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Abstract 

The fracture toughness of soft elastomers or gels can be substantially enhanced by 

introducing various energy dissipation mechanisms into the bulk material. Bulk 

dissipation, manifested in the hysteresis of loading-unloading cycles, enables the 

formation of a dissipation zone around the crack tip that consumes most of the energy 

provided by the external loading to drive crack propagation, effectively increasing the 

fracture toughness. An in-depth understanding on how bulk dissipation contributes to 

fracture toughness is required to predict crack propagation in soft materials with 

significant hysteresis. However, the current understanding is limited to the qualitative or 

empirical level due to the complex nonlinear mechanics involved in soft material fracture. 

This paper presents a theoretical framework for calculating the energy dissipation 

associated with crack propagation. To demonstrate its utility, we focus on steady state 

crack propagation and consider a model material system with rate-independent hysteresis: 

a neo-Hookean solid with Mullins effect. We determine analytical relations between 

fracture toughness and the parameters governing bulk hysteresis, and quantitatively 

predict the reduction in fracture toughness due to pre-stretch. Both agree well with finite 

element results. The framework presented here can be applied to a broader range of 

dissipative soft materials, thus providing a theoretical tool to guide the engineering of soft 

materials with high toughness. 
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1. Introduction  

Soft materials that are resistant to fracture are highly desirable in a wide range of 

existing and emerging engineering applications, e.g. tires, sealants, pressure sensitive 

adhesives1, soft robotics2,3, biomedical implants4 and stretchable electronics5,6. 

Experimental characterization of the fracture resistance involves the propagation of a 

macroscopic crack under controlled mechanical loadings. Specifically, the fracture 

toughness Γ (unit: J/m2) is defined as the work required to advance the crack by a unit 

area. In reality, macroscopic cracks may originate from the growth and coalescence of 

small defects with various shapes and sizes. The effects of defects on fracture have been 

studied for many material systems7–9. For soft materials, a recent work by Chen et al.10 

showed that the toughness Γ, together with the bulk energy stored in the material at 

rupture, defines a critical length scale of defects below which the material becomes flaw 

insensitive, i.e., larger Γ implies that the material is less sensitive to defects. Therefore, Γ 

is an important parameter for evaluating a material’s brittleness in general.  

Tremendous research efforts have been devoted to enhancing the fracture 

toughness of soft elastomers or gels through various mechanisms such as sacrificial bond 

breaking11–14, viscoelasticity15,16, and particle fillers17,18. A common theme behind this 

diverse range of toughening mechanisms is bulk energy dissipation19, which prevents the 

energetic driving force provided by external loadings from being fully delivered to the 

crack tip, thereby effectively enhancing the fracture toughness. For these dissipative 

materials, the toughness Γ can be divided into an intrinsic toughness Γ0 and a term ΓD 

representing the contribution due to bulk energy dissipation19,20:    

 0 DΓ = Γ + Γ  . (1) 

Physically Γ0 is associated with the material failure processes at the crack tip to create 

new surfaces. For example, Lake and Thomas21 suggested that Γ0 for crosslinked rubbery 

networks is the energy required to scission polymer chains per unit area. Unlike Γ0, the 

physical processes underlying ΓD occur at a much larger length scale, especially for soft 

materials with dramatically enhanced toughness20. Consequently, ΓD can be much larger 

than Γ0, and may become dependent on the size of fracture samples. In addition, ΓD may 



3 
 

depend on loading rates for viscoelastic materials. As a result, in general ΓD cannot be 

regarded as a material property, and an accurate estimate of ΓD is necessary for 

understanding the fracture of soft materials with strong dissipation. 

Modeling ΓD for soft materials is a challenging task. Early efforts were focused 

on viscoelastic materials, including the theoretical picture of viscoelastic “trumpet” 

 proposed by de Gennes16 and several more rigorous analyses22–24. These works are all 

based on linear viscoelasticity. More recently, Brown25 and Tanaka26 developed scaling 

models to understand ΓD for double network gels with strong hysteresis. Although these 

works qualitatively captured the crack tip dissipation process, quantitative prediction of 

ΓD still remains elusive. As pointed out in a couple of reviews20,27, the nonlinearity 

associated with large deformation at crack tip plays a critical role in governing ΓD for soft 

materials, but has rarely been addressed due to the lack of knowledge about the complex 

nonlinear deformation field in the crack tip region. Recently, Zhang et al.28 made an 

encouraging progress in quantifying ΓD for a tough hydrogel with rate-independent 

hysteresis. Based on scaling analysis and a finite element (FE) model that incorporated 

large deformation kinematics and a nonlinear damage model for the gel, they derived an 

analytical relation between ΓD and bulk hysteresis parameters by fitting FE data. Despite 

its success, this approach relies on FE simulations and is empirical in nature. More 

theoretical insights that will enable a general strategy of calculating ΓD for soft 

dissipative materials are yet to be established.  

Here we present a theory to estimate ΓD and Γ for Mode-I plane stress cracks 

under steady state propagation. Specifically, we focus on a simple material as a model 

system: a neo-Hookean hyperelastic solid with rate-independent hysteresis described by 

the Ogden-Roxburgh model for the Mullins effect29. Our goal is to derive analytical 

expressions for ΓD and Γ based on theoretical considerations. Using this theory, we can 

also predict the reduction in toughness Γ due to pre-stretch which reduces bulk 

dissipation. This paper is organized as follows. In Section 2, we present the basic 

elements of our theory to estimate ΓD. In Section 3, we consider two limiting cases for 

estimating ΓD based on which an expression for intermediate cases is constructed and 

compared to finite element results. Moreover, we discuss in Section 4 the reduction in 
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fracture toughness due to pre-stretch. We conclude in Section 5 with a summary of our 

work followed by additional discussions.  

2. Energy release rate 

According to the Griffith’s fracture criterion, crack propagation would occur 

when G ≥ Γ, where G is the energy release rate. For linear elastic materials, G is defined 

as the potential energy, consisting of strain energy stored in the material and potential 

energy of the loading system, to be released if the crack grows by a unit area. For soft 

dissipative materials, two aspects of this definition need to be clarified. First, since soft 

materials can undergo large deformation which may cause a significant change in area as 

the crack deforms, the crack area to define G (or Γ) usually refers to the area in the 

undeformed configuration, which will be adopted in this paper. Second, for soft 

dissipative materials, the strain energy is not well defined since the material exhibits 

hysteresis during loading and unloading. In this section, we start with a rigorous 

definition of energy release rate for materials with hysteresis, and then specialize it for 

steady state crack propagation and the neo-Hookean solid with Mullins effect. 

2.1 Energy release rate for materials with hysteresis  

Let us consider a volume V delimited by a surface Ω. This volume of material is 

subjected to external loading, and a crack of surface area A can propagate in it. These 

geometrical entities are all defined with respect to the undeformed configuration. Next 

we examine the energy exchange between this volume and its environment during crack 

propagation. All quantities used in the derivation below are with respect to the 

undeformed configuration.  

The internal energy E contained in V can be affected by external loading, heat 

exchange, and crack propagation. Assuming quasi-static crack propagation so that 

equilibrium is always satisfied (i.e., no inertial term to be accounted for) and no body 

forces, we obtain the following energy balance equation for dE/dt (t stands for time): 

 ( ) 0
V

dE d dAd dV E
dt dt dt

ω
Ω

= Ω + − ∇ −∫ ∫ X
uT q   . (2) 
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The first term on the right hand side of eq.(2) represents the power supplied by external 

loading, where T and u are traction and displacement vectors on Ω. The second term 

represents the rate of heat exchange with the environment30, where ω is the rate of 

external heat supply per unit volume, q is the heat flux vector, and ∇X  is the gradient 

operator. The third term accounts for the power consumed by crack propagation, where 

E0 is the internal energy required to break a unit area of material (unit: J∙m−2). Physically 

E0 should be a function of the loading conditions at the crack tip, e.g. the temperature and 

crack propagation rate. 

In a similar manner, we can write the following equation for the entropy Σ 

contained in V: 

 0
V V

d dAdV dV
dt dt

ω γ
θ θ θ

Σ   = − ∇ + − Σ    
∫ ∫X

q
  . (3) 

The first term on the right hand side of eq.(3) is the entropy change due to heat exchange, 

where θ (≥ 0) is the absolute temperature. The second term represents the entropy 

increase due to irreversible phenomena in the solid, where γ is the energy dissipation per 

unit volume. The second law of thermodynamics dictates that γ ≥ 0. The third term 

accounts for the contribution due to crack propagation, where Σ0 is the entropy change 

associated with the breaking of a unit area of material (unit: J∙m−2∙K−1). Similar to E0, 

Σ0 depends on loading conditions at the crack tip and is in general not a material constant. 

Since eq.(3) holds for any volume enclosing the crack tip, it can be rewritten 

exclusively in terms of volume integrals. For example, the entropy Σ can be written as 

volume integrals of σ, which is the entropy per unit volume. The term Σ0dA/dt can be 

written as the volumetric integral of Σ0dA/dt multiplied by a Dirac delta function centered 

at the crack tip. As a result, the global entropy equation of eq.(3) can be recast into local 

forms in terms of partial differential equations. Multiplying the local form of eq.(3) by 

temperature θ and integrating over V, we get 

 0 0
V V

d dAdV dV
dt dt

θσθ ω γ θ
θ
∇ = − ∇ + + − Σ  ∫ ∫ X

X
qq 

  , (4) 
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where θ0 is the temperature at the crack tip and we have used the identity that 

( )/θ∇X q ( ) 2/ /θ θ θ= ∇ − ∇X Xq q  .  

Subtracting eq.(4) from eq.(2) and rearranging, we obtain 

 ( )0 0 0
V V

d de d dAd dV E dV
dt dt dt dt

θσθ θ γ
θΩ

∇  Ω − − − − Σ = +      ∫ ∫ ∫ XquT 

 ,  (5) 

where e is the internal energy per unit volume. Let ϕ denote the integrand on the right 

hand side of eq.(5). When the temperature field is homogeneous, ϕ = γ  and so ϕ ≥ 0. 

Otherwise we assume Fourier’s law in the reference configuration, q = –κ θ∇X   with κ ≥ 

0. Consequently, ϕ = γ – κ | θ∇X |2 / θ, where the term after the minus sign, manifestly 

positive, represents the dissipation rate accompanying heat conduction. Therefore, ϕ can 

be interpreted as the rate of purely mechanical dissipation, also referred to as the intrinsic 

dissipation. The second law of thermodynamics, represented by the constraint that γ ≥ 0, 

dictates that ϕ ≥ 0 under the isothermal condition. Moreover, introducing the Helmholtz 

free energy density ψ ≡ e – θσ and remembering that σ = – ∂ψ/∂θ, we see that  

 
de d d d d
dt dt dt dt dt θ

σ ψ ψ θ ψθ
θ

∂ − = − = ∂ 
 , (6) 

where the last notation indicates a time derivative at constant temperature θ. Lastly, we 

note that (E0−θ0Σ0) in eq.(5) is the Helmholtz free energy required to advance the crack 

per unit area, and thus is recognized as the intrinsic fracture toughness Γ0 ≡ E0−θ0Σ0. 

Instead of enforcing that Γ0 is a material constant, we retain the generality that Γ0 may 

depend on local conditions at the crack tip (e.g. temperature or crack propagation rate31). 

Defining the total Helmholtz free energy as Ψ ≡ ∫V ψ dV, eq.(5) becomes 

 0
V

d d dAd dV
dt dt dtθ

ϕ
Ω

Ψ
Ω − − Γ =∫ ∫

uT  . (7) 

The dissipation rate ϕ can be determined by using the local form of eq.(7) in an arbitrary 

sub-volume V* that does not contain the crack tip so that the term associated with Γ0 
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vanishes. Specifically, assuming no body forces, we apply the traction-stress relation and 

the equilibrium equation in this arbitrary sub-volume V*, and can derive that30  

 
* *

:
V

d dd dV
dt dt

Ω

Ω =∫ ∫
u FT S  , (8) 

where S is the first Piola-Kirchhoff stress tensor, F is the deformation gradient tensor and 

Ω* is the boundary of V*. Using eq.(8), we obtain the following expression for ϕ: 

 : d d
dt dt θ

ψϕ = −
FS  . (9) 

For an elastic material, the free energy density ψ  depends only on F under a fixed 

temperature with S = ∂ψ/∂F, and therefore ϕ = 0. For materials with dissipation, ψ and S 

may depend on multiple internal variables which are governed by the deformation history. 

In this case, we expect ϕ > 0. 

The derivation above is based on the assumption of quasi-static crack growth with 

equilibrium. This implies G0 = Γ0 where G0 is the intrinsic energy release rate for driving 

the fracture processes at crack tip. In addition, we note that the global energy release rate 

G is defined by the change in potential energy Π per unit area of crack growth32, i.e., 

 G d
A A A θΩ

∂Π ∂ ∂Ψ
= − = Ω −

∂ ∂ ∂∫
uT  . (10) 

To establish a connection between G0 and G, we expand the time derivatives of u and Ψ 

in eq.(7) into two parts: one due to the growth in crack area A (i.e., (∂... /∂A) dA/dt), and 

the other due to time dependent processes occurring at constant A (i.e., (∂... /∂t)|A). The 

latter can result from changing external loading conditions or from viscoelastic 

relaxation/creep under constant external loading. Using eq.(10) and G0 = Γ0, we can 

rewrite eq.(7) as 

 ( )0
,A A V

dAG G d dV
dt t t θ

ϕ
Ω

∂ ∂Ψ
− + Ω − =

∂ ∂∫ ∫
uT  . (11) 
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This is the general energy balance equation we were looking for. It connects the 

dissipative energy release rate GD ≡ G – G0 with the bulk dissipation rate ϕ, and is valid 

for any dissipative material models including the rate dependent ones (e.g. 

viscoelasticity). 

 

Figure 1 (a) Schematic of steady state crack propagation in a pure shear fracture test 
(shown in the reference configuration). With respect to a translating coordinate system 
X1-X2 centered at the crack tip, crack propagation is equivalent to moving a vertical strip 
from X1 =+∞ to =−∞. A and B are two different points along the vertical strip. (b) The 
different loading histories experienced by the two points A and B illustrated using the 
dominating stress and deformation components for a Mode-I crack, i.e. S22 versus λ2. The 
maximum stress experienced by A is larger due to stress concentration at the crack tip. (c) 
Integration path farC  is along perimeter of the fracture specimen.  

 

2.2 Steady-state propagation of a plane stress crack 

To put eq.(11) into the perspective of this work, here we consider a special case: 

steady-state Mode-I crack propagation in a pure shear fracture specimen with isothermal 

condition. The pure shear geometry was first developed by Rivlin & Thomas33 and has 

been widely used to characterize the fracture toughness of soft materials12,13,34. Figure 1a 

shows the pure shear geometry when mapped back to the undeformed configuration.  The 



9 
 

lateral dimension of the sample is much larger than the height (2H0) and is considered to 

be infinite here for theoretical purpose. To drive crack propagation, the top and bottom 

boundaries are clamped and subjected to a displacement loading of 2∆ along the vertical 

direction. The displacement loading is often represented using the stretch ratio far ahead 

of the crack tip: 

 
0

1
H

λ ∆
= +  . (12) 

Steady state crack propagation implies that under a fixed λs, the stress and strain fields in 

the fracture sample are translationally invariant35. To use this condition, we set up a 

translating coordinate system X1-X2 that is centered at the crack tip and translates with the 

crack. The stress and strain fields expressed in terms of X1-X2 are independent of the 

crack length a measured from the origin of a fixed coordinate system.  

For this plane stress crack, A = at0 where t0 is the thickness of the specimen and a 

is the crack length. Since the displacement loading is fixed, the boundary integral term in 

eq.(10) vanishes. In addition, the steady state condition implies that  ∂…/∂A = – (1/t0) 

∂…/∂X1, which implies   

 ( ) ( )
0 0

0 0

1 2 1 1 2
1

H H

H H

G dX dX X X dX
X
ψ ψ ψ

+∞

− −∞ −

∂
= = = +∞ − = −∞  ∂∫ ∫ ∫  . (13)               

It is worth noting that the expression of G in eq.(10) can be rewritten as a contour 

integral for steady state two dimensional (2D) crack propagation (see Appendix 1 for a 

detailed derivation): 

 1 1
1far far

T
j j

C C

G dl N dl
X

ψ
 ∂

= − = Ξ ∂ 
∫ ∫

ue S N  , (14) 

where /ij ij kj k iS u XψδΞ = − ∂ ∂ . In eq.(14), the contour Cfar is along perimeter of the 

fracture specimen (see Fig.1c), e1 is the unit vector along X1, N is the unit outward 

normal vector of the contour Cfar, and δij is the Kronecker delta operator. The indices (i, j, 

k) range from 1 to 2, and the Einstein summation convention of summing over repeated 

indices is adopted. Applying eq.(14) to the pure shear fracture geometry also results in 
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eq.(13). We recognize that Ξij are components of the Eshelby energy momentum 

tensor36,37 but in an inelastic context. Moreover, we have recovered the well-known J-

integral through eq.(14). Unlike elastic materials where the J-integral is proved to be 

path-independent, in general the contour integral in eq.(14) is expected to be path-

dependent due to dissipation, and thus the contour Cfar must be the perimeter of the 

fracture specimen. However, if dissipation is concentrated in a small zone surrounding 

the crack tip, the contour Cfar can be made smaller as long as it encloses the dissipation 

zone. Note that in some literature38, the deformation gradient Fki = δki + ∂uk/∂Xi is used 

instead of ∂uk/∂Xi in the definition of Ξij, which adds an additional Sij to Ξij. This however 

does not affect G by enforcing equilibrium in the absence of body forces. 

Next we consider GD =G – G0 in eq.(11). In addition to the steady-state condition 

with fixed loading, we further assume the material behavior is rate-independent. In this 

case, the partial time derivatives (∂…/∂t)|A in eq.(11) vanish identically, and we have 

 
0

0

0 1 2

H

D
pH

G G G dX dX
v
ϕ+∞

− −∞

= − = ∫ ∫  , (15) 

where vp = da/dt is the crack propagation velocity and we have set dA/dt = t0vp. To use 

the dissipation rate ϕ given in eq.(9), we first use the steady-state condition to simplify 

the time derivatives, i.e., (d.../dt) = (∂…/∂A) dA/dt = – (∂…/∂X1) vp, which results in 

 
1 1

:
pv X X

θ

ϕ ψ∂ ∂
= − +

∂ ∂
FS  , (16) 

so that 

 
( )

( )10 0

0 0 1

1 2 2
1 1

: :
XH H

D
H H X

G dX dX d d dX
X X

ψ ψ
=−∞+∞

− −∞ − =+∞

  ∂ ∂
= − + = −  ∂ ∂     

∫ ∫ ∫ ∫
F

F

FS S F  . (17) 

We have dropped the fixed temperature constraint for ∂ψ/∂X1 due to the isothermal 

assumption. Equation (17) is the basis for the remainder of our article. It states that the 

dissipative energy release rate GD can be calculated by imaginarily moving a material 

point at X1= +∞ horizontally (i.e. at a fixed X2) to X1=−∞ and integrating the bulk 

dissipation along this deformation history. As pointed out in Long & Hui35, the material 
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points at different X2 experience different deformation histories. For example, in Fig.1b 

we use the dominating stress and deformation components, i.e. S22 versus λ2 due to the 

Mode-I condition, to schematically illustrate the deformation history of two material 

points A and B. Due to stress concentration at the crack tip, point A would first 

experience additional loading as it approaches the crack tip before unloading occurs. In 

contrast, since the global stretch ratio λs is fixed, point B near the top boundary would 

only experience unloading as it is moved from X1= +∞ to X1=−∞.  

Before specializing GD for a material model with Mullins effect, it is worth 

mentioning that the formalism of “material forces” associated with the manipulation of 

Eshelby energy momentum tensor (see for example Grellmann et al.39 pp. 192-202 for a 

short review) also leads to eq.(17), as demonstrated in Appendix 1.  

2.3 Material model: neo-Hookean solid with Mullins effect 

We adopt the same material model used in Zhang et al.28 which consists of two 

components: i) the incompressible neo-Hookean model to describe the initial loading 

response and ii) the modified Ogden-Roxburgh model29 to phenomenologically describe 

the softening behavior associated with Mullins effect. With this model and assuming 

isothermal condition, the free energy density ψ is given by 

 ( ) ( ) ( )  and   3
2 i iW W µψ η λ λ= = −F F  , (18) 

where µ is the shear modulus at infinitesimal strain, λi (i =1,2,3) are the three principal 

stretch ratios, η is the damage variable (0≤ η  ≤1) and W will be referred to as the 

nominal strain energy density. The first Piola-Kirchhoff stress tensor S is given by 

 TW pη −∂
= −

∂
S F

F
 , (19) 

where p is a Lagrange multiplier to enforce the incompressibility constraint. According to 

the modified Ogden-Roxburgh model28, the damage variable η is given by 

 max

max

11 W Werf
r m W

η
β

 −
= −  + 

,  (20) 
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where erf stands for the error function and the parameters r, m and β are material 

constants. As shown in eq.(18), W is associated with the current deformation state F, 

while Wmax is the maximum of W experienced by the material point along the deformation 

history. During the initial loading, η =1 since W =Wmax, and the material behaves as a 

hyperelastic solid with W being the strain energy density. Take uniaxial tension as an 

example: W is equal to the area underneath the stress-stretch curve during initial loading 

(see Fig.2a). When unloading occurs, W <Wmax and thus η <1, and hence the softening 

behavior during unloading can be captured. Unlike the pseudo-elastic model of Odgen 

and Roxburgh29 where an additional damage function is added to ψ so that the dissipation 

rate ϕ =0, we follow the approach in Holzapfel30 and adopt the form in eq.(18) to retain 

the dissipation term ϕ. 

 

Figure 2 (a) Hysteresis due to the Mullins effect illustrated by the stress versus stretch 
ratio curve under uniaxial tension. The area underneath the initial loading curve is 
defined as the nominal strain energy density W. (b) Illustration of the incremental 
dissipation dU =S:dF−dψ. Along the initial loading curve dU =0 and during unloading 
dU >0. The areas representing |dψ |=− d(ηW) and |S:dF|= −S:dF for a small segment 
along the unloading branch are highlighted, and dU is represented by the shaded strip 
within the hysteresis loop. 

 

This material model allows us to further simplify the expression for G in eq.(13) 

and GD in eq.(17). First, the material model in eq.(18) implies that there is no permanent 

deformation when the material is completely unloaded. Therefore, at X1= −∞ (far behind 

the crack tip), the material returns to the undeformed configuration and ψ (X1= −∞) = 0. 
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At X1= +∞ (far ahead of crack tip), the material has only experienced initial loading (i.e., 

η =1), and is under pure shear extension with the principal stretch ratios being λ1=1, 

λ2=λs and λ3=1/λs where we have assumed incompressibility. Therefore, ψ (X1=+∞) = 
2 2( 2)s sµ λ λ −+ − ≡Wfar , and eq.(13) becomes 

 02 farG H W=  , (21) 

which has been widely used to evaluate energy release rate and fracture toughness in pure 

shear fracture tests12,13,34. 

Next we consider GD. Using eqs.(18) and (19), we find the integrand in eq.(17) to 

be  

 ( ): d d dW d W Wdψ η η η− = − = −S F , (22) 

where we have used the incompressibility condition that J =det(F) =1 and the Jacobi’s 

formula that F−T:dF = dJ/J =0. The incremental dissipation S:dF−dψ in eq.(22) is zero 

during initial loading since η =1, and is positive during unloading since dη <0. It should 

be noted that this model is not thermodynamically consistent during a second reloading, 

since −Wdη < 0 which implies a negative dissipation rate (ϕ < 0) during reloading and 

thus violates the second law of thermodynamics. This inconsistency is due to the 

phenomenological nature of the damage evolution law in eq.(20), which is adopted to 

enable comparison with previous results in the literature28. It does not affect our analysis 

in Section 3 since all material points experience only one loading and one unloading. 

However, reloading would occur if the material experienced a pre-stretch before crack 

propagation, which will be considered in Section 4. In this case, we will not be able to 

apply the thermodynamic framework directly; instead, our analysis will be based on 

physical arguments regarding the mechanical work and dissipation. Further discussions 

on an alternative damage evolution law for η, which is thermodynamically consistent, are 

provided in Section 5. 

Defining U as the energy dissipation per unit volume as a material point is 

translated from X1= +∞ to X1= −∞, we can write 
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 ( )
( )

( )

( )

( )1 1

1 1

:
X X

X X

U d d Wdψ η
=−∞ =−∞

=+∞ =+∞

= − = −∫ ∫
F F

F F

S F  , (23) 

Since dη =0 along the loading curve, the integration limit in eq.(23) can be adjusted so 

that it only covers the unloading branch, i.e., W ranging from Wmax to 0: 

 ( )
max max

max

0

max
0 0

1
W W

W

U Wd W dW dWη η η= − = − = −∫ ∫ ∫  . (24) 

Physically U is represented by the area of the hysteresis loop in Fig.2b. To further 

illustrate this equation, we look at two neighboring points along the unloading branch of 

S22-λ2 curve. The incremental work −S:dF is the area shaded in red lines, which is a 

subset of the area representing −dψ or –d(ηW) (shaded in blue lines). The complement of 

these two areas, which is equal to dU =−dψ − (−S:dF),  forms a strip within the hysteresis 

loop. Adding up these strips along the unloading branch gives the entire area of the 

hysteresis loop, which is highlighted in gray in Fig.2b and expressed mathematically in 

eq.(24). Substituting eq.(20) into eq.(24), we can obtain an analytical expression for U 

(Wmax), based on which we define the hysteresis ratio h as: 

( ) ( ) ( ) ( )2
max

1
/max

max max
max max

1 1 1 / 1 .
/

m WU W
h W erf m W e

W r m W
ββ

β π

−

+
     = = + + −    +     

  (25) 

As discussed earlier, the Wmax experienced by a material point depends on its vertical 

position X2 along the strip shown in Fig.1a. Using eqs.(17), (23)-(25), we finally arrive at 

the following equation: 

 ( ) ( )
0 0

max max
0 0

2 2
H H

DG UdY h W W Y dY= =∫ ∫  , (26) 

where we have renamed the vertical coordinate X2 to Y to clarify notation, and applied the 

symmetry condition about Y =0. Similar expression for GD was developed in Long & 

Hui35 based on physical arguments. Here we provide a rigorous derivation from a more 

general thermodynamic definition of energy release rate. 

3. Dissipation and toughness 
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In this section we focus on determining the relationship between the toughness Γ 

and its dissipative component ΓD. To use the expressions for energy release rates derived 

in Section 2, especially eq.(26) for GD, we assume the intrinsic toughness Γ0 is a known 

material constant and prescribe a local fracture criterion at the crack tip, i.e., G0 = Γ0. The 

GD and G associated with this local fracture criterion are then equal to ΓD and Γ, 

respectively. Now the question is: how do we calculate GD? 

3.1 Analytical model 

The first step to calculate GD is to determine the function Wmax(Y) in eq.(26), 

which depends on the nonlinear deformation field around the crack tip. We start by 

considering an elastic neo-Hookean solid for which the crack tip deformation field has 

been solved asymptotically. Specifically, the first order terms of the dominant 

deformation gradient components are40: 

 ( ) ( )1/2 1/2
21 22sin / 2   ,   cos / 2

2 2
B BF R and F R− −= − Θ = Θ ,  (27) 

where R and Θ are polar coordinates in the reference configuration (centered at the crack 

tip, see Fig. 1a) and B is an undetermined coefficient specifying the amplitude of the 

crack tip field. Note that in the crack tip region the other non-zero deformation gradient 

components, i.e. F11, F12 and F33, are all negligible in comparison to F21 and F22. 

Substituting eq.(27) into eq.(18), and remembering that λiλi = FijFij we obtain the 

following distribution of W around the crack tip: 

 ( )
2 21 1 sin     0

8 8
B BW Y

R Y
µ µ

= = Θ > ,  (28) 

where we have used the identity that sinY R= Θ . The amplitude B of the local crack tip 

field can be related to the external loading, represented by the global energy release rate 

G, by calculating the J-integral. Using the result in Long & Hui40, we find  

 2

4
G J Bµπ

= = .  (29) 

Combing eqs.(28) and (29), we can write  
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 1 sin
2
GW

Yπ
= Θ  . (30) 

According to the definition in Section 2.3, Wmax is the maximum of W as a material point 

is translated from X1= +∞ to X1= −∞, which corresponds to a fixed Y and Θ ranging from 

0 to π. Hence Wmax(Y) has the following form: 

 ( )max
1

2
GW Y

Yπ
= .  (31) 

It should be emphasized that eq.(31) was derived based on the first order asymptotic 

solution of the crack tip field. In principle, it should only be valid very close to the crack 

tip (within the region of validity for eq.(27)). However, from the perspective of scaling 

analysis, Wmax should be proportional to G according to the J-integral. In the limit of 

H0→∞, Y is the only relevant length scale, and dimensional analysis dictates that Wmax ~ 

G/Y. Therefore, we hypothesize that eq.(31) has a larger region of validity than the 

asymptotic solution in eq.(27), and is applicable throughout the sample except near the 

top and bottom boundaries Y= ±H0.  

 To account for the boundary effect near Y= H0, we note that the material point at 

Y= H0 would only experience unloading as it is translated from X1= +∞ to X1= −∞ since 

the applied stretch λ is fixed. Therefore, using eq.(21) we obtain 

 ( )max 0
02far

GW Y H W
H

= = =  , (32) 

which implies eq.(31) is not valid near Y= ±H0. Otherwise we would get Wmax(Y=H0) 

=G/(2πH0) which is inconsistent with eq.(32). To reconcile eqs.(31) and (32), we 

hypothesize that eq.(31) is only valid for 0<Y ≤H0/π, and Wmax becomes uniform when Y 

exceeds H0/π, as schematically shown in Fig.3. The actual transition from eq.(31) to 

eq.(32) may not be as sharp as assumed in Fig.3b. However, Fig.3b can capture the 

essential features of Wmax(Y) without evoking a complex analysis of the deformation field.  
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Figure 3 The function maxW (Y). (a) The vertical strip used to evaluate GD. (b) Schematic 

of maxW (Y) plotted in log-log scale. The vertical strip is divided into 3 parts: fracture 
process zone near Y=0 (red), a region where Wmax~1/Y for intermediate |Y|, constant Wmax 
for |Y| close to H0.  

 

The theoretical picture sketched above is derived for the elastic neo-Hookean 

solid. When the Mullins effect is introduced, the crack tip deformation field may be 

distorted by the hysteresis. However, since Wmax is the maximum W along the loading 

history of a material point at Y and the loading branch follows the neo-Hookean model, 

we hypothesize the Wmax(Y) shown in Fig.3 can be applied, at least approximately, to 

eq.(26) for estimating GD. We will evaluate the accuracy of this hypothesis using finite 

element results later and make corrections if necessary. For the time being eq.(26) 

becomes 

 ( )
0

max
0

/

0

11
2

H

D h W
G dY GG G h

Y H

π

π π
=

  + −   
   

∫   (33) 

A difficulty is encountered in the first integral of eq.(33) at the crack tip Y =0. 

This is due to singularity of Wmax as Y→0, which can be regularized by considering a 

fracture process zone at the crack tip. The energy required to drive the fracture process is 

represented by the intrinsic toughness Γ0. In numerical simulations the process zone is 

usually incorporated using a cohesive zone model as described in Section 3.2. The 

distribution of Wmax in a small region adjacent to the cohesive zone would deviate from 

eq.(31). Assuming the process zone is much smaller than characteristic length scale of the 
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fracture sample (e.g. H0), we implement a cut-off in Wmax denoted by Wrup, i.e., the 

nominal strain energy density when rupture occurs. This allows us to neglect the 

contribution to GD from the process zone due to its small volume. The cut-off Wrup 

corresponds to a length scale of the cohesive zone, defined as Ycoh =G/(2πWrup), that is 

much smaller than H0. After implementing the cut-off and the change of variable 

dWmax/Wmax = −dY/Y in the first integral of eq.(33), we obtain: 

 ( )
( )0

max
/

max

2 max 0

1 11
2

rupW

G

D

H

h W
dWG Gh

G W Hπ π
=

  + −   
   

∫  . (34) 

This equation reveals the connection between GD and bulk dissipation due to the 

Mullins effect manifested in the hysteresis ratio h given in eq.(25). By replacing GD with 

G −G0, it also allows us to solve for the total toughness Γ (= G) and dissipative toughness 

ΓD (=GD) for prescribed values of H0, Wrup and G0=Γ0. In addition, we observe that in 

general the ratio GD/G depends on the fracture sample size H0 and the cut-off Wrup.  

 Two questions remain to be answered. First, how accurate is the approximation of 

applying the Wmax(Y) for an elastic model to a solid with hysteresis? Second, how can we 

obtain analytical results of GD/G using the nonlinear function of h(Wmax). For the first 

question, we will use a finite element model, following the approach of Zhang et al.28, to 

verify the approximation and to motivate modifications. For the second question, we will 

consider two limiting cases where h(Wmax) can be simplified: i) large m/Wrup and ii) 

m/Wrup =0. 

3.2 Finite element simulations 

 We follow the approach of Zhang et al.28 and build a finite element (FE) model in 

ABAQUS (v6.14, Simulia, Providence, RI). Briefly, as shown in Fig.4a, a crack is 

introduced into a plane stress pure-shear sample (dimensions: width L0 = 480mm, height 

2H0= 60mm, crack length a = 120mm). The bulk material behavior is implemented by 

combining the neo-Hookean model and the modified Ogden-Roxburgh model, both of 

which are built in ABAQUS. To allow comparison with Zhang et al.28, we set µ=10kPa 

for the shear modulus and r=2, β=0.1 for the Mullins effect (see eqs.(18) and (20)) unless 

specified otherwise.  The parameter m is subjected to change. A layer of cohesive 
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elements was introduced directly ahead of the crack tip to enable the simulation of crack 

propagation. The explicit dynamics solver in ABAQUS is used to accommodate the rapid 

unloading associated with crack propagation. We impose a triangular traction separation 

law for the cohesive zone. The area underneath the traction separation curve is the 

intrinsic toughness Γ0, which is rigorously proved from eq.(7) following an approach in 

literature27,41 (see Appendix 2 for details). According to Zhang et al.28, the modeling 

results converge when K is sufficiently large, K being the stiffness of the cohesive 

element prior to rupture (see Fig.4a). Therefore, we fix K/Smax at 200mm−1 and use 

different values for the maximum stress Smax. We interpret Smax as the maximum nominal 

tensile stress that can be achieved under uniaxial tension, beyond which rupture occurs. 

Following Zhang et al.28, Smax can be related to Wrup using the following equation (see 

Appendix 3):  

 2
max / 2rupW S µ≈  . (35) 
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Figure 4 (a) Snapshots of crack propagation under the pure shear condition in FE 
simulation. The inset shows the cohesive zone model placed along the projected crack 
path. (b) Theoretical curve of the normalized force N versus applied stretch λ. Once the 
steady state stretch ratio λs is reached, the crack is expected to propagate catastrophically, 
which is represented by a sharp peak followed by an instantaneous drop in force. (c) A 
representative FE result (Smax/µ=4, Γ0=30J/m2, m/Wrup=0.05). The inset shows a zoomed 
view around the peak force. The points corresponding to the five snapshots in part (a) are 
also marked. 
 

Our theory is based on the condition of steady state crack propagation under a 

fixed applied stretch λs. However, it is difficult to reproduce this scenario in simulation 

since the stretch λs needed to maintain steady state is not known a-priori. Instead, we 

continuously increase the displacement load and plot the applied force N versus applied 

stretch λ.  Since the models for bulk material and cohesive zone are both rate independent, 

in principle the crack would propagate catastrophically once λs is achieved, leading to a 

sharp peak in the normalized N versus λ curve as schematically shown in Fig.4b. 

Motivated by this argument, we extract the λ at the maximum applied force from the FE 

results as the steady state stretch λs, and evaluate the total toughness Γ using 

Γ=2H0Wfar(λs). This approach was also adopted in Zhang et al.28. We note that the FE 

result (see Fig.4c) does not exhibit an instantaneous drop after the peak force. This is 

because the simulations are based on the explicit dynamic solver of ABAQUS, and 

inertial effects prevent the crack propagation velocity from being infinite. In addition, 

oscillations associated with the dynamic solver may also bring slight uncertainties when 

identifying the location of peak force (see inset of Fig.4c). Given the importance of the N 

versus λ curve, we have performed a number of convergence tests to ensure the results 

are independent of mesh and simulation parameters, which are summarized in Appendix 

3.  
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Figure 5 (a) Log-log plot of normalized Wmax versus normalized Y. The symbols 
represent results extracted from the FE simulations for Smax/µ =4, Γ0=30J/m2, and three 
different values m/Wrup=0, 0.025, and 0.3. The lines are given by eq.(36) with an 
adjustable parameter ξ. (b) Evolution of the unloading zone as the vertical strip is moved 
from the right to the left. The red curve is plotted by extracting the location where Wmax is 
achieved for a particular Y from an FE simulation, i.e. the case of m/Wrup= 0.3 in part (a). 
This curve illustrates how the unloading zone evolves as the vertical strip is translated to 
the left. 

 

 In Fig.5a, we plot Wmax(Y) during crack propagation from the FE results of three 

different cases. The theoretical picture sketched in Fig.3 captures the qualitative trend. 

However, to achieve quantitative agreement, a correction factor ξ (0<ξ ≤1) is needed, i.e., 

 ( ) ( )
( )

0
max

0 0 0

/ 2 /
     

/ 2 /
cohG Y Y Y H

W Y
G H H Y H

ξ π ξ π
ξ π

 ≤ ≤=  ≤ ≤
 . (36) 

To understand the physical origin of ξ, we plot in Fig.5b the boundary formed by the 

coordinates X1 and Y at which the Wmax is achieved using results of an FE simulation. 

This boundary illustrates how the unloading region evolves as a vertical strip is translated 

from X1= +∞ to X1= −∞. The Wmax(Y) in Fig.3 was derived for the elastic neo-Hookean 

solid. When hysteresis is introduced, the material in the unloading region is softer than 

the elastic counterpart, and thus is subjected to a larger stretch. Since the total stretch of 

the vertical strip is fixed at λs, the material points within the loading region (between the 

dashed lines in Fig.5b) experience a smaller stretch, which reduces Wmax. With this 

correction, eq.(34) becomes 
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 ( )
( )0

max
/

max

2 max 0

1
2

rupW

G

D

H

h W
dWG Gh

G W H
ξ ξ
π π

=
  + −   

   
∫  . (37) 

Note that the correction factor ξ is not a constant but may vary as the bulk dissipation 

parameters change. Next we first use eq.(37) to derive solutions of GD/G (or ΓD/Γ) for 

two limiting cases, followed by the discussion about intermediate cases. 

3.3 Limiting case I: localized dissipation (large m/Wrup) 

To motivate this limit, we plot the hysteresis ratio h versus φ =Wmax/Wrup (0≤ φ ≤1) 

in Fig.6a for four different values of m/Wrup. It can be seen that h decreases with m/Wrup. 

Specifically, in the extreme case of m/Wrup =10, h is less than 0.001 for φ ≤ 0.0195, 

indicating that the material is close to being elastic. Dissipation, if any, is limited to a 

small region near the crack tip. To better visualize this effect, we use the scaling relation 

Wmax~1/Y (see eq.(36)) and plot h versus Y/Ycoh =1/φ  in Fig.6b. For the case of m/Wrup 

=10, h rapidly decays to 0.001 when Y/Ycoh exceeds 50. Note that Ycoh represents the 

length scale of the cohesive zone and is by orders of magnitude smaller than H0. 

Therefore, physically the limit of large m/Wrup corresponds to localized dissipation 

around the crack tip. Since h is small, we anticipate that the function Wmax(Y) based on 

the elastic crack tip solution to hold, which allows us to set ξ =1 and neglect the second 

term in eq.(37) accounting for the dissipation within H0/π ≤Y ≤H0. In addition, since Wmax 

≤ Wrup, m/Wmax is also large, and we can simplify eq.(25) by expanding the error function 

and exponential function into series and keeping only the first order terms, which gives 

 ( )max
max

1 1
/

h W
m Wr βπ

≈
+

 . (38) 

Using these approximations and the change of variable φ =Wmax/Wrup, we can rewrite 

eq.(37) as 

 
( )0

1

/
3/2 3/2

02

1 1 1 1
/

rupG

rup cohD

rupW H

d
W YG

G r m W r m H
πφ

π βφ π
≈

 
≈ − +  

∫ ,  (39) 

where we have used the definition Ycoh =G/(2πWrup) to simplify the lower limit of the 

integral. Recognizing that Ycoh << H0, we further simplify eq.(39) to  
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 3/2

1 rupD D WG
G r mπ

≈
Γ

=
Γ

 . (40) 

 

Figure 6 Hysteresis ratio h versus (a) the normalized nominal strain energy density φ = 
Wmax/Wrup, and (b) the normalized vertical coordinate Y/Ycoh, which is equal to 1/φ due to 
the scaling Wmax~1/Y. These curves are plotted using eq.(25) with r =1.1, β=0.1 and four 
different values of m/Wrup (0.025, 0.1, 1, 10). 

 

 To better visualize the physical picture of this limiting case, here we introduce a 

length scale YD to describe the dissipation zone size. Specifically, in light of eq.(26) YD 

defines a cut-off length such that GD only comes from the region −YD ≤Y≤ YD (YD ≤ H0) 

outside which U =0. However, according to the modified Ogden-Roxburgh model, U is 

non-zero for the entire region of − H0 ≤Y≤ H0, which requires us to relax the definition of 

YD: the majority of GD, rather than all of GD, is contributed by the region −YD ≤Y≤ YD. 

This definition of YD is associated with a custom defined threshold of GD (e.g. 95%), 

which needs not be specified for the scaling considerations here. Motivated by eq.(36), 

we use the scaling relation Wmax(Y) ~ G/Y that is valid near the crack tip and obtain that 

YD ~ G/Wc where Wc is a threshold of Wmax that sets the boundary of the dissipation zone.  

As discussed above, dissipation is localized in a small region around the crack tip for the 

limiting case of m/Wrup >>1, which implies that Wc is on the same order as Wrup.  As a 

result, YD ~ G/Wrup ~ Ycoh, meaning that the dissipation zone size is comparable to the 

cohesive zone size, which is reminiscent of the “small scale yielding” condition in 

elastic-plastic fracture mechanics.  
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 Zhang et al.28 developed the following scaling relation  

 01 rup
D hαΓΓ

= − =
Γ Γ

 or  0

1 ruphα
Γ

−
Γ = , (41) 

where hrup is the hysteresis ratio at Wmax = Wrup and α is a numerical factor determined by 

fitting finite element results where β was fixed at 0.1: 

 
0.0340.33

/ 0.045rupm W
α = +

+
 . (42) 

To facilitate comparison with Zhang et al.28, we cast eq. (40) into the following form 

 
1 1   

/
D

rup
rup

h
m W

β
π

≈
 Γ

+  Γ  
, where ( ) 1 1

/rup rup
rup

h h W
m Wr βπ

= ≈
+

.  (43) 

Therefore, our analytical model suggests that when β = 0.1, the factor α is given by 

 
1 / 0.0320.32

/ /rup rupm W m W
β πα

π
≈ + = +   for large m/Wrup. (44) 

This analytical result agrees very well with eq.(42) given in Zhang et al.28 in the limit of 

large m/Wrup. It is also worth mentioning that in this limit of large m/Wrup, α and Γ are 

independent of the fracture sample size H0 since the dissipation is localized.  

3.4 Limiting case II:  constant hysteresis ratio (m =0) 

In this case, we set m = 0, which implies that the hysteresis ratio h becomes 

independent of Wmax, i.e., 

 ( ) ( )21/
0

1 10 1h m h erf e
r

β

β π
β −  

= ≡ = + −  
  

,  (45) 

where h0 is a constant for fixed values of r and β. Therefore, eq.(37) can be simplified to 

 0
0

2
ln 1rupD H WG h

G G
ξ ξ
π π

=
  + −  

  
 . (46) 

By setting G0=Γ0, GD=ΓD and G=Γ, we can write eq.(46) into the following form: 
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 00 0 0 0
0

0

2
ln 1 ln 1rupH Wh h hξ ξ ξ

π π π
Γ Γ  + = − − − Γ Γ Γ  

 . (47) 

This equation allows us to solve for the ratio Γ/Γ0 with given Γ0 and h0. Interestingly, the 

solution depends on a dimensionless parameter: χ = 2H0Wrup/Γ0. This parameter reflects 

the ratio between the cohesive zone length scale and the sample height. To see that, we 

use eq.(35) and set Γ0 = Smaxδmax/2, where δmax is the maximum separation of the cohesive 

zone, which gives 

 0 max 0

0 max

2 2rupH W S Hχ
µ δ

= =
Γ

 . (48) 

Since H0 >> δmax, we expect χ >>1. In FE simulations, we can tune Smax and δmax 

separately to alter χ. In Fig.7a, we plot the FE results (symbols) of Γ/Γ0 versus  χ for 

different combinations of Smax and δmax. The data collapse onto a master curve. We also 

plot the predictions of eq.(47) in Fig.7a. If the correction factor ξ is set to be 1, our theory 

significantly overestimates the Γ/Γ0. By plotting the distributions Wmax(Y) for a few 

representative cases in Fig.7b, we find that ξ ranges from 0.35 to 0.45. A much better 

agreement between the prediction of eq.(47) and FE results is obtained when ξ =0.35 is 

incorporated. We also notice that the FE results exhibit larger scattering for smaller χ. 

This is attributed to the fact that a smaller χ implies a larger δmax which represents a 

wider cohesive zone. This may cause deviations from the assumed crack tip field in 

eq.(36). As a result, the FE data for smaller χ show larger scattering around the master 

curve predicted by eq.(47) than those for larger χ.   

Interestingly, our analytical model and FE results both suggest that Γ depends on 

the sample size H0 and the cohesive parameters Smax and δmax  through χ. Physically since 

the hysteresis ratio h is constant for m =0, dissipation occurring even far away from the 

crack tip is also important. Although the area of hysteresis loop U decreases as one 

moves away from the crack tip, this decay is compensated by the large volume of 

materials in the far field.  Also, the amount of dissipation depends on the deformation 

field which is highly coupled to the cohesive zone. This is quite different from the 

“small-scale yielding” limit for large m/Wrup where Γ is independent of sample size H0. 
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Indeed, the dissipation zone size YD ~ G/Wc can be estimated by recognizing that the 

threshold Wc is on the same order of Wfar, since dissipation over the entire sample needs 

to be taken into account. Therefore, YD ~ G/Wfar ~ H0, meaning that the dissipation zone 

size is on the same order of the sample height. Note that the scaling relation YD ~ G/Wc is 

only valid for |Y| ≤ ξH0/π, but this does not affect the scaling argument above. Lastly, we 

note that in Zhang et al.28, Γ/Γ0 at m =0 is given by a constant: 1/(1−α0h0), where α0 

=1.0856 (see eq.(42)). The value of Γ/Γ0 given by the empirical formula of Zhang et al.28 

is also plotted in Fig.7a for comparison (see the horizontal dotted line).  

 

Figure 7 (a) Toughness enhancement Γ/Γ0 versus the dimensionless parameter χ in the 
limit of m =0. The symbols are given by FE result and the curves are predictions based on 
eq.(47) with three different values of ξ. The horizontal dotted line is the prediction of the 
formula in Zhang et al.28 (see eq.(41) and (42)). (b) Log-log plot of normalized Wmax and 
normalized Y. The symbols are extracted from FE data where Smax/µ =4 and χ= 250, 120, 
40, and the lines are fits based on eq.(36)) with ξ being the only adjustable parameter. 

 

3.5 Intermediate cases 

For intermediate values of m/Wrup, we would need to solve eq.(37) for Γ (with G0 

= Γ0) where analytical solutions are difficult to obtain. Moreover, the correction factor ξ 

is not known unless FE simulations are carried out. To circumvent these difficulties, we 

draw inspirations from Zhang et al.28 and construct the following equation  
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 . (49) 

Equation (49) reduces to eq.(44) in the limit of large m/Wrup. An additional parameter ζ is 

introduced so that eq.(49) would match the solution of eq.(47) when m/Wrup=0: 
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1 1
mh

βζ
π

=

=
 Γ

− − Γ 

 . (50) 

Since the value of Γ0/Γ at m=0 depends on the dimensionless parameter χ, we use the 

eq.(47) (with ξ =0.35 and χ ranging from 10 to 400) and eq.(50) to determine a range of ζ: 

0.0286~0.0425. With this range of ζ, the numerical factor α predicted by eq.(49) is 

shown as the shaded area in Fig.8. The empirical formula of Zhang et al.28 (see eq.(42)) 

and the limiting case eq.(44) are also plotted for comparison. These curves deviate from 

each other at small m/Wrup but start to converge when m/Wrup exceeds 0.15.  

 

Figure 8 Dimensionless factor α (related to toughness enhancement) versus m/Wrup 
(related to bulk hysteresis). The shaded region are given by eq.(49) with ζ ranging from 
0.0286 to 0.0425. The square symbols represent our FE data and the solid line is the 
corresponding model prediction. The circular symbols (red) are data points extracted 
from the FE results of Zhang et al.28, where the circle represents the mean value of α for 
a given m/Wrup and the error bar illustrates the range of scattering. The empirical formula 
of Zhang et al.28 (red dashed line) and the analytical solution in the limit of large m/Wrup  
(dotted line) are also plotted for comparison. 
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To test the predictive power of eq.(49) for intermediate m/Wrup, we plotted the 

factor α extracted from finite element results with Smax/µ =4, δmax/H0 =0.05 and varying m. 

This set of parameters are chosen to ensure a fixed χ = 160, which corresponds to ζ 

=0.0314. As shown in Fig.8, the FE results (square symbols) agree well with eq.(49) 

(solid line). Furthermore, we extract the FE data for Γ/Γ0 in Zhang et al.28 (see their 

Fig.3b) and use eq.(41) to calculate the corresponding values of α. It turns out that there 

is a considerable scattering when m/Wrup is small (see Fig.8). This scattering can be 

explained by our model. The FE parameters in Zhang et al.28 correspond to a range of χ 

(80~300), and theoretically speaking the data of α for different χ should not collapse 

exactly to a master curve, as manifested in the shaded area in Fig.8. This is consistent 

with the observation that eq.(41) cannot precisely fit all the FE data points in Fig.3b of 

Zhang et al.28 with a single value of α. This phenomenon highlights the importance of the 

detailed fracture behaviors at the crack tip, which are modeled by the cohesive zone 

parameters appearing in χ, in case of large dissipation zone. 

4. Effect of pre-stretch 

According to the Ogden-Roxburgh model for Mullins effect (see eqs.(19) and 

(20)), hysteresis occurs only during the first loading-unloading cycle. The material 

behaves elastically upon reloading as long as W does not exceed the maximum value of 

W experienced in the loading history. This feature implies that pre-stretch can reduce the 

toughness Γ by decreasing the bulk dissipation in the fracture sample. The effect of pre-

stretch on Γ has been experimentally demonstrated in Zhang et al.28. In such experiments, 

two identical uncracked pure shear samples would need to be first subjected to a pre-

stretch ratio λpre.  After that an edge crack would be introduced into one of pre-stretched 

samples for measuring Γ using eq.(21) where the function Wfar can be determined using 

the other uncracked pre-stretched sample12,19. Zhang et al.28 showed that the toughness Γ 

decreases with λpre and reaches a plateau for sufficiently large λpre. Despite the 

experimental finding, the effect of pre-stretch has not been fully understood at the 

theoretical level. Here we present an analytical model for the effect of pre-stretch.  

4.1 Analytical model 
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We denote the nominal strain energy density associated with the pre-stretch by 

Wpre. Since the principal stretch ratios are λ1=1, λ2=λpre, λ3=1/ λpre under pure shear, Wpre 

is given by: 

 ( )2 2 2
2pre pre preW µ λ λ −= + − .  (51) 

The pre-stretch brings two changes to our energy balance model. First, recall that the 

dissipative energy release rate GD is the integral of U along the vertical strip in the pure 

shear sample (see Fig.9a and eq.(26)), where U is the energy dissipation per unit 

reference volume and is a function of the maximum deformation, represented by Wmax, 

experienced by a material point. Because of the pre-stretch, U is no longer equal to 

h(Wmax) Wmax. Instead, U should be 

 
( ) ( )

max

maxmax max

0
    pre

prepre pre

W W
U

W Wh W W h W W
 ≤=  >−

 , (52) 

where the hysteresis ratio h is given in eq.(25). Second, the loading branch after pre-

stretch (solid line in Fig.9b) deviates from the original one (dashed line in Fig.9b). 

Therefore, when evaluating the total energy release rate G using eq.(21), we need to 

replace Wfar by the work per unit volume required to achieve the global stretch λs for 

steady-state crack propagation. This work per unit volume, denoted by farW , can be 

calculated by 

 

( )
0 0

1
     

far farW W
pre

far far pre
prefar

far pre

far pre pre

W W
dW W erf dW W Wr m WW

W W
W h W W

η
β

  −
= −   ≤  +=    >

−

∫ ∫
  , (53) 

where 2 2( 2) / 2far s sW µ λ λ −= + − . 
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Figure 9. (a) The vertical strip used to calculate GD is divided into two regions: Wmax 
≤Wpre (blue) and Wmax>Wpre (green). (b) Due to the pre-stretch, the initial loading curve of 
a point A changes from the dashed line to the solid line (softened) when λ2 < λpre. Once 
λ2 ≥ λpre, the initial loading curve is recovered. Therefore, the hysteresis UA is reduced 
due to the pre-stretch. 

 

Our strategy to account for the effect of pre-stretch is to subtract the energy 

dissipation consumed during pre-stretch from GD. As shown in Fig.9a, the vertical strip 

used to calculate GD can be divided into two regions: (i) elastic region where Wmax ≤ Wpre 

(blue) and (ii) dissipative region where Wmax > Wpre (green). Dissipation only occurs in 

Region (ii) since U =0 in Region (i). The size of each region depends on the relative 

comparison between the pre-stretch λpre (or equivalently Wpre) and the stretch λs (or 

equivalently Wfar) to maintain steady-state crack propagation in the same sample without 

pre-stretch. This leads to three cases to be discussed below. To visualize the three cases, 

we plot the function Wmax(Y) in Fig.10a according to eq.(36) assuming no pre-stretch. 

Note that Fig.10a is in log-log scale, and we have switched the Wmax and Y axes in 

comparison to Fig.3b so that the Y-axis is aligned with the vertical strip. Also, the 

cohesive zone is not shown in Fig.10a. Recall that the function Wmax(Y) plotted in Fig.10a 

was obtained by combining the solution for neo-Hookean model (see Fig.3b) and a 

correction factor ξ based on the finite element data (see Fig.5a). As seen in Fig.10a, the 

main difference between the three cases is the relative extent of the elastic region (blue) 

and dissipative region (green), which depends on the level of pre-stretch. 

Case I: Small pre-stretch 
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 In this case we assume Wpre < Wfar  (or λpre < λs), which implies the entire strip is 

covered by the dissipative region (see Fig.10a). According to eq.(52), we need to subtract 

the same amount, i.e. hpreWpre, from U at every material point along the vertical strip. In 

principle pre-stretch may also affect the crack tip deformation field since it alters the 

stress/strain relation during loading branch. However, as a first order approximation, we 

neglect this effect and still apply the deformation field assumed in Section 3. As a result, 

the dissipative energy release rate *
DG  with pre-stretch is 

 
0

*

0

2 ( )
H

D D pre preG G h W W dY= − ∫  , (54) 

where GD is the counterpart of *
DG  under no pre-stretch. To derive the toughness Γ* under 

pre-stretch, we set * * *
0D DG = Γ = Γ − Γ and use eq.(49) to replace GD by ΓD, which gives 

 * 0
02 ( )

1 pre pre
rup

H h W W
hα

Γ
Γ = −

−
,  (55) 

where α is the dimensionless factor appearing in eq.(49) for the no pre-stretch case. 

Case II: Intermediate pre-stretch 

In this case we assume Wpre >~ Wfar  (or λpre >~ λs), which implies that the elastic 

region approximately covers a range of Y where Wmax = Wfar (see Fig.10a). No dissipation 

would occur in the elastic region. To estimate *
DG , we first assume the scaling relation 

that Wmax = ξG/(2πY) is still valid in the dissipative region. By following similar 

derivation for eq.(37), we obtain 

 ( )max

*
* max

*
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rup

pre

W

W

D h W
dWG

G W
ξ
π

= ∫ ,  (56) 

where hysteresis ratio h* under pre-stretch is refined as: 
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 . (57) 
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Substituting eq.(57) into eq.(56) and applying the change of variable φ =Wmax/Wrup, 

eq.(56) becomes 

 ( ) ( )( )max

*
max

0*
max

1
rup

pre

W

W

D
preh W

dWG h W
G W

ξ ξ φ
π π

= − −∫ ,  (58) 

where φ0 =Wpre/Wrup. The first term on the right hand side of eq.(58) represents the 

dissipation as if there were no pre-stretch, whereas the second term accounts for the 

reduced dissipation due to pre-stretch. However, this equation is difficult to use since the 

correction factor ξ is not known. Unlike Section 3 where we focus on demonstrating the 

utility of energy method for calculating GD and thus used the FE data to determine ξ (see 

Fig.7a for example), here our goal is to obtain analytical equations to predict the 

dependence of GD on pre-stretch. Therefore, two additional approximations are used to 

simplify eq.(58) and allow the prediction of Γ*, as described below. 

 First, since Wpre is comparable to Wfar, we recognize that the integral term in 

eq.(58) is approximately equal to the integral term in eq.(37) (note that G/2H0 is equal to 

Wfar). Therefore, we make an approximation to replace the integral in eq.(58) by the ratio 

GD/G under no pre-stretch. Effectively we neglected the second term in eq.(37). This is 

based on the assumption that most of the dissipation comes from the region with strong 

stress concentration where Wmax ~ 1/Y, represented by the integral term in eq.(37).  

Furthermore, using eq.(49) we find GD/G = αhrup. Therefore, 

 ( )( )
*

0* 1D
rup pre

G h h W
G

ξα φ
π

= − − .  (59) 

This approximation tends to overestimate * */DG G . Second, we neglect effect of the 

correction factor ξ (0< ξ≤1) and make the approximation that ξ =1, which implies 

 ( )( )
*

0*

1 1D
rup pre

G h h W
G

α φ
π

= − − .  (60) 
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This approximation tends to underestimate * */DG G . Therefore, errors due to the two 

approximations may cancel each other, at least partially. Finally by using 
* * * */ /D DG G = Γ Γ , we can get: 

 

( )
* 0

11 1 pre
rup pre

rup

W
h h W

W
α

π

Γ
Γ =

 
− + −  

 

 . (61) 

It is difficult to theoretically estimate the errors due to the two approximations made 

above. Instead, in Section 4.2 we will show that eq.(61) is in good agreement with the FE 

results, which serves as a justification for these two approximations. 

Case III: Large pre-stretch 

In this case we assume Wpre >>Wfar  (or λpre >> λs). Similar to Case II, we can 

derive eq.(58) for estimating *
DG . However, unlike Case II, here dissipation is confined to 

a small region around crack tip (see Fig.10a). Outside the dissipative region, the material 

behaves as an elastic neo-Hookean solid, but with a reduced modulus due to pre-stretch. 

Therefore, we recover the scenario of localized dissipation, and hypothesize that the 

crack tip field based on elastic neo-Hookean solid is valid. In other words, ξ =1. As a 

result, eq.(58) becomes 

 ( ) ( )( )
0

1*

0*

1 1 1D
rup pre

G dh W h W
G φ

φφ φ
π φ π

= − −∫ ,  (62) 

where φ0 =Wpre/Wrup. Again, by using * * * */ /D DG G = Γ Γ , we can get: 
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1 11 1rup pre
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 . (63) 

It should be noted that the scenario of localized dissipation is achieved through pre-

stretch, which is applicable for all values of m/Wrup. In contrast, the special case of 

localized dissipation in Section 3.3 assumes zero pre-stretch and thus is only applicable 

when m/Wrup is large. 
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Figure 10 (a) Schematics of the three cases considered in our analytical model. The Y 
versus Wmax plot is in log-log scale and is used to illustrate the difference between the 
three cases.  (b-d) Comparison between predictions of our model and FE data (symbols) 
for fracture toughness Γ* versus pre-stretch λpre for three values of m/Wrup =0, 0.025, 0.2. 
 

4.2 Model validation 

We perform a set of FE simulations with the same cohesive zone parameters with 

peak stress Smax/µ =4 and intrinsic toughness Γ0/µt0 = 3 where the shear modulus µ = 

10kPa and thickness t0 =1mm. This corresponds to Wrup = 80kJ/m3 using eq.(35). The rest 

of the parameters are: sample height 2H0 =60mm and Mullins effect parameters r = 2 and 

β = 0.1. For each run, we first simulate the pre-stretch process by uniformly stretching an 

uncracked sample to λpre under the pure shear condition. After that, we introduce an edge 

crack and simulate the pure shear fracture test, determine the stretch ratio associated with 
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the peak force, and interpret it as the λs for steady state crack propagation. The toughness 

Γ* is calculated using 

 ( )*
0 1 2 32 1, , 1/far s sH W λ λ λ λ λΓ = = = =  , (64) 

where farW  is defined in eq.(53) and accounts for the softening due to pre-stretch. This 

procedure is repeated for different pre-stretches λpre to determine how Γ* decays with λpre. 

The FE results are plotted in Fig.10b-d for three values of m/Wrup (0, 0.025, and 

0.2). To plot the predictions of our analytical model, we note that the boundary between 

Case I and Case II&III is determined by the condition Wpre = Wfar. By relating Wfar to 

farW and  Γ*  through eqs. (53) and (64), we can rewrite this condition as: 

 ( )
*

0

1
2pre pre farh W W W

H
Γ − = = 

  . (65) 

Since Wpre is a function of λpre as defined in eq.(51), we plot eq.(65) in Fig.10b-d as a 

green dashed curve. Above the curve, Case I is valid. Below this curve, either Case II or 

III is valid. The difference between Case II and III is whether the pre-stretch has 

significantly altered the crack tip deformation, which is difficult to be captured by an 

analytical relation. Therefore, we plot both cases and choose the one with lower Γ* (see 

solid lines). It should be emphasized that all the parameters involved in the analytical 

model can be directly calculated using parameters of the FE simulations. In particular, 

ideally we would use eq.(49) to predict the factor α at zero pre-stretch. However, as 

shown in Fig.8, there is a slight discrepancy between eq.(49) and corresponding FE 

results when m/Wrup exceeds 0.05. To focus on the effect of pre-stretch, we take the FE 

result of toughness Γ at zero pre-stretch and evaluate α using α = (1−Γ0/Γ)/hrup. Excellent 

quantitative agreement between the model predictions and FE results can be seen in 

Fig.10b-c. As expected, Case I, II and III can capture the reduction in toughness Γ* at 

small, intermediate and large pre-stretch, respectively. The transition occurring near the 

boundary represented in eq.(65) is not smooth, which is due to the approximations used 

in the analytical model. It is interesting to note that as m/Wrup decreases, the region of 

validity for Case II decreases and eventually vanishes when m/Wrup =0.  
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 Next we examine the experimental data in Zhang et al.28 to see how well our 

analytical model can capture their data. Specifically, they tested the toughness of a 

polyacrylamide-alginate hydrogel12 under different pre-stretch ratios, as shown in Fig.11 

(symbols). To apply our model, we first describe how relevant parameters are selected. 

Pure shear extensional tests show that the loading branch of the curve can be described 

by a one-term Ogden model:  

 ( )1 2 32

2 3preW κ κ κµ λ λ λ
κ

= + + −  , (66) 

where µ = 10.81kPa and κ =1.879. Our model was based on the neo-Hookean model 

which can be recovered from eq.(66) by setting κ =2. For simplicity we will neglect this 

difference and directly apply our model to this hydrogel. By fitting the experimentally 

measured hysteresis ratio h with the modified Ogden-Roxburgh model, they determined 

that r =1.516, m = 4.274kJ/m3 and β =0.1. The peak stress of cohesive zone Smax was 

taken to be the maximum stress recorded under the pure-shear extensional test and is Smax 

=80kPa. For the Odgen model, the approximate approach in eq.(35) to estimate Wrup is no 

longer applicable. Therefore, we use eq.(66) to estimate Wrup, and find Wrup =358.5kJ/m3 

and m/Wrup =0.012.  The intrinsic toughness Γ0 is taken to be the plateau value of Γ* at 

large pre-stretch λpre, i.e. Γ0=400 J/m2 (see Fig.5c in Zhang et al.28).  Lastly, with the 

sample height 2H0=20mm, we find 2H0Wrup/Γ0 =17.93 in eq.(47). Assuming ξ =0.35 (see 

Fig.7a), eq.(47) allows us to get Γ0/Γ =0.325, which further leads to ζ =0.0415 based on 

eq.(50). Finally, using eq.(49), we find α =0.9139 for m/Wrup=0.012, implying the 

toughness under zero pre-stretch is Γ=919J/m2 which is about 10% lower than the 

experimental data (1063J/m2).  
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Figure 11 Comparison of the model predictions and experimental data on how the 
toughness Γ* depends on pre-stretch λpre. The experimental data (star symbols) are 
extracted from Zhang et al.28. From the experimental data, m/Wrup is found to be 0.012, 
and it turns out that Case II of the model does not exhibit a region of validity, similar to 
the case of m=0 in Fig.10b.  
 

Now that all the parameters are determined, we plot the prediction of our 

analytical model in Fig.11. The model predictions agree with the experimental data 

reasonably well, given that there is no adjustable parameter in the model. In the range of 

λpre where Case I is applicable, our model underestimates Γ* in comparison to 

experimental data, which comes from the lower estimate of Γ for zero pre-stretch. This is 

not surprising since we have used eq.(36) with ξ=0.35 based on the neo-Hookean model 

to derive α, which may not be accurate for the Ogden model in eq.(66) even though κ is 

close to 2. However, our model does capture the relative trend of decaying Γ* with λpre. 

To illustrate this point, we use the experimental value of Γ (=1063J/m2) at zero pre-

stretch to find α = 1.0093. The Case I based on this value of α (see eq.(55)) is shown in 

Fig.11 as the dashed line (red), and it gives a better agreement with experimental data. 

5. Summary and Discussions  

We presented a method to calculate the fracture toughness of a model soft 

dissipative material system, i.e., neo-Hookean solids with rate-independent hysteresis 

described by the Mullins effect. Based on energy balance, we first derived a general 

equation connecting the energy release rate to bulk hysteresis, and then applied it to 
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steady-state crack propagation and the constitutive model of neo-Hookean solid with 

Mullins effect. By leveraging the solutions for crack tip deformation field in elastic neo-

Hookean solids, we developed analytical expressions illustrating how toughness is 

enhanced by the bulk dissipation, and validated them using FE simulations. Using the 

same theoretical framework, we also derived an analytical model to quantitatively capture 

the reduction in fracture toughness due to pre-stretch, which agrees with FE results and 

literature experimental data well. Such analytical relations will serve as useful tools for 

predicting fracture behaviors in soft dissipative materials where the Mullins effect is 

dominant, e.g. filled elastomer29, double network gel11 and multi-network elastomer14. 

Using the modified Ogden-Roxburgh model as an example, we found that the 

dissipation zone size can be tuned by modifying the bulk hysteresis parameters. In 

particular, in the limit of m/Wrup >>1, the dissipation zone is localized near the crack tip 

and Γ is independent of the sample size H0, reminiscent of the “small scale yielding” 

condition in elastic-plastic fracture. However, in the limit of m =0, we found that 

dissipation from the material far away from the crack tip cannot be neglected due to its 

large volume. In this case, the dissipation zone size YD is always comparable to H0, and 

the scenario of “large scale yielding” is evoked. Theoretically speaking, the total 

toughness Γ becomes dependent on the sample size, although this dependence is rather 

weak as shown in Fig.7a. Nevertheless, the size dependent toughness Γ may pose a 

challenge to the characterization of fracture in soft materials with significant dissipation, 

e.g. viscoelastic elastomers16,42 or tough hydrogels12,13 with highly enhanced hysteresis 

and crack blunting. 

A limitation of our version of the Ogden-Roxburgh model is that it leads to a 

negative dissipation rate during reloading after a loading-unloading cycle, which violates 

the second law of thermodynamics. A more physical approach30,43–45 to capture the 

Mullins effect is to let the damage variable η in eq.(18) evolve during the loading branch 

(dη < 0) and remain unchanged during unloading or reloading (dη = 0), so that the 

dissipation rate is always non-negative. To illustrate how this type of model can be 

combined with our thermodynamic framework for crack propagation, we plot in Fig.12 

the loading history of a material point as it is translated from X1= +∞ to X1= −∞ in the 
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pure shear fracture specimen (see Fig.1a), schematically represented by the dominating 

stress and stretch components: S22 versus λ2. Since dη = 0 during unloading, the integral 

for the dissipation term U in eq.(23) only comes from the loading branch, starting at the 

global stretch λs and ending at the maximum stretch experienced by this point. Using 

integration by parts or a graphical method similar to that in Section 2.3 (see eq.(24) and 

associated discussions), one can show that U is represented by the gray shaded area in 

Fig.12, instead of the entire hysteresis loop. On the other hand, eq.(13) reduces to  

  ( ) ( ) ( )0 1 0 2 22 2
s

s sG H X H W
ψ

ψ η λ λ λ λ= = +∞ = = =


 ,                  (67) 

where ψs is the free energy density far ahead of the crack tip (illustrated by the blue line 

shaded region in Fig.12). Following the thermodynamic framework, we obtain 

   
0

0

0

H

D
H

G G G UdY
−

= − = ∫ ,           (68) 

but the physical meaning of G and U are different from what we had in Section 2.3 in that 

here U is only given by part of the hysteresis loop and G is defined using the area 

underneath the unloading curve at λs (dashed line in Fig.12). To reconcile this difference, 

we note that in the literature12,13,19,28 the global energy release rate is typically defined 

using the mechanical work required to achieve the global stretch λs rather than the free 

energy. According to this definition, the global energy release rate G* is 

   ( )*
0 02 2s s sG H U G H Uψ= + = + ,          (69) 

where Us is area of the hysteresis loop associated with the global stretch λs. Combining 

eq.(68) and (69), we have 

   
0 0

0 0

* * *
0 02

H H

D s
H H

G G G H U UdY U dY
− −

= − = + =∫ ∫ ,                         (70) 

where U* ≡U+Us is the area of the entire hysteresis loop experienced by the material point 

(i.e., red line shaded region + gray shaded region in Fig.12). This definition of G* and U* 

are now consistent with those based on the Ogden-Roxburgh model (see Section 2.3). 

Physically G in eq.(67) represents the free energy that can be released by the vertical strip 
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far ahead of the crack tip, while G* in eq.(69) quantifies the work required to drive crack 

propagation. These two definitions are not in contradiction but rather complement each 

other. For example, G* can describe a material’s resistance to crack propagation, while G 

is better correlated with physical process of crack propagation as demonstrated in a recent 

experimental work46.    

 

Figure 12 The loading history for a representative material point during steady state 
crack propagation in a pure shear fracture specimen. Unlike the material model assumed 
in Section 2.3, here dissipation occurs during the loading branch (dη < 0) but not the 
unloading branch (dη = 0). 

 

From a theoretical perspective, our work demonstrated a general strategy to 

calculate the contribution to fracture toughness due to bulk dissipation, which relies on 

knowledge in two aspects: i) deformation and stress fields in the crack sample; ii) 

nonlinear constitutive relation for the bulk material. This strategy can be extended to 

more complex material systems. For example, a possible extension to account for the 

strain stiffening effect at very large stretches is to replace the neo-Hookean model by the 

generalized neo-Hookean (GNH) model: 
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where λi are principal stretches and the exponent n (>1/2) controls the degree of strain 

stiffening. The neo-Hookean model is recovered when n =1. Asymptotic solutions for the 
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crack tip field have been solved for the GNH model40,47, based on which we find the 

following result for steady-state crack propagation in a pure shear specimen: 
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Θ
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.  (72) 

Interestingly, the maximum value of ( )f Θ  is always 1 for any n (>1/2). This result 

suggests that for GNH materials,  

 max
1( )

2
GW Y
n Yπ

≈   .  (73) 

which allows us to estimate the GD and thus ΓD (e.g. using eq.(33)). This indicates the 

nonlinearity of the bulk stress-strain relation, represented by n, may affect ΓD by 

influencing the crack tip deformation field.  

In many practical material systems, however, both the crack tip field and 

nonlinear constitutive model are difficult to determine, e.g. for soft viscoelastic materials. 

As pointed out by Knauss27, a key challenge in viscoelastic fracture is the lack of 

knowledge in nonlinear constitutive relation and corresponding crack tip fields. Most 

existing analyses are based on the assumption of linear viscoelasticity and the K-field of 

linear elastic fracture mechanics16,22,24. In this case the fracture toughness becomes 

dependent on the crack velocity. Despite the difference in material behavior, the approach 

we used to derive Γ/Γ0 for Mullins effect can also be used to derive similar formulas for 

linear viscoelasticity. In particular, the scaling relation Γ/Γ0 = 1/(1−αhrup), which was 

developed in Zhang et al.28 and elaborated in our work, is very similar to the result 

derived in de Gennes16 and Persson24. Especially, like in those works we started with an 

additive decomposition of G: G = G0 + GD and ended up with a multiplicative 

decomposition (G proportional to G0) because GD is itself proportional to G, as G sets the 

mechanical fields near the crack tip (though this is rigorously proved only in the elastic 

and linearly viscoelastic cases). For viscoelastic materials with strong nonlinear effects, 

more efforts are needed to understand the relation between fracture and dissipation20. For 
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such practical materials, G0 need not be any more a material constant, as was assumed in 

this work for simplicity. 

 

Appendix 1 Connection with the Eshelby energy momentum tensor 

Here we derive eq.(14) that relates the global energy release rate G to the Eshelby 

energy momentum tensor. We start from eq.(10) and write the following two identities 

based on the steady state condition: 
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and 

  ( )1 1
0 1 0 0

1 1 1

V V V

dV dV dV d
A A t X t tθ θ

ψ ψ ψ ψ
Ω

∂Ψ ∂ ∂
= = − = − ∇ = − Ω

∂ ∂ ∂∫ ∫ ∫ ∫X e e N  ,          

(A2) 

where N is the unit outward normal vector of the surface Ω, and e1 is the unit vector 

along X1 direction (aligned with the undeformed crack). Substituting eqs.(A1) and (A2) 

into eq.(10) gives: 
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ue S N .         (A3) 

For 2D crack geometry, e.g., a plane stress crack, the integral vanishes on the front and 

back surfaces of the fracture specimen and is only non-zero along the lateral surface. As a 

result, dΩ = t0dl and eq.(A3) reduces to the contour integral in eq.(14).  

 Next we show that eq.(17) for GD can also be derived based on the Eshelby 

energy momentum tensor Ξij. As shown in eq.(14), the global energy release G is  

    
1

far

j j
C

G N dl= Ξ∫ ,          (A4) 

where Cfar is a contour containing the whole specimen and ending on both crack faces. 

Likewise, following the reasoning of Thomas48,49 where the crack tip is represented by a 

semicircle with a small but finite radius, the local energy release rate at crack tip is 
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  0 1

near

j j
C

G N dl= Ξ∫ ,        (A5) 

where the integration contour Cnear coincides with the semicircle representing the crack 

tip. If an ideal point-like crack tip is assumed, Cnear can be considered to be infinitely 

close to the crack tip. Here we assume a separation of length scales, i.e. if a cohesive 

zone is implemented, it is much smaller than the continuum scale and thus is not visible 

in the region between Cnear and Cfar. In other words, the cohesive zone is enclosed within 

Cnear and contributes only to G0. This allows us to enforce the traction free condition for 

both crack faces, which leads to Ξ1jNj =0 on the crack faces. Therefore, by subtracting 

eq.(A5) from eq.(A4) and adding two branches of integration path along the crack surface, 

we have 

     0 1

all

j j
C

G G N dl− = Ξ∫ ,          (A6) 

where Call combines Cfar, Cnear and both crack surfaces, thereby enclosing the whole 

specimen but excluding the crack tip. Using the Stokes theorem, we can transform the 

contour integral into a surface integral:  

1
0

a

j
D

j

G G G d
XΩ

∂Ξ
= − = Ω

∂∫ ,         (A7) 

where Ωa is the front surface of the plane stress crack specimen. Finally, using the 

equilibrium equation in the absence of body forces, we get   

     1

1 1 1 1 1 1

:j kjk
kj kj

j j

FuS S
X X X X X X X X

ψ ψ ψ∂Ξ ∂ ∂∂ ∂ ∂ ∂ ∂
= − = − = − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

FS .             

(A8) 

Substituting eq.(A8) into eq.(A7) and use the pure shear fracture geometry, we obtain 

   
0

0

1 2
1 1

:
H

D
H

G dX dX
X X

ψ+∞

− −∞

 ∂ ∂
= − + ∂ ∂ 

∫ ∫
FS ,         (A9) 

which is identical to eq.(17). In the literature, the contributions to ∂Ξ1j/∂Xj from the 

various internal variables appearing in ψ are known as “local material volume forces” (up 

to a sign). In the present case, the integral of these local material volume forces 
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throughout the entire specimen plane is the total dissipation concerned in this work. We 

emphasize that the derivation based on energy momentum tensor is already available in 

the literature (e.g. see pp.132–135 of Grellmann et al.39). Our derivation in Section 2.2 

was based on direct examination of the bulk dissipation. Although the two approaches 

reach the same conclusion for 2D steady state crack propagation, the energetic approach 

in Section 2.2 is more general and is easier to interpret.  

 

Appendix 2 Intrinsic toughness and cohesive zone  

In Section 2.1, we provided a rigorous thermodynamic definition for the intrinsic 

toughness Γ0, i.e. the Helmholtz free energy required to break a unit area of material. 

Here we follow an approach from Knauss27,41 to prove that Γ0 is equal to the area 

underneath the traction-separation curve of the cohesive zone model (see Fig.4a) for a 2D 

Mode-I crack. We first apply eq.(7) to the specimen shown in Fig.A1, which gives 

1 2

0 0
C C V V

d d dAt dl dV dV
dt dt dtθ

ψ ϕ
+

− − Γ =∫ ∫ ∫
uT ,       (A10) 

where we have applied the condition that T∙(du/dt) vanishes on the front and back surface 

of the specimen and replaced dΩ by t0dl on the lateral surface. The boundary segments C1 

and C2 are illustrated in Fig.A1. Next we apply eq.(7) to the upper half of the specimen. 

Since the crack tip is excluded from the sub-volume of interest, the Γ0 term drops from 

the equation, which gives 

  
1 4

0

U UC C V V

d dt dl dV dV
dt dt θ

ψ ϕ
+

− =∫ ∫ ∫
uT ,       (A11) 

where C4 is a line segment at X2 =0 coinciding with the upper crack face and VU is the 

volume for the upper half of the specimen. Similarly, for the lower half, we have 

   
2 3

0

L LC C V V

d dt dl dV dV
dt dt θ

ψ ϕ
+

− =∫ ∫ ∫
uT ,   (A12) 
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where C3 is a line segment at X2 =0 coinciding with the lower crack face and VL is the 

volume for the lower half of the specimen. Adding eq.(A11) and (A12) and subtracting 

eq.(A10) from it, we find 

   
3 4

0 0
C C

dA dt dl
dt dt+

Γ = − ∫
uT .        (A13) 

The portions of C3 and C4 ahead of the crack tip coincide with each other, and thus are 

associated with the same displacement u but opposite traction T, which implies that the 

integral of T∙(du/dt) for C3 and C4 ahead of the crack tip cancels each other. We 

emphasize that the derivation until this point does not rely on the symmetry condition of 

Mode-I cracks, and therefore can be extended to general loading conditions (e.g. mixed-

mode) or crack geometries.  

 

Figure A1 Schematic picture of integration segments C1, C2, C3, and C4 for a pure shear 
fracture specimen. 

 

Now we are left with only the integral of T∙(du/dt) on the crack faces. Due to the 

symmetry condition, T= −Se2 on the upper crack face and T= Se2 on the lower crack face, 

where S is the cohesive traction and e2 is a unit vector along the X2 direction. Furthermore, 

denoting the crack opening displacement ( ) ( )
2 2u uδ + −= − , i.e., the difference between 

vertical displacement components of the upper and lower crack faces, we can rewrite 

eq.(A13) as:  

    
0

0 0 1
a

dA dt S dX
dt dt

δ

−

Γ = ∫ ,        (A14) 

where a is the crack length. Finally, by using the steady state condition that (d.../dt) = 

(∂…/∂A) dA/dt = – (1/t0) (∂…/∂X1) dA/dt, we obtain 
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max

max

0 0

0 1
1 0a

S dX Sd Sd
X

δ

δ

δ δ δ
−

∂
Γ = − = − =

∂∫ ∫ ∫ ,      (A15) 

where δmax is the cut-off separation of the cohesive zone model. We have recovered in 

eq.(A15) the relation between Γ0 and the cohesive zone model. In some cohesive zone 

models50, a cut-off separation is not implemented, which can lead to a virtually 

unbounded cohesive zone. 

 

Appendix 3 Additional information about FE simulations  

Equation (35) for calculating Wrup is based on the assumption that the rupture 

occurs at very large deformation. Specifically, as pointed out in Long & Hui40, in an 

incompressible neo-Hookean solid the material near the tip of a Mode-I crack is 

practically under uniaxial tension. We assume Wrup is associated with a large uniaxial 

stretch λrup (>>1): 

  

2
2 2 3

2 2
rup

rup rup
rup

W
µλµ λ

λ

 
= + − ≈  

  .       (A16) 

The corresponding nominal tensile stress at rupture Srup is 

   
2

1
rup rup rup

rup

S µ λ µλ
λ

 
= − ≈  

  .        (A17) 

Next we assume Srup is equal to the peak stress of the cohesive zone Smax. By combining 

eqs.(A16) and (A17), we arrive at eq.(35). 

 Our FE simulations are based on the explicit dynamical solver in ABAQUS, 

which may be sensitive to a number of simulation parameters. To ensure the FE results 

are independent of the simulation parameters, we performed a series of convergence tests. 

The results plotted using the normalized force N versus the applied stretch λ are shown in 

Fig.A2. In particular, we compared results using two different sets of mesh: one based on 

the model of Zhang et al.28 and a finer mesh (see inset of Fig.A2a). Even though there is 

some deviation in the peak force, we find the two meshes give the same stretch at peak 
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force which is the main data extracted to determine the toughness Γ. We adopted the 

mesh of Zhang et al.28 since it can significantly reduce the computational time in 

comparison to the finer one. The rest of the simulation parameters are discussed below. 

• Damping factor (Fig.A2b): the result converges and we used a value of 0 in all 

our simulations.  

• Strain rate (Fig.A2c): it can affect the branch after the peak force by influencing 

the crack propagation velocity, but the effect on the location of peak force is 

negligible. We set the strain rate to be 2.5×10−3/s to reduce computational time. 

• Poisson’s ratio (Fig.A2d): in the explicit dynamical solver of ABAQUS, the 

Poisson’s ratio cannot be exactly set to 0.5 to achieve incompressibility. We 

found that the result converges as the Poisson’s ratio approaches 0.5. Therefore, 

we set the Poisson’s ratio to be 0.4998 in our simulations. 
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Figure A2 Results of the convergence tests for various finite element simulation 
parameters: (a) mesh; (b) damping factor; (c) strain rate; (d) Poisson’s ratio. The inset in 
(a) shows snapshots of the two meshes near the crack tip in the reference configuration: 
Mesh 1: finer mesh; and Mesh 2: the mesh used in Zhang et al.28. These results are for a 
case with Smax/µ=4, δmax/H0=0.05, and m/Wrup =0.1. 
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