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Abstract  

Stretchable and fracture-resistant elastomers or gels are highly desirable in a wide range of 

existing and emerging applications. Fracture of soft materials, especially the ones with 

significantly enhanced toughness, typically involves severe deformation near the crack tip. 

However, experimental characterization of the crack tip deformation field in soft materials 

has been challenging due to its highly non-uniform and nonlinear nature. This is an 

important limitation towards a complete understanding of the intricate mechanics involved 

in soft material fracture. In this paper we present experimental data of the nonlinear, 

multiaxial crack tip deformation field obtained by tracking randomly distributed tracer 

particles. Specifically, we measured the fields of displacement and deformation gradient 

around the tip of a Mode-I crack in a soft silicone elastomer. We experimentally observed, 

for the first time, a region of validity for the asymptotic solution of crack tip deformation 

field in hyperelastic solids with strong strain stiffening. Furthermore, the measured crack 

tip deformation field enables local evaluation of energy release rate through the J-integral, 

which can remove the requirement of specific experimental geometries, such as the pure 

shear fracture test, to measure the fracture toughness. It also enables determination of the 

true crack extension length defined in the reference configuration. Based on these two 

capabilities, we were able to measure the crack growth resistance behavior and the rate-

dependence of fracture toughness for soft materials with highly blunted cracks. 
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1. Introduction 

   Soft polymeric materials, with modulus on the order of kPa to MPa, underlie many 

industrial applications from sealants to pressure sensitive adhesives. Recent advancements 

in polymer engineering have led to soft elastomers or gels with remarkable new properties 

such as stimuli-responsiveness1,2 and biocompatibility3. These new soft materials have 

enabled a wide range of emerging technologies including soft robotics4–6, biomedical 

implants7 and stretchable electronics8–10. In most of these applications, the soft material 

needs to be stretchable to achieve functionality and yet resistant to fracture to maintain 

reliability. The capability of a material to resist fracture is measured by the toughness Γ 

(unit: J/m2), which quantifies the work required to grow a crack by a unit area and is widely 

used for evaluating a material’s brittleness or defect-sensitivity11,12. 

   Various physical or chemical mechanisms have been developed to enhance the 

toughness of soft materials13–17. These mechanisms share a common principle: to introduce 

energy dissipation into the polymer network18. Following this principle, soft materials that 

are ultra-stretchable and yet mechanically robust have become reality14–17. Although it has 

been demonstrated that dissipation can lead to a dramatic increase in fracture toughness by 

orders of magnitude18, quantitative principles connecting dissipation and toughness are still 

missing12. A major challenge is that dissipation is closely coupled to the highly non-

uniform deformation field near the crack tip19,20, which makes it extremely difficult to 

accurately quantify the amount of energy dissipation. Therefore, an in-depth understanding 

of the crack tip deformation field in soft materials is necessary for establishing predictive 

fracture models and quantitative guidelines to engineer soft functional materials with high 

toughness21,22. Indeed, the asymptotic solutions of crack tip stress and strain fields have 

served as a fundamental pillar supporting the development of classical fracture mechanics23. 

However, solutions based on linear elasticity have been deemed inadequate for soft 

materials due to nonlinearities associated with large deformation19. Analytical or 

computational approaches to reveal the crack tip field in soft materials are challenging due 

to incomplete understandings in both the multi-axial constitutive relations under large 

deformation24,25 and the local failure process at crack tip21, especially for soft materials 

with strong dissipative behaviors12. As a result, existing crack tip field solutions for soft 
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materials have been limited to a few nonlinear elastic models20. Nonlinear crack tip field 

solutions accounting for more complex bulk material behaviors, such as viscoelasticity and 

Mullins effect, are not yet available. Therefore, experimental measurement of the crack tip 

deformation field in soft materials becomes especially valuable. More specifically, it can 

provide critical inputs in at least three aspects described below, which will be addressed in 

this work.  

• Determining region of validity for asymptotic crack tip solutions. Analytical solutions 

for the nonlinear crack tip field can provide useful theoretical insights on the fracture 

process20. These solutions are asymptotic in nature and thus are only valid in the 

vicinity of the crack tip. However, in reality the hyperelastic assumption underlying 

these asymptotic solutions may break down within the fracture process zone at the 

crack tip12. Therefore, whether there exists a region of validity for such asymptotic 

solutions is unclear, which can be answered by comparing the experimental measured 

crack tip field with the asymptotic solutions.  

• Enabling local evaluation of energy release rate. Current methods to measure the 

fracture toughness of soft materials are limited to only a few testing geometries26 for 

which the energy release rate G can be calculated through a global energy balance. If 

the crack tip deformation field can be measured experimentally, one could also use the 

J-integral23,27,28 to evaluate G provided that the material is elastic (except in the vicinity 

of the crack tip). This approach can greatly expand the capability of current fracture 

tests by removing the limitation on testing geometry and accommodating more 

complex loading conditions. 

• Decoupling crack extension and large deformation. Large deformation can cause 

significant blunting of a sharp crack tip29,30, which may displace the crack tip even if 

the crack has not propagated yet. This effect makes it difficult to determine the onset 

of crack propagation by monitoring the crack tip position in the deformed configuration. 

The measured crack tip deformation field would allow us to map the crack tip position 

back to the reference configuration and to define crack extension in the reference 

configuration, thereby decoupling crack extension and large deformation.   
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  Although important, experimental measurement of the crack tip field in soft 

materials has been difficult due to the large deformation and severe strain gradients near 

the crack tip29,31. Digital image correlation32 (DIC) has been widely used for in situ 

measurement of the displacement and strain fields. By correlating sub-elements in the 

digital images of a material sample taken before and after deformation based on the 

grayscale pattern32,  the DIC method is able to accurately measure the displacement field 

with sub-pixel resolution32–34. Large deformation poses a challenge to the DIC method, 

since the sub-element to be correlated may be subjected to significant stretch and rotation35, 

which are not known a priori but need to be considered when implementing the correlation 

scheme. This problem has been addressed either by using advanced algorithms to correct 

the distortion of correlation elements35–37 or by dividing the deformation history into small 

increments38,39. Indeed, numerous works in the literature have applied the DIC method to 

soft elastomers40–42, gels21,43, biological tissues44, or thermoplastic polymers with large 

plastic deformation45. Despite these applications of the DIC method for large deformation, 

very few works have used it to measure the nonlinear crack tip deformation field in soft 

materials. For example, Livne et al.19 measured the near-tip deformation field for Mode-I 

dynamic cracks to demonstrate the effect of nonlinear deformation, but this work focused 

on brittle gels with moderate deformation around the crack tip (e.g., tensile strain up to 

~20%). Crack tip fields with large strains, i.e., strains up to a few hundred percent, have 

also been characterized by the DIC method, e.g., in Mzabi et al.46 who studied fatigue crack 

propagation in filled elastomers, or in Zhang et al.21 who studied the toughening 

mechanism of an interpenetrating network gel. However, these works did not discuss 

quantitative details of the measured crack tip deformation field. Systematic experimental 

investigations of the nonlinear, multi-axial crack tip deformation field in soft materials are 

still lacking in the literature.  

In this paper, we adopt an experimental method47,48 different from DIC to measure 

the nonlinear crack tip deformation field in soft elastomers, specifically by tracking the 

displacements of randomly distributed tracer particles deposited on the surface of the 

fracture sample. Because the tracking is performed discretely for individual tracer particles, 

this particle tracking method is insensitive to distortions caused by large deformation and 

is suitable for problems with displacement discontinuity (e.g., opening of a sharp crack). 
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These advantage of the particle tracking method is analogous to that of the element-free 

method49 in computation mechanics. The paper is organized as follows. Section 2 describes 

the experimental procedures and data processing of our particle tracking method. In Section 

3, we apply this method to a soft silicone elastomer and show for the first time that the 

asymptotic crack tip solutions for hyperelastic solids with strain stiffening can be observed 

experimentally. In Section 4, we demonstrate that for predominantly elastic materials, the 

measured crack tip deformation field can be used to evaluate the energy release rate through 

the path-independent J-integral. We are also able to identify the true crack extension length 

defined in the reference configuration, which further allows us to determine crack growth 

resistance behavior and rate-dependence of fracture toughness. Conclusions are given in 

Section 5. 

 

2. Particle tracking method   

2.1 Overview 

The working principle of the particle tracking method is illustrated using an 

example shown in Fig.1. An initially sharp crack in a thin polydimethylsiloxane (PDMS) 

elastomer sample is subjected to an increasing tensile displacement ∆ perpendicular to the 

crack. We will use the initial undeformed configuration as the reference configuration 

throughout this paper. To measure the deformation field, we deposited randomly 

distributed tracer particles on the surface of the sample. The tracer particles must be much 

thinner than the sample, such that they can be well attached to the sample and do not affect 

its deformation. For the example shown in Fig.1a, we used glitter flakes (0.2~0.3mm in 

diameter) as the tracer particles. Multiple images of the sample and tracer particles were 

taken along the loading history and then fed into a custom developed image processing 

program to locate the two dimensional (2D) coordinates x of the centroid of each tracer 

particle. The same particle appearing in different images were then tracked and linked 

along the loading history. The tracking procedure generated a history of displacement u for 

each particle (see Fig.1b): 

   ( ) ( ), ,t t= −u X x X X ,                                (1) 
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mold and placed on a flat table overnight. After curing, a crack was introduced at the edge 

of the PDMS sheet by a scalpel. Then glitter flakes (Signature™ Extra Fine Glitter by 

Recollections™), which served as tracer particles (diameter: 0.2~0.3 mm), were manually 

placed on the surface of the sample with a tweezer.  

The sample was mounted on a mechanical testing machine (Instron 5965) with the 

top and bottom edges clamped. A displacement loading was applied at the upper edge with 

a fixed velocity at 0.05mm/s, i.e. strain rate 0/ H∆ =10−3s−1 . Meanwhile, deformation of 

the sample was monitored via a camera (Canon EOS 6D DSLR along with Canon 100mm 

F/2.8L Macro Lens). To enhance the optical contrast between the tracer particles and the 

background, a white light source and the camera were placed on the two opposite sides of 

the sample, so that the light emitted from the light source transmitted through the sample 

and was then collected by the camera. Since the PDMS sample was transparent while the 

tracer particles were not, the tracer particles appeared as black dots in the images (e.g., see 

Fig.1a). Imaging rate of the camera was set to be 0.1 frame per second (fps) before the 

onset of crack propagation, and was increased to 0.2 fps afterwards.  

2.3 Image processing and particle tracking 

For each of the image frames taken during the experiment, the centroids of 

individual tracer particles were extracted by first binarizing the images and then using the 

built-in centroid finding function in MATLAB (MathWorks). To identify the same particle 

in consecutive images, we adopted the adaptive feature vector based relaxation (FVRM) 

tracking algorithm50 among others51,52. This algorithm takes advantage of the randomness 

of tracer particle distribution and uses the relative positions of neighboring particles as a 

unique geometric signature for one particle. When implementing this algorithm, we need 

to keep the deformation between two consecutive time frames small so that the geometry 

signature of neighboring particle is not severely distorted. After evaluating the matching 

likelihood between the target particle and a few candidate particles in the next time frame 

based on the geometric signature, the candidate particle with the highest likelihood that is 

also larger than a prescribed threshold is taken as the matching particle. This tracking 

algorithm was able to identify trajectories for nearly all the tracer particles, while exception 

may occur near the crack tip since crack propagation may break the local tracer particle 
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pattern and thus the geometric signature required by the tracking algorithm is lost.  In the 

latter case, we developed a program to manually match tracer particles between 

consecutive time frames. The number of particles that had to manually matched are less 

than 1% of the total particles.  

2.4 Interpolation and strain field 

The particle tracking process provides the coordinates of individual tracer particles 

at different time frames. The displacement ui (i=1, 2) for the tracked particles can be 

derived from the initial coordinates (or the reference coordinates) Xi and the deformed 

coordinates xi using eq.(1). The spatial resolution of our method to measure the particle 

displacement is estimated to be on the order of 1 pixel (~8µm in our images) due to the 

centroid finding function, which is lower than the sub-pixel resolution of the DIC method. 

However, since we focus on large deformation where the particle displacements are much 

larger than 1 pixel, the spatial resolution of our method turned out to be sufficient for 

mapping the crack tip displacement field.   

To obtain the strain field, the displacements measured at discrete tracer points must 

be converted into a continuous field so that gradients can be evaluated. Since the tracer 

particles in our method are randomly distributed, we adopted the moving least square (MLS) 

scheme49 capable of accommodating complex fields with simple polynomial basis48. The 

MLS method constructs a generic interpolation field function v(X) using a polynomial 

basis P(X) (column vector) and the corresponding coefficients a(X) (column vector) as 

follows: 

 ( ) ( ) ( )v = TX P X a X .  (2) 

Unlike conventional interpolation methods where the coefficient vector a is constant, in 

MLS a(X) is position-dependent and is determined by minimizing a weighted least-square 

error function defined as: 

 ( ) ( ) ( ) 2

1

m

k k k
k

L q w
=

 = − − ∑ TX d P d a X  , (3) 



9 
 

where q(X−dk) is a weight function, kw  is the measured data at the tracer particle located 

at dk (in terms of reference coordinates) and m is the number of tracer particles. There are 

many possible selections for the polynomial basis and the weight function, and effects of 

these functions has been studied in a previous work48. Here we adopt the simplest form for 

the polynomial basis ( ) [ ]1 21, , TX X=P X and an exponential weight function as: 

 ( )
( )2 2exp 1 / 1

,
1

0 ,

k c

k c
k

k c

r
rq e
r

 − − −
   − ≤− =  −
                                         − >

X d
X dX d

X d

  (4) 

where rc is a cut-off radius beyond which the weight function is zero. Applying this 

interpolation scheme to each displacement component ui (i=1, 2) gives a continuous 

displacement field u(X). Once the displacement field is obtained, the deformation gradient 

tensor F(X) can be obtained by taking gradient of the displacement field as 

( ) ( )= ∇ +XF X u X δ  where δ  is the identity tensor, i.e., 1ijδ =  only when i = j. Then 

strain tensors such as the Green strain tensor EG = (FTF − δ)/2 can be calculated using the 

deformation gradient tensor F. The strain field measured with this method does not rely on 

any assumptions on the material’s constitutive behavior. 

For the example in Fig.1, we evaluated the strain fields in terms of the Hencky 

strain. A representative field of the Hencky strain component e22 around the crack tip is 

shown in Fig.1c, where the maximum strain is found to be 26%. Note that the maximum 

strain captured in the experimental data may depend on how close our method can approach 

the crack tip, which is limited by the finite size of the tracer particles (~0.3mm). Because 

the strain fields are highly concentrated towards the crack tip, it is desirable to place more 

tracer particles in the vicinity of the crack tip to better resolve the strain fields. This would 

require tracer particles with a smaller size.  

 

3. Nonlinear crack tip deformation field in a soft elastomer 

3.1 Experiment 
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Figure 2 Fracture test of the Ecoflex elastomer. (a) Undeformed and deformed geometry 
of the pure shear crack sample. (b) A representative image showing the crack deformation 
profile and tracer particles (c) Uniaxial tension data of an Ecoflex elastomer (strain rate = 
5×10−3 s−1): nominal tensile stress S22 versus the stretch ratio λ. The experimental data can 
be well fitted by the generalized neo-Hookean (GNH) model with n =2. For comparison, 
the curve given by the neo-Hookean model with the same shear modulus µ is also plotted 
as the solid line. (d) The experimentally measured force-displacement curve for the fracture 
test and the results predicted by the finite element method (FEM) where the elastomer was 
modeled as a GNH hyperelastic solid with parameters µ =20kPa, b =0.0626, and n =2. (e) 
Geometry and boundary conditions of the FEM simulation. 

 

The pure shear geometry54, which refers to a thin sheet with width that is much 

larger than the height55, was adopted for the fracture test (see Fig.2a). Specifically, 

dimensions of the sample are: width L0=88.0mm, height H0=20.5mm and thickness 

T0=0.9mm. The initial crack length c0=11.1mm is much smaller than the sample width L0. 

The sample was subjected to Mode-I loading in terms of a tensile displacement ∆ at a fixed 

velocity of 0.01mm/s (see Fig.2a). The applied tensile loading is quantified by the ratio 

∆/H0, i.e., the nominal tensile strain far ahead of the crack tip. Images of the sample were 

taken following the same approach described in Section 2.2. Figure 2b shows an example 

image of the deformed crack and tracer particles. Next we applied the same procedures of 

image processing, particle tracking and interpolation outlined in Sections 2.3 and 2.4. To 

increase the efficiency of image processing, here we took advantage of the circular shape 

of the tracer particles (see inset of Fig.2b) and used the built-in imfindcircles function in 

MATLAB (MathWorks) to locate the centroid of each tracer particle. This set of data 

processing procedures yielded a history of the displacement and deformation fields 

surrounding the crack tip.  

A constitutive model for the Ecoflex elastomer is needed to compare the 

experimentally measured deformation field with theoretical or numerical solutions. 

Motivated by this need, we performed independent uniaxial tensile tests (Instron 5965) 

under a fixed strain rate (5×10−3s−1) which was chosen to match nominal strain rate of the 

fracture example 0/ H∆ . Sample-to-sample variations in the tensile data were observed, 

especially at high stretch ratios where the strain stiffening effect starts to emerge. A 

representative nominal stress versus stretch ratio curve is shown in Fig.2c. The tensile data 
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can be well described by the generalized neo-Hookean (GNH) model56 with the following 

strain energy density function: 

   ( )11 3 1
2

nbW I
b n

µ    = + − −     
 ,                                  (5) 

where µ is the shear modulus at infinitesimal strain and I1 is the sum of the squares of three 

principal stretches λi (i =1, 2, 3). The exponent n controls the degree of strain stiffening, 

and the dimensionless parameter b controls the onset of strain stiffening. The neo-Hookean 

model can be recovered from eq.(5) when n=1. All of our tensile data for different Ecoflex 

samples can be well fitted by eq. (5) with n =2, indicating a strong strain stiffening behavior, 

while µ and b exhibit sample-to-sample variation (µ = 20~27 kPa and b = 0.06~0.2).  

Separate tensile tests were carried out for each fracture sample to determine the 

corresponding material parameters µ and b. Cyclic tensile tests were also carried out to 

confirm that the Ecoflex elastomer can be modeled as an elastic solid for interpreting the 

measured crack tip field. Detailed discussions are included in Appendix 2.  

To validate the constitutive model, we use the finite element method (FEM) to 

simulate deformation of the fracture sample in a commercial software ABAQUS (Dassault 

Systèmes). Specifically, due to symmetry of the Mode-I condition, we only included the 

top half of the pure shear sample in the model (see Fig.2e). The boundary at the bottom 

was divided into two parts, with one part being the traction free crack surface and the other 

part (ahead of the crack tip) with zero vertical displacement u2 =0. Therefore, the model 

can only simulate crack deformation but not crack propagation. Dimensions and loading 

conditions of this model are set to be equivalent to the experiments (see Fig.2e). We 

implemented a user subroutine UHYPER to incorporate the GNH model with n =2, µ 

=20kPa, and b =0.0626 according to the uniaxial tensile data in Fig.2c. The model was 

meshed into 47505 CPS4 elements with the smallest element size being 10−3mm. As shown 

in Fig.2d, the force-displacement curve predicted by FEM agrees well with the 

experimental data until the crack starts to propagate, which supports the validity of the 

constitutive model. The deviation after the onset of crack propagation is due to the fact that 

the FEM model was not equipped with the capability of simulating crack propagation.  
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3.2 Asymptotic solution 

The crack in our fracture experiment is subjected to the plane stress Mode-I 

condition, for which the asymptotic solution of crack tip deformation field using the GNH 

model has been obtained in the literature57,58. Here we briefly summarize the results. The 

solution relates the deformed coordinates xi (i =1, 2) of a material point to its reference 

coordinates Xj (j =1, 2). In the asymptotic analysis, the polar coordinates r and θ in the 

reference configuration are used instead of Xj: 1 cosX r θ=  and 2 sinX r θ=  (see Fig.2a). 

Also, in the deformed configuration, we use the coordinates yi centered at the deformed 

crack tip which has displaced from its original position. Therefore, yi differs from xi 

(centered at the undeformed crack tip) uniformly by the crack tip displacement. The first 

order asymptotic solution, expressed using y1 and y2 as functions of the reference polar 

coordinates r and θ, depends on the strain stiffening exponent n, but not on µ and b. As 

discussed in Section 3.2, the Ecoflex elastomer used in our experiments was found to be 

well described by the GNH model with n =2. In this case, the first order asymptotic solution 

is57,58:  

  ( )
91
82

1y A r g θ
−

= ,   ( )
3
4

2y Ar f θ= ,                          (6) 

where A is an undetermined coefficient that depends on the remote loading. The angular 

function f(θ) is 

      ( ) [ ] ( ) 1/ 221
4

cos / 2
2 cos sin 1

2 2 2
f

θθθ ω θ
ω

 
= + − + 

,                      (7) 

where  

     
2sin1

4
θω = − .                          (8) 

On the other hand, the angular function g(θ) can only be solved numerically from the 

following nonlinear ordinary differential equation58: 
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  ( ) ( )
1

1/ 2 8
12

9 sin cos
8

F A r g gθ θ θ θ−  ′= + 
 

,          (14) 

( ) ( ) ( )
21

1/ 44
21

cos / 2 33sin / 2 cos 1 sin cos 2 cos
4 2 2 2
AF r

θ
θ θ θ ω θ ω θ

ω
−  

 = − − + +
 + 

,    (15) 

( ) ( ) ( )
21

1/ 44
22

cos / 2 33sin / 2 sin 1 cos cos 2 cos
4 2 2 2
AF r

θ
θ θ θ ω θ ω θ

ω
−  

 = − + + +
 + 

.     (16) 

It should be emphasized that the crack tip deformation field solution summarized above is 

asymptotic in nature and thus is only valid as r approaches 0. The region of validity for this 

asymptotic solution is unknown and will be discussed in Section 3.3 and 3.4. 

 

3.3 Nonlinear crack tip deformation field 

The experimentally measured crack tip deformation field will be quantitatively 

examined in this section. Since our data includes a series of loading steps with increasing 

remote loading ∆/H0, we choose the step where ∆/H0=68.78% as a representative example. 

At this level of loading, the crack tip became significantly blunted (see Fig.5), which is an 

indication of large deformation in the crack tip region. 

We first focus on the mapping from the reference polar coordinates (r, θ) to the 

deformed coordinates (y1, y2) as defined in Fig.2a. Using the particle tracking method, we 

experimentally extracted the dependence of y1 and y2 on r and θ, as shown in Fig.4. 

Specifically, the radial dependence of y1 and y2 with fixed angles θ is shown in Figs.4a and 

4b, respectively, while Figs.4c and 4d plot the angular dependence of y1 and y2 with fixed 

radii r. To check the accuracy of our experimental results, we also included the y1 and y2 

predicted by FEM subjected to the same remote loading ∆/H0=68.78% (solid lines) which 

agree with the experimental results perfectly. This agreement shows that our particle 

tracking method can accurately measure the displacement field near the crack tip.    

Next we compare the first order asymptotic solution of y1 and y2 in eq.(6) with the 

experimental data. There is only one undetermined parameter, i.e., the coefficient A. As 
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from the discrete displacement data at tracer particles, and then evaluate F using gradients 

of the displacement field and eq.(12). Figure 5 shows how the four in-plane components 

of F are distributed around the deformed crack when ∆/H0=68.78%. In addition, a video 

illustrating evolution of these components along the loading history is provided in the 

supplementary material (see Appendix 3). We emphasize that the deformation gradient 

fields are directly measured from tracer particle displacements and thus does not require 

any knowledge regarding the mechanical property of the Ecoflex elastomer. Although the 

fields in Fig.5 appear to be smoother in the region below the midline of crack (i.e., y2 < 0 

or θ <0) than that above the midline (i.e., y2 > 0 or θ >0), we can nevertheless see that F11 

and F22 are approximately symmetric about the midline of the crack while F12 and F21 are 

antisymmetric about the midline, as expected from the Mode-I condition. In addition, Fig.5 

shows that F22 is the dominant component of F, which is also expected from the Mode-I 

condition. The fact that F22 can reach ~4 near the crack tip, implying a large nominal tensile 

strain of about 300%. In the following we further examine the measured deformation 

gradient fields by quantitatively comparing them with the asymptotic solutions in eqs.(13)-

(16). 

Figure 6a plots F22 versus the reference radial coordinate r directly ahead of the 

crack tip (θ =0o). According to eq.(16), F22 should scale with r−1/4 as 0r →  which is indeed 

observed in the experimental data. By fitting eq.(16) to this data, we find that the coefficient 

A =3.86mm1/4. Since A is the only adjustable parameter, the entire deformation field 

predicted by the asymptotic solution is now determined. For example, dependence of F22 

on the reference angular coordinate θ with fixed r is shown in Fig.6b. Moreover, the 

dependence of F21 on r and θ is plotted in Figs.6c-6d, respectively. In particular, since 

F21=0 at θ =0 o, in Fig.6c we choose to plot F21 along θ = −45o since the measured field is 

smoother below the midline of crack. In addition, the angular dependence F21 at 4 different 

radius r is plotted separately in Fig.6d for better clarity. Overall the asymptotic solutions 

in eqs.(15) and (16) agree well with experimental data. In Fig.6a and 6c, deviation emerges 

when r > ~1.5mm which is attributed to the finite region of validity of the asymptotic 

solution. Even for r <~1.5mm, considerable deviation can be observed for |θ | close to 180o. 

Specifically, as marked in Fig.6d, the span of θ where eq.(15) agrees with experimental 
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agreement between eq.(13) and the experimental data can be found in Fig.7a when r 

<~0.5mm. This region of validity is smaller than that of F22 exhibited in Fig.6a. On the 

other hand, the scaling relation F12 ~r1/8, as predicted by eq.(14), is not found in the 

experimental data of Fig.7c (along θ = −45o since F12 vanishes along θ = 0o). To understand 

this discrepancy, we first assume the region of validity of eq.(14) is similar to that eq.(13), 

i.e., r <~0.5mm. However, within this small region, the magnitude of F12 is much lower 

than F11 and thus is more vulnerable to noises caused by experimental uncertainty in tracer 

particle displacement (~1pixel or 8µm) and interpolation errors. Finally, the angular 

dependences of F11 and F12 at four different radii are shown in Figs.7b and 7d, respectively. 

Due to the small region of validity for the asymptotic solution, a quantitative agreement 

between asymptotic solution and experimental data is not expected. Interestingly, eqs.(13) 

and (14) can still capture the trend of the angular distribution of F11 and F12 with moderate 

relative error (< ~ 25%).  

In summary, we demonstrated that the asymptotic solution of crack tip field in a 

GNH hyperelastic solid (with n =2) can capture the deformation field measured in our 

experiments, especially for the dominant deformation gradient component F22. This is the 

first time that the nonlinear asymptotic solution of crack tip deformation field based on 

hyperelasticity is verified experimentally.   

 

3.4 Effect of remote loading 

The previous section focuses on an exemplar snapshot (e.g. ∆/H0=68.78%). Since 

the experimental data covers the entire loading history, we are able to monitor evolution of 

the crack tip deformation field as the remote loading ∆/H0 increases. In Fig.8a-8b, we plot 

dependence of F22 on the reference polar coordinates r and θ for four different values of 

∆/H0. In Fig.8a, we see that at small ∆/H0 = 3.90% the experimental data deviates 

significantly from the scaling F22 ~ r−1/4 predicted by the asymptotic solution in eq.(16). 

When the remote loading ∆/H0 increases, a region with F22 ~ r−1/4 emerges and expands in 

size. Similar behavior is seen in Fig.8b where we compare the angular distribution of F22 

with eq.(16). To avoid the fitting parameter A, we normalize F22 by F22(r, θ =0o). Again, 

the experimental data differs significantly from the dashed line given by eq.(16) at small 
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profile at ∆/H0 = 68.78%, FEM result (white line) and prediction of the asymptotic solution 
(red line).  

 

The nonlinear effect is also reflected in the crack opening profile19. The LEFM 

solution predicts that the crack should deform into a parabola locally near the crack tip19,20. 

In contrast, by setting θ = ±180ο in eq.(6), we find that the nonlinear asymptotic solution 

predicts a different scaling for crack deformation: −y1 ~ |y2|3/2, which implies that the 

deformed crack is sharper than a parabola with scaling: −y1 ~ |y2|2. To verify this point, In 

Fig.8d we plot −y1 and |y2| of the deformed crack surface using the values extracted from 

experimental images at the four remote loadings ∆/H0 shown in Fig.8a-b (same symbols). 

At small ∆/H0 (=3.90%), −y1 scales with |y2|2, indicating a parabolic crack profile. As ∆/H0 

increases, nonlinear effect becomes dominant and the deformed crack profile transitions 

into the scaling −y1 ~ |y2|3/2 predicted by the nonlinear solution. The inset shows that at 

∆/H0 =68.78% the local crack opening profile indeed follows the asymptotic solution in 

eq.(6) with A=3.86mm1/4.  

The results in Fig.8 imply that as the remote loading increases, the region of validity 

for the LEFM solution becomes smaller and eventually disappears. In contrast, the 

nonlinear asymptotic solution exhibits an expanding region of validity as the remote 

loading increases. To demonstrate this point, we choose F22 as the benchmark, and use our 

experimental data to define a region of validity within which the relative error between 

asymptotic solution and experimental data is below a threshold. Specifically, we first form 

a grid around the crack tip in the reference configuration using an increment of 0.15mm in 

r and 3o in θ, as shown in Fig.9a. Then the experimental value of F22 at each grid point is 

compared with the asymptotic solution in eq.(16), and the grid points at which the relative 

error between the experimental data and the asymptotic solution is within a threshold of 4% 

are highlighted (see Fig.9a). These highlighted grid points approximately define the 

boundary of the region of validity. We assume the region of validity is a simply connected 

region. Therefore, even though close to the tip there are grid points where the relative error 

is higher than threshold (see Fig.9a), we still include them because such relative error is 

caused mainly by experiment uncertainties, e.g., imaging drift or slight loss of focus due 

to thinning of the sample near the crack tip. It should be noted that here we chose to focus 
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4. Energy release rate and fracture toughness 

The main purpose of fracture tests is to characterize a material’s toughness Γ, 

defined as the work required to advance a crack by a unit area measured in the reference 

configuration. Following the Griffith’s criterion23, crack propagation results from the 

competition between the energy release rate G, representing the energetic driving force 

supplied by external loading, and the toughness Γ. For the pure shear geometry (see Fig.2a), 

G can be determined using: 

   ( ) 0rG W Hλ=  ,            (17) 

where W is the strain energy density function, H0 is the sample height and λr = 1+ ∆/H0 is 

the remote stretch ratio. The fracture toughness Γ is determined by Γ= G(λr = λc) where  λc 

is the critical remote stretch ratio at the onset of crack propagation. However, this approach 

relies on a global energy balance of the entire fracture sample, which is available for only 

a few test geometries12. For examples, the pure share geometry requires the sample width 

to be much larger than the height55, e.g., the width/height ratio in the literature15 is typically 

larger than 4. In addition, it is often necessary to measure the length of crack extension, 

e.g., for determining the velocity of crack propagation. However, this may not be 

straightforward if the crack tip is severely blunted where large deformation alone can 

displace the crack tip. These two issues can be addressed using the experimental data of 

crack tip deformation field in two aspects: i) local evaluation of G through the J-integral57,58; 

ii) determination of crack extension length in the reference configuration.   

 

4.1 Evaluation of J-integral  

For the plane stress crack in our fracture experiments, the J-integral is57  

  1
1C

uJ Wn S n ds
X

α
αβ β

 ∂
= − ∂ 

∫ ,           (18) 

where C is a contour in the reference configuration that encloses the crack tip, W is the 

strain energy density function, n is the unit outward normal vector of C, S is the first Piola-

Kirchhoff stress tensor, u is the displacement vector and s is the arc length of C. The 
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subscripts α and β range from 1 to 2, and we have used the summation convention of 

summing over repeated indices. With the experimental data of crack tip deformation field, 

we can calculate W using the GNH model in eq.(5) and components of S using 

   1

1

2ij ji ij
dWS pF F
dI

−= − +  ,  i, j =1, 2, 3.              (19) 

The term p is a Lagrange multiplier enforcing the incompressibility constraint and is not 

directly related to the deformation gradient F. We take advantage of the plane stress 

condition, specifically S33 =0, to determine p and obtain the following equation for Sαβ: 

    ( )2 1
3

1

2 dWS F F
dIαβ αβ βαλ −= −   (α, β =1, 2),         (20) 

where λ3 is the out-of-plane stretch ratio:  

   3
11 22 12 21

1
F F F F

λ =
−

.            (21) 

With eq.(20) and the GNH model for W, we are able to evaluate the J-integral using 

experimental data of crack tip deformation field.  

The J-integral should be path independent and equal to the energy release rate G 

for elastic materials. We selected ten different integral paths (see Fig.10a) to examine the 

path independence of the J evaluated from experimentally measured deformation field. As 

illustrated in Fig.10b-10c, the J-integral computed using the ten paths all agree with each 

other and are equal to the energy release rate G evaluated using the global approach in 

eq.(17). Therefore, we have demonstrated the feasibility of using J-integral and the 

experimentally measured crack tip field to determine G. This method would allow us to 

access new loading conditions in fracture tests of soft elastic materials. 
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position P0 (see Fig.11a) in the reference configuration, which is then fed into the moving 

least square (MLS) interpolation program to find the corresponding position Q0 in the 

current configuration. Next we examine the distance |ρQQ0| between Q0 and Q and check if 

|ρQQ0| is below a small threshold η. If not, the reference position of the crack tip would be 

updated to a new point P1 whose coordinates are equal to the coordinates of P0 subtracted 

by 0.25ρQQ0. Following this scheme, we iteratively update the new reference position of 

the crack tip Pi by subtracting the coordinates of Pi-1 by 0.25ρQQi-1 until |ρQQi-1| is smaller 

than the threshold η. 

Using this iterative scheme, we are able to monitor the position of crack tip in the 

reference configuration. The change in the reference crack tip location is solely due to crack 

propagation. In Fig.11b, we plot the energy release rate G versus the crack extension length 

measured in the reference configuration. Initially the crack extension remains at 0 as Γ 

increases until a critical value (Γ0 = 0.12kJ/m2) is reached. After that, the crack tip 

accelerates as G increases. The curve in Fig.11b is often referred to as the crack growth 

resistance curve (R-curve) in the fracture mechanics literature23. If Ecoflex is exactly elastic, 

the R-curve should resemble a step function with a horizontal line leveled at Γ0, because 

the crack would propagate unstably once G exceeds Γ0. The R-curve in Fig.11b implies 

that energy dissipation occurs near the crack tip, which causes an increase in the effective 

toughness Γ. This is consistent with the uniaxial tensile data showing that Ecoflex becomes 

inelastic at very large deformation (see Fig.A2). Such inelastic behavior leads to the 

formation of a dissipation zone around the crack tip, but this zone is much smaller than the 

detection limit of our particle tracking method, similar to the “small scale yielding” 

condition in LEFM23. Therefore, the Ecoflex elastomer used in our fracture experiments 

should be considered as “predominantly elastic”.   

To illustrate the limitation of using the deformed configuration to define crack 

extension, we plot in Fig.11c the same data of energy release rate G versus the crack 

extension length measured using the crack tip location in the deformed configuration. The 

crack extension increases continuously with G, from which it is difficult to tell when 

exactly the crack propagation started. Furthermore, the definition of G, either using the 

global approach or the J-integral, are based on the crack surface area measured in the 
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Figure 15 Dependence of the fracture toughness Γ on crack propagation velocity V 
measured in the reference configuration (log-log plot). 
 

5. Conclusions 

We demonstrated that the particle tracking method is capable of resolving the large 

and highly non-uniform crack tip deformation field in soft materials. Using a soft silicone 

elastomer, we experimentally observed, for the first time, the nonlinear crack tip field 

predicted by the asymptotic solutions for GNH hyperelastic solid. By monitoring the crack 

tip deformation field under increasing remote loading, we were able to capture how the 

region of validity for the nonlinear asymptotic solution evolves as the crack deforms and 

propagates.  

For the measurement of fracture toughness, the experimental data of crack tip 

deformation field enables two new capabilities: i) local evaluation of the energy release 

rate G through the J-integral; ii) determination of the true crack extension length defined 

in the reference configuration.  

• The capability of measuring G using the J-integral can be extended to any plane stress 

geometry, and thus can greatly expand the loading conditions and test geometries that 

can be used for soft material fracture. For example, by orientating the crack in the pure 

shear geometry (see Fig.2a) at an angle with the loading direction (e.g., 45o), one may 

generate mixed Mode-I and Mode-II loadings near the crack tip even though the global 

loading is still tensile. This experiment could provide useful data for studying mixed-

mode fracture toughness in soft materials, which is not yet well understood.  

• The capability of determining the reference crack extension length has two implications. 

First, for highly blunted cracks in soft materials, the onset of crack propagation, which 

must be determined for measuring the fracture toughness, can be ambiguous. Inspection 

of the crack tip position in the deformed configuration may be misleading due to the 

crack tip displacement caused by large deformation. Identifying the onset of crack 

propagation from the global force-displacement curve (e.g. see Fig.12) is not 

straightforward either. The experimentally measured history of crack tip deformation 

offers a much more precise way to detect crack extension, i.e., by monitoring the crack 

tip position in the reference configuration. Second, in current methods to measure the 
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dependence of Γ on crack velocity V, one often needs to wait until the crack 

propagation settles to a steady state with a constant velocity61–65. As a result, one 

fracture experiment can only yield one data point in the plot of Γ versus V, which can 

be very time consuming. Here we demonstrate that, with an accurate measurement of 

crack extension, it is possible to obtain much more Γ-V data points from a single 

experiment (see Fig.15). The could greatly reduce the experimental cost for 

characterizing the rate dependence of fracture toughness. 

The particle tracking method can serve as a useful experimental tool to probe the 

mechanics of soft materials under extreme deformation. By directly mapping the crack tip 

deformation field, this method can lead to new advancements in soft material fracture. For 

example, for soft materials with strong dissipation and hence high toughness, by measuring 

the time history of crack tip deformation field and combining the data with a bulk 

constitutive model, it is possible to determine the amount of energy dissipation associated 

with crack propagation. The crack tip deformation data, when interpreted with FEM 

analysis, may offer new insights towards selecting appropriate local failure criteria at the 

crack tip to simulate fracture. Moreover, the particle tracking method can be extended to 

map the full three-dimensional (3D) deformation field within the volume of transparent 

hydrogels or elastomers47,67. This can potentially result in unprecedented data to reveal the 

mechanical structure of 3D cracks under complex loading conditions (e.g., mix-mode 

loadings).   

 

Appendix 1: Preparation of Ecoflex samples and tracer particles 

The Ecoflex samples were prepared in two steps (see Fig.A1): 1) fabricate a 

distribution of tracer particles with photo-lithography on a glass slide; 2) transfer the tracer 

particles onto an Ecoflex 0030 (Smooth-On Inc.) sheet. Briefly, a photo mask with random 

tracer particle pattern (particle diameter ~ 0.1mm) was designed and ordered from 

CAD/Art Services, Inc. A clean glass slide was prepared, and spin coated with 1µm thick 

PDMS (3000rpm for 60s), which was then cured. After oxygen plasma treatment (RIE 

Jupiter) of the PDMS layer, polyimide (Sigma Aldrich) was then spin coated on top of it 

(4000rpm for 60s), and cured at 2500C for 1 hour. After cooling down, a 100nm copper 
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This video shows the time evolution of all deformation gradient components F11, 

F12, F21 and F22 with a remote loading rate of 0.01mm/s. The video is accelerated and is 50 

time faster than the real time. 
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