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Abstract

Stretchable and fracture-resistant elastomers or gels are highly desirable in a wide range of
existing and emerging applications. Fracture of soft materials, especially the ones with
significantly enhanced toughness, typically involves severe deformation near the crack tip.
However, experimental characterization of the crack tip deformation field in soft materials
has been challenging due to its highly non-uniform and nonlinear nature. This is an
important limitation towards a complete understanding of the intricate mechanics involved
in soft material fracture. In this paper we present experimental data of the nonlinear,
multiaxial crack tip deformation field obtained by tracking randomly distributed tracer
particles. Specifically, we measured the fields of displacement and deformation gradient
around the tip of a Mode-I crack in a soft silicone elastomer. We experimentally observed,
for the first time, a region of validity for the asymptotic solution of crack tip deformation
field in hyperelastic solids with strong strain stiffening. Furthermore, the measured crack
tip deformation field enables local evaluation of energy release rate through the J-integral,
which can remove the requirement of specific experimental geometries, such as the pure
shear fracture test, to measure the fracture toughness. It also enables determination of the
true crack extension length defined in the reference configuration. Based on these two
capabilities, we were able to measure the crack growth resistance behavior and the rate-

dependence of fracture toughness for soft materials with highly blunted cracks.
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1. Introduction

Soft polymeric materials, with modulus on the order of kPa to MPa, underlie many
industrial applications from sealants to pressure sensitive adhesives. Recent advancements
in polymer engineering have led to soft elastomers or gels with remarkable new properties
such as stimuli-responsiveness'*? and biocompatibility’. These new soft materials have
enabled a wide range of emerging technologies including soft robotics*®, biomedical
implants” and stretchable electronics®'°. In most of these applications, the soft material
needs to be stretchable to achieve functionality and yet resistant to fracture to maintain
reliability. The capability of a material to resist fracture is measured by the toughness I
(unit: J/m?), which quantifies the work required to grow a crack by a unit area and is widely

used for evaluating a material’s brittleness or defect-sensitivity!!*12.

Various physical or chemical mechanisms have been developed to enhance the
toughness of soft materials'>~'7. These mechanisms share a common principle: to introduce
energy dissipation into the polymer network!'®. Following this principle, soft materials that
are ultra-stretchable and yet mechanically robust have become reality'*"!”. Although it has
been demonstrated that dissipation can lead to a dramatic increase in fracture toughness by
orders of magnitude'®, quantitative principles connecting dissipation and toughness are still
missing'?. A major challenge is that dissipation is closely coupled to the highly non-

uniform deformation field near the crack tip'*?°

, which makes it extremely difficult to
accurately quantify the amount of energy dissipation. Therefore, an in-depth understanding
of the crack tip deformation field in soft materials is necessary for establishing predictive
fracture models and quantitative guidelines to engineer soft functional materials with high
toughness®!??. Indeed, the asymptotic solutions of crack tip stress and strain fields have
served as a fundamental pillar supporting the development of classical fracture mechanics?’.
However, solutions based on linear elasticity have been deemed inadequate for soft
materials due to nonlinearities associated with large deformation!. Analytical or
computational approaches to reveal the crack tip field in soft materials are challenging due
to incomplete understandings in both the multi-axial constitutive relations under large
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deformation and the local failure process at crack tip?!, especially for soft materials

with strong dissipative behaviors'?. As a result, existing crack tip field solutions for soft



materials have been limited to a few nonlinear elastic models?’. Nonlinear crack tip field

solutions accounting for more complex bulk material behaviors, such as viscoelasticity and

Mullins effect, are not yet available. Therefore, experimental measurement of the crack tip

deformation field in soft materials becomes especially valuable. More specifically, it can

provide critical inputs in at least three aspects described below, which will be addressed in

this work.

Determining region of validity for asymptotic crack tip solutions. Analytical solutions
for the nonlinear crack tip field can provide useful theoretical insights on the fracture
process?’. These solutions are asymptotic in nature and thus are only valid in the
vicinity of the crack tip. However, in reality the hyperelastic assumption underlying
these asymptotic solutions may break down within the fracture process zone at the
crack tip'2. Therefore, whether there exists a region of validity for such asymptotic
solutions is unclear, which can be answered by comparing the experimental measured
crack tip field with the asymptotic solutions.

Enabling local evaluation of energy release rate. Current methods to measure the
fracture toughness of soft materials are limited to only a few testing geometries?® for
which the energy release rate G can be calculated through a global energy balance. If
the crack tip deformation field can be measured experimentally, one could also use the
J-integral>*»?7? to evaluate G provided that the material is elastic (except in the vicinity
of the crack tip). This approach can greatly expand the capability of current fracture
tests by removing the limitation on testing geometry and accommodating more
complex loading conditions.

Decoupling crack extension and large deformation. Large deformation can cause

significant blunting of a sharp crack tip*>*

, which may displace the crack tip even if
the crack has not propagated yet. This effect makes it difficult to determine the onset
of crack propagation by monitoring the crack tip position in the deformed configuration.
The measured crack tip deformation field would allow us to map the crack tip position
back to the reference configuration and to define crack extension in the reference

configuration, thereby decoupling crack extension and large deformation.



Although important, experimental measurement of the crack tip field in soft
materials has been difficult due to the large deformation and severe strain gradients near

2931 Digital image correlation®? (DIC) has been widely used for in situ

the crack tip
measurement of the displacement and strain fields. By correlating sub-elements in the
digital images of a material sample taken before and after deformation based on the
grayscale pattern®?, the DIC method is able to accurately measure the displacement field
with sub-pixel resolution®>**. Large deformation poses a challenge to the DIC method,
since the sub-element to be correlated may be subjected to significant stretch and rotation®3,
which are not known a priori but need to be considered when implementing the correlation
scheme. This problem has been addressed either by using advanced algorithms to correct
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the distortion of correlation elements or by dividing the deformation history into small

increments®®*. Indeed, numerous works in the literature have applied the DIC method to

4042 ge]s?4 | biological tissues**, or thermoplastic polymers with large

soft elastomers
plastic deformation*. Despite these applications of the DIC method for large deformation,
very few works have used it to measure the nonlinear crack tip deformation field in soft

materials. For example, Livne et al.'’

measured the near-tip deformation field for Mode-I
dynamic cracks to demonstrate the effect of nonlinear deformation, but this work focused
on brittle gels with moderate deformation around the crack tip (e.g., tensile strain up to
~20%). Crack tip fields with large strains, i.e., strains up to a few hundred percent, have

also been characterized by the DIC method, e.g., in Mzabi et al.*®

who studied fatigue crack
propagation in filled elastomers, or in Zhang et al.>! who studied the toughening
mechanism of an interpenetrating network gel. However, these works did not discuss
quantitative details of the measured crack tip deformation field. Systematic experimental
investigations of the nonlinear, multi-axial crack tip deformation field in soft materials are

still lacking in the literature.

In this paper, we adopt an experimental method*’*® different from DIC to measure
the nonlinear crack tip deformation field in soft elastomers, specifically by tracking the
displacements of randomly distributed tracer particles deposited on the surface of the
fracture sample. Because the tracking is performed discretely for individual tracer particles,
this particle tracking method is insensitive to distortions caused by large deformation and

is suitable for problems with displacement discontinuity (e.g., opening of a sharp crack).
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These advantage of the particle tracking method is analogous to that of the element-free
method* in computation mechanics. The paper is organized as follows. Section 2 describes
the experimental procedures and data processing of our particle tracking method. In Section
3, we apply this method to a soft silicone elastomer and show for the first time that the
asymptotic crack tip solutions for hyperelastic solids with strain stiffening can be observed
experimentally. In Section 4, we demonstrate that for predominantly elastic materials, the
measured crack tip deformation field can be used to evaluate the energy release rate through
the path-independent J-integral. We are also able to identify the true crack extension length
defined in the reference configuration, which further allows us to determine crack growth
resistance behavior and rate-dependence of fracture toughness. Conclusions are given in

Section 5.

2. Particle tracking method
2.1 Overview

The working principle of the particle tracking method is illustrated using an
example shown in Fig.1. An initially sharp crack in a thin polydimethylsiloxane (PDMS)
elastomer sample is subjected to an increasing tensile displacement A perpendicular to the
crack. We will use the initial undeformed configuration as the reference configuration
throughout this paper. To measure the deformation field, we deposited randomly
distributed tracer particles on the surface of the sample. The tracer particles must be much
thinner than the sample, such that they can be well attached to the sample and do not affect
its deformation. For the example shown in Fig.1a, we used glitter flakes (0.2~0.3mm in
diameter) as the tracer particles. Multiple images of the sample and tracer particles were
taken along the loading history and then fed into a custom developed image processing
program to locate the two dimensional (2D) coordinates x of the centroid of each tracer
particle. The same particle appearing in different images were then tracked and linked
along the loading history. The tracking procedure generated a history of displacement u for

each particle (see Fig.1b):

u(X,r)=x(X,7)-X, (1)



where X is the initial coordinate vector of a tracer particle and x is the corresponding
coordinate vector at time ¢. Finally, the strain field (see Fig.1c) can be obtained by
interpolating the discrete displacement data into a continuous displacement field and then

calculating the spatial gradient of the interpolated displacement field.

The three main components of the particle tracking method, i.e., 1) sample
preparation, mechanical loading and in sifu imaging; 2) image processing and particle
tracking; 3) interpolation and calculation of the strain field, will be described in detail in

Sections 2.2-2.4, respectively.

(a) Undeformed Configuration Trajectories of Tracers

Deformed Configuration

Figure 1 Overview of the particle tracking method. (a) Deformation history of the crack
in a tensile sample (dimensions: height Hy=50mm, width Ly =40mm, thickness 7p= 1mm).
The tracer particles are glitter flakes adhered to the sample surface. Images were taken

every 5 seconds at a strain rate of A/ H,=107s"". (b) Displacement vectors tracked for

2450 tracer particles. (¢) Experimentally measured color map for the Hencky strain
component e at an applied loading of A/Hp = 9.5%.

2.2 Sample preparation, fracture test and imaging

The PDMS sample in Fig.1 was fabricated by first mixing base polymer and curing

agent with a 10 to 1 ratio. After degassing for 45 minutes, the mixture was poured into a



mold and placed on a flat table overnight. After curing, a crack was introduced at the edge
of the PDMS sheet by a scalpel. Then glitter flakes (Signature™ Extra Fine Glitter by
Recollections™), which served as tracer particles (diameter: 0.2~0.3 mm), were manually

placed on the surface of the sample with a tweezer.

The sample was mounted on a mechanical testing machine (Instron 5965) with the

top and bottom edges clamped. A displacement loading was applied at the upper edge with
a fixed velocity at 0.05mm/s, i.e. strain rate A/ HO=1073871 . Meanwhile, deformation of

the sample was monitored via a camera (Canon EOS 6D DSLR along with Canon 100mm
F/2.8L Macro Lens). To enhance the optical contrast between the tracer particles and the
background, a white light source and the camera were placed on the two opposite sides of
the sample, so that the light emitted from the light source transmitted through the sample
and was then collected by the camera. Since the PDMS sample was transparent while the
tracer particles were not, the tracer particles appeared as black dots in the images (e.g., see
Fig.1a). Imaging rate of the camera was set to be 0.1 frame per second (fps) before the

onset of crack propagation, and was increased to 0.2 fps afterwards.
2.3 Image processing and particle tracking

For each of the image frames taken during the experiment, the centroids of
individual tracer particles were extracted by first binarizing the images and then using the
built-in centroid finding function in MATLAB (MathWorks). To identify the same particle
in consecutive images, we adopted the adaptive feature vector based relaxation (FVRM)
tracking algorithm®® among others®'>2. This algorithm takes advantage of the randomness
of tracer particle distribution and uses the relative positions of neighboring particles as a
unique geometric signature for one particle. When implementing this algorithm, we need
to keep the deformation between two consecutive time frames small so that the geometry
signature of neighboring particle is not severely distorted. After evaluating the matching
likelihood between the target particle and a few candidate particles in the next time frame
based on the geometric signature, the candidate particle with the highest likelihood that is
also larger than a prescribed threshold is taken as the matching particle. This tracking
algorithm was able to identify trajectories for nearly all the tracer particles, while exception

may occur near the crack tip since crack propagation may break the local tracer particle



pattern and thus the geometric signature required by the tracking algorithm is lost. In the
latter case, we developed a program to manually match tracer particles between
consecutive time frames. The number of particles that had to manually matched are less

than 1% of the total particles.
2.4 Interpolation and strain field

The particle tracking process provides the coordinates of individual tracer particles
at different time frames. The displacement u; (i=1, 2) for the tracked particles can be
derived from the initial coordinates (or the reference coordinates) X; and the deformed
coordinates x; using eq.(1). The spatial resolution of our method to measure the particle
displacement is estimated to be on the order of 1 pixel (~8um in our images) due to the
centroid finding function, which is lower than the sub-pixel resolution of the DIC method.
However, since we focus on large deformation where the particle displacements are much
larger than 1 pixel, the spatial resolution of our method turned out to be sufficient for

mapping the crack tip displacement field.

To obtain the strain field, the displacements measured at discrete tracer points must
be converted into a continuous field so that gradients can be evaluated. Since the tracer
particles in our method are randomly distributed, we adopted the moving least square (MLS)
scheme® capable of accommodating complex fields with simple polynomial basis*®. The
MLS method constructs a generic interpolation field function v(X) using a polynomial
basis P(X) (column vector) and the corresponding coefficients a(X) (column vector) as

follows:
v(X)=P"(X)a(X). 2)

Unlike conventional interpolation methods where the coefficient vector a is constant, in
MLS a(X) is position-dependent and is determined by minimizing a weighted least-square

error function defined as:

L= q(X-d,)[P"(d,)a(X)-w] . 3)

m
k=1



where g(X—dy) is a weight function, w, is the measured data at the tracer particle located

at d (in terms of reference coordinates) and m is the number of tracer particles. There are
many possible selections for the polynomial basis and the weight function, and effects of

these functions has been studied in a previous work*®. Here we adopt the simplest form for

the polynomial basis P (X) = [1, X, X, ]T and an exponential weight function as:

exp(1-[X—d,["/77)-1
q(X-d,)= e—1 ’
0 ;

X-d,|<r, )

X-d,|>r,

where r. is a cut-off radius beyond which the weight function is zero. Applying this
interpolation scheme to each displacement component u; (i=1, 2) gives a continuous
displacement field u(X). Once the displacement field is obtained, the deformation gradient

tensor F(X) can be obtained by taking gradient of the displacement field as
F(X):VXH(X)-I-S where & is the identity tensor, i.e., 6, =1 only when i = j. Then

strain tensors such as the Green strain tensor Eg = (F’F — 8)/2 can be calculated using the
deformation gradient tensor F. The strain field measured with this method does not rely on

any assumptions on the material’s constitutive behavior.

For the example in Fig.1, we evaluated the strain fields in terms of the Hencky
strain. A representative field of the Hencky strain component e»; around the crack tip is
shown in Fig.1c, where the maximum strain is found to be 26%. Note that the maximum
strain captured in the experimental data may depend on how close our method can approach
the crack tip, which is limited by the finite size of the tracer particles (~0.3mm). Because
the strain fields are highly concentrated towards the crack tip, it is desirable to place more
tracer particles in the vicinity of the crack tip to better resolve the strain fields. This would

require tracer particles with a smaller size.

3. Nonlinear crack tip deformation field in a soft elastomer

3.1 Experiment



The PDMS elastomer shown in Fig.1 is brittle. As a result, the crack cannot sustain

much deformation before it starts to propagate. In tough gels and elastomers, the crack can

become severely blunted before propagation'*!”. To achieve this scenario, we adopted a

more stretchable silicone elastomer (Ecoflex®), often used to fabricate soft robotic

devices>?, for the fracture test. In addition, to deposit more tracer particles near the crack

tip, we used smaller tracer particles (diameter ~0.Imm) fabricated by photo lithography

and transfer printing. The thickness of the tracer particles (~1um) was a thousand times

smaller than that of the Ecoflex elastomer sample (~1 mm). A detailed description of the

sample preparation process is included in Appendix 1.
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Figure 2 Fracture test of the Ecoflex elastomer. (a) Undeformed and deformed geometry
of the pure shear crack sample. (b) A representative image showing the crack deformation
profile and tracer particles (¢) Uniaxial tension data of an Ecoflex elastomer (strain rate =
5x107% s71): nominal tensile stress Sa» versus the stretch ratio A. The experimental data can
be well fitted by the generalized neo-Hookean (GNH) model with n» =2. For comparison,
the curve given by the neo-Hookean model with the same shear modulus g is also plotted
as the solid line. (d) The experimentally measured force-displacement curve for the fracture
test and the results predicted by the finite element method (FEM) where the elastomer was
modeled as a GNH hyperelastic solid with parameters ¢ =20kPa, b =0.0626, and n =2. (e)
Geometry and boundary conditions of the FEM simulation.

The pure shear geometry>*, which refers to a thin sheet with width that is much
larger than the height®®, was adopted for the fracture test (see Fig.2a). Specifically,
dimensions of the sample are: width Lo=88.0mm, height Hy=20.5mm and thickness
To=0.9mm. The initial crack length co=11.1mm is much smaller than the sample width Lo.
The sample was subjected to Mode-I loading in terms of a tensile displacement A at a fixed
velocity of 0.0lmm/s (see Fig.2a). The applied tensile loading is quantified by the ratio
A/Hop, 1.e., the nominal tensile strain far ahead of the crack tip. Images of the sample were
taken following the same approach described in Section 2.2. Figure 2b shows an example
image of the deformed crack and tracer particles. Next we applied the same procedures of
image processing, particle tracking and interpolation outlined in Sections 2.3 and 2.4. To
increase the efficiency of image processing, here we took advantage of the circular shape
of the tracer particles (see inset of Fig.2b) and used the built-in imfindcircles function in
MATLAB (MathWorks) to locate the centroid of each tracer particle. This set of data
processing procedures yielded a history of the displacement and deformation fields

surrounding the crack tip.

A constitutive model for the Ecoflex elastomer is needed to compare the
experimentally measured deformation field with theoretical or numerical solutions.
Motivated by this need, we performed independent uniaxial tensile tests (Instron 5965)
under a fixed strain rate (5x10~°s™!) which was chosen to match nominal strain rate of the
fracture example A/ H . Sample-to-sample variations in the tensile data were observed,
especially at high stretch ratios where the strain stiffening effect starts to emerge. A

representative nominal stress versus stretch ratio curve is shown in Fig.2c. The tensile data
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can be well described by the generalized neo-Hookean (GNH) model*® with the following

strain energy density function:

W:%{{H%(A —3)}” —1} : (5)

where u is the shear modulus at infinitesimal strain and /; is the sum of the squares of three
principal stretches Ai (i =1, 2, 3). The exponent n controls the degree of strain stiffening,
and the dimensionless parameter b controls the onset of strain stiffening. The neo-Hookean
model can be recovered from eq.(5) when n=1. All of our tensile data for different Ecoflex
samples can be well fitted by eq. (5) with » =2, indicating a strong strain stiffening behavior,
while x# and b exhibit sample-to-sample variation (¢ = 20~27 kPa and b = 0.06~0.2).
Separate tensile tests were carried out for each fracture sample to determine the
corresponding material parameters x and b. Cyclic tensile tests were also carried out to
confirm that the Ecoflex elastomer can be modeled as an elastic solid for interpreting the

measured crack tip field. Detailed discussions are included in Appendix 2.

To validate the constitutive model, we use the finite element method (FEM) to
simulate deformation of the fracture sample in a commercial software ABAQUS (Dassault
Systémes). Specifically, due to symmetry of the Mode-I condition, we only included the
top half of the pure shear sample in the model (see Fig.2e). The boundary at the bottom
was divided into two parts, with one part being the traction free crack surface and the other
part (ahead of the crack tip) with zero vertical displacement u> =0. Therefore, the model
can only simulate crack deformation but not crack propagation. Dimensions and loading
conditions of this model are set to be equivalent to the experiments (see Fig.2e). We
implemented a user subroutine UHYPER to incorporate the GNH model with n =2, u
=20kPa, and b =0.0626 according to the uniaxial tensile data in Fig.2c. The model was
meshed into 47505 CPS4 elements with the smallest element size being 10 >mm. As shown
in Fig.2d, the force-displacement curve predicted by FEM agrees well with the
experimental data until the crack starts to propagate, which supports the validity of the
constitutive model. The deviation after the onset of crack propagation is due to the fact that

the FEM model was not equipped with the capability of simulating crack propagation.
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3.2 Asymptotic solution

The crack in our fracture experiment is subjected to the plane stress Mode-I
condition, for which the asymptotic solution of crack tip deformation field using the GNH
model has been obtained in the literature®’->%. Here we briefly summarize the results. The
solution relates the deformed coordinates x; (i =1, 2) of a material point to its reference

coordinates X; (j =1, 2). In the asymptotic analysis, the polar coordinates » and & in the
reference configuration are used instead of Xj: X, =rcos@ and X, =rsinf (see Fig.2a).

Also, in the deformed configuration, we use the coordinates y; centered at the deformed
crack tip which has displaced from its original position. Therefore, y; differs from x;
(centered at the undeformed crack tip) uniformly by the crack tip displacement. The first
order asymptotic solution, expressed using y1 and > as functions of the reference polar
coordinates » and &, depends on the strain stiffening exponent #, but not on x#and b. As
discussed in Section 3.2, the Ecoflex elastomer used in our experiments was found to be
well described by the GNH model with n =2. In this case, the first order asymptotic solution

iS57’58:

19 3

y=A42%g(0), y,=A4r'f(0), (6)

where A4 is an undetermined coefficient that depends on the remote loading. The angular

function f{0) is

! 2(9/2)71"
f(0)=[20+cos ] sing{l—%} , (7)
where
. 2
o= 1—3“29. (8)

On the other hand, the angular function g(6) can only be solved numerically from the

following nonlinear ordinary differential equation’®:
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and the superscript ' denotes the first order derivative and " denotes the second order

derivative with respect to 6. The boundary conditions for eq.(9) is
g'(0=0)=0 and g'(0=7)=—/4/3. (11
The angular functions f{ ) and g(6) are plotted in Fig.3.
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Figure 3 Angular functions in the asymptotic solution. (a) f{6) given by eq.(7). (b) g(6)
obtained by numerically solving eq.(9) with boundary conditions in eq.(11).

The deformation gradient tensor F can be obtained using

Y -
F,=—+, ij=lor2. (12)

Using Xi1=rcos@ and X>=rsin6, the following first order asymptotic solution for Fj; can be

derived:

1

E,=4"r [%cos 0g(0)-sin Gg'(ﬁ)j, (13)
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F,=A4"% (%sin@g(@)Jrcong’(H)j, (14)

L (672
Fﬂzér‘* 3sin(¢9/2)cos<9\/l—cosj—\/§sin0\/0)+c0s9J(2a)+0059)”4, (15)
4 242w 2
L *(0/2
Fn:%w 3sin(¢9/2)sin0,/lCosz)+ECOSH\/C‘”COSHJ(M’JFCOS@)M- (16)
+20

It should be emphasized that the crack tip deformation field solution summarized above is

asymptotic in nature and thus is only valid as » approaches 0. The region of validity for this

asymptotic solution is unknown and will be discussed in Section 3.3 and 3.4.

3.3 Nonlinear crack tip deformation field

The experimentally measured crack tip deformation field will be quantitatively
examined in this section. Since our data includes a series of loading steps with increasing
remote loading A/Hop, we choose the step where A/Ho=68.78% as a representative example.
At this level of loading, the crack tip became significantly blunted (see Fig.5), which is an

indication of large deformation in the crack tip region.

We first focus on the mapping from the reference polar coordinates (», ) to the
deformed coordinates (y;, y2) as defined in Fig.2a. Using the particle tracking method, we
experimentally extracted the dependence of y; and y> on r and 6, as shown in Fig.4.
Specifically, the radial dependence of y; and y. with fixed angles &1is shown in Figs.4a and
4b, respectively, while Figs.4c and 4d plot the angular dependence of y; and y> with fixed
radii 7. To check the accuracy of our experimental results, we also included the y; and y>
predicted by FEM subjected to the same remote loading A/Hy=68.78% (solid lines) which
agree with the experimental results perfectly. This agreement shows that our particle

tracking method can accurately measure the displacement field near the crack tip.

Next we compare the first order asymptotic solution of y; and y: in eq.(6) with the

experimental data. There is only one undetermined parameter, i.e., the coefficient 4. As
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will be shown later, we determine A by fitting the asymptotic solution of the dominant
deformation gradient component F2 (see eq.(16)) to the experimental data and found 4 =
=3.86mm'*. In Fig.4b, we observe that the asymptotic solution of y» agrees well with the
experimental result for » up to 2.5mm. In contrast, large deviations between asymptotic
solution and experimental results of y; are found unless 7 is smaller than ~0.7mm. Similarly,
in terms of the angular dependence, Fig.4c shows that the asymptotic solution of y; starts
to deviate from the experimental result when » >0.75mm. For y», the asymptotic solution
agrees well with experimental data for | <~90° and r up to 2.5mm, while clear deviation
is found in the region of |4 >~90° and » > 0.75mm. Based on these observations, we
conclude that the region of validity for the asymptotic solution of y; is much smaller than
that of y>. In particular, the asymptotic solution of y> is valid in a region ahead of the crack

tip (|6 <~90°) with a size on the order of a few millimeters.
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Figure 4 Comparing asymptotic solution, FEM and experimental results of the deformed
coordinates y; and y». (a-b) y1 and y» versus reference polar coordinate ». The arrows
indicate the increasing € (= 30°, 45°, 60°, 90°). (c-d) y:1 and y» versus reference polar
coordinate 6. The arrows indicate increasing » (= 0.15, 0.75, 1.5, 2.25, 3.0 mm). All results
in (a)-(d) are for 4/Ho = 68.78%.
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Figure 5 Experimentally measured multiaxial crack tip deformation field. Contour plots of
the deformation gradient components: (a) Fi1, (b) Fi2, (¢) F21, (d) F22. The subscripts 1 and
2 refer to the horizontal and vertical directions, respectively.

It is more important to consider the deformation gradient tensor F, based on which
strain and stress tensors can be calculated*’**. However, the measurement of F is more
challenging than the displacement field. Since F involves the spatial gradients of y; and y>,
its accuracy is sensitive to the smoothness of the displacement field, i.e., even small
uncertainties in the displacement data may lead to large errors in F. Using the MLS

interpolation (see Section 2.4), we were able to generate a continuous displacement field
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from the discrete displacement data at tracer particles, and then evaluate F using gradients
of the displacement field and eq.(12). Figure 5 shows how the four in-plane components
of F are distributed around the deformed crack when A/Hy=68.78%. In addition, a video
illustrating evolution of these components along the loading history is provided in the
supplementary material (see Appendix 3). We emphasize that the deformation gradient
fields are directly measured from tracer particle displacements and thus does not require
any knowledge regarding the mechanical property of the Ecoflex elastomer. Although the
fields in Fig.5 appear to be smoother in the region below the midline of crack (i.e., y2< 0
or #<0) than that above the midline (i.e., y>> 0 or #>0), we can nevertheless see that Fi;
and F>2 are approximately symmetric about the midline of the crack while F12 and F>; are
antisymmetric about the midline, as expected from the Mode-I condition. In addition, Fig.5
shows that F; is the dominant component of F, which is also expected from the Mode-I
condition. The fact that F>; can reach ~4 near the crack tip, implying a large nominal tensile
strain of about 300%. In the following we further examine the measured deformation
gradient fields by quantitatively comparing them with the asymptotic solutions in eqs.(13)-
(16).

Figure 6a plots F2> versus the reference radial coordinate » directly ahead of the
crack tip (6=0°). According to eq.(16), F22 should scale with 7 "* as » — 0 which is indeed
observed in the experimental data. By fitting eq.(16) to this data, we find that the coefficient
A =3.86mm'*. Since A4 is the only adjustable parameter, the entire deformation field
predicted by the asymptotic solution is now determined. For example, dependence of F>;
on the reference angular coordinate @ with fixed » is shown in Fig.6b. Moreover, the
dependence of F21 on r and @ is plotted in Figs.6¢c-6d, respectively. In particular, since
F>1=0 at 8=0°, in Fig.6¢c we choose to plot F>1 along &= —45° since the measured field is
smoother below the midline of crack. In addition, the angular dependence F> at 4 different
radius r is plotted separately in Fig.6d for better clarity. Overall the asymptotic solutions
in eqs.(15) and (16) agree well with experimental data. In Fig.6a and 6¢, deviation emerges
when r > ~1.5mm which is attributed to the finite region of validity of the asymptotic
solution. Even for » <~1.5mm, considerable deviation can be observed for |# | close to 180°.

Specifically, as marked in Fig.6d, the span of 8 where eq.(15) agrees with experimental
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data (between the vertical dotted lines) decreases as » increases. Since both F»1 and F»; are
related to the spatial gradients of y», the deviation for large |#| can be traced back to Fig.4d

where the asymptotic solution of y. deviates from the experimental data for large |6|.
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Figure 6 Comparing experimental data and asymptotic solution for /22 and F>;. (a) Radial
dependence of F>> (log-log plot) directly ahead of the crack tip (8 =0°). (b) Angular
dependence of F: at four different radii ». (¢) Radial dependence of F>; (log-log plot) along
0= —45°. (d) Angular dependence of F; at four different radii r. In (a-d), the dashed lines
are predicted by the asymptotic solution in eq.(15) or eq.(16).
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Figure 7 Comparing experimental data and asymptotic solution for F;; and F;2. (a) Radial
dependence of F;; (log-log plot) directly ahead of the crack tip (€ =0°). (b) Angular
dependence of F11 normalized by F11(r, 8=0°). (¢) Radial dependence of F;2 (log-log plot)
along 6= —45°. (d) Angular dependence of F1> normalized by Fi2(r, #=—180°). In (b) and
(d), experimental data at 4 different radii (same color code) are plotted: » =0.3mm, 0.75mm,
1.5mm, and 3.0mm. The dashed lines are predicted by the asymptotic solution in eq.(13)
or eq.(14).

As discussed earlier, the region of validity for the asymptotic solution of y; is
smaller than that of y,. Consequently, we expect the asymptotic solution of F;; and F/2,
which involve the spatial gradient of y;, may deviate more from the experimental data than
F>; and F>2, which is confirmed by the comparison in Fig.7. In particular, Fig.7a plots the
radial dependence of F'11 along 6=0°. The asymptotic solution in eq.(13) implies F11 should
scale with 7%, unlike F2> which decays with  as 7" (see Fig.6a). This scaling relation is
observed in the experimental data shown in Fig.7a. Furthermore, since 4 =3.86mm"* and

g (0) is determined, there is no additional adjustable parameter in eq.(13). Yet quantitative
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agreement between eq.(13) and the experimental data can be found in Fig.7a when r
<~0.5mm. This region of validity is smaller than that of F», exhibited in Fig.6a. On the

other hand, the scaling relation Fi» ~'/8

, as predicted by eq.(14), is not found in the
experimental data of Fig.7c (along 8=—45° since F'1» vanishes along = 0°). To understand
this discrepancy, we first assume the region of validity of eq.(14) is similar to that eq.(13),
i.e., r <~0.5mm. However, within this small region, the magnitude of F;> is much lower
than F11 and thus is more vulnerable to noises caused by experimental uncertainty in tracer
particle displacement (~Ipixel or 8um) and interpolation errors. Finally, the angular
dependences of F'11 and F'1» at four different radii are shown in Figs.7b and 7d, respectively.
Due to the small region of validity for the asymptotic solution, a quantitative agreement
between asymptotic solution and experimental data is not expected. Interestingly, eqs.(13)

and (14) can still capture the trend of the angular distribution of F11 and F1» with moderate

relative error (<~ 25%).

In summary, we demonstrated that the asymptotic solution of crack tip field in a
GNH hyperelastic solid (with n =2) can capture the deformation field measured in our
experiments, especially for the dominant deformation gradient component F2>. This is the
first time that the nonlinear asymptotic solution of crack tip deformation field based on

hyperelasticity is verified experimentally.

3.4 Effect of remote loading

The previous section focuses on an exemplar snapshot (e.g. 4/Ho=68.78%). Since
the experimental data covers the entire loading history, we are able to monitor evolution of
the crack tip deformation field as the remote loading A/Hj increases. In Fig.8a-8b, we plot
dependence of > on the reference polar coordinates » and & for four different values of
A/Hyp. In Fig.8a, we see that at small A/Hyp = 3.90% the experimental data deviates
significantly from the scaling F>> ~ r * predicted by the asymptotic solution in eq.(16).

14 emerges and expands in

When the remote loading A/Hy increases, a region with F22 ~ 7~
size. Similar behavior is seen in Fig.8b where we compare the angular distribution of F2>
with eq.(16). To avoid the fitting parameter 4, we normalize F22 by F2a(r, 6=0°). Again,
the experimental data differs significantly from the dashed line given by eq.(16) at small
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A/Hp = 3.90%, but then converges to it as A/Hy increases. At small remote loading, the
crack tip field is expected to follow the solutions provided in linear elastic fracture
mechanics (LEFM). Therefore, we plot the radial dependence of the linear strain &> = F>»
—1 in Fig.8c and find that & scales as » '/ at small A/Hy, i.e., the well-known square root
singularity®®, and then deviates it when A/H) reaches 68.78%. Interestingly, for moderate
loadings (e.g., A/Hyp=25% to 45%), both the &2~ or F2; ~ ¥ * scaling exhibit a certain

region of validity.
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Figure 8 Crack tip deformation field transitions from LEFM solution to the nonlinear
asymptotic solution when the remote loading increases. (a) Radial dependence of F>2 (log-
log plot) directly ahead of the crack tip (€=0°). The dashed lines illustrate the scaling >
~r Y4 (b) Angular distribution of normalized F>; at » = 1.5mm. The dashed line is given
by the nonlinear asymptotic solution in eq.(16). (¢) Radial dependence of linear strain &»
(log-log plot) directly ahead of the crack tip (6 =0°). The dashed lines illustrate the scaling
&2 ~r "2 according to LEFM. (d) Scaling of the crack opening profile —y; versus |y2| (log-
log plot) as the remote loading increases. In (a-d), experimental data at 4 different remote
loadings: A/Hy = 3.9%, 24.39%, 43.9% and 68.78% are plotted with the same symbols
illustrated in the legend of (a, c). The inset in (d) shows the experimental crack opening
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profile at A/Hy = 68.78%, FEM result (white line) and prediction of the asymptotic solution
(red line).

The nonlinear effect is also reflected in the crack opening profile!®. The LEFM
solution predicts that the crack should deform into a parabola locally near the crack tip!'*~°.
In contrast, by setting &= +180° in eq.(6), we find that the nonlinear asymptotic solution

2, which implies that the

predicts a different scaling for crack deformation: —y1 ~ |2
deformed crack is sharper than a parabola with scaling: —y1 ~ |y2*. To verify this point, In
Fig.8d we plot —y1 and |)»| of the deformed crack surface using the values extracted from
experimental images at the four remote loadings A/Hyp shown in Fig.8a-b (same symbols).
At small A/Hy (=3.90%), —y1 scales with [y2[?, indicating a parabolic crack profile. As A/Hp
increases, nonlinear effect becomes dominant and the deformed crack profile transitions
into the scaling —y1 ~ [y2]*”? predicted by the nonlinear solution. The inset shows that at

A/Hy =68.78% the local crack opening profile indeed follows the asymptotic solution in
eq.(6) with 4=3.86mm'"*.

The results in Fig.8 imply that as the remote loading increases, the region of validity
for the LEFM solution becomes smaller and eventually disappears. In contrast, the
nonlinear asymptotic solution exhibits an expanding region of validity as the remote
loading increases. To demonstrate this point, we choose F2 as the benchmark, and use our
experimental data to define a region of validity within which the relative error between
asymptotic solution and experimental data is below a threshold. Specifically, we first form
a grid around the crack tip in the reference configuration using an increment of 0.15mm in
r and 3° in 6, as shown in Fig.9a. Then the experimental value of F2; at each grid point is
compared with the asymptotic solution in eq.(16), and the grid points at which the relative
error between the experimental data and the asymptotic solution is within a threshold of 4%
are highlighted (see Fig.9a). These highlighted grid points approximately define the
boundary of the region of validity. We assume the region of validity is a simply connected
region. Therefore, even though close to the tip there are grid points where the relative error
is higher than threshold (see Fig.9a), we still include them because such relative error is
caused mainly by experiment uncertainties, e.g., imaging drift or slight loss of focus due

to thinning of the sample near the crack tip. It should be noted that here we chose to focus
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on F7 because it is the dominant deformation gradient component under Mode-I loading.
Other deformation gradient components, e.g., F11, may have different regions of validity.
Using this method, we sketch the region of validity for the asymptotic solution of F2; (see
eq.(16)) at different remote loadings. Evolution of the region of validity shown in the
reference and deformed configurations is given in Figs.9b and 9c¢, respectively. The region
of validity expands as the remote loading increases (A/Ho from 29.27% to 68.78%) and
then becomes steady when the crack starts to propagate (A/Ho = 73.17% and 78.05%). This
result can shed light on how nonlinear effects at the crack tip emerge and become dominant

as the crack continues to deform.

(a) (b)

29.27% 43.90% 53.66% 68.78% 7317% 78.05%

Figure 9 Region of validity for the nonlinear asymptotic solution expands as the remote
loading increases. (a) Determining the region of validity for eq.(16). The red solid line
represents the crack in the reference configuration, while grid points are shown as black
stars. At the highlighted grid points (cyan stars), the experimental data of F>> and
asymptotic solution are within 4% relative error. (b-¢) Region of validity for the nonlinear
asymptotic solution of F; at different remote loadings A/Hy (29.27% to 78.05%). Part (b)
and (c¢) show the reference and deformed configurations, respectively. A red dot with r
<0.15mm at the crack tip to illustrate a small region where the size is beyond the spatial
resolution of our particle tracking method and thus the experimental data of F2> may
become inaccurate.
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4. Energy release rate and fracture toughness

The main purpose of fracture tests is to characterize a material’s toughness I,
defined as the work required to advance a crack by a unit area measured in the reference

configuration. Following the Griffith’s criterion®

, crack propagation results from the
competition between the energy release rate G, representing the energetic driving force
supplied by external loading, and the toughness I'. For the pure shear geometry (see Fig.2a),

G can be determined using:
G=W(4)H, , (17)

where W is the strain energy density function, Hy is the sample height and A, = 1+ A/Hy is
the remote stretch ratio. The fracture toughness I is determined by I'= G(A-= Ac) where A.
is the critical remote stretch ratio at the onset of crack propagation. However, this approach
relies on a global energy balance of the entire fracture sample, which is available for only
a few test geometries'2. For examples, the pure share geometry requires the sample width

t>°, e.g., the width/height ratio in the literature'? is typically

to be much larger than the heigh
larger than 4. In addition, it is often necessary to measure the length of crack extension,
e.g., for determining the velocity of crack propagation. However, this may not be
straightforward if the crack tip is severely blunted where large deformation alone can
displace the crack tip. These two issues can be addressed using the experimental data of
crack tip deformation field in two aspects: i) local evaluation of G through the J-integral®’->%;

i1) determination of crack extension length in the reference configuration.

4.1 Evaluation of J-integral
For the plane stress crack in our fracture experiments, the J-integral is>’
ou
J=\||Wn-S .n,—% (s, 18
‘C[[ 1 af’"p a Xl jd ( )

where C is a contour in the reference configuration that encloses the crack tip, W is the
strain energy density function, n is the unit outward normal vector of C, S is the first Piola-

Kirchhoff stress tensor, u is the displacement vector and s is the arc length of C. The
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subscripts « and £ range from 1 to 2, and we have used the summation convention of
summing over repeated indices. With the experimental data of crack tip deformation field,

we can calculate /¥ using the GNH model in eq.(5) and components of S using

i g2
1

S.,:—ij;l+2(fi—[WF, i,j=1,2,3. (19)

The term p is a Lagrange multiplier enforcing the incompressibility constraint and is not

directly related to the deformation gradient F. We take advantage of the plane stress

condition, specifically S33 =0, to determine p and obtain the following equation for Sap:

= 2d_W(
dl

1

Sap F, =2 F,) (a f=1,2), (20)

where A3 is the out-of-plane stretch ratio:

1

A=
FI1Fzz _Ezel

21)

With eq.(20) and the GNH model for W, we are able to evaluate the J-integral using

experimental data of crack tip deformation field.

The J-integral should be path independent and equal to the energy release rate G
for elastic materials. We selected ten different integral paths (see Fig.10a) to examine the
path independence of the J evaluated from experimentally measured deformation field. As
illustrated in Fig.10b-10c, the J-integral computed using the ten paths all agree with each
other and are equal to the energy release rate G evaluated using the global approach in
€q.(17). Therefore, we have demonstrated the feasibility of using J-integral and the
experimentally measured crack tip field to determine G. This method would allow us to

access new loading conditions in fracture tests of soft elastic materials.
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Figure 10 Path independence of the J-integral evaluated from experimental data. (a) Ten
different integral paths around the crack tip in the reference configuration. (b) Energy
release rate G or J-integral versus the remote loading A= 1+ A/Ho. (¢) The J-integral versus
the area enclosed by different integral paths. In (b-c), the circular symbols represent J-
integrals evaluated from the experimental deformation data, while the dashed line
represents the energy releaser rate G evaluated using the global approach eq.(17).

4.2 Measuring the crack extension length in reference configuration

To measure the toughness I', we also need to determine when the crack starts to
propagate by monitoring the position of the crack tip. However, in soft materials, the crack
tip displacement may come from both deformation and crack propagation. Therefore, it
could be difficult to precisely determine the onset of crack propagation. To decouple these
two effects, we take advantage of the mapping between deformed and reference
configurations established by our particle tracking method, and map the position of the
current crack tip back to the reference configuration using an iterative numerical scheme
described as follows. First, the crack tip Q in current configuration is manually located in

the image of the current frame (see Fig.11a). We make an initial guess of its corresponding
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position Py (see Fig.11a) in the reference configuration, which is then fed into the moving
least square (MLS) interpolation program to find the corresponding position Qo in the
current configuration. Next we examine the distance |poo,| between Qo and Q and check if
lpooi| 1s below a small threshold 7. If not, the reference position of the crack tip would be
updated to a new point P whose coordinates are equal to the coordinates of Py subtracted
by 0.25ppg,. Following this scheme, we iteratively update the new reference position of
the crack tip P; by subtracting the coordinates of P;.; by 0.25ppp., until |pgo.,| is smaller
than the threshold 7.

Using this iterative scheme, we are able to monitor the position of crack tip in the
reference configuration. The change in the reference crack tip location is solely due to crack
propagation. In Fig.11b, we plot the energy release rate G versus the crack extension length
measured in the reference configuration. Initially the crack extension remains at 0 as I'
increases until a critical value (I'op = 0.12kJ/m?) is reached. After that, the crack tip
accelerates as G increases. The curve in Fig.11b is often referred to as the crack growth
resistance curve (R-curve) in the fracture mechanics literature®®. If Ecoflex is exactly elastic,
the R-curve should resemble a step function with a horizontal line leveled at I'o, because
the crack would propagate unstably once G exceeds I'o. The R-curve in Fig.11b implies
that energy dissipation occurs near the crack tip, which causes an increase in the effective
toughness I'. This is consistent with the uniaxial tensile data showing that Ecoflex becomes
inelastic at very large deformation (see Fig.A2). Such inelastic behavior leads to the
formation of a dissipation zone around the crack tip, but this zone is much smaller than the
detection limit of our particle tracking method, similar to the “small scale yielding”
condition in LEFM?. Therefore, the Ecoflex elastomer used in our fracture experiments

should be considered as “predominantly elastic”.

To illustrate the limitation of using the deformed configuration to define crack
extension, we plot in Fig.11c the same data of energy release rate G versus the crack
extension length measured using the crack tip location in the deformed configuration. The
crack extension increases continuously with G, from which it is difficult to tell when
exactly the crack propagation started. Furthermore, the definition of G, either using the

global approach or the J-integral, are based on the crack surface area measured in the
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reference configuration. This also implies that it is more appropriate to associate G with

the reference crack extension length, instead of the deformed one.
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Figure 11 Onset of crack propagation unambiguously identified using the reference crack
extension. (a) Iterative process of locating the crack tip in reference configuration. P; are
the trial points in the reference configuration while Q;is the projection of P; in the deformed
configuration. The converged crack tip position is ahead of initial crack tip due to crack
propagation. (b-c) Energy release rate G versus the crack extension length measured in (b)
the reference configuration and (c) the deformed configuration. The symbols and error bars
are average values and ranges of J-integrals using ten different paths, the dashed line is
given by the global approach in eq.(17), and the vertical dashed line marks the onset of
crack propagation.

4.3 Rate dependence of fracture toughness

The R-curve in Fig.11 implies that energy dissipation can occur near the crack tip.
In this section, we study whether such crack tip dissipation is rate dependent. If the
dissipation is rate-dependent, we expect the toughness I' to be positively correlated with
crack propagation velocity V can be established, as shown extensively for viscoelastic

materials'3>%%°. We further hypothesize that the R-curve would be sensitive to the loading
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history if the toughness I" is rate dependent. To test this hypothesis, we performed three
pure shear fracture experiments with different loading histories shown in Fig.12. In all
three experiments, the applied displacement A was first increased at a constant rate of
0.01mm/s followed by three different cases: 1) Case I (sample height Hy=19.5mm): A was
held fixed when the peak force is reached; ii) Case II (Ho=19.5mm): A was held fixed
before the peak force is reached; iii) Case III (Hy=20.0mm): A was continuously increased.

The time histories of displacement and force in the three experiments are given in Fig.12.
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Figure 12 Fracture experiments with different loading histories. (a) Force versus

displacement curves. The inset shows the time history of applied displacement A. (b) Force
versus time curves.

Using the history of the crack tip deformation established by the particle tracking
method, we located the trajectories of the crack tip seen in the reference condition and
plotted them in Fig.13a. Note that the xi-x> axes are centered at the initial crack tip and are
fixed in space. Therefore, the crack tip trajectory always starts at the origin of the xi-x»
plane and extends to the right as the crack propagates. Ideally the trajectory should be
horizontal and aligned with the x; direction due to the Mode-I loading. However, we find
that the trajectory may slightly deviate from the horizontal direction, likely due to blunting
of the crack tip. We take the contour length of the trajectory as the crack extension length

(reference configuration), and plot time history of the reference crack extension length in
Fig.13b.
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Figure 13 Tracking the reference crack extension length. (a) Trajectories of the crack tip
measured in the reference configuration. (b) The reference crack extension length versus
time.

From Fig.13, we observe that even in Case II (“hold before peak force”), the crack
can still propagate but is much slower than the other two cases, which indicates that the
toughness I is not rate independent. To further illustrate the rate dependence of I', we plot
the R-curves for the three cases in Fig.14a which was determined by first evaluating the
energy release rate G (using both the J-integral and global approach) as a function of time
(see Fig.14b) and combing it with the crack extension length data in Fig.13b. Interestingly,
results from the three experiments do not follow a single “R-curve” but are sensitive to the
loading histories, which is another evidence for rate-dependent fracture toughness.
Combing the data in Fig.13 and Figl4, we can extract the value of I" as well as the crack
propagation velocity V' (measured in reference configuration) at each time increment. The
results are plotted in Fig.15. Data from all three experiments with different loading histories

collapse to a master curve showing a weak dependence of I" on the crack propagation
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velocity V: T ~ V%! It is worth mentioning that the deviation of crack trajectory from

horizontal direction seen in Fig.13a may result in slightly local mixed-mode conditions in

the three experiments, which may contribute to the scattering of data in Fig.14.

Nevertheless, we conclude that the crack tip dissipation process in the Ecoflex elastomer

is rate-dependent, which further leads to a relation between the toughness I and crack

propagation velocity'?.
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Figure 14 The R-curves under different loading histories. (a) Energy releaser rate G
calculated using the J-integral versus reference crack extension length for the three
experiments. The inset shows that G calculated using J-integral (symbols) agrees well with
that from the global approach (dashed line). (b) Time history of G for all three experiments.
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Figure 15 Dependence of the fracture toughness I' on crack propagation velocity V'
measured in the reference configuration (log-log plot).

5. Conclusions

We demonstrated that the particle tracking method is capable of resolving the large
and highly non-uniform crack tip deformation field in soft materials. Using a soft silicone
elastomer, we experimentally observed, for the first time, the nonlinear crack tip field
predicted by the asymptotic solutions for GNH hyperelastic solid. By monitoring the crack
tip deformation field under increasing remote loading, we were able to capture how the
region of validity for the nonlinear asymptotic solution evolves as the crack deforms and

propagates.

For the measurement of fracture toughness, the experimental data of crack tip
deformation field enables two new capabilities: 1) local evaluation of the energy release
rate G through the J-integral; ii) determination of the true crack extension length defined

in the reference configuration.

e The capability of measuring G using the J-integral can be extended to any plane stress
geometry, and thus can greatly expand the loading conditions and test geometries that
can be used for soft material fracture. For example, by orientating the crack in the pure
shear geometry (see Fig.2a) at an angle with the loading direction (e.g., 45°), one may
generate mixed Mode-I and Mode-II loadings near the crack tip even though the global
loading is still tensile. This experiment could provide useful data for studying mixed-
mode fracture toughness in soft materials, which is not yet well understood.

e The capability of determining the reference crack extension length has two implications.
First, for highly blunted cracks in soft materials, the onset of crack propagation, which
must be determined for measuring the fracture toughness, can be ambiguous. Inspection
of the crack tip position in the deformed configuration may be misleading due to the
crack tip displacement caused by large deformation. Identifying the onset of crack
propagation from the global force-displacement curve (e.g. see Fig.12) is not
straightforward either. The experimentally measured history of crack tip deformation
offers a much more precise way to detect crack extension, i.e., by monitoring the crack

tip position in the reference configuration. Second, in current methods to measure the
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dependence of I' on crack velocity V, one often needs to wait until the crack
propagation settles to a steady state with a constant velocity®' %>, As a result, one
fracture experiment can only yield one data point in the plot of I versus V, which can
be very time consuming. Here we demonstrate that, with an accurate measurement of
crack extension, it is possible to obtain much more I'-V data points from a single
experiment (see Fig.15). The could greatly reduce the experimental cost for

characterizing the rate dependence of fracture toughness.

The particle tracking method can serve as a useful experimental tool to probe the
mechanics of soft materials under extreme deformation. By directly mapping the crack tip
deformation field, this method can lead to new advancements in soft material fracture. For
example, for soft materials with strong dissipation and hence high toughness, by measuring
the time history of crack tip deformation field and combining the data with a bulk
constitutive model, it is possible to determine the amount of energy dissipation associated
with crack propagation. The crack tip deformation data, when interpreted with FEM
analysis, may offer new insights towards selecting appropriate local failure criteria at the
crack tip to simulate fracture. Moreover, the particle tracking method can be extended to
map the full three-dimensional (3D) deformation field within the volume of transparent
hydrogels or elastomers*”%”. This can potentially result in unprecedented data to reveal the
mechanical structure of 3D cracks under complex loading conditions (e.g., mix-mode

loadings).

Appendix 1: Preparation of Ecoflex samples and tracer particles

The Ecoflex samples were prepared in two steps (see Fig.Al): 1) fabricate a
distribution of tracer particles with photo-lithography on a glass slide; 2) transfer the tracer
particles onto an Ecoflex 0030 (Smooth-On Inc.) sheet. Briefly, a photo mask with random
tracer particle pattern (particle diameter ~ 0.lmm) was designed and ordered from
CAD/Art Services, Inc. A clean glass slide was prepared, and spin coated with 1um thick
PDMS (3000rpm for 60s), which was then cured. After oxygen plasma treatment (RIE
Jupiter) of the PDMS layer, polyimide (Sigma Aldrich) was then spin coated on top of it
(4000rpm for 60s), and cured at 250°C for 1 hour. After cooling down, a 100nm copper
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layer was deposited on top of the polyimide film in a thermal evaporator. The copper layer
was introduced to enhance the contrast of the tracer particles and thus improve the imaging
quality. After that, a layer of AZ4210 photoresist was spin coated on top of the copper layer
to transfer the tracer particle pattern from the photo mask (2000rpm for 60s; 120°C for
3mins on hot plate and 60s exposure to 360nm UV light). Copper etchant CE-100 was used
as received to etch the pattern out of the copper layer, and the patterned sample was placed
in RIE to remove the exposed polyimide. Next the pattern was transferred to a water soluble
tape (Bertech Water Soluble Tape) at 100°C. An Ecoflex sheet of Imm thickness was
prepared and spin coated with another layer of liquid Ecoflex of 1 um thickness to improve
bonding with the tracer particles. The water soluble tape was adhered to the Ecoflex sample
with the particle side facing down, and then the liquid Ecoflex layer was cured at 80°C for
30 minutes. The water soluble tape was washed away with DI water, leaving the tracer
particles on top of the Ecoflex sheet. Finally, the Ecoflex sheet with tracer particles was

cut into the pure shear geometry, and a crack was introduced by a scalpel for fracture test.

2 f oo oo
l wv exposu!re‘ and ‘_’e"’e"’P Dissolve Water soluble tape

Photo Resist; etching Copper. using DI water.

bEEmEEEES € T T
Remove Photo Resist and Transfer patterns on Ecoflex
applied Water soluble tape. substrate using liquid Ecoflex

as adhesive.
c T T T T T T d Quickly peel off, and transfi
m AZ 4210 Photo resist == Copper 100 nm Polyimide 1 um

= Glass sheet (PDMS coated) ™ Water soluble tape ™ Ecoflex substrate (targe

Figure A1 Schematic illustrating the process of depositing ultra-thin copper/polyimide
islands as tracer particles on the surface of Ecoflex elastomer samples.

Appendix 2: Cyclic tensile data for Ecoflex elastomer
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Cyclic tensile test data are shown in Fig.A2 where three samples experienced
loading-unloading cycles at different strain rates. It can be seen that if the max stretch ratio
experienced by the sample, Anax, 1s below 3, the hysteresis loop is negligibly small and the
elastomer can be considered to be nonlinearly elastic. However, if Aua exceeds 3,
significant loading-unloading hysteresis can be observed, indicating inelastic behaviors in

the material. Similar behavior has been observed in the literature®.

Although significant hysteresis can occur when Aqqx exceeds 3, we can still model
the Ecoflex elastomer as a GNH hyperelastic solid in our fracture tests for two reasons.
First, our experimental data suggest that during the entire course of crack propagation the
maximum principal stretch may exceed 3 only in a small region very close to the crack tip
(size ~ 0.3mm measured in the reference configuration; see Fig.5d). Outside this small
region, the elastomer is practically elastic. As a result, the J-integrals are not affected by
the inelastic behavior of the Ecoflex elastomer at large stretch since they are based on paths
outside than the inelastic region. Second, even for Aunax larger than 3, the loading branch is
still well captured by the GNH model in eq.(5) (see Fig.A2), and therefore the elastomer
can be treated as a GNH solid for interpreting the crack tip deformation field before

unloading occurs.

strain rate 3.2x107 /s strain rate 8.0x107 /s strain rate 3.4x1072 /s

04

04 04
1st cycle 12nd cycle | 3rd cycle 1st cycle 1 2nd cycle 1 3rd cycle 1st cycle 1 2nd cycle 1 3rd cycle

Figure A2 Cyclic tensile test data for three samples prepared from the same batch with
different strain rates. The red dash lines are fits using the GNH model with » =2. The shear
modulus x and hardening parameter b are: (a) i =25.2kPa and » =0.18, (b) £ =25.1kPa and
b=0.167, (¢) £ =25.0kPa and » =0.195.

Appendix 3: Supplementary video
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This video shows the time evolution of all deformation gradient components F7;,

F12, F>1 and F>> with a remote loading rate of 0.01mm/s. The video is accelerated and is 50

time faster than the real time.
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