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Abstract

The fracture toughness of soft elastomers or gels can be substantially enhanced by
introducing various energy dissipation mechanisms into the bulk material. Bulk
dissipation, manifested in the hysteresis of loading-unloading cycles, enables the
formation of a dissipation zone around the crack tip that consumes most of the energy
provided by the external loading to drive crack propagation, effectively increasing the
fracture toughness. An in-depth understanding on how bulk dissipation contributes to
fracture toughness is required to predict crack propagation in soft materials with
significant hysteresis. However, the current understanding is limited to the qualitative or
empirical level due to the complex nonlinear mechanics involved in soft material fracture.
This paper presents a theoretical framework for calculating the energy dissipation
associated with crack propagation. To demonstrate its utility, we focus on steady state
crack propagation and consider a model material system with rate-independent hysteresis:
a neo-Hookean solid with Mullins effect. We determine analytical relations between
fracture toughness and the parameters governing bulk hysteresis, and quantitatively
predict the reduction in fracture toughness due to pre-stretch. Both agree well with finite
element results. The framework presented here can be applied to a broader range of
dissipative soft materials, thus providing a theoretical tool to guide the engineering of soft

materials with high toughness.
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1. Introduction

Soft materials that are resistant to fracture are highly desirable in a wide range of
existing and emerging engineering applications, e.g. tires, sealants, pressure sensitive
adhesives!, soft robotics>?, biomedical implants* and stretchable electronics®®.
Experimental characterization of the fracture resistance involves the propagation of a
macroscopic crack under controlled mechanical loadings. Specifically, the fracture
toughness I' (unit: J/m?) is defined as the work required to advance the crack by a unit
area. In reality, macroscopic cracks may originate from the growth and coalescence of
small defects with various shapes and sizes. The effects of defects on fracture have been
studied for many material systems’ . For soft materials, a recent work by Chen et al.!°
showed that the toughness I', together with the bulk energy stored in the material at
rupture, defines a critical length scale of defects below which the material becomes flaw
insensitive, i.e., larger I" implies that the material is less sensitive to defects. Therefore, I

is an important parameter for evaluating a material’s brittleness in general.

Tremendous research efforts have been devoted to enhancing the fracture

toughness of soft elastomers or gels through various mechanisms such as sacrificial bond
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breaking!'™'*, viscoelasticity'>!6, and particle fillers'”!8. A common theme behind this
diverse range of toughening mechanisms is bulk energy dissipation'?, which prevents the
energetic driving force provided by external loadings from being fully delivered to the
crack tip, thereby effectively enhancing the fracture toughness. For these dissipative
materials, the toughness I' can be divided into an intrinsic toughness [0 and a term I'p

representing the contribution due to bulk energy dissipation'®2°;

[=T+T, . (1)

Physically I'o is associated with the material failure processes at the crack tip to create
new surfaces. For example, Lake and Thomas?! suggested that I'y for crosslinked rubbery
networks is the energy required to scission polymer chains per unit area. Unlike I'o, the
physical processes underlying I'p occur at a much larger length scale, especially for soft
materials with dramatically enhanced toughness?’. Consequently, I'p can be much larger

than I'o, and may become dependent on the size of fracture samples. In addition, I'p may



depend on loading rates for viscoelastic materials. As a result, in general I'p cannot be
regarded as a material property, and an accurate estimate of I'p is necessary for

understanding the fracture of soft materials with strong dissipation.

Modeling I'p for soft materials is a challenging task. Early efforts were focused
on viscoelastic materials, including the theoretical picture of viscoelastic “trumpet”
proposed by de Gennes'® and several more rigorous analyses*’2*. These works are all
based on linear viscoelasticity. More recently, Brown® and Tanaka?® developed scaling
models to understand I'p for double network gels with strong hysteresis. Although these
works qualitatively captured the crack tip dissipation process, quantitative prediction of
I'p still remains elusive. As pointed out in a couple of reviews?®?’, the nonlinearity
associated with large deformation at crack tip plays a critical role in governing I'p for soft
materials, but has rarely been addressed due to the lack of knowledge about the complex

1.8 made an

nonlinear deformation field in the crack tip region. Recently, Zhang et a
encouraging progress in quantifying I'p for a tough hydrogel with rate-independent
hysteresis. Based on scaling analysis and a finite element (FE) model that incorporated
large deformation kinematics and a nonlinear damage model for the gel, they derived an
analytical relation between I'p and bulk hysteresis parameters by fitting FE data. Despite
its success, this approach relies on FE simulations and is empirical in nature. More

theoretical insights that will enable a general strategy of calculating I'p for soft

dissipative materials are yet to be established.

Here we present a theory to estimate I'p and I' for Mode-I plane stress cracks
under steady state propagation. Specifically, we focus on a simple material as a model
system: a neo-Hookean hyperelastic solid with rate-independent hysteresis described by
the Ogden-Roxburgh model for the Mullins effect?®. Our goal is to derive analytical
expressions for I'p and I" based on theoretical considerations. Using this theory, we can
also predict the reduction in toughness I' due to pre-stretch which reduces bulk
dissipation. This paper is organized as follows. In Section 2, we present the basic
elements of our theory to estimate I'p. In Section 3, we consider two limiting cases for
estimating I'p based on which an expression for intermediate cases is constructed and

compared to finite element results. Moreover, we discuss in Section 4 the reduction in
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fracture toughness due to pre-stretch. We conclude in Section 5 with a summary of our

work followed by additional discussions.
2. Energy release rate

According to the Griffith’s fracture criterion, crack propagation would occur
when G > T, where G is the energy release rate. For linear elastic materials, G is defined
as the potential energy, consisting of strain energy stored in the material and potential
energy of the loading system, to be released if the crack grows by a unit area. For soft
dissipative materials, two aspects of this definition need to be clarified. First, since soft
materials can undergo large deformation which may cause a significant change in area as
the crack deforms, the crack area to define G (or I') usually refers to the area in the
undeformed configuration, which will be adopted in this paper. Second, for soft
dissipative materials, the strain energy is not well defined since the material exhibits
hysteresis during loading and unloading. In this section, we start with a rigorous
definition of energy release rate for materials with hysteresis, and then specialize it for

steady state crack propagation and the neo-Hookean solid with Mullins effect.
2.1 Energy release rate for materials with hysteresis

Let us consider a volume V" delimited by a surface Q2. This volume of material is
subjected to external loading, and a crack of surface area A can propagate in it. These
geometrical entities are all defined with respect to the undeformed configuration. Next
we examine the energy exchange between this volume and its environment during crack
propagation. All quantities used in the derivation below are with respect to the

undeformed configuration.

The internal energy E contained in V' can be affected by external loading, heat
exchange, and crack propagation. Assuming quasi-static crack propagation so that
equilibrium is always satisfied (i.e., no inertial term to be accounted for) and no body

forces, we obtain the following energy balance equation for dE/dt (¢ stands for time):

dE du d4
E:£T°dt dQ+£(w—onq)dV—Eo— . 2)

dt



The first term on the right hand side of eq.(2) represents the power supplied by external
loading, where T and u are traction and displacement vectors on (). The second term

represents the rate of heat exchange with the environment®’, where wis the rate of

external heat supply per unit volume, q is the heat flux vector, and V is the gradient
operator. The third term accounts for the power consumed by crack propagation, where
Ey is the internal energy required to break a unit area of material (unit: J-m2). Physically
Ey should be a function of the loading conditions at the crack tip, e.g. the temperature and

crack propagation rate.

In a similar manner, we can write the following equation for the entropy X
contained in V-

d_E:j(ﬁ—vx.(ﬂDdVJrjldV—zod—A . 3)
7 2] VH dt

The first term on the right hand side of eq.(3) is the entropy change due to heat exchange,
where @ (= 0) is the absolute temperature. The second term represents the entropy
increase due to irreversible phenomena in the solid, where yis the energy dissipation per
unit volume. The second law of thermodynamics dictates that ¥ > 0. The third term
accounts for the contribution due to crack propagation, where Xo is the entropy change
associated with the breaking of a unit area of material (unit: J-m >K™!). Similar to Ej,

Yo depends on loading conditions at the crack tip and is in general not a material constant.

Since eq.(3) holds for any volume enclosing the crack tip, it can be rewritten
exclusively in terms of volume integrals. For example, the entropy X can be written as
volume integrals of o, which is the entropy per unit volume. The term XodA4/d¢ can be
written as the volumetric integral of XydA/d¢ multiplied by a Dirac delta function centered
at the crack tip. As a result, the global entropy equation of eq.(3) can be recast into local
forms in terms of partial differential equations. Multiplying the local form of eq.(3) by

temperature € and integrating over V, we get

jed—ade {a)—VX-q+7+M}dV—QOZOd—A, )
YWoar T 0 dt



where 6 is the temperature at the crack tip and we have used the identity that

Vy(q/0)=(Vyq)/ 0-q-V,0/ 6.

Subtracting eq.(4) from eq.(2) and rearranging, we obtain

du do dA V0
4 _99% iy (E,-6,5,) = av 5
i dr (dt a f B0 ﬂy 9 } ©)

where e is the internal energy per unit volume. Let ¢ denote the integrand on the right

hand side of eq.(5). When the temperature field is homogeneous, @ =y and so ¢ > 0.

Otherwise we assume Fourier’s law in the reference configuration, q = —KVXH with x>

0. Consequently, o = y— x| VO > / 6, where the term after the minus sign, manifestly

positive, represents the dissipation rate accompanying heat conduction. Therefore, ¢ can
be interpreted as the rate of purely mechanical dissipation, also referred to as the intrinsic
dissipation. The second law of thermodynamics, represented by the constraint that y> 0,
dictates that ¢ > 0 under the isothermal condition. Moreover, introducing the Helmholtz

free energy density = e — 6o and remembering that o= — 0y/06, we see that

de d d dog d
¢ _pdo_dy (5%”)_9:_1// ©)

dt dar dt \o0)ar a p

where the last notation indicates a time derivative at constant temperature 6. Lastly, we
note that (Eo—6vXo) in eq.(5) is the Helmholtz free energy required to advance the crack
per unit area, and thus is recognized as the intrinsic fracture toughness ['o0 = Eo—6oXo.
Instead of enforcing that I'¢ is a material constant, we retain the generality that ' may
depend on local conditions at the crack tip (e.g. temperature or crack propagation rate®!).

Defining the total Helmholtz free energy as ¥ = |y w dV, eq.(5) becomes

d d¥
dt dt |,

-T E_j(pdV (7)

Q

The dissipation rate ¢ can be determined by using the local form of eq.(7) in an arbitrary

sub-volume ¥~ that does not contain the crack tip so that the term associated with I'o



vanishes. Specifically, assuming no body forces, we apply the traction-stress relation and

the equilibrium equation in this arbitrary sub-volume ¥, and can derive that*°

du
dt

dF
J*T- dQ=VJ‘*S.EdV, (8)

where S is the first Piola-Kirchhoff stress tensor, F is the deformation gradient tensor and

Q" is the boundary of V*. Using eq.(8), we obtain the following expression for ¢:

9)

For an elastic material, the free energy density w depends only on F under a fixed
temperature with S = 0w/0F, and therefore ¢ = 0. For materials with dissipation, ywand S
may depend on multiple internal variables which are governed by the deformation history.

In this case, we expect ¢ > 0.

The derivation above is based on the assumption of quasi-static crack growth with
equilibrium. This implies Go = I'o where Gy is the intrinsic energy release rate for driving
the fracture processes at crack tip. In addition, we note that the global energy release rate

G is defined by the change in potential energy IT per unit area of crack growth™, i.e.,

G:—a—H:

J'T-audQ—a—\P . (10)
oA L oA adl,

To establish a connection between Go and G, we expand the time derivatives of u and ¥
in eq.(7) into two parts: one due to the growth in crack area 4 (i.e., (0... /04) d4/d¢), and
the other due to time dependent processes occurring at constant 4 (i.e., (0... /0f)|4). The
latter can result from changing external loading conditions or from viscoelastic
relaxation/creep under constant external loading. Using eq.(10) and Go = T'o, we can
rewrite eq.(7) as

(G-G,)—+

dQ—
de 3 o),

dA oul ad
T =|pdv . (11)
I 0t |y J



This is the general energy balance equation we were looking for. It connects the
dissipative energy release rate Gp= G — Gy with the bulk dissipation rate ¢, and is valid

for any dissipative material models including the rate dependent ones (e.g.

viscoelasticity).
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Figure 1 (a) Schematic of steady state crack propagation in a pure shear fracture test
(shown in the reference configuration). With respect to a translating coordinate system
Xi-X> centered at the crack tip, crack propagation is equivalent to moving a vertical strip
from X; =+ to =—o0. A and B are two different points along the vertical strip. (b) The
different loading histories experienced by the two points A and B illustrated using the
dominating stress and deformation components for a Mode-I crack, i.e. S>> versus A». The
maximum stress experienced by A is larger due to stress concentration at the crack tip. (c)

Integration path C,,. is along perimeter of the fracture specimen.

2.2 Steady-state propagation of a plane stress crack

To put eq.(11) into the perspective of this work, here we consider a special case:
steady-state Mode-I crack propagation in a pure shear fracture specimen with isothermal
condition. The pure shear geometry was first developed by Rivlin & Thomas* and has
been widely used to characterize the fracture toughness of soft materials'>!**, Figure 1a

shows the pure shear geometry when mapped back to the undeformed configuration. The



lateral dimension of the sample is much larger than the height (2Ho) and is considered to
be infinite here for theoretical purpose. To drive crack propagation, the top and bottom
boundaries are clamped and subjected to a displacement loading of 2A along the vertical
direction. The displacement loading is often represented using the stretch ratio far ahead

of the crack tip:

A
A=1+—. (12)

HO
Steady state crack propagation implies that under a fixed A, the stress and strain fields in
the fracture sample are translationally invariant®. To use this condition, we set up a
translating coordinate system Xi-X> that is centered at the crack tip and translates with the

crack. The stress and strain fields expressed in terms of X;-X> are independent of the

crack length a measured from the origin of a fixed coordinate system.

For this plane stress crack, 4 = atyp where #y is the thickness of the specimen and a
is the crack length. Since the displacement loading is fixed, the boundary integral term in
eq.(10) vanishes. In addition, the steady state condition implies that 0.../04 = — (1/ty)
0.../0X1, which implies

Hy +oo a H,
G=_£ LG_)ZdXIdXZZ_l, (v (X, = +o0) —w (X, = —0) X, - (13)

It is worth noting that the expression of G in eq.(10) can be rewritten as a contour
integral for steady state two dimensional (2D) crack propagation (see Appendix 1 for a

detailed derivation):

ou
G= e —S’
CI (W ;) ¢
far

]-Ndl = EUdel , (14)

1 Cfar

where El-j :V/(%].—S,q@uk/ 0X,. In eq.(14), the contour Cp, is along perimeter of the

fracture specimen (see Fig.lc), e; is the unit vector along X;, N is the unit outward
normal vector of the contour Cyr, and ¢j is the Kronecker delta operator. The indices (7, ,
k) range from 1 to 2, and the Einstein summation convention of summing over repeated

indices 1s adopted. Applying eq.(14) to the pure shear fracture geometry also results in
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eq.(13). We recognize that Z; are components of the Eshelby energy momentum
tensor’®*’ but in an inelastic context. Moreover, we have recovered the well-known J-
integral through eq.(14). Unlike elastic materials where the J-integral is proved to be
path-independent, in general the contour integral in eq.(14) is expected to be path-
dependent due to dissipation, and thus the contour Cr, must be the perimeter of the
fracture specimen. However, if dissipation is concentrated in a small zone surrounding
the crack tip, the contour Cy, can be made smaller as long as it encloses the dissipation
zone. Note that in some literature®®, the deformation gradient Fi; = o + Ou/0X; is used
instead of Oux/0X; in the definition of Z;, which adds an additional Sj; to Z;. This however

does not affect G by enforcing equilibrium in the absence of body forces.

Next we consider Gp =G — Gy in eq.(11). In addition to the steady-state condition
with fixed loading, we further assume the material behavior is rate-independent. In this

case, the partial time derivatives (0.../0f)|a in eq.(11) vanish identically, and we have
Hy +oo
G,=G-G,= | [Zaxax, . (15)
—Hy —o0 vp
where v, = da/dt is the crack propagation velocity and we have set d4/dt = tov,. To use
the dissipation rate ¢ given in eq.(9), we first use the steady-state condition to simplify
the time derivatives, i.e., (d.../df) = (0.../04) dA/dt = — (©.../0X71) vp, which results in

@ _ _g.F oy (16)
v oX, oX,|,

P

so that

’jf( _OF al//jdXdX J'[F(X].w)S:dF—dt//]dXz. (17)

—H, —o —Hy | F(X)=+0)

We have dropped the fixed temperature constraint for dy/0X; due to the isothermal
assumption. Equation (17) is the basis for the remainder of our article. It states that the
dissipative energy release rate Gp can be calculated by imaginarily moving a material
point at Xi= +oo horizontally (i.e. at a fixed X2) to Xi=—co0 and integrating the bulk

dissipation along this deformation history. As pointed out in Long & Hui*, the material
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points at different X> experience different deformation histories. For example, in Fig.1b
we use the dominating stress and deformation components, i.e. S22 versus A due to the
Mode-I condition, to schematically illustrate the deformation history of two material
points A and B. Due to stress concentration at the crack tip, point A would first
experience additional loading as it approaches the crack tip before unloading occurs. In
contrast, since the global stretch ratio Ay is fixed, point B near the top boundary would

only experience unloading as it is moved from Xi= +oo to Xj=—c0.

Before specializing Gp for a material model with Mullins effect, it is worth
mentioning that the formalism of “material forces” associated with the manipulation of
Eshelby energy momentum tensor (see for example Grellmann et al.>* pp. 192-202 for a

short review) also leads to eq.(17), as demonstrated in Appendix 1.

2.3 Material model: neo-Hookean solid with Mullins effect

1.8 which consists of two

We adopt the same material model used in Zhang et a
components: 1) the incompressible neo-Hookean model to describe the initial loading
response and ii) the modified Ogden-Roxburgh model*® to phenomenologically describe
the softening behavior associated with Mullins effect. With this model and assuming

isothermal condition, the free energy density y is given by
w =W (F) and W(F)z%(ﬁ,iﬂi—3), (18)

where u is the shear modulus at infinitesimal strain, 4; (i =1,2,3) are the three principal
stretch ratios, 77 is the damage variable (0< 7 <I) and W will be referred to as the

nominal strain energy density. The first Piola-Kirchhoff stress tensor S is given by

ow
S=p———pF ", 19
Mg P (19)

where p is a Lagrange multiplier to enforce the incompressibility constraint. According to

the modified Ogden-Roxburgh model®®, the damage variable 7 is given by

1 w_ —W
max
n=1 - erf {—j 5 (20)

max
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where erf stands for the error function and the parameters », m and £ are material
constants. As shown in eq.(18), W is associated with the current deformation state F,
while W, is the maximum of W experienced by the material point along the deformation
history. During the initial loading, 7 =1 since W =W, and the material behaves as a
hyperelastic solid with W being the strain energy density. Take uniaxial tension as an
example: W is equal to the area underneath the stress-stretch curve during initial loading
(see Fig.2a). When unloading occurs, W <W,. and thus 7 <1, and hence the softening
behavior during unloading can be captured. Unlike the pseudo-elastic model of Odgen
and Roxburgh?® where an additional damage function is added to  so that the dissipation
rate =0, we follow the approach in Holzapfel*® and adopt the form in eq.(18) to retain

the dissipation term ¢.

(a) (b)
S Initial loading S
2) W . N |d(77W)| n=1

max

Figure 2 (a) Hysteresis due to the Mullins effect illustrated by the stress versus stretch
ratio curve under uniaxial tension. The area underneath the initial loading curve is
defined as the nominal strain energy density W. (b) Illustration of the incremental
dissipation dU =S:dF—dy. Along the initial loading curve dU =0 and during unloading
dU >0. The areas representing |dy |=— d(nW) and [S:dF|= —S:dF for a small segment
along the unloading branch are highlighted, and dU is represented by the shaded strip
within the hysteresis loop.

This material model allows us to further simplify the expression for G in eq.(13)
and Gp in eq.(17). First, the material model in eq.(18) implies that there is no permanent
deformation when the material is completely unloaded. Therefore, at X1= —co (far behind

the crack tip), the material returns to the undeformed configuration and y (X1= —o0) = 0.

12



At X1= +oo (far ahead of crack tip), the material has only experienced initial loading (i.e.,
n =1), and is under pure shear extension with the principal stretch ratios being Ai1=1,

A=As and A3=1/4s where we have assumed incompressibility. Therefore, y (Xi=+w0) =

,u(/is2 +A; ) =War , and eq.(13) becomes

G = 2’}IOI/Var ’ (21)

which has been widely used to evaluate energy release rate and fracture toughness in pure

shear fracture tests'>!334,

Next we consider Gp. Using eqgs.(18) and (19), we find the integrand in eq.(17) to
be

S:dF —dy =ndW —d(nW)=-Wdn, (22)

where we have used the incompressibility condition that J =det(F) =1 and the Jacobi’s
formula that F T:dF = dJ/J =0. The incremental dissipation S:dF—dy in eq.(22) is zero
during initial loading since 77 =1, and is positive during unloading since d7 <0. It should
be noted that this model is not thermodynamically consistent during a second reloading,
since —Wdn < 0 which implies a negative dissipation rate (¢ < 0) during reloading and
thus violates the second law of thermodynamics. This inconsistency is due to the
phenomenological nature of the damage evolution law in eq.(20), which is adopted to
enable comparison with previous results in the literature?®. It does not affect our analysis
in Section 3 since all material points experience only one loading and one unloading.
However, reloading would occur if the material experienced a pre-stretch before crack
propagation, which will be considered in Section 4. In this case, we will not be able to
apply the thermodynamic framework directly; instead, our analysis will be based on
physical arguments regarding the mechanical work and dissipation. Further discussions
on an alternative damage evolution law for 77, which is thermodynamically consistent, are

provided in Section 5.

Defining U as the energy dissipation per unit volume as a material point is

translated from X;= +oo to X;= —o0, we can write

13



F(X,=-) F(X,=—)
U= j (S:dF —dy)=- j Wdn (23)
F(X,=+wx) F(X,=+)
Since d77=0 along the loading curve, the integration limit in eq.(23) can be adjusted so

that it only covers the unloading branch, i.e., W ranging from W to O:

U:—j)' Wdn =W, — | ndw = [ (1=n)dw (24)
W inax 0 0
Physically U is represented by the area of the hysteresis loop in Fig.2b. To further
illustrate this equation, we look at two neighboring points along the unloading branch of
S22-A2 curve. The incremental work —S:dF is the area shaded in red lines, which is a
subset of the area representing —dy or —d(7 W) (shaded in blue lines). The complement of
these two areas, which is equal to dU =—dy — (—S:dF), forms a strip within the hysteresis
loop. Adding up these strips along the unloading branch gives the entire area of the
hysteresis loop, which is highlighted in gray in Fig.2b and expressed mathematically in
€q.(24). Substituting eq.(20) into eq.(24), we can obtain an analytical expression for U

(Wnax), based on which we define the hysteresis ratio / as:

_U(Wmax)_l ) 1 1
M) = w.. oo ef£ﬂ+m/WmaX]+x/;

-1

(B+miW,,) el _y ||, (25)

As discussed earlier, the W experienced by a material point depends on its vertical
position X>along the strip shown in Fig.1a. Using eqs.(17), (23)-(25), we finally arrive at

the following equation:

max

GD=2fUdY=2fh(Wm)W (Y)dy , (26)
0 0

where we have renamed the vertical coordinate X> to Y to clarify notation, and applied the
symmetry condition about Y =0. Similar expression for Gp was developed in Long &
Hui®> based on physical arguments. Here we provide a rigorous derivation from a more

general thermodynamic definition of energy release rate.

3. Dissipation and toughness

14



In this section we focus on determining the relationship between the toughness I
and its dissipative component I'p. To use the expressions for energy release rates derived
in Section 2, especially eq.(26) for Gp, we assume the intrinsic toughness I'o is a known
material constant and prescribe a local fracture criterion at the crack tip, i.e., Go=I'o. The
Gp and G associated with this local fracture criterion are then equal to I'p and T,

respectively. Now the question is: how do we calculate Gp?
3.1 Analytical model

The first step to calculate Gp is to determine the function W, (Y) in eq.(26),
which depends on the nonlinear deformation field around the crack tip. We start by
considering an elastic neo-Hookean solid for which the crack tip deformation field has
been solved asymptotically. Specifically, the first order terms of the dominant

deformation gradient components are*:
B . B _»
F,, __ER sin(©/2) and, F,, —ER cos(©/2), (27)

where R and © are polar coordinates in the reference configuration (centered at the crack
tip, see Fig. 1a) and B is an undetermined coefficient specifying the amplitude of the
crack tip field. Note that in the crack tip region the other non-zero deformation gradient
components, i.e. Fy;, Fi2 and F33, are all negligible in comparison to F>; and F>».
Substituting eq.(27) into eq.(18), and remembering that 4;4; = FyF; we obtain the
following distribution of W around the crack tip:

uB* 1 uB 1

W:TE T;sm@ (Y>0), (28)

where we have used the identity that ¥ = Rsin ®. The amplitude B of the local crack tip
field can be related to the external loading, represented by the global energy release rate

G, by calculating the J-integral. Using the result in Long & Hui*’, we find
G:J:%fB% (29)

Combing eqs.(28) and (29), we can write
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w=51sne . (30)
2rY

According to the definition in Section 2.3, Wy is the maximum of W as a material point
is translated from Xi= +oo to Xi= —oo, which corresponds to a fixed Y and ® ranging from

0 to 7. Hence Wuax(Y) has the following form:
W (Y)=—=. (31)

It should be emphasized that eq.(31) was derived based on the first order asymptotic
solution of the crack tip field. In principle, it should only be valid very close to the crack
tip (within the region of validity for eq.(27)). However, from the perspective of scaling
analysis, W should be proportional to G according to the J-integral. In the limit of
Hy—x, Y is the only relevant length scale, and dimensional analysis dictates that Wax ~
G/Y. Therefore, we hypothesize that eq.(31) has a larger region of validity than the
asymptotic solution in eq.(27), and is applicable throughout the sample except near the

top and bottom boundaries Y= +H,.

To account for the boundary effect near Y= Hy, we note that the material point at
Y= Hy would only experience unloading as it is translated from X;= +oo to X1= —o0 since
the applied stretch A is fixed. Therefore, using eq.(21) we obtain

W (Y=H)=W ¢

=, 32
max far 2H0 ( )

which implies eq.(31) is not valid near Y= +H). Otherwise we would get Wyu(Y=H))
=G/(2nHp) which is inconsistent with eq.(32). To reconcile egs.(31) and (32), we
hypothesize that eq.(31) is only valid for 0<Y <Hy/x, and W becomes uniform when Y
exceeds Ho/m, as schematically shown in Fig.3. The actual transition from eq.(31) to
eq.(32) may not be as sharp as assumed in Fig.3b. However, Fig.3b can capture the

essential features of W,.ax(Y) without evoking a complex analysis of the deformation field.
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Figure 3 The function W__ (). (a) The vertical strip used to evaluate Gp. (b) Schematic

of W_.. (Y) plotted in log-log scale. The vertical strip is divided into 3 parts: fracture

process zone near Y=0 (red), a region where W,.~1/Y for intermediate |Y|, constant Wux
for |Y] close to Hy.

The theoretical picture sketched above is derived for the elastic neo-Hookean
solid. When the Mullins effect is introduced, the crack tip deformation field may be
distorted by the hysteresis. However, since Wy is the maximum W along the loading
history of a material point at ¥ and the loading branch follows the neo-Hookean model,
we hypothesize the W,.(Y) shown in Fig.3 can be applied, at least approximately, to
€q.(26) for estimating Gp. We will evaluate the accuracy of this hypothesis using finite
element results later and make corrections if necessary. For the time being eq.(26)

becomes

G,-<" j mx)—+G(1—%jh(2f10J (3)

A difficulty is encountered in the first integral of eq.(33) at the crack tip ¥ =0.
This is due to singularity of Wyu as Y—0, which can be regularized by considering a
fracture process zone at the crack tip. The energy required to drive the fracture process is
represented by the intrinsic toughness I'o. In numerical simulations the process zone is
usually incorporated using a cohesive zone model as described in Section 3.2. The
distribution of Wy in a small region adjacent to the cohesive zone would deviate from

eq.(31). Assuming the process zone is much smaller than characteristic length scale of the
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fracture sample (e.g. Hy), we implement a cut-off in Wy denoted by W, i.e., the
nominal strain energy density when rupture occurs. This allows us to neglect the
contribution to Gp from the process zone due to its small volume. The cut-off W,
corresponds to a length scale of the cohesive zone, defined as Ycon =G/(27W,.p), that is
much smaller than Hy. After implementing the cut-off and the change of variable

AWnax! Winax = —dY/Y in the first integral of eq.(33), we obtain:

G LY h(Wm)%+(l_ijh(ij_ )
G T GI(2H,) Wmax T 2[_[0

This equation reveals the connection between Gp and bulk dissipation due to the
Mullins effect manifested in the hysteresis ratio 4 given in eq.(25). By replacing Gp with
G —Gy, it also allows us to solve for the total toughness I" (= G) and dissipative toughness
I'p (=Gp) for prescribed values of Hp, Wy, and Go=I". In addition, we observe that in

general the ratio Gp/G depends on the fracture sample size Hy and the cut-off .

Two questions remain to be answered. First, how accurate is the approximation of
applying the W,u(Y) for an elastic model to a solid with hysteresis? Second, how can we
obtain analytical results of Gp/G using the nonlinear function of A(Wax). For the first
question, we will use a finite element model, following the approach of Zhang et al.?®, to
verify the approximation and to motivate modifications. For the second question, we will
consider two limiting cases where A(Wyax) can be simplified: 1) large m/W,,, and ii)

m/Wup =0.

3.2 Finite element simulations

1.28 and build a finite element (FE) model in

We follow the approach of Zhang et a
ABAQUS (v6.14, Simulia, Providence, RI). Briefly, as shown in Fig.4a, a crack is
introduced into a plane stress pure-shear sample (dimensions: width Ly = 480mm, height
2Hy= 60mm, crack length @ = 120mm). The bulk material behavior is implemented by
combining the neo-Hookean model and the modified Ogden-Roxburgh model, both of
which are built in ABAQUS. To allow comparison with Zhang et al.?®, we set z=10kPa
for the shear modulus and =2, /=0.1 for the Mullins effect (see eqs.(18) and (20)) unless

specified otherwise. The parameter m is subjected to change. A layer of cohesive
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elements was introduced directly ahead of the crack tip to enable the simulation of crack
propagation. The explicit dynamics solver in ABAQUS is used to accommodate the rapid
unloading associated with crack propagation. We impose a triangular traction separation
law for the cohesive zone. The area underneath the traction separation curve is the
intrinsic toughness I'o, which is rigorously proved from eq.(7) following an approach in
literature?”*! (see Appendix 2 for details). According to Zhang et al.?8, the modeling
results converge when K is sufficiently large, K being the stiffness of the cohesive

' and use

element prior to rupture (see Fig.4a). Therefore, we fix K/Spax at 200mm™
different values for the maximum stress Syq. We interpret Sy as the maximum nominal
tensile stress that can be achieved under uniaxial tension, beyond which rupture occurs.
Following Zhang et al.?8, Syux can be related to W, using the following equation (see

Appendix 3):

- Q2
Wy ®Sha /21 . (35)




Figure 4 (a) Snapshots of crack propagation under the pure shear condition in FE
simulation. The inset shows the cohesive zone model placed along the projected crack
path. (b) Theoretical curve of the normalized force N versus applied stretch A. Once the
steady state stretch ratio As is reached, the crack is expected to propagate catastrophically,
which is represented by a sharp peak followed by an instantaneous drop in force. (c) A
representative FE result (Sya/1=4, T0=30J/m?, m/W,,,=0.05). The inset shows a zoomed
view around the peak force. The points corresponding to the five snapshots in part (a) are
also marked.

Our theory is based on the condition of steady state crack propagation under a
fixed applied stretch A;. However, it is difficult to reproduce this scenario in simulation
since the stretch As needed to maintain steady state is not known a-priori. Instead, we
continuously increase the displacement load and plot the applied force N versus applied
stretch 4. Since the models for bulk material and cohesive zone are both rate independent,
in principle the crack would propagate catastrophically once As is achieved, leading to a
sharp peak in the normalized N versus A curve as schematically shown in Fig.4b.
Motivated by this argument, we extract the A at the maximum applied force from the FE
results as the steady state stretch A;, and evaluate the total toughness I' using
'=2HyWju(As). This approach was also adopted in Zhang et al.’8. We note that the FE
result (see Fig.4c) does not exhibit an instantaneous drop after the peak force. This is
because the simulations are based on the explicit dynamic solver of ABAQUS, and
inertial effects prevent the crack propagation velocity from being infinite. In addition,
oscillations associated with the dynamic solver may also bring slight uncertainties when
identifying the location of peak force (see inset of Fig.4c). Given the importance of the N
versus A curve, we have performed a number of convergence tests to ensure the results

are independent of mesh and simulation parameters, which are summarized in Appendix

3.
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Figure 5 (a) Log-log plot of normalized Wy versus normalized Y. The symbols
represent results extracted from the FE simulations for Spa/u =4, To=30J/m?, and three
different values m/W,,=0, 0.025, and 0.3. The lines are given by eq.(36) with an
adjustable parameter & (b) Evolution of the unloading zone as the vertical strip is moved
from the right to the left. The red curve is plotted by extracting the location where W is
achieved for a particular Y from an FE simulation, i.e. the case of m/W,.,= 0.3 in part (a).

This curve illustrates how the unloading zone evolves as the vertical strip is translated to
the left.

In Fig.5a, we plot Wua(Y) during crack propagation from the FE results of three
different cases. The theoretical picture sketched in Fig.3 captures the qualitative trend.

However, to achieve quantitative agreement, a correction factor £ (0<£<1) is needed, i.e.,

w

max

EG/(2nY) Y, <Y<E¢H)/n
(Y)—{ (21) (36)

| GI(2H,)  EH,/m<Y<H,"

To understand the physical origin of & we plot in Fig.5b the boundary formed by the
coordinates X; and Y at which the W, is achieved using results of an FE simulation.
This boundary illustrates how the unloading region evolves as a vertical strip is translated
from Xi= +oo to X1= —o0. The Wnu(Y) in Fig.3 was derived for the elastic neo-Hookean
solid. When hysteresis is introduced, the material in the unloading region is softer than
the elastic counterpart, and thus is subjected to a larger stretch. Since the total stretch of
the vertical strip is fixed at As, the material points within the loading region (between the
dashed lines in Fig.5b) experience a smaller stretch, which reduces Wa... With this

correction, eq.(34) becomes
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G _e h(Wmu)—dWm“ +(1—£]h(iJ . (37)
T w

G/(2H,) max T 2[_[0

Note that the correction factor £ is not a constant but may vary as the bulk dissipation
parameters change. Next we first use eq.(37) to derive solutions of Gp/G (or I'p/T") for

two limiting cases, followed by the discussion about intermediate cases.
3.3 Limiting case I: localized dissipation (large m/W.,,)

To motivate this limit, we plot the hysteresis ratio 4 versus @ =Wl Wiy (0< ¢ <1)
in Fig.6a for four different values of m/W,,,. It can be seen that 4 decreases with m/W,,p.
Specifically, in the extreme case of m/W,, =10, h is less than 0.001 for ¢ < 0.0195,
indicating that the material is close to being elastic. Dissipation, if any, is limited to a
small region near the crack tip. To better visualize this effect, we use the scaling relation
Wnax~11Y (see €q.(36)) and plot & versus Y/Ycon =1/¢ in Fig.6b. For the case of m/W,,,
=10, A rapidly decays to 0.001 when Y/Y.on exceeds 50. Note that Y..; represents the
length scale of the cohesive zone and is by orders of magnitude smaller than Hy.
Therefore, physically the limit of large m/W,, corresponds to localized dissipation
around the crack tip. Since /4 is small, we anticipate that the function W,.(Y) based on
the elastic crack tip solution to hold, which allows us to set £=1 and neglect the second
term in eq.(37) accounting for the dissipation within Hy/ 7 <Y <Hj. In addition, since Wax
< Wiup, m/Wax 1s also large, and we can simplify eq.(25) by expanding the error function

and exponential function into series and keeping only the first order terms, which gives

h(P )

! !
~r’\/;ﬂ+m/WmaX .

(38)

Using these approximations and the change of variable ¢ =W/ Wp, we can rewrite

eq.(37) as

‘ /4
ﬁz 1 J‘ 1 d¢z 1 rup (l_ﬂ.Ycoh\J, (39)

3/2
(211, Bop+miWw,, rrt m

where we have used the definition Yeon =G/(27Wyp) to simplify the lower limit of the

integral. Recognizing that Y., << Hy, we further simplify eq.(39) to
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Figure 6 Hysteresis ratio / versus (a) the normalized nominal strain energy density ¢ =
Winax! Wrip, and (b) the normalized vertical coordinate Y/Ycon, which is equal to 1/¢ due to
the scaling Wix~1/Y. These curves are plotted using eq.(25) with » =1.1, #=0.1 and four
different values of m/W,.,;, (0.025, 0.1, 1, 10).

To better visualize the physical picture of this limiting case, here we introduce a
length scale Yp to describe the dissipation zone size. Specifically, in light of eq.(26) Yp
defines a cut-off length such that Gp only comes from the region —Yp <Y< Yp (¥Yp < Ho)
outside which U =0. However, according to the modified Ogden-Roxburgh model, U is
non-zero for the entire region of — Ho <Y< Ho, which requires us to relax the definition of
Yp: the majority of Gp, rather than all of Gp, is contributed by the region —Yp <Y< Yp.
This definition of Yp is associated with a custom defined threshold of Gp (e.g. 95%),
which needs not be specified for the scaling considerations here. Motivated by eq.(36),
we use the scaling relation W,a(Y) ~ G/Y that is valid near the crack tip and obtain that
Yb ~ G/W. where W is a threshold of W, that sets the boundary of the dissipation zone.
As discussed above, dissipation is localized in a small region around the crack tip for the
limiting case of m/W,.,, >>1, which implies that /7. is on the same order as W,.,,. As a
result, Yo ~ G/Wyup ~ Yeon, meaning that the dissipation zone size is comparable to the
cohesive zone size, which is reminiscent of the “small scale yielding” condition in

elastic-plastic fracture mechanics.
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1.28

Zhang et al.”® developed the following scaling relation

r
F—D=1—&:ahr or I'= 0 ,
r r e 1-ah,,

(41)

where /.. 1s the hysteresis ratio at Wyax = Wyup and « 1s a numerical factor determined by

fitting finite element results where £ was fixed at 0.1:

a=033+— 203 (42)
miW. +0.045

rup

1'28

To facilitate comparison with Zhang et al.*®, we cast eq. (40) into the following form

1 B 1 1
LIS P h o where b =h(W. )~ L3
F 71'( m/W ] rup , whnere rup ( lup) r /72_ ﬂ+m/me ( )

rup

Therefore, our analytical model suggests that when £ = 0.1, the factor « is given by

1 / 0.032
a~—+ Blx =032+ for large m/Wup. (44)
T m / mep m / rup

This analytical result agrees very well with eq.(42) given in Zhang et al.?® in the limit of
large m/W.p. It is also worth mentioning that in this limit of large m/W,.,», a and I" are

independent of the fracture sample size Hy since the dissipation is localized.
3.4 Limiting case II: constant hysteresis ratio (m =0)

In this case, we set m = 0, which implies that the hysteresis ratio # becomes

independent of Wiy, i.e.,

—0)=hy =1 er LB (e -
h(m—O)_hO_r{ f(ﬁj L (e 1)} 45)

where /o 1s a constant for fixed values of » and S. Therefore, eq.(37) can be simplified to

S [Zn 2122, )

G T T

By setting Go=I"o, Gp=I'p and G=I", we can write eq.(46) into the following form:
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Lo oty Loy Shyy 200 _(1_95);10 . (47)
r -~ T V2 I,

This equation allows us to solve for the ratio I'/T"o with given I'g and Ao. Interestingly, the
solution depends on a dimensionless parameter: y = 2HgW,.,/T0. This parameter reflects
the ratio between the cohesive zone length scale and the sample height. To see that, we
use eq.(35) and set ['o = SnaxOnar/2, Where dmax 1s the maximum separation of the cohesive

zone, which gives

_2HW,, 25, H, )
1—‘0 /u 5max .

X

Since Hy >> Omax, we expect y >>1. In FE simulations, we can tune Smax and Spax
separately to alter y. In Fig.7a, we plot the FE results (symbols) of I'/I'o versus y for
different combinations of Sy and Jdmar. The data collapse onto a master curve. We also
plot the predictions of eq.(47) in Fig.7a. If the correction factor &is set to be 1, our theory
significantly overestimates the I'/To. By plotting the distributions Wyu(Y) for a few
representative cases in Fig.7b, we find that & ranges from 0.35 to 0.45. A much better
agreement between the prediction of eq.(47) and FE results is obtained when & =0.35 is
incorporated. We also notice that the FE results exhibit larger scattering for smaller y.
This is attributed to the fact that a smaller y implies a larger S« Which represents a
wider cohesive zone. This may cause deviations from the assumed crack tip field in
eq.(36). As a result, the FE data for smaller y show larger scattering around the master

curve predicted by eq.(47) than those for larger y.

Interestingly, our analytical model and FE results both suggest that I" depends on
the sample size Hy and the cohesive parameters Syqx and Onax through y. Physically since
the hysteresis ratio 4 is constant for m =0, dissipation occurring even far away from the
crack tip is also important. Although the area of hysteresis loop U decreases as one
moves away from the crack tip, this decay is compensated by the large volume of
materials in the far field. Also, the amount of dissipation depends on the deformation
field which is highly coupled to the cohesive zone. This is quite different from the

“small-scale yielding” limit for large m/W,,, where I' is independent of sample size Hy.
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Indeed, the dissipation zone size Yp ~ G/W, can be estimated by recognizing that the
threshold W: is on the same order of Wy, since dissipation over the entire sample needs
to be taken into account. Therefore, Yp~ G/W. ~ Ho, meaning that the dissipation zone
size is on the same order of the sample height. Note that the scaling relation Yp ~ G/W. is
only valid for |Y| < &Ho/ 7, but this does not affect the scaling argument above. Lastly, we
note that in Zhang et al.?®, /Ty at m =0 is given by a constant: 1/(1—apho), where o
=1.0856 (see eq.(42)). The value of I'/T’y given by the empirical formula of Zhang et al.?®

is also plotted in Fig.7a for comparison (see the horizontal dotted line).
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Figure 7 (a) Toughness enhancement I'/T"y versus the dimensionless parameter y in the
limit of m =0. The symbols are given by FE result and the curves are predictions based on
eq.(47) with three different values of & The horizontal dotted line is the prediction of the
formula in Zhang et al.?® (see eq.(41) and (42)). (b) Log-log plot of normalized Wx and
normalized Y. The symbols are extracted from FE data where S/ =4 and y= 250, 120,
40, and the lines are fits based on eq.(36)) with & being the only adjustable parameter.

3.5 Intermediate cases

For intermediate values of m/W,,,, we would need to solve eq.(37) for I (with Gy
= I'9) where analytical solutions are difficult to obtain. Moreover, the correction factor &
is not known unless FE simulations are carried out. To circumvent these difficulties, we

draw inspirations from Zhang et al.”® and construct the following equation
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Lo Loy B, (49)
m/W, +¢ )™

rup

o

Equation (49) reduces to eq.(44) in the limit of large m/W,.,. An additional parameter ¢ is
introduced so that eq.(49) would match the solution of eq.(47) when m/W,.,=0:

_ p . 50
¢ ERYRE (50)
hO 1_‘m=0

Since the value of I'o/I" at m=0 depends on the dimensionless parameter y, we use the
eq.(47) (with £=0.35 and y ranging from 10 to 400) and eq.(50) to determine a range of ¢:
0.0286~0.0425. With this range of ¢, the numerical factor « predicted by eq.(49) is
shown as the shaded area in Fig.8. The empirical formula of Zhang et al.?® (see eq.(42))
and the limiting case eq.(44) are also plotted for comparison. These curves deviate from

each other at small m/W,,, but start to converge when m/W,,, exceeds 0.15.

U = Equation (49)
e LR Equation (44)
1.2 ) ® FEM
3 —=+Equation (42)
1H "_ § Zhangetal.
s 3

0 0.06 01 015 02 025 03

m/W
rup

Figure 8 Dimensionless factor o (related to toughness enhancement) versus m/W,,
(related to bulk hysteresis). The shaded region are given by eq.(49) with ¢ ranging from
0.0286 to 0.0425. The square symbols represent our FE data and the solid line is the
corresponding model prediction. The circular symbols (red) are data points extracted
from the FE results of Zhang et al.?®, where the circle represents the mean value of « for
a given m/W,,, and the error bar illustrates the range of scattering. The empirical formula
of Zhang et al.?® (red dashed line) and the analytical solution in the limit of large m/Wy.,
(dotted line) are also plotted for comparison.
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To test the predictive power of eq.(49) for intermediate m/W,,,, we plotted the
factor a extracted from finite element results with Spa/ 1t =4, Omax/Ho =0.05 and varying m.
This set of parameters are chosen to ensure a fixed y = 160, which corresponds to ¢
=0.0314. As shown in Fig.8, the FE results (square symbols) agree well with eq.(49)
(solid line). Furthermore, we extract the FE data for I'/Tp in Zhang et al.?® (see their
Fig.3b) and use eq.(41) to calculate the corresponding values of . It turns out that there
is a considerable scattering when m/W,,, is small (see Fig.8). This scattering can be
explained by our model. The FE parameters in Zhang et al.?® correspond to a range of y
(80~300), and theoretically speaking the data of « for different y should not collapse
exactly to a master curve, as manifested in the shaded area in Fig.8. This is consistent
with the observation that eq.(41) cannot precisely fit all the FE data points in Fig.3b of

Zhang et al.?8

with a single value of a. This phenomenon highlights the importance of the
detailed fracture behaviors at the crack tip, which are modeled by the cohesive zone

parameters appearing in y, in case of large dissipation zone.
4. Effect of pre-stretch

According to the Ogden-Roxburgh model for Mullins effect (see eqs.(19) and
(20)), hysteresis occurs only during the first loading-unloading cycle. The material
behaves elastically upon reloading as long as 7 does not exceed the maximum value of
W experienced in the loading history. This feature implies that pre-stretch can reduce the
toughness I" by decreasing the bulk dissipation in the fracture sample. The effect of pre-
stretch on I has been experimentally demonstrated in Zhang et al.?®. In such experiments,
two identical uncracked pure shear samples would need to be first subjected to a pre-
stretch ratio Ay. After that an edge crack would be introduced into one of pre-stretched
samples for measuring I" using eq.(21) where the function W, can be determined using
the other uncracked pre-stretched sample'?!°. Zhang et al.”® showed that the toughness I’
decreases with A4, and reaches a plateau for sufficiently large A,.. Despite the
experimental finding, the effect of pre-stretch has not been fully understood at the

theoretical level. Here we present an analytical model for the effect of pre-stretch.

4.1 Analytical model
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We denote the nominal strain energy density associated with the pre-stretch by
Woyre. Since the principal stretch ratios are A1=1, A2=Apre, A3=1/ Apre under pure shear, Wy,

is given by:

W,.=2(A2,+ 242 -2). (51)

pre 2 pre pre

The pre-stretch brings two changes to our energy balance model. First, recall that the
dissipative energy release rate Gp is the integral of U along the vertical strip in the pure
shear sample (see Fig.9a and eq.(26)), where U is the energy dissipation per unit
reference volume and is a function of the maximum deformation, represented by Wyax,
experienced by a material point. Because of the pre-stretch, U is no longer equal to

" Wmax) Wimax. Instead, U should be

U_ 0 WmaxSWpre 52
VR (W W =B, W W W, ©2)

m; pre

where the hysteresis ratio 4 is given in eq.(25). Second, the loading branch after pre-
stretch (solid line in Fig.9b) deviates from the original one (dashed line in Fig.9b).
Therefore, when evaluating the total energy release rate G using eq.(21), we need to

replace Wy, by the work per unit volume required to achieve the global stretch A for

steady-state crack propagation. This work per unit volume, denoted by Wa,, can be

calculated by
Wj pdW =W~ Wj of Wore =W W
= - erf| ——— <
_ ) 77 far ” ! m+ ﬂW Wfar - pre (53)
Sfar pre Wf > s
far pre
W'ﬁ” - h (Wpre ) Wpre

where W, = u(A2+272-2)12.
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Figure 9. (a) The vertical strip used to calculate Gp is divided into two regions: Wyax
<Wpre (blue) and Wiax>Wpre (green). (b) Due to the pre-stretch, the initial loading curve of
a point 4 changes from the dashed line to the solid line (softened) when A2 < Apre. Once
A2 = Apre, the 1nitial loading curve is recovered. Therefore, the hysteresis Uy is reduced
due to the pre-stretch.

Our strategy to account for the effect of pre-stretch is to subtract the energy
dissipation consumed during pre-stretch from Gp. As shown in Fig.9a, the vertical strip
used to calculate Gp can be divided into two regions: (i) elastic region where Wyax < Wpre
(blue) and (i1) dissipative region where Wiax > Wy (green). Dissipation only occurs in
Region (ii) since U =0 in Region (i). The size of each region depends on the relative
comparison between the pre-stretch A, (or equivalently W),.) and the stretch As (or
equivalently W) to maintain steady-state crack propagation in the same sample without
pre-stretch. This leads to three cases to be discussed below. To visualize the three cases,
we plot the function W,a(Y) in Fig.10a according to eq.(36) assuming no pre-stretch.
Note that Fig.10a is in log-log scale, and we have switched the W, and Y axes in
comparison to Fig.3b so that the Y-axis is aligned with the vertical strip. Also, the
cohesive zone is not shown in Fig.10a. Recall that the function W..(Y) plotted in Fig.10a
was obtained by combining the solution for neo-Hookean model (see Fig.3b) and a
correction factor & based on the finite element data (see Fig.5a). As seen in Fig.10a, the
main difference between the three cases is the relative extent of the elastic region (blue)

and dissipative region (green), which depends on the level of pre-stretch.

Case I: Small pre-stretch
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In this case we assume Wyre < Wyar (Or Apre < As), which implies the entire strip is
covered by the dissipative region (see Fig.10a). According to eq.(52), we need to subtract
the same amount, i.e. fipreWpre, from U at every material point along the vertical strip. In
principle pre-stretch may also affect the crack tip deformation field since it alters the
stress/strain relation during loading branch. However, as a first order approximation, we

neglect this effect and still apply the deformation field assumed in Section 3. As a result,

the dissipative energy release rate G, with pre-stretch is

pre pre

2 j W, W, dy , (54)

where Gp is the counterpart of G; under no pre-stretch. To derive the toughness I'* under
pre-stretch, we set G, =, =" =T and use eq.(49) to replace Gp by I, which gives

= Fh —2H h(W,

pre

W e (55)

rup
where « is the dimensionless factor appearing in eq.(49) for the no pre-stretch case.
Case II: Intermediate pre-stretch

In this case we assume Wpyre>~ Wy (o1 Apre >~ As), which implies that the elastic
region approximately covers a range of ¥ where Wi = Wyur (see Fig.10a). No dissipation
would occur in the elastic region. To estimate G, we first assume the scaling relation

that Wyae = EG/(27Y) is still valid in the dissipative region. By following similar

derivation for eq.(37), we obtain

*

G
D - é J. de Yy (5 6)
72- max
where hysteresis ratio /2~ under pre-stretch is refined as:
0 /4 w

* U max S re
B (W )=——= h(W, )W, L (57)

Wmax h (Wmax ) - Wmax > Wpre
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Substituting eq.(57) into eq.(56) and applying the change of variable ¢ =Wud Wi,

€q.(56) becomes
G, &'t aw,, & )
o ”WJ. h(W,..) W|_Tlax ﬂh(Wp,,e)(l ¢0), (58)

where @0 =Wpyre/ Wp. The first term on the right hand side of eq.(58) represents the
dissipation as if there were no pre-stretch, whereas the second term accounts for the
reduced dissipation due to pre-stretch. However, this equation is difficult to use since the
correction factor & is not known. Unlike Section 3 where we focus on demonstrating the
utility of energy method for calculating Gp and thus used the FE data to determine & (see
Fig.7a for example), here our goal is to obtain analytical equations to predict the
dependence of Gp on pre-stretch. Therefore, two additional approximations are used to

simplify eq.(58) and allow the prediction of I"*, as described below.

First, since Wy is comparable to Wyr, we recognize that the integral term in
eq.(58) is approximately equal to the integral term in eq.(37) (note that G/2H) is equal to
Wiar). Therefore, we make an approximation to replace the integral in eq.(58) by the ratio
Gp/G under no pre-stretch. Effectively we neglected the second term in eq.(37). This is
based on the assumption that most of the dissipation comes from the region with strong
stress concentration where Wy ~ 1/Y, represented by the integral term in eq.(37).

Furthermore, using €q.(49) we find Gp/G = ahwp. Therefore,

%

L9

_on S _
0~ ah,, ﬂh(Wp,‘e)(l 4). (59)

G

This approximation tends to overestimate G,/G . Second, we neglect effect of the

correction factor &(0< £<1) and make the approximation that £ =1, which implies

G, 1
5 =ah, —;h(Wm)(l—%). (60)
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This approximation tends to underestimate G;/G*. Therefore, errors due to the two
approximations may cancel each other, at least partially. Finally by using
G,/G =T, /T, we can get:

- I,

1 —_— (61)
1-ah,, +ﬂh(Wm)[l—‘"ej

/4

rup

It is difficult to theoretically estimate the errors due to the two approximations made
above. Instead, in Section 4.2 we will show that eq.(61) is in good agreement with the FE

results, which serves as a justification for these two approximations.

Case III: Large pre-stretch
In this case we assume Wy >>Wpr (Or Apre >> As). Similar to Case II, we can

derive eq.(58) for estimating G;. However, unlike Case II, here dissipation is confined to
a small region around crack tip (see Fig.10a). Outside the dissipative region, the material
behaves as an elastic neo-Hookean solid, but with a reduced modulus due to pre-stretch.
Therefore, we recover the scenario of localized dissipation, and hypothesize that the
crack tip field based on elastic neo-Hookean solid is valid. In other words, £ =1. As a

result, eq.(58) becomes

*

Gp 1 d¢_1 _
&= M) = ) 1-40)- (62)

where ¢o=Wpre/ Wyip. Again, by using G, /G =T, /T, we can get:

. T,

Tl g 1 '
1= [, )+ b )0-4)

r (63)

It should be noted that the scenario of localized dissipation is achieved through pre-
stretch, which is applicable for all values of m/W,,,. In contrast, the special case of
localized dissipation in Section 3.3 assumes zero pre-stretch and thus is only applicable

when m/W,,p is large.
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Figure 10 (a) Schematics of the three cases considered in our analytical model. The Y
versus Wyax plot is in log-log scale and is used to illustrate the difference between the
three cases. (b-d) Comparison between predictions of our model and FE data (symbols)
for fracture toughness I'* versus pre-stretch A, for three values of m/W,., =0, 0.025, 0.2.

4.2 Model validation

We perform a set of FE simulations with the same cohesive zone parameters with
peak stress Spax/s =4 and intrinsic toughness I'o/utg = 3 where the shear modulus y =
10kPa and thickness #p =Imm. This corresponds to W, = 80kJ/m® using eq.(35). The rest
of the parameters are: sample height 2Hy =60mm and Mullins effect parameters » = 2 and
L= 0.1. For each run, we first simulate the pre-stretch process by uniformly stretching an
uncracked sample to A, under the pure shear condition. After that, we introduce an edge

crack and simulate the pure shear fracture test, determine the stretch ratio associated with
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the peak force, and interpret it as the A, for steady state crack propagation. The toughness

I'* is calculated using

r*zzHOWar(/L:1’/12:/15’/13:1//15) ’ (64)

where Wfa, is defined in eq.(53) and accounts for the softening due to pre-stretch. This

procedure is repeated for different pre-stretches A, to determine how I'* decays with Ae.

The FE results are plotted in Fig.10b-d for three values of m/W,., (0, 0.025, and
0.2). To plot the predictions of our analytical model, we note that the boundary between

Case I and Case II&III is determined by the condition Wy = Wy By relating Wy, to

Wfa,, and I'* through eqgs. (53) and (64), we can rewrite this condition as:

. T
L1=h (7, ) W, =7, =3H (65)

Since Wpre 1s a function of A, as defined in eq.(51), we plot eq.(65) in Fig.10b-d as a
green dashed curve. Above the curve, Case I is valid. Below this curve, either Case II or
IIT is valid. The difference between Case II and III is whether the pre-stretch has
significantly altered the crack tip deformation, which is difficult to be captured by an
analytical relation. Therefore, we plot both cases and choose the one with lower I'* (see
solid lines). It should be emphasized that all the parameters involved in the analytical
model can be directly calculated using parameters of the FE simulations. In particular,
ideally we would use eq.(49) to predict the factor « at zero pre-stretch. However, as
shown in Fig.8, there is a slight discrepancy between eq.(49) and corresponding FE
results when m/W,,, exceeds 0.05. To focus on the effect of pre-stretch, we take the FE
result of toughness I at zero pre-stretch and evaluate o using o= (1-T'o/T")/h.p. Excellent
quantitative agreement between the model predictions and FE results can be seen in
Fig.10b-c. As expected, Case I, II and III can capture the reduction in toughness I'* at
small, intermediate and large pre-stretch, respectively. The transition occurring near the
boundary represented in eq.(65) is not smooth, which is due to the approximations used
in the analytical model. It is interesting to note that as m/W,,, decreases, the region of

validity for Case II decreases and eventually vanishes when m/ W, =0.
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Next we examine the experimental data in Zhang et al.?® to see how well our
analytical model can capture their data. Specifically, they tested the toughness of a

polyacrylamide-alginate hydrogel'

under different pre-stretch ratios, as shown in Fig.11
(symbols). To apply our model, we first describe how relevant parameters are selected.
Pure shear extensional tests show that the loading branch of the curve can be described

by a one-term Ogden model:
”7 _ 2/’1 K ﬂ/K K 3
pre K2 (ﬂ'l + 2 +A3 - ) ) (66)

where ¢ = 10.81kPa and x =1.879. Our model was based on the neo-Hookean model
which can be recovered from eq.(66) by setting x =2. For simplicity we will neglect this
difference and directly apply our model to this hydrogel. By fitting the experimentally
measured hysteresis ratio 2 with the modified Ogden-Roxburgh model, they determined
that » =1.516, m = 4.274kJ/m> and B =0.1. The peak stress of cohesive zone Sy Was
taken to be the maximum stress recorded under the pure-shear extensional test and is Spax
=80kPa. For the Odgen model, the approximate approach in eq.(35) to estimate W, is no
longer applicable. Therefore, we use eq.(66) to estimate Wy, and find W, =358.5kJ/m’
and m/W,,, =0.012. The intrinsic toughness I’y is taken to be the plateau value of I'* at
large pre-stretch Ay, i.e. To=400 J/m? (see Fig.5c in Zhang et al.?®). Lastly, with the
sample height 2H)=20mm, we find 2HoW,.,/T'0 =17.93 in eq.(47). Assuming &=0.35 (see
Fig.7a), eq.(47) allows us to get I'o/I" =0.325, which further leads to {=0.0415 based on
eq.(50). Finally, using eq.(49), we find a =0.9139 for m/W,,=0.012, implying the
toughness under zero pre-stretch is I'=919J/m?> which is about 10% lower than the

experimental data (1063J/m?).
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Figure 11 Comparison of the model predictions and experimental data on how the
toughness I'* depends on pre-stretch Ay.. The experimental data (star symbols) are
extracted from Zhang et al.’8. From the experimental data, m/W,,, is found to be 0.012,
and it turns out that Case II of the model does not exhibit a region of validity, similar to
the case of m=0 in Fig.10b.

Now that all the parameters are determined, we plot the prediction of our
analytical model in Fig.11. The model predictions agree with the experimental data
reasonably well, given that there is no adjustable parameter in the model. In the range of
Apre where Case I is applicable, our model underestimates I'* in comparison to
experimental data, which comes from the lower estimate of I" for zero pre-stretch. This is
not surprising since we have used eq.(36) with &=0.35 based on the neo-Hookean model
to derive o, which may not be accurate for the Ogden model in eq.(66) even though x is
close to 2. However, our model does capture the relative trend of decaying I'* with A.
To illustrate this point, we use the experimental value of I' (=1063J/m?) at zero pre-
stretch to find o = 1.0093. The Case I based on this value of « (see eq.(55)) is shown in

Fig.11 as the dashed line (red), and it gives a better agreement with experimental data.
5. Summary and Discussions

We presented a method to calculate the fracture toughness of a model soft
dissipative material system, i.e., neo-Hookean solids with rate-independent hysteresis
described by the Mullins effect. Based on energy balance, we first derived a general

equation connecting the energy release rate to bulk hysteresis, and then applied it to
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steady-state crack propagation and the constitutive model of neo-Hookean solid with
Mullins effect. By leveraging the solutions for crack tip deformation field in elastic neo-
Hookean solids, we developed analytical expressions illustrating how toughness is
enhanced by the bulk dissipation, and validated them using FE simulations. Using the
same theoretical framework, we also derived an analytical model to quantitatively capture
the reduction in fracture toughness due to pre-stretch, which agrees with FE results and
literature experimental data well. Such analytical relations will serve as useful tools for
predicting fracture behaviors in soft dissipative materials where the Mullins effect is

dominant, e.g. filled elastomer®’, double network gel'! and multi-network elastomer'.

Using the modified Ogden-Roxburgh model as an example, we found that the
dissipation zone size can be tuned by modifying the bulk hysteresis parameters. In
particular, in the limit of m/W,,, >>1, the dissipation zone is localized near the crack tip
and I' is independent of the sample size Ho, reminiscent of the “small scale yielding”
condition in elastic-plastic fracture. However, in the limit of m =0, we found that
dissipation from the material far away from the crack tip cannot be neglected due to its
large volume. In this case, the dissipation zone size Ypis always comparable to Ho, and
the scenario of “large scale yielding” is evoked. Theoretically speaking, the total
toughness I' becomes dependent on the sample size, although this dependence is rather
weak as shown in Fig.7a. Nevertheless, the size dependent toughness I' may pose a

challenge to the characterization of fracture in soft materials with significant dissipation,

16,42 12,13

e.g. viscoelastic elastomers or tough hydrogels with highly enhanced hysteresis

and crack blunting.

A limitation of our version of the Ogden-Roxburgh model is that it leads to a
negative dissipation rate during reloading after a loading-unloading cycle, which violates
the second law of thermodynamics. A more physical approach’®* to capture the
Mullins effect is to let the damage variable 7 in eq.(18) evolve during the loading branch
(d7 < 0) and remain unchanged during unloading or reloading (dn = 0), so that the
dissipation rate is always non-negative. To illustrate how this type of model can be
combined with our thermodynamic framework for crack propagation, we plot in Fig.12

the loading history of a material point as it is translated from Xi= +oo0 to Xi= —o0 in the
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pure shear fracture specimen (see Fig.la), schematically represented by the dominating
stress and stretch components: S22 versus Az. Since di7 = 0 during unloading, the integral
for the dissipation term U in eq.(23) only comes from the loading branch, starting at the
global stretch A, and ending at the maximum stretch experienced by this point. Using
integration by parts or a graphical method similar to that in Section 2.3 (see eq.(24) and
associated discussions), one can show that U is represented by the gray shaded area in

Fig.12, instead of the entire hysteresis loop. On the other hand, eq.(13) reduces to

G:2H0V/(Xl:+w):2H077(22:ﬂ's)W(ﬂ“2:ﬂs) s (67)

Vs

where y is the free energy density far ahead of the crack tip (illustrated by the blue line

shaded region in Fig.12). Following the thermodynamic framework, we obtain

H,y
G,=G-G,= [ udr, (63)

-H,
but the physical meaning of G and U are different from what we had in Section 2.3 in that
here U is only given by part of the hysteresis loop and G is defined using the area
underneath the unloading curve at A, (dashed line in Fig.12). To reconcile this difference,

we note that in the literature!>!31928

the global energy release rate is typically defined
using the mechanical work required to achieve the global stretch Ay rather than the free

energy. According to this definition, the global energy release rate G~ is
G =2H,(y,+U,)=G+2HU., (69)

where Us is area of the hysteresis loop associated with the global stretch A;. Combining

eq.(68) and (69), we have

Hﬂ HO
G, =G -G,=2HU,+ [ Udy = [ UdY, (70)

—H, —H,
where U =U+Us is the area of the entire hysteresis loop experienced by the material point
(i.e., red line shaded region + gray shaded region in Fig.12). This definition of G* and U"
are now consistent with those based on the Ogden-Roxburgh model (see Section 2.3).

Physically G in eq.(67) represents the free energy that can be released by the vertical strip
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far ahead of the crack tip, while G* in eq.(69) quantifies the work required to drive crack
propagation. These two definitions are not in contradiction but rather complement each
other. For example, G* can describe a material’s resistance to crack propagation, while G
is better correlated with physical process of crack propagation as demonstrated in a recent

experimental work?S.

Figure 12 The loading history for a representative material point during steady state
crack propagation in a pure shear fracture specimen. Unlike the material model assumed
in Section 2.3, here dissipation occurs during the loading branch (d7 < 0) but not the
unloading branch (d7 = 0).

From a theoretical perspective, our work demonstrated a general strategy to
calculate the contribution to fracture toughness due to bulk dissipation, which relies on
knowledge in two aspects: i) deformation and stress fields in the crack sample; ii)
nonlinear constitutive relation for the bulk material. This strategy can be extended to
more complex material systems. For example, a possible extension to account for the
strain stiffening effect at very large stretches is to replace the neo-Hookean model by the

generalized neo-Hookean (GNH) model:

_u by )]
W—2b{1+n(;ﬂi 3)} 1}, (71)

where A; are principal stretches and the exponent n (>1/2) controls the degree of strain

stiffening. The neo-Hookean model is recovered when n =1. Asymptotic solutions for the
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crack tip field have been solved for the GNH model***’, based on which we find the

following result for steady-state crack propagation in a pure shear specimen:

2
- Line \/1{1_1) sinZ@-(l—ljcosca | (72)

2nrw n n

f(©)

Interestingly, the maximum value of f(®) is always 1 for any n (>1/2). This result

suggests that for GNH materials,

G 1
Ww Y)yx—— . 73
(1) 2nw Y 73)

which allows us to estimate the Gp and thus I'p (e.g. using eq.(33)). This indicates the
nonlinearity of the bulk stress-strain relation, represented by n, may affect I'p by

influencing the crack tip deformation field.

In many practical material systems, however, both the crack tip field and
nonlinear constitutive model are difficult to determine, e.g. for soft viscoelastic materials.
As pointed out by Knauss®’, a key challenge in viscoelastic fracture is the lack of
knowledge in nonlinear constitutive relation and corresponding crack tip fields. Most
existing analyses are based on the assumption of linear viscoelasticity and the K-field of
linear elastic fracture mechanics'®?>?*, In this case the fracture toughness becomes
dependent on the crack velocity. Despite the difference in material behavior, the approach
we used to derive I'/T’o for Mullins effect can also be used to derive similar formulas for
linear viscoelasticity. In particular, the scaling relation I'/T'o = 1/(1—chp), which was

developed in Zhang et al.?®

and elaborated in our work, is very similar to the result
derived in de Gennes'® and Persson®*. Especially, like in those works we started with an
additive decomposition of G: G = Go + Gp and ended up with a multiplicative
decomposition (G proportional to Gy) because Gp is itself proportional to G, as G sets the
mechanical fields near the crack tip (though this is rigorously proved only in the elastic
and linearly viscoelastic cases). For viscoelastic materials with strong nonlinear effects,

more efforts are needed to understand the relation between fracture and dissipation®. For
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such practical materials, Gy need not be any more a material constant, as was assumed in

this work for simplicity.

Appendix 1 Connection with the Eshelby energy momentum tensor

Here we derive eq.(14) that relates the global energy release rate G to the Eshelby
energy momentum tensor. We start from eq.(10) and write the following two identities

based on the steady state condition:

IT-audQ:—ijT-a—udQ:—lj(SN)-é—udQ:—ij(STa—uj-NdQ, (A1)
5 04 o O©OX ty & oX, Iy & oX,
and
¥ 1 1 1
Gkd =ja—'/’ dV =—— a—WdV=——IVX-(wel)dV:——jweloNdQ :
04|, 3 o4l t, 50X, t ) f 2
(A2)

where N is the unit outward normal vector of the surface Q2, and e; is the unit vector
along X; direction (aligned with the undeformed crack). Substituting eqs.(Al) and (A2)
into eq.(10) gives:

Gzif we —S’ ou
0 ox

1

J-NdQ . (A3)

For 2D crack geometry, e.g., a plane stress crack, the integral vanishes on the front and
back surfaces of the fracture specimen and is only non-zero along the lateral surface. As a

result, dQ = #yd/ and eq.(A3) reduces to the contour integral in eq.(14).

Next we show that eq.(17) for Gp can also be derived based on the Eshelby
energy momentum tensor Z;. As shown in eq.(14), the global energy release G is

G= [ &,N,dl, (Ad)

Crar

where Cyr is a contour containing the whole specimen and ending on both crack faces.

48,49

Likewise, following the reasoning of Thomas where the crack tip is represented by a

semicircle with a small but finite radius, the local energy release rate at crack tip is
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Gy= | B,N,dl, (AS5)
Cocar
where the integration contour Cyeqr coincides with the semicircle representing the crack
tip. If an ideal point-like crack tip is assumed, C,eor can be considered to be infinitely
close to the crack tip. Here we assume a separation of length scales, i.e. if a cohesive
zone is implemented, it is much smaller than the continuum scale and thus is not visible
in the region between Cyeqr and Crr. In other words, the cohesive zone is enclosed within
Chear and contributes only to Go. This allows us to enforce the traction free condition for
both crack faces, which leads to Z1;N; =0 on the crack faces. Therefore, by subtracting
eq.(AS) from eq.(A4) and adding two branches of integration path along the crack surface,

we have

[1]

G-G,= [ &N, (A6)
Canr .
where Cu; combines Crr, Crear and both crack surfaces, thereby enclosing the whole
specimen but excluding the crack tip. Using the Stokes theorem, we can transform the
contour integral into a surface integral:
0=,
G,=G-G,= [ —£dQ, (A7)
o, 0X;
where Q, is the front surface of the plane stress crack specimen. Finally, using the

equilibrium equation in the absence of body forces, we get

o=, oy 0 < Ou, _az//_aF,g-S _Oy . OF
ox, ox, ox,\ "ex,) ox, ox, ¥ ox, ox,

(A8)
Substituting eq.(A8) into eq.(A7) and use the pure shear fracture geometry, we obtain

Hy 4o
J oF oy
G, = S+ = ldx.dX, (A9)
o II( oX, a)(ljdl z

—Hy —0

which is identical to eq.(17). In the literature, the contributions to 0=1j/0X; from the
various internal variables appearing in y are known as “local material volume forces” (up

to a sign). In the present case, the integral of these local material volume forces
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throughout the entire specimen plane is the total dissipation concerned in this work. We
emphasize that the derivation based on energy momentum tensor is already available in
the literature (e.g. see pp.132-135 of Grellmann et al.*®). Our derivation in Section 2.2
was based on direct examination of the bulk dissipation. Although the two approaches
reach the same conclusion for 2D steady state crack propagation, the energetic approach

in Section 2.2 is more general and is easier to interpret.

Appendix 2 Intrinsic toughness and cohesive zone

In Section 2.1, we provided a rigorous thermodynamic definition for the intrinsic
toughness I'o, i.e. the Helmholtz free energy required to break a unit area of material.
Here we follow an approach from Knauss?’*! to prove that I'¢ is equal to the area
underneath the traction-separation curve of the cohesive zone model (see Fig.4a) for a 2D

Mode-I crack. We first apply eq.(7) to the specimen shown in Fig.A1, which gives

dA
dV-T,—=|edV, Al0
=] (A10)

vV

ty [ T

C+GC,

dudl_J‘d_V/
a " Varl,

where we have applied the condition that T+(du/dt) vanishes on the front and back surface
of the specimen and replaced dQ by #yd/ on the lateral surface. The boundary segments C;
and C: are illustrated in Fig.Al. Next we apply eq.(7) to the upper half of the specimen.
Since the crack tip is excluded from the sub-volume of interest, the o term drops from

the equation, which gives

d d
t T-dl;dl—jjv;

G+C, 7,

av = [ pav, (A11)

0 Vy

where Cy is a line segment at X> =0 coinciding with the upper crack face and Vy is the

volume for the upper half of the specimen. Similarly, for the lower half, we have

d d
6, | T-dl;dl—j—w

Cy+GC; vy

v = j(pdV, (A12)
Vi

0
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where C3 is a line segment at X> =0 coinciding with the lower crack face and V} is the
volume for the lower half of the specimen. Adding eq.(A11) and (A12) and subtracting
eq.(A10) from it, we find

du
dt

FO%?% [ 7=l (A13)

C+C,
The portions of C; and C, ahead of the crack tip coincide with each other, and thus are
associated with the same displacement u but opposite traction T, which implies that the
integral of T+(du/dt) for C; and Cs ahead of the crack tip cancels each other. We
emphasize that the derivation until this point does not rely on the symmetry condition of
Mode-I cracks, and therefore can be extended to general loading conditions (e.g. mixed-

mode) or crack geometries.

VU X2+ Cl

Crack a . C,
"""""""""" X
V, C,

Figure A1 Schematic picture of integration segments C;, C2, C3, and Cy for a pure shear
fracture specimen.

Now we are left with only the integral of T+(du/dt) on the crack faces. Due to the
symmetry condition, T= —Se> on the upper crack face and T= Se; on the lower crack face,
where S is the cohesive traction and e; is a unit vector along the X direction. Furthermore,

denoting the crack opening displacement O =ug+) —ué_), i.e., the difference between

vertical displacement components of the upper and lower crack faces, we can rewrite

eq.(A13) as:

d4 ¢ . ds
Fozzto_jﬂSEXm, (A14)

where a is the crack length. Finally, by using the steady state condition that (d.../df) =
(0.../04) dA/dt = — (1/ty) (©.../0X1) d4/d¢, we obtain
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A S 0

where dmax 1s the cut-off separation of the cohesive zone model. We have recovered in
eq.(A15) the relation between I['o and the cohesive zone model. In some cohesive zone
models®®, a cut-off separation is not implemented, which can lead to a virtually

unbounded cohesive zone.

Appendix 3 Additional information about FE simulations

Equation (35) for calculating W,,, is based on the assumption that the rupture
occurs at very large deformation. Specifically, as pointed out in Long & Hui*’, in an
incompressible neo-Hookean solid the material near the tip of a Mode-I crack is
practically under uniaxial tension. We assume Wiy is associated with a large uniaxial

stretch Aqp (>>1):

/12
" ﬂlﬁ;ﬁigjzm

") A 2
rup (Al 6)
The corresponding nominal tensile stress at rupture Sy 1S
S =ul i Lls A
rup H up 7 ~HU Tup
"”” . (A17)

Next we assume Sy, 1s equal to the peak stress of the cohesive zone Syux. By combining

eqs.(A16) and (A17), we arrive at eq.(35).

Our FE simulations are based on the explicit dynamical solver in ABAQUS,
which may be sensitive to a number of simulation parameters. To ensure the FE results
are independent of the simulation parameters, we performed a series of convergence tests.
The results plotted using the normalized force N versus the applied stretch A are shown in
Fig.A2. In particular, we compared results using two different sets of mesh: one based on

128

the model of Zhang et al.”® and a finer mesh (see inset of Fig.A2a). Even though there is

some deviation in the peak force, we find the two meshes give the same stretch at peak
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force which is the main data extracted to determine the toughness I'. We adopted the

mesh of Zhang et al.?® since it can significantly reduce the computational time in

comparison to the finer one. The rest of the simulation parameters are discussed below.

Damping factor (Fig.A2b): the result converges and we used a value of 0 in all
our simulations.

Strain rate (Fig.A2c): it can affect the branch after the peak force by influencing
the crack propagation velocity, but the effect on the location of peak force is
negligible. We set the strain rate to be 2.5x107/s to reduce computational time.
Poisson’s ratio (Fig.A2d): in the explicit dynamical solver of ABAQUS, the
Poisson’s ratio cannot be exactly set to 0.5 to achieve incompressibility. We
found that the result converges as the Poisson’s ratio approaches 0.5. Therefore,

we set the Poisson’s ratio to be 0.4998 in our simulations.

(b)
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Figure A2 Results of the convergence tests for various finite element simulation
parameters: (a) mesh; (b) damping factor; (c) strain rate; (d) Poisson’s ratio. The inset in
(a) shows snapshots of the two meshes near the crack tip in the reference configuration:
Mesh 1: finer mesh; and Mesh 2: the mesh used in Zhang et al.?®. These results are for a
case with Sya/ 14, Onax/Hp=0.05, and m/ W, =0.1.
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