal plates stacked					
1066	dorsoventrally (Fig. 31). Telopodite roughly boomerang-shaped, abruptly kinked distal from					
1067	pulvillus, curving terminally. Pulvillus very small (comparable in size to process $m1$),					
1068	pointed, slightly closer to base of acropodite than terminus. Processes e1, e3, m4 absent.					
1069	Process e2 projecting laterally (Fig. 30C); e4 unusually large, spike-shaped. Process m1					
1070	unusually large, subtriangular, medial of pulvillus; $m2$ and $m3$ medium-sized, connected by a					
1071	shared lamina (Figs. 30, 31); m2 offset laterad from m3 (Fig. 30C).					
1072						
1073	Range: Coastal plain of southeastern Virginia south to South Carolina.					
1074						
1075	Additional specimens examined: VTEC MPE1167*, 1169*, 1170*					
1076						
1077						
1078	Pseudopolydesmus serratus (Say, 1821)					
1079	Polydesmus serratus Say, 1821. Journal of the Academy of Natural Sciences of Philadelphia					
1080	2(1): 106. Type material no longer extant. According to Hoffman (1999), Say					
1081	collected millipedes on Assateague and Chincoteague Islands, off the eastern shore of					
1082	Virginia. New collections from this area could serve as material to designate a					
1083	neotype. In his description, Say noted this species was found under the bark of Pinus					
1084	variabilis, now a synonym of Pinus echinata, shortleaf pine.					
1085	Polydesmus serratus: Gervais, 1847. Histoire naturelle des Insectes. Aptères 4: 105.					

- 1086 Polydesmus serratus:-- Saussure, 1860. Mémoires de la Société de Physiques et d'Histoire
 1087 naturelle de Genève 15(2): 325.
- 1088 Polydesmus serratus:-- Peters, 1864. Monatsberichte der Königlich Preußischen Akademie
 1089 der Wissenschaften zu Berlin 1864(7): 539.
- 1090 Polydesmus serratus:-- Bollman, 1887b. Proceedings of the United States National Museum
 1091 10: 620. Lists P. canadensis and P. glaucescens as junior synonyms of P. serratus.
- 1092 Polydesmus serratus:-- Williams & Hefner, 1928. Ohio State University Bulletin 33(7): 112,
 1093 fig. 13B.
- 1094 Pseudopolydesmus serratus:-- Attems, 1940. Das Tierreich 70: 141. Uncertain placement.
- 1095 *Pseudopolydesmus serratus:--* Chamberlin, 1943c. *Bulletin of the University of Utah* 34(6):
 1096 18.
- 1097 Pseudopolydesmus serratus:-- Chamberlin, 1951. Great Basin Naturalist 11(1-2): 27.
- 1098 Pseudopolydesmus serratus:-- Causey, 1952. The Chicago Academy of Sciences Natural
 1099 History Miscellanea 106: 6.
- 1100 *Pseudopolydesmus serratus:--* Chamberlin & Hoffman, 1958. *Bulletin of the United States*1101 *National Museum* 212: 71.
- Pseudopolydesmus serratus:-- Loomis, 1959. Journal of the Washington Academy of
 Sciences 49(5): 161.
- 1104 Pseudopolydesmus serratus:-- Ramsey, 1966. Ohio Journal of Science 66(3): 339.
- 1105 [Pseudopolydesmus serratus:-- Withrow, 1988. Unpublished D. Phil. Thesis, Ohio State
- 1106 University: 103, figs. 12, 45, 46, 48, 57, 59, 63, 66, 67, 69, 78, 81, 94, 98, 102, 120,
- 1107 122-126, map 8, tables 9-11.]
- Pseudopolydesmus serratus:-- Hoffman, 1999. Virginia Museum of Natural History Special
 Publication 8: 446.

1110	Pseudopolydesmus serratus: Shelley, 2000. Insecta Mundi 14(4): 246. New record for
1111	Florida.
1112	Pseudopolydesmus serratus: Shelley & Snyder, 2012. Insecta Mundi 0239: 6, figs 2-4.
1113	

1115 13: 216, figs. 43-44. Wood's illustration of a gonopod of *P. canadensis* matches *P.*1116 *serratus*. Adding to the confusion, his illustration of the gonopods of *P. serratus* (fig.

Polydesmus canadensis: -- Wood, 1865. Transactions of the American Philosophical Society

1117 42) clearly does not agree with either *P. serratus* or *P. canadensis*.

- 1118 Pseudopolydesmus canadensis:-- Attems, 1898. Denkschriften der Kaiserlichen Akademie
- 1119 *der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe* 67: 480, fig. 244.
- 1120 Pseudopolydesmus canadensis:-- Verhoeff, 1931. Zoologischer Anzeiger 94(11-12): 305,

1121 figs. 1-7. Anatomical examination of the gonopod.

- 1122 Pseudopolydesmus canadensis:-- Attems, 1940. Das Tierreich 70: 140, fig. 201.
- 1123

- 1124 ?Polydesmus pennsylvanicus C.L. Koch, 1847. Kritische Revision der Insectenfaune
- 1125 *Deutschlands* 3: 133. Type material unknown, from 'Pensylvanien'. Synonymized by
- 1126 Chamberlin & Hoffman, 1958: 71 [and Withrow, 1988: 104]; tentatively
- synonymized by Bollman, 1887b: 621 and Hoffman, 1999: 446.
- Polydesmus pensylvanicus [sic]:-- C.L. Koch 1863. Die Myriapoden. Getreu nach der Natur
 abgebildet und beschrieben. Band 2: 18-19, pl. 69: fig. 142.
- 1130
- 1131 Polydesmus scopus Chamberlin, 1942a. The Canadian Entomologist 74: 16, fig. 1. MALE
- 1132 HT (USNM, *vidi*) from The Ledges, six miles south of Boone, Boone Co., Iowa,
- 1133 collected by D.T. Jones, 19 May 1941; one female collected close by. Synonymized
- 1134 by [Withrow, 1988: 104 and] Hoffman, 1999: 446 (listed as *syn. nov.*).

1135	Pseudopolydesmus scopus: Chamberlin & Hoffman, 1958. Bulletin of the United States					
1136	National Museum 212: 71.					
1137						
1138	Polydesmus planicolens Chamberlin, 1942a. The Canadian Entomologist 74: 16, fig. 2.					
1139	MALE HT (USNM, vidi) from Ames, Story Co., Iowa, collected by D.T Jones, spring					
1140	1941. Synonymized by [Withrow, 1988: 104 and] Hoffman, 1999: 446 (listed as syn.					
1141	<i>nov</i> .).					
1142	Pseudopolydesmus planicolens: Chamberlin & Hoffman, 1958. Bulletin of the United States					
1143	National Museum 212: 71.					
1144						
1145	Type Notes:					
1146	Polydesmus scopus MALE HT (USNM, vidi): One Chamberlin vial, identified by Withrow as					
1147	serratus, single male in fragments with one loose gonopod, identifiable as serratus.					
1148	Polydesmus planicolens MALE HT (USNM, vidi): One Chamberlin vial, identified by					
1149	Withrow as <i>serratus</i> , single male in fragments with two gonopods in small vial;					
1150	gnathochilarium dissected.					
1151						
1152	Diagnosis:					
1153	Size: Usually large, with body length ranging from 13.2 to 32 mm and an average					
1154	body length of 22.7 mm (n=500, Withrow, 1988: 108, 199). Comparable in size to P.					
1155	canadensis and P. erasus. Usually larger than P. collinus and P. pinetorum.					
1156	Paranota and tergal sculpture (Fig. 32): Corners of paranota forming a trapezoid, with					
1157	the anterior (AMC to ALC) edge longer than the posterior (PMC to PLC) edge. Ratio of					
1158	anterior to posterior edge length larger than in P. erasus. Leading and distal margins					
1159	moderately curved, similar to P. erasus but less curved than P. canadensis and P. collinus.					

1160 Denticles moderate to obliterated. Trailing margin concave, moderately curved. Anterior 1161 (AB) and median (MB) blister rows subequal in thickness, AB and MB rows much thicker 1162 than posterior blister row (PB). MB2 only slightly larger in area than MB1, individual PB 1163 subequal in area. Central paranotal blisters (CB), occupying two-thirds of paranotal breadth. 1164 Lateral blisters (LB) anteriorly widening laterad. 1165 Gonopod (Figs. 8, 33): Gonocoxa ventral lobe with two gonocoxal plates stacked 1166 dorsoventrally (Fig. 33A). Telopodite slender, kinked at pulvillus, strongly curved terminally. 1167 Pulvillus medium-sized, rounded, midway between base and terminus of acropodite. 1168 Processes e1, e3, m3, m4 absent. Process e2 large, subtriangular, connected to m2 via 1169 prominent transverse ridge (Fig. 8); e4 small, surrounded by terminal bristles (Fig. 33A). 1170 Process *m1* medium-sized, medial of pulvillus; *m2* large, subtriangular (Fig. 33B). 1171 1172 Range: Minnesota east to southern Quebec, south to northern South Carolina, west to east 1173 Texas. Absent from Georgia and peninsular Florida. 1174 1175 Additional specimens examined: FMNH INS1413, 1416, 1423, 1436, 1441, 1443, 1452, 1176 1453, 1454, 1495, 1513, 1514, 1517, 1559, 1572, 1576, 2817*, 2818, 2819*, 2820, 2821, 2823, 2827, 2828, 2829, 2832, 2833, 2835, 4814, 7103, 7104, 7109, 7185, 1177 7207, 7312, 7316, 7348, 7363, 7366, 7373, 7384, 7390, 7490, **8238*; VTEC** 1178 1179 **MPE01173***

1180 ACKNOWLEDGEMENTS

- 1181 We are grateful to Jonathan Coddington and Dana De Roche for the loan of the type
- specimens of *Pseudopolydesmus* from the USNM. Dana De Roche generously supported
- 1183 work on the specimens during the visit of PS. Betty Strack (FMNH) assisted PS and XJZ in
- scanning electron microscope work. Lisa Kanellos (FMNH) illustrated the line drawings
- 1185 (Figs 3 and 4). We thank Kal Ivanov and staff at the VMNH for the loan of
- 1186 *Pseudopolydesmus* specimens and support during visits by DAH and PEM. Jackson Means
- 1187 provided specimens and support in the field. We also thank Sergei Golovatch and two other,
- anonymous reviewers for their contribution. Specimens were collected under a permit from
- the Virginia Department of Game and Inland Fisheries (VADGIF Permit No. 0569580).
- 1190 Research on this project was funded by NSF grant DEB 12-56150 to PS and NSF grant DEB1191 1655635 to PEM.
- 1192 Conflict of interest: PS and her husband (Rüdiger Bieler) are associate editors of the
- 1193 Zoological Journal of the Linnean Society.
- 1194

1195 **REFERENCES**

- 1196 Attems CMT Graf von. 1894. Die Copulationsfüsse der Polydesmiden. Sitzungsberichte der
- 1197 Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche
- 1198 *Classe, Abteilung I* 103: 39-54.
- 1199 Attems CMT Graf von. 1898. System der Polydesmiden I. Theil. Denkschriften der
- 1200 Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche
- 1201 *Classe* 67: 221-482.
- 1202 Attems CMT Graf von. 1914. Die indo-australischen Myriopoden. Archiv für
- 1203 *Naturgeschichte, Abteilung A* 80(4): 1-398.
- Attems CMT Graf von. 1926. Progoneata. In: Kükenthal WG, ed. *Handbuch der Zoologie*4(1): 7-238.
- 1206 Attems CMT Graf von. 1940. Myriapoda 3. Polydesmoidea III. Fam. Polydesmidae,
- 1207 Vanhoeffeniidae, Cryptodesmidae, Oniscodesmidae, Sphaerotrichopidae,
- 1208 Periodontodesmidae, Rhachidesmidae, Macellolophidae, Pandirodesmidae. Das
- 1209 *Tierreich* 70: 1-577.
- 1210 Bollman CH. 1887a. New genus and species of Polydesmidae. Entomologica Americana
- 1211 3(3): 45-46.

- 1212 Bollman CH. 1887b. Description of fourteen new species of North American myriapods.
- 1213 Proceedings of the United States National Museum 10: 617-627.
- Bollman CH. 1888. A preliminary list of the Myriapoda of Arkansas, with descriptions of
 new species. *Entomologica Americana* 4(1): 1-8.
- Brölemann HW. 1916. Essai de classification des Polydesmiens. *Annales de la Société Entomologique de France* 84: 523-608.
- 1218 Carl J. 1902. Exotische Polydesmiden. Revue Suisse de Zoologie 10: 563-679.
- 1219 Carl J. 1941. Diplopodenstudien V. 3. Die Gonopoden der Gattung *Pseudopolydesmus* Att.
 1220 Zoologischer Anzeiger 133(11-12): 291-295.
- Causey NB. 1952. Some records and descriptions of polydesmoid millipeds from the United
 States. *The Chicago Academy of Sciences Natural History Miscellanea* 106: 1-11.
- 1223 Chamberlin RV. 1942a. On a collection of myriapods from Iowa. *The Canadian*

1224 *Entomologist* 74: 15-17.

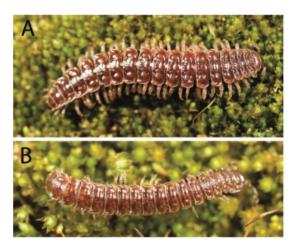
- 1225 Chamberlin RV. 1942b. New southern millipeds. *Bulletin of the University of Utah* 32(8): 11226 19.
- 1227 Chamberlin RV. 1943a. A new *Polydesmus* from Missouri and Oklahoma (Diplopoda).
- 1228 *Entomological News* 54(1): 15-16.
- 1229 Chamberlin RV. 1943b. On nine North American polydesmoid millipeds. *Proceedings of the* 1230 *Biological Society of Washington* 56: 35-40.
- 1231 Chamberlin RV. 1943c. On some genera and species of American millipeds. *Bulletin of the*
- 1232 *University of Utah* 34(6): 1-20.
- 1233 Chamberlin RV. 1946. On four millipeds from Georgia and Mississippi. *Proceedings of the* 1234 *Biological Society of Washington* 59: 139-142.

- 1235 Chamberlin RV. 1947. Some records and descriptions of diplopods chiefly in the collection
 1236 of the academy. *Proceedings of the Academy of Natural Sciences of Philadelphia* 99:
 1237 21-58.
- 1238 Chamberlin RV. 1949. Some millipeds of the families Polydesmidae and Xystodesmidae.
 1239 *Journal of the Washington Academy of Sciences* 39(3): 94-102.
- 1240 Chamberlin RV. 1951. Records of American millipeds and centipeds collected by Dr. D.
 1241 Elden Beck in 1950. *Great Basin Naturalist* 11(1-2): 27-35.
- 1242 Chamberlin RV, Hoffman RL. 1958. Checklist of the millipeds of North America. *Bulletin of*1243 *the United States National Museum* 212: 1-236.
- 1244 Djursvoll P. 2008. Revision of the Iberian millipede genus Schizomeritus Verhoeff, 1931
- 1245 (Diplopoda: Polydesmidae), with the description of three new species. International1246 Journal of Myriapodology. 1: 111-122.
- 1247 Djursvoll P, Golovatch SI, Johanson KA, Meidell BA. 2000. Phylogenetic relationships
- 1248 within *Polydesmus sensu lato* (Diplopoda: Polydesmidae). In: Wytwer J, Golovatch
- 1249 SI, eds. Progress in Studies on Myriapoda and Onychophora. Fragmenta Faunistica
- 1250 43, Supplement: 37-59.
- Gervais P. 1847. Myriapodes. In: Walckenaer CA, ed. *Histoire naturelle des Insectes*. *Aptères* 4: 1-623.
- Golovatch SI. 1991. The millipede family Polydesmidae in Southeast Asia, with notes on
 phylogeny (Diplopoda: Polydesmida). *Steenstrupia* 17: 141-159.
- 1255 Golovatch SI. 2013. Two new and one little-known species of the millipede genus
- 1256 *Epanerchodus* Attems, 1901 from southern China (Diplopoda, Polydesmida,
- 1257 Polydesmidae). *Fragmenta Faunistica* 56(2): 157-166.

Golovatch SI, Geoffroy JJ. 2006. Review of the Southeast Asian millipede genus *Pacidesmus*Golovatch, with the description of a new troglobitic species from southern China

1260 (Diplopoda: Polydesmida: Polydesmidae). Zootaxa 1325: 363-368.

- Hoffman RL. 1950. Notes on some Virginia millipeds of the family Polydesmidae. *The Virginia Journal of Science* 1(3): 219-225.
- 1263 Hoffman RL. 1974. A new polydesmid milliped from the southern Appalachians, with
- remarks on the status of *Dixidesmus* and a proposed terminology for polydesmid
 gonopods. *Proceedings of the Biological Society of Washington* 87(31): 345-350.
- Hoffman RL. 1980. *Classification of the Diplopoda*. Geneva: Muséum d'Histoire Naturelle
 de Genève.
- Hoffman RL. 1999. Checklist of the millipeds of North and Middle America. *Virginia Museum of Natural History Special Publication* 8: 1-584.
- 1270 International Commission of Zoological Nomenclature. 1999. International Code of
 1271 Zoological Nomenclature. Fourth Edition. The International Trust for Zoological
 1272 Nomenclature, London, UK. 306 pp.
- 1273 Jeekel CAW. 1965. The identity of *Dalodesmus tectus* Cook, 1896, and the status of the
- family names Dalodesmidae Cook, 1896, Vanhoeffeniidae Attems, 1914, and
- 1275 Sphaerotrichopodidae Attems, 1914 (Diplopoda, Polydesmida). *Entomologische*1276 *Berichten* 25: 236-239.
- Johnson BM. 1954. A new species of milliped, genus *Dixidesmus*, from Michigan. *The Chicago Academy of Sciences Natural History Miscellanea* 137: 1-5.
- 1279 Koch CL. 1847. System der Myriapoden mit den Verzeichnissen und Berichtigungen zu
 1280 Deutschlands Crustaceen, Myriapoden und Arachniden. In: Panzer GWF, Herrich-
- 1281 Schäffer A, eds. *Kritische Revision der Insectenfaune Deutschlands* 3: 1-196.


- 1282 Koch CL. 1863. *Die Myriapoden. Getreu nach der Natur abgebildet und beschrieben. Band*1283 *I.* Halle, 1-134.
- 1284 Koch CL. 1863. *Die Myriapoden. Getreu nach der Natur abgebildet und beschrieben. Band*1285 2. Halle, 1-112.
- Lawrence RF. 1954. Fluorescence in Arthropoda. *Journal of the Entomological Society of Southern Africa* 17(2): 167-170.
- Loomis HF. 1943. New cave and epigean millipeds of the United States, with notes on some
 established species. *Bulletin of the Museum of Comparative Zoology* 92(7): 371-410.
- Loomis HF. 1959. Millipeds collected en route from Florida to San Antonio, Texas, and
 vicinity. *Journal of the Washington Academy of Sciences* 49(5): 157-163.
- Loomis HF, Hoffman RL. 1948. Synonymy of various diplopods. *Proceedings of the Biological Society of Washington* 61: 51-54.
- Marek PE 2017. Ultraviolet-induced fluorescent imaging for millipede taxonomy. *Research Ideas and Outcomes* 3: 1-14.
- 1296 Means JC, Francis EA, Lane AA, Marek PE. 2015. A general methodology for collecting and
- 1297 preserving xystodesmid and other large millipedes for biodiversity research.
- 1298 Biodiversity Data Journal 3: e5665.
- Newport G. 1844. A list of the species of Myriapoda, order Chilognatha, contained in the
 cabinets of the British Museum, with description of a new genus and thirty-two new
 species. *The Annals and Magazine of Natural History* 13: 263-270.
- Nguyen DA. 2009. A new species of the family Polydesmidae (Diplopoda: Polydesmida)
 from Vietnam. *International Journal of Myriapodology* 2(1): 63-68.
- 1304 Peters WCH. 1864. Übersicht der im Königl. zoologischen Museum befindlichen
- 1305 Myriopoden aus der Familie der *Polydesmi*, so wie Beschreibungen einer neuen
- 1306 Gattung, *Trachyjulus*, der *Juli* und neuer Arten der Gattung *Siphonophora*.

- Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin
 1308 1864(7): 529-551.
- 1309 Petit G. 1976. Developpements compares des appendices copulateurs (gonopodes) chez
- 1310 Polydesmus angustus Latzel et Brachydesmus superus Latzel (Diplopodes:
- 1311Polydesmidae). International Journal of Insect Morphology and Embryology 5(4-5):
- 1312 261-272.
- 1313 Ramsey JM. 1966. Vast migrating armies of the millipede, *Pseudopolydesmus serratus* (Say)
 1314 in the Dayton region. *Ohio Journal of Science* 66(3): 339.
- 1315 Remane A. 1952. Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie
 1316 und der Phylogenetik. Liepzig: Geest & Portig.
- 1317 Rubin M, Lamsdell JC, Prendini L, Hopkins MJ. 2017. Exocuticular hyaline layer of sea
- scorpions and horseshoe crabs suggests cuticular fluorescence is plesiomorphic in
 chelicerates. *Journal of Zoology* 303: 245-253.
- 1320 Say T. 1821. Description of the Myriapodae of the United States. *Journal of the Academy of*1321 *Natural Sciences of Philadelphia* 2(1): 102-114.
- 1322 Saussure HLF de. 1860. Faune des Myriapodes du Mexique avec la description de quelques
- 1323 espèces des autres parties de l'Amerique. *Mémoires de la Société de Physiques et*
- 1324 *d'Histoire naturelle de Genève* 15(2): 259-393.
- Saussure HLF de, Humbert A. 1870. Études sur les Myriapodes. In: Milne-Edwards M, ed. *Mission scientifique au Mexique et dans l'Amérique centrale: Recherches*
- 1327 *Zoologiques* 6(2): 1-211.
- 1328 Shear WA. 2012. *Snoqualmia*, a new polydesmid millipede genus from the northwestern
- 1329 United States, with a description of two new species (Diplopoda, Polydesmida,
- 1330 Polydesmidae). *Insecta Mundi* 0238: 1-13.

1331	Shear WA, Reddell JM. 2017. Cave millipedes of the United States. XIV. Revalidation of the					
1332	genus Speorthus Chamberlin, 1952 (Diplopoda, Polydesmida, Macrosternodesmidae),					
1333	with a description of a new species from Texas and remarks on the families					
1334	Polydesmidae and Macrosternodesmidae in North America. Insecta Mundi 0529: 1-					
1335	13.					
1336	Shelley RM. 1988. The millipeds of eastern Canada (Arthropoda: Diplopoda). Canadian					
1337	Journal of Zoology 66: 1638-1663.					
1338	Shelley RM. 1993. Revision of the milliped genus Scytonotus Koch (Polydesmida:					
1339	Polydesmidae). Brimleyana 19: 1-60.					
1340	Shelley RM. 1996. The identity of Alpertia lunatifrons Loomis (Polydesmida:					
1341	Polydesmidae), with records of introduced polydesmids from the northwestern states,					
1342	deletion of <i>Polydesmus racovitza</i> i Brölemann, and identification of invalid taxa.					
1343	Myriapodologica 4: 17-20.					
1344	Shelley RM. 2000. Annotated checklist of the millipeds of Florida (Arthropoda: Diplopoda).					
1345	Insecta Mundi 14(4): 241-251.					
1346	Shelley RM, Snyder BA. 2012. Millipeds from the eastern Dakotas and western Minnesota,					
1347	USA, with an account of Pseudopolydesmus serratus (Say, 1821) (Polydesmida:					
1348	Polydesmidae); first published records from six states and the District of Columbia.					
1349	Insecta Mundi 0239: 1-17.					
1350	Sierwald P. 2018. Polydesmus Latrellie, 1802. In: Sierwald P. & Spelda J. MilliBase.					
1351	Accessed at <u>http://millibase.org/aphia.php?p=taxdetails&id=894050</u> on 2018-05-22.					
1352	Sierwald P, Bond JE, Gurda GT. 2005. The millipede type specimens in the collections of the					
1353	Field Museum of Natural History (Arthropoda: Diplopoda). Zootaxa 1005: 1-64.					
1354	Verhoeff KW. 1928. Zur Kenntnis der Diplopodenfauna Ungarns. 109. Diplopoden-Aufsatz					
1355	(Chilopoden). Állattani Közlemények 25 (3-4): 182-199.					

1356	Verhoeff KW.	1929. Zur Syste	ematik, vergle	ichenden Mor	phologie und	Geographie


- 1357 europäischer Diplopoden, zugleich ein zoogeographischer Beitrag. 111. Diplopoden-
- 1358 Aufsatz. Zoologische Jahrbücher, Abteilung für Systematik, Ökologie und
- 1359 *Geographie der Tiere* 57: 555-659.
- 1360 Verhoeff KW. 1931. *Pseudopolydesmus* "im Wechsel der Zeiten". 122. Diplopoden-Aufsatz.
 1361 Zoologischer Anzeiger 94(11-12): 305-318.
- Welch VL, Van Hooijdonk E, Intrater N, Vigneron JP. 2012. Fluorescence in insects. In:
 Liang R, ed. *Conference Proceedings of SPIE: Nature of Light: Light in Nature IV*.
 Online.
- Williams SR, Hefner RA. 1928. The millipedes and centipedes of Ohio. [Ohio Biological
 Survey Bulletin 4(3)] *Ohio State University Bulletin* 33(7): 93-146.
- 1367 Withrow RP. 1988. Revision of the genus *Pseudopolydesmus* Attems, 1898 and its
- relationships to the North American genera of the family Polydesmidae Leach, 1815.
- 1369 Unpublished D. Phil. Thesis, Ohio State University. Available from: University
- 1370 Microfilms, Ann Arbor, Michigan, order number 8820372.
- 1371
- 1372

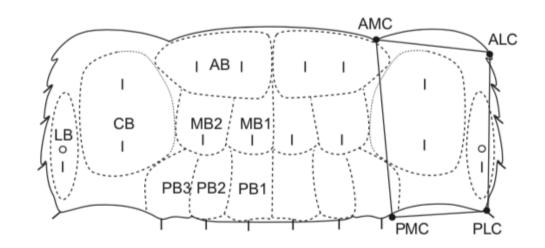
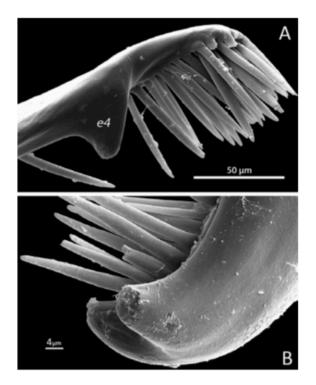


Figure 1. Two live examples of *Pseudopolydesmus*. A, *Pseudopolydesmus serratus*, live adult male, dorsal view (VTEC MPE1173). B, *Pseudopolydesmus paludicolus*, live adult female, dorsal view (VTEC MPE1167).



1374 Figure 2. Pseudopolydesmus erasus, adult male habitus, lateral view (FMNH INS3120685).

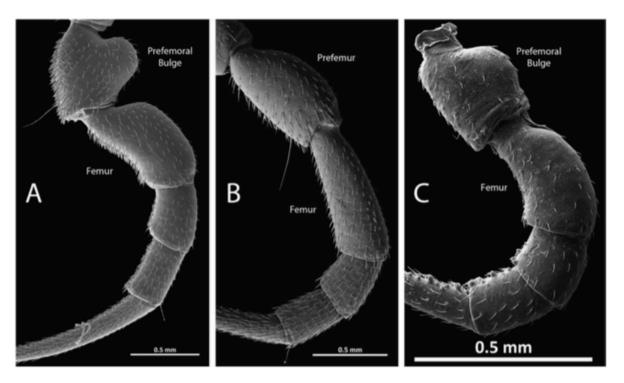


Figure 5. Features of the telopodite terminus in *Pseudopolydesmus* (scanning electron micrograph). A, terminal bristles in *Pseudopolydesmus canadensis* right gonopod, ectal view (FMNH INS6934). Unlike true setae, these bristles are not socketed at the base; instead, they project continuously from the cuticle of the telopodite. B, terminal bifurcation in *Pseudopolydesmus serratus* left gonopod, medial view (FMNH INS2819).

Figure 6. The characteristic prefemoral bulge in males of *Pseudopolydesmus*, and comparison of walking legs in *Pseudopolydesmus* and *Polydesmus* (scanning electron micrograph). A, adult male *Pseudopolydesmus erasus*, left leg 9, with characteristically large prefemoral bulge and thickened femur (FMNH INS3120685). B, adult female *Ps. erasus*, right leg 12, without prefemoral bulge (FMNH INS3120685). C, adult male *Polydesmus inconstans*, right leg 14, with slight prefemoral bulge and thickened femur (FMNH INS4265).

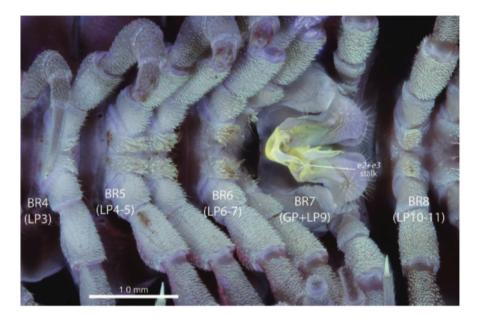
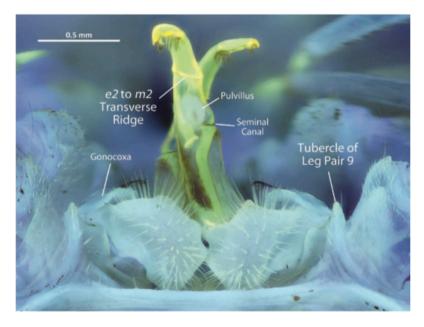
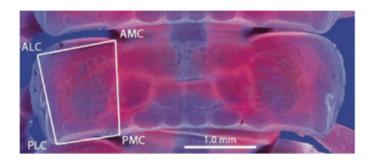
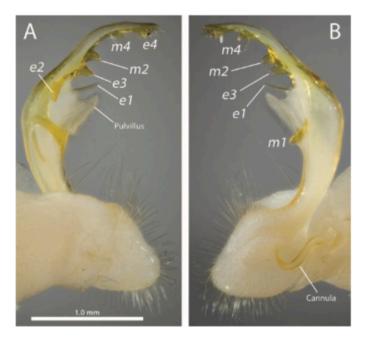
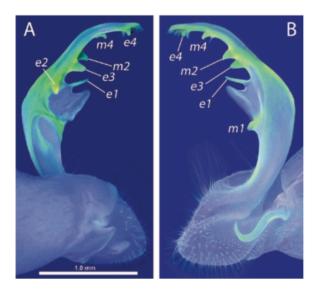


Figure 7. Sternal tubercles in male *Pseudopolydesmus canadensis*, ventral view, body rings 4-8 (FMNH INS6934, ultraviolet enhancement). Visible body rings (BR4-8) and their corresponding leg pairs (LP3-11) and gonopods (GPs) are labelled. Also note the characteristic silhouette of the gonopods of *Ps. canadensis*, with processes *e2* and *e3* sharing a narrow stalk.


Figure 8. Body ring 7 in adult male *Pseudopolydesmus serratus*, posterior view, showing gonopods and sternal tubercles of leg pair 9 (FMNH INS8238, ultraviolet enhancement). Note the prominent transverse ridge between processes e2 and m2 in the gonopods of *Ps. serratus*.

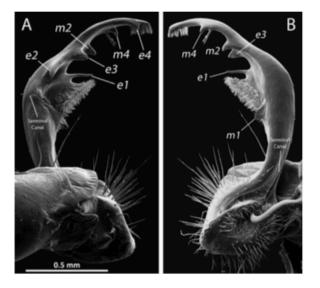
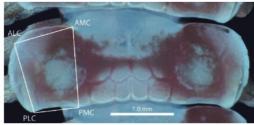
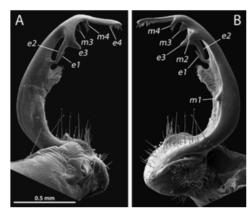
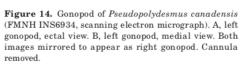
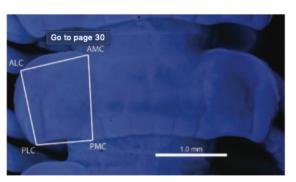
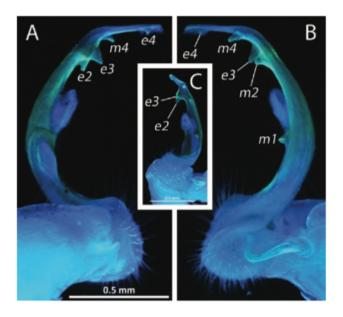

Figure 9. *Pseudopolydesmus erasus*, metatergite and paranota of body ring 9. Adult male (FMNH INS3120685, ultraviolet enhancement).

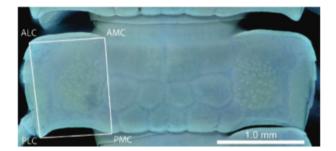
Figure 10. Gonopod of *Pseudopolydesmus erasus* (FMNH INS3120685). A, right gonopod, ectal view. B, left gonopod, medial view (image mirrored to match right gonopod).

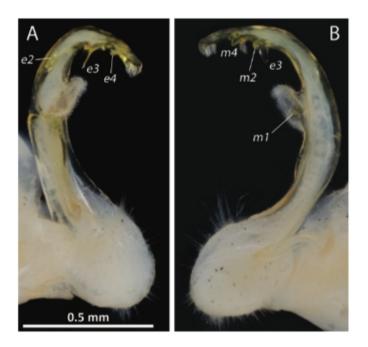
Figure 11. Gonopod of *Pseudopolydesmus erasus* (FMNH INS3120685, ultraviolet enhancement). A, right gonopod, ectal view. B, left gonopod, medial view (image mirrored to match right gonopod).

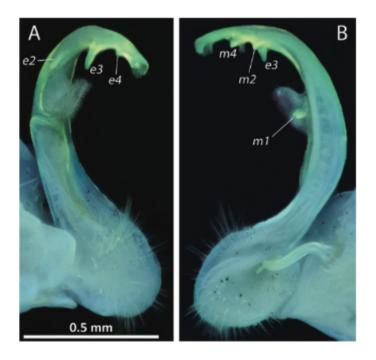
Figure 12. Gonopod of *Pseudopolydesmus erasus* (FMNH INS3120685, scanning electron micrograph). A, right gonopod, ectal view. B, right gonopod, medial view.

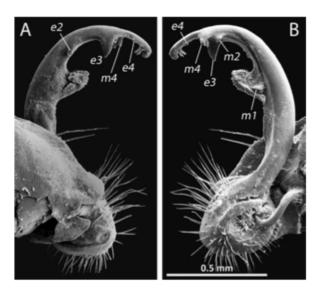






Figure 13. *Pseudopolydesmus canadensis*, metatergite and paranota of body ring 10. Adult male (FMNH INS3120683, ultraviolet enhancement).




Figure 15. *Pseudopolydesmus collinus*, metatergite and paranota of body ring 9. Paratype, adult male (VMNH PSE00202, ultraviolet enhancement).


Figure 16. Gonopod of *Pseudopolydesmus collinus*. Paratype (VMNH PSE00203, ulatraviolet enhancement). A, left gonopod, ectal view. B, left gonopod, medial view. C, left gonopod, posterior oblique view, showing fusion of *e2* and *e3* processes onto a short, thick stalk. All images mirrored to appear as right gonopod.


Figure 17. *Pseudopolydesmus pinetorum*, metatergite and paranota of body ring 10. Paratype, *Polydesmus hubrichti* type series vial from Glencoe Station, MO, USA, adult female (USNM, ultraviolet enhancement).

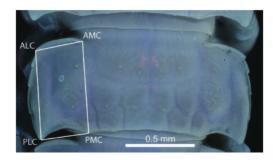

Figure 18. Gonopod of *Pseudopolydesmus pinetorum*. Holotype, *Polydesmus natchitoches*, from genitalia vial (USNM). A, left gonopod, ectal view. B, left gonopod, medial view. Both images mirrored to appear as right gonopod.

Figure 19. Gonopod of *Pseudopolydesmus pinetorum*. Holotype, *Polydesmus natchitoches*, from genitalia vial (USNM, ultraviolet enhancement). A, left gonopod, ectal view. B, left gonopod, medial view. Both images mirrored to appear as right gonopod.

Figure 20. Gonopod of *Pseudopolydesmus pinetorum* (FMNH INS1445, scanning electron micrograph). A, left gonopod, ectal view. B, left gonopod, medial view. Both images mirrored to appear as right gonopod.

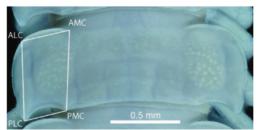
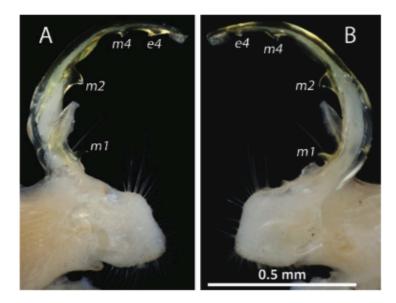
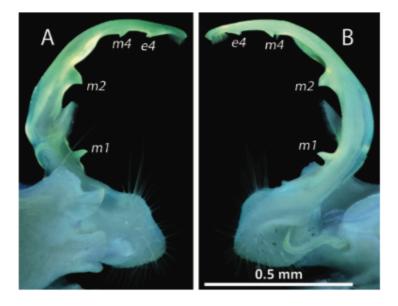
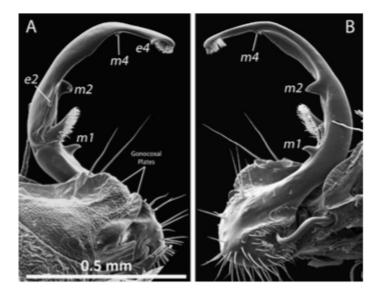
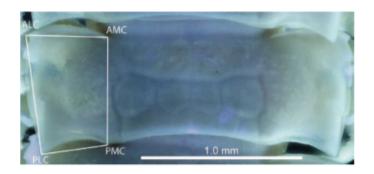
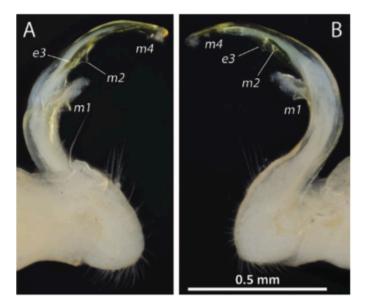
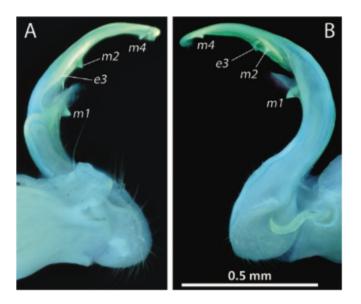




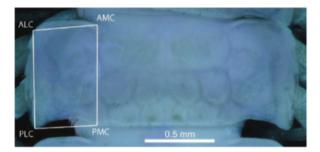
Figure 21. Pseudopolydesmus minor, metatergite and paranota of body ring 10. Holotype, Polydesmus euthetus (USNM, ultraviolet enhancement).

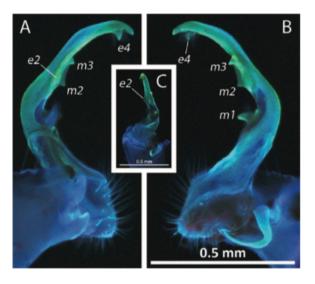

Figure 22. Pseudopolydesmus minor, metatergite and paranota of body ring 9. Paratype, Polydesmus neoterus type series, adult female (USNM, ultraviolet enhancement).


Figure 23. Gonopod of *Pseudopolydesmus minor*. Holotype, *Polydesmus euthetus* (USNM). A, right gonopod, ectal view. B, right gonopod, medial view.


Figure 24. Gonopod of *Pseudopolydesmus minor*. Holotype, *Polydesmus euthetus* (USNM, ultraviolet enhancement). A, right gonopod, ectal view. B, right gonopod, medial view.


Figure 25. Gonopod of *Pseudopolydesmus minor* (FMNH INS7107, scanning electron micrograph). A, right gonopod, ectal view. B, left gonopod, medial view (image mirrored to match right gonopod).


Figure 26. *Pseudopolydesmus caddo*, metatergite and paranota of body ring 10. Paratype, adult male (USNM, ultraviolet enhancement).


Figure 27. Gonopod of *Pseudopolydesmus caddo*. Holotype (USNM). A, right gonopod, ectal view. B, right gonopod, medial view.

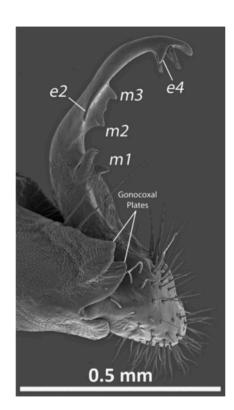

Figure 28. Gonopod of *Pseudopolydesmus caddo*. Holotype (USNM, ultraviolet enhancement). A, right gonopod, ectal view. B, right gonopod, medial view.

Figure 29. *Pseudopolydesmus paludicolus*, metatergite and paranota of body ring 13. Holotype, adult male (USNM, ultraviolet enhancement).

Figure 30. Gonopod of *Pseudopolydesmus paludicolus* (VTEC MPE1170, ultraviolet enhancement). A, left gonopod, ectal view. B, left gonopod, medial view. C, left gonopod, posterior oblique view, showing process *e2* projecting laterally. All images mirrored to appear as right gonopod.

Figure 31. Left gonopod of *Pseudopolydesmus paludicolus*, ectal view (VTEC MPE1169, scanning electron micrograph). Image mirrored to appear as right gonopod.

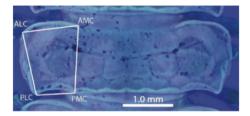


Figure 32. Pseudopolydesmus serratus, metatergite and paranota of body ring 9. Adult female (FMNH INS2817, ultraviolet enhancement).

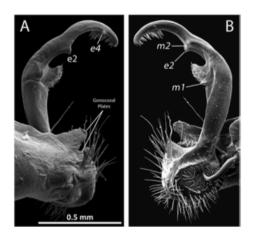


Figure 33. Gonopod of *Pseudopolydesmus serratus* (FMNH INS2819, scanning electron micrograph). A, left gonopod, ectal view. B, left gonopod, medial view. Both images mirrored to appear as right gonopod.