
Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Potential CO2 and brine leakage through wellbore pathways for geologic
CO2 sequestration using the National Risk Assessment Partnership tools:
Application to the Big Sky Regional Partnership
Tsubasa Onishia,b,⁎, Minh C. Nguyena,c, J. William Careya, Bob Willd, Wade Zaluskie,
David W. Bowenf, Bryan C. Devaultg, Andrew Duguidh, Quanlin Zhoui, Stacey H. Fairweatherj,
Lee H. Spanglerj, Philip H. Stauffera
a Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
bDepartment of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA
c Department of Geology & Geophysics, University of Wyoming, Laramie, WY 82071, USA
dWRG Subsurface Consulting, Littleton, CO 80123, USA
e Schlumberger Canada, Calgary, Alberta, T2G 0P6, Canada
fDepartment of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
g Vecta Oil and Gas, The Woodland, TX 77380, USA
h Battelle Memorial Institute, Columbus, OH 73201, USA
i Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
j Energy Research Institute, Montana State University, Bozeman, MT, 59717, USA

A R T I C L E I N F O

Keywords:
Geologic CO2 sequestration
Uncertainty assessment
Risk assessment
Reservoir simulation
Design of experiment

A B S T R A C T

Geologic CO2 sequestration (GCS) has received high-level attention from the global scientific community as a re-
sponse to climate change due to higher concentrations of CO2 in the atmosphere. However, GCS in saline aquifers
poses certain risks including CO2/brine leakage through wells or non-sealing faults into groundwater or to the earth’s
surface. Understanding crucial reservoir parameters and other geologic features affecting the likelihood of these
leakage occurrences will aid the decision-making process regarding GCS operations. In this study, we develop a
science-based methodology for quantifying risk profiles at geologic CO2 sequestration sites as part of US DOE’s
National Risk Assessment Partnership (NRAP). We apply NRAP tools to a field scale project in a fractured saline
aquifer located at Kevin Dome, Montana, which is part of DOE’s Big Sky Carbon Sequestration Partnership project.
Risks associated with GCS injection and monitoring are difficult to quantify due to a dearth of data and uncertainties.
One solution is running a large number of numerical simulations of the primary CO2 injection reservoir, shallow
reservoirs/aquifers, faults, and wells to address leakage risks and uncertainties. However, a full-physics simulation is
not computationally feasible because the model is too large and requires fine spatial and temporal discretization to
accurately reproduce complex multiphase flow processes. We employ the NRAP Integrated Assessment Model (NRAP-
IAM), a hybrid systemmodel developed by the US-DOE for use in performance and quantitative risk assessment of CO2
sequestration. The IAMmodel requires reduced order models (ROMs) developed from numerical reservoir simulations
of a primary CO2 injection reservoir. The ROMs are linked with discrete components of the NRAP-IAM including
shallow reservoirs/aquifers and the atmosphere through potential leakage pathways. A powerful stochastic framework
allows NRAP-IAM to be used to explore complex interactions among a large number of uncertain variables and to help
evaluate the likely performance of potential sequestration sites. Using the NRAP-IAM, we find that the potential
amount of CO2 leakage is most sensitive to values of permeability, end-point CO2 relative permeability, hysteresis of
CO2 relative permeability, capillary pressure, and permeability of confining rocks. In addition to demonstrating the
application of the NRAP risk assessment tools, this work shows that GCS in the Kevin Dome has a higher probability of
encountering injectivity limitations during injection of CO2 into the Middle Duperow formation than previous studies
have calculated. Finally, we estimate very low risk of CO2 leakage to the atmosphere unless the quality of the legacy
well completions is extremely poor.
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1. Introduction

Global warming is an environmental issue linked to the rise in
global average temperatures because of increases in greenhouse gases
such as carbon dioxide (CO2) and methane in the atmosphere. Geologic
carbon sequestration (GCS) has been proposed as a method to mitigate
global warming (Metz et al., 2005). Candidate formations for GCS in-
clude depleted hydrocarbon reservoirs, unmineable coalbeds and saline
aquifers (Bachu, 2000). While saline aquifers are known to have the
highest capacity for large scale subsurface storage, GCS in saline
aquifers poses certain risks including CO2 and brine leakage through
abandoned wellbores or non-sealing faults into ground water or to the
earth surface. Besides the aspect of global warming, leakage of CO2 and
brine can threaten groundwater resources (Keating et al., 2010; Trautz
et al., 2012; Wilkin and DiGiulio, 2010).

In an effort to better understand GCS, the US Department of Energy
formed partnerships between industry, universities, and national la-
boratories to explore the viability of this concept in different regions of
the United States. The Big Sky Carbon Sequestration Partnership’s
(BSCSP) Kevin Dome project is one of several Regional Carbon
Sequestration Partnership Phase III Development projects with an in-
tent to inject one million metric tonnes (MT of CO2 into a storage for-
mation while validating site characterization, modeling and monitoring
techniques. The target reservoir is the middle Duperow, a Devonian era
carbonate (mixed dolostone and limestone) interval of ∼100 ft thick-
ness that produced CO2 in drill stem tests of historic wells near the apex
of the dome but contains brine down dip. The original project scope
planned to use the gas cap as the CO2 source and the same reservoir in
the down-dip brine leg as the storage target. This approach could
provide some unique advantages: 1) wellbore data (logs and core) from
the gas cap and brine leg would allow comparison of reactive reservoir
rock and caprock exposed to CO2 over geologic time vs. an engineered
storage timescale providing insight on geochemical impacts on injec-
tion and storage; and 2) the concept of domes as storage hubs could be
tested where CO2 could be injected for storage and produced for en-
hanced oil recovery thereby decoupling CO2 production and utilization
rates (http://www.bigskyco2.org/).

In the process of the Kevin Dome site characterization, it was de-
termined that, counter to regional data trends, the targeted storage
region had less than 10,000 ppm total dissolved solids (TDS) which
means it classifies as an Underground Source of Drinking Water
(USDW) by the primary criterion in the Environmental Protection
Agency’s (EPA) Underground Injection Control (UIC) regulations. The
storage reservoir also had significant levels of H2S and while most well
classes allow for exceptions to the 10,000 ppm TDS minimum (e.g. if
hydrocarbons or toxic substances are present at high enough levels),
Class VI for CO2 injection does not. Thus the project would be unable to
secure a CO2 injection permit. Nonetheless, valuable samples and data
were acquired during site characterization including over 36 sq mi of 3-
dimensional, 9-component seismic data, and wellbore data from two
wells, one in the brine leg and one in the CO2 gas cap that include
modern log suites and 45 ft of core of reservoir and caprock (the low
permeability upper Duperow and the overlying Potlatch anhydrite).
The project has been re-scoped to utilize the existing samples and data
to contribute to understanding CO2 storage including the study reported
here.

The scale of the BSCSP Kevin Dome project is typical of a GCS field
site, and CO2 injection risk assessment would likely require reservoir
models spanning 10 s–100 s of km2 in areal extent with a vertical extent
of well over 1 km. In addition to a model for the injection reservoir,
systems of faults, existing wellbores, overlying underground sources of
drinking water (USDW), and leakage of CO2 to the surface need to be
considered. Coupled site models incorporating these sub-models are
necessary to make predictions about site behavior and to provide in-
sight into site evolution. In a typical workflow, site models are refined
as data become available to better simulate actual site behavior with a

goal of reducing uncertainty and reducing risks to site operations. Risk
proxies can be used to gauge possible impacts without calculating true
risk values that require estimates of impacts that are often difficult to
quantify. Risk proxies used previously for the Kevin Dome project in-
clude CO2 injectivity; radius of the Area of Review (AoR); CO2 migra-
tion out of the injection horizon; and optimum location of monitoring
wells (Dai et al., 2014).

One solution to creating a fully coupled site model is running high-
fidelity, multiphase numerical simulations for an entire domain in-
cluding a storage reservoir, shallow aquifers, wellbores, and faults
across large spatial and temporal scales of GCS operation. Although this
approach can address complex multiphase flow and trapping mechan-
isms, it requires fine spatial and temporal discretization to accurately
model these complex physics that is usually computationally expensive.
In addition, assessing these risks can easily require a large number of
numerical simulations to span the many uncertainties and therefore this
approach is not computationally attractive. Several (semi-) analytical
models are available (Mathias et al., 2011, 2009; Mijic et al., 2014;
Nordbotten et al., 2005; Vilarrasa et al., 2013; Zhou et al., 2017). While
analytical models provide significant benefits in terms of computational
cost, these approaches are limited to, for example, homogeneous media,
simple geometry, or incompressible flow that can potentially result in
erroneous prediction of plume geometry.

Los Alamos National Laboratory (LANL) initiated a hybrid (nu-
merical plus analytical) system model, CO2-PENS (Predicting
Engineered Natural Systems) (Pawar et al., 2006; Stauffer et al., 2013,
2011; Stauffer et al., 2006) which is an Integrated Assessment Model
(IAM) used to determine CO2 storage risk profiles. This tool was
adapted to use as the base IAM for the US-DOE funded National Risk
Assessment Partnership and the expanded tool, including contributions
from several national laboratories (Carroll et al., 2016; Nguyen et al.,
2017a), has been named NRAP-IAM (Pawar et al., 2016). NRAP-IAM
simulates CO2 storage reservoir security using reduced order models
that are computationally efficient and allow analysis of the impact of
uncertainty on prediction of leakage potential. NRAP-IAM decomposes
the problem into interacting discrete components including a storage
reservoir, wells, faults, intermediate reservoirs, shallow aquifers and
the atmosphere. Each component has assigned properties with a range
of uncertainties. For example, the pressure-saturation history of the CO2
storage reservoir is represented using reduced order models (ROMs)
developed from the results of full-physics simulations of CO2 injection
processes (Stauffer et al., 2016). Legacy wells within the area of interest
have uncertainties in terms of total number, location, and quality
(wellbore integrity) (Harp et al., 2016; Hu et al., 2012; Jordan et al.,
2015; Viswanathan et al., 2008). Shallow drinking-water aquifers have
uncertainties associated with permeability, porosity and thickness
(Carroll et al., 2016; Keating et al., 2010). NRAP-IAM allows the user to
explicitly define parameter values where data is available or to use
generic properties obtained from the literature. The CO2 storage system
components are linked through potential CO2 and brine pathways such
as legacy wells and unsealed faults. Results of CO2 migration are cal-
culated in a Monte-Carlo framework in terms of 1) the amount of CO2
present in the various model components, including reservoir and
shallow formations, 2) the areal and volumetric extent of CO2 plumes in
the reservoir and shallow formations, and 3) components potentially
impacted by CO2 migration, such as shallow groundwater wells. The
powerful stochastic framework allows NRAP-IAM to be used to explore
complex interactions among a large number of uncertain variables and
to help evaluate the likely performance of potential sequestration sites.

In the NRAP-IAM framework, the Reservoir Reduced Order Model
–Generator (RROM-Gen; King (2016)), is used to convert reservoir si-
mulation outputs from full-physics codes into lookup tables necessary
to run the NRAP-IAM for uncertainties in a storage reservoir. RROM-
Gen can utilize reservoir simulation data from a number of different
simulators such as FEHM (Zyvoloski, 2007), TOUGH2 (Pruess et al.,
1999), ECLIPSE (https://www.software.slb.com/products/eclipse),
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Petrel (https://www.software.slb.com/products/petrel), CMG Software
(https://www.cmgl.ca/software), and STOMP (White et al., 1995).
RROM-Gen extracts permeability, porosity, elevation, CO2 saturation,
dissolved CO2 concentration, temperature, and pressure from the layer
with the highest CO2 concentrations in the injection reservoir to use as
input for risk analysis in NRAP-IAM. Bilinear interpolation is performed
to map full-physics calculations and input data on these reservoir
properties onto the 100×100 grid used within the NRAP-IAM. The
interpolated sets of properties are Reduced Order Models (ROMs) that
provide uncertain parameters for the storage reservoir (Fig. 1).

Viswanathan et al. (2008) and Stauffer et al. (2009) applied CO2-
PENS to CO2 sequestration scenarios in synthetic cases including a
depleted oil reservoir and saline aquifer. In these studies, CO2-PENS
had multiple options for leakage through wellbores including analytical
wellbore leakage modules created by the Princeton-CMI group
(Nordbotten et al., 2008) and the use of a multiphase-numerical si-
mulator Finite Element Heat and Mass-Transfer (FEHM) (Zyvoloski,
2007). The first option was validated with CO2 sequestration scenarios
in simple homogeneous cases over 2500 days by comparing with nu-
merical simulation results using ECLIPSE (Nordbotten et al., 2008).
Their comparisons show deviations in early time because of numerical
dispersion in ECLIPSE and good agreement at late time. However, there
is no guarantee that the analytical solution can maintain accuracy after
the short period (2500 days) because assumptions in the analytical
solution may not be valid over hundreds of years which is a typical CO2
storage and monitoring scenario. While analytical models may be ap-
plicable to simple scenarios, they may not be capable of field case
studies involving complexities such as heterogeneous permeability
distributions. Although accurate, the second option using FEHM to
model wells can be computationally expensive if uncertainties are high
and a large number of simulations are needed.

Jordan et al. (2015) and Harp et al. (2016) developed wellbore
leakage ROMs using a Design of Experiment (DoE)-based method. In

their approach, the Multivariate Adaptive Regression Splines (MARS)
algorithm (Friedman, 1991) took as input thousands of FEHM multi-
phase numerical simulations and was used to build the surrogate
models (wellbore leakage ROMs). The DoE-based workflow provides
benefits in terms of computational efficiency while overcoming short-
comings of analytical models. A similar workflow has been proposed
and applied in several studies including subsurface model calibration
(Bhark and Dehghani, 2014; Li et al., 2018) and CO2 WAG optimization
(Olalotiti-Lawal et al., 2018).

Jordan et al. (2015) implemented the wellbore leakage ROMs into
CO2-PENS and used underlying reservoir simulations from the Kim-
berlina site in central California with several simplifications (Birkholzer
et al., 2011). A hypothetical set of five legacy wells were used in the
application. Wellbore permeabilities were sampled from a random
distribution and 54 full reservoir simulations of CO2 injection into the
Kimberlina reservoir were conducted, and the reservoir simulation re-
sults were converted into lookup tables and sampled using uncertain
parameters in the storage reservoir.

Although hypothetical, this application showed the utility of the
wellbore ROM in being able to quantify the CO2 and brine leakage risks
quickly. However, the sampling method in NRAP-IAM still remains a
challenge: the number of numerical simulations required in this ap-
proach increases exponentially corresponding to the number of un-
certain parameters. Specifically, the logic used in the Kimberlina ex-
ample requires a minimum of 3N simulations, where N is the number of
uncertain parameters and 3 corresponds to low, base and high values
spanning the range of each parameter in a simple box design. There are
three uncertain parameters including permeability, pore compressi-
bility, and porosity in the Kimberlina example (Birkholzer et al., 2011),
with 6 levels given to the most sensitive, reservoir permeability (Jordan
et al., 2015). Thus the number of reservoir simulations required is
6×3×3=54. Although this approach is faster than running nu-
merical simulations for an entire domain including a storage reservoir,

Fig. 1. An illustration of NRAP-IAM: discrete components and corresponding uncertain parameters.
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shallow formations and legacy wells, it can be computationally prohi-
bitive in field case applications because there are usually more than
three significant uncertainties (e.g., relative permeability (Yoshida
et al., 2016) and capillary pressure) and a single simulation can take
days. A number of simulation studies and uncertainty quantifications of
GCS have been done (Bao et al., 2013; Barrufet et al., 2010; Birkholzer
et al., 2011; Dahle et al., 2009; Dai et al., 2014; Harp et al., 2016;
Jordan et al., 2015; Nguyen et al., 2017b, c; Olalotiti-Lawal, 2018).
However, these only focus on a storage reservoir or include wellbore
leakages but with a limited number of uncertain parameters.

Consequently, in this paper we develop a new workflow in which
we employ the Latin Hypercube Sampling (LHS) parameter sampling
method to generate realizations of numerical simulations for a storage
reservoir. LHS is a stratified-random procedure and provides an effi-
cient way of sampling parameters from their distributions (Iman and
Conover, 1980; McKay et al., 1979). Unlike random sampling, LHS
ensures a full coverage of the range of each parameter by maximally
stratifying each marginal distribution. Fewer numerical simulations are
required to cover the same range of uncertainties in the developed
workflow compared to previous approaches. Or, with the same number
of numerical simulations, the LHS approach can investigate more
parameters. The new workflow allows NRAP-IAM to be used to perform
risk assessment for field scale applications using fewer underlying re-
servoir simulations resulting in lower computational burden.

To demonstrate the new workflow, this paper presents the first
application of the newly released, online, NRAP toolset to a Phase III
Regional Carbon Sequestration Partnership dataset. We apply NRAP-
tools to a fractured saline storage aquifer located at Kevin Dome in
Montana. Data included in the analysis include a 3-D seismic survey,
boreholes in the region that penetrate the proposed Big Sky injection
horizon, hydraulic testing on the proposed injection well, core analysis
and permeability testing, site topography, and groundwater chemistry.
Using the Schumberger reservoir simulator, ECLIPSE, we generate si-
mulations of CO2 injection to explore uncertainty analysis within the
NRAP-IAM tool. We investigate a variety of uncertain reservoir para-
meters including permeability, porosity, relative permeability, hyster-
esis of relative permeability, capillary pressure, fracture distribution,

and salinity of the aquifer. Sensitivity of the NRAP-IAM model results
for leakage of both brine and CO2 are used as criteria to down-select to
six primary uncertain variables. These six variables are then used to
generate a set of 50 LHS reservoir simulations. The reservoir simula-
tions are extracted into lookup tables and used as input to the NRAP-
IAM where leakage uncertainty distributions are generated. We also
present estimates of the mass of CO2 that could be injected during a
four-year period at this site and compare results from the new method
with previous injection calculations based on regional geological het-
erogeneity. Finally, convergence of the results with increasing number
of NRAP-IAM simulations is discussed.

2. Site description

The Big Sky Carbon Sequestration Partnership (BSCSP) has in-
vestigated Kevin Dome, located in Toole County, north-central
Montana, and its naturally occurring CO2 as an analog for carbon sto-
rage and as a potential site for additional storage of anthropogenic CO2.
Detailed site characterization, laboratory core studies, well tests, and
geologic/geophysical models coupled with operational data have dee-
pened our understanding of the use of site characterization data for
predicting geologic system performance. Additionally, this work has
improved our understanding of the largest naturally occurring trap of
CO2 in the northwestern United States.

2.1. Reservoir geology

Kevin Dome is a large structural dome formed as a culmination
along the Sweetgrass Arch (Fig. 2). The dome covers approximately 700
square miles (1800 square kilometers) at the Devonian Duperow stra-
tigraphic level with approximately 750 feet (229m) of structural relief.
Naturally occurring CO2 has been documented from several oil and gas
wells that have tested the Duperow formation over the past 50 years,
but the volume, continuity of the trapped gas, and circumstances of its
entrapment have been poorly understood. This dome is integral to
trapping oil, natural gas and CO2 (Fig. 3) and has produced oil and
natural gas since its discovery in 1922. Naturally occurring CO2 is

Fig. 2. Tectonic map of Montana shows Kevin Dome as a large structural closure along the Sweetgrass Arch in north-central Montana (Vuke et al., 2007).
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trapped in two major dolomite porosity zones within the Devonian
Duperow formation. Oil and natural gas are trapped in shallower
limestone and sandstone reservoirs (Fig. 3).

The primary objective of the Big Sky Carbon Sequestration
Partnership Phase III project was to extract up to 1 million metric tons
of CO2 from the naturally occurring CO2 reservoir in the Duperow
formation and re-inject it into the brine-filled portion of the Duperow
formation at the flank of Kevin Dome (Fig. 3). This project was to de-
monstrate that the target formation and other analogous formations are
viable and safe targets for sequestration of a large fraction of the re-
gion’s CO2 emissions. The success criteria for the project would have
been to safely inject CO2 into the storage formation and through models
and monitoring establish permanence of storage in the reservoir. The
research objectives were to improve the understanding of injectivity,
capacity, and storativity in a regionally significant formation.

After extensive efforts by BSCSP, the objective to extract up to 1
million metric tons of CO2 from the naturally occurring CO2 reservoir in
the Duperow formation and re-inject it into the brine-filled portion of
the Duperow formation proved to be unachievable for two reasons: (1)
although the natural CO2 was present as expected, BSCSP was unable to
produce the CO2 in large quantities due to phase transitions of the CO2
in the reservoir; and (b) the total dissolved solids (TDS) of the brine in
the targeted injection formation (Duperow) is less than 10,000 ppm,
which is lower than the TDS allowed (no exceptions) for carbon storage
under U.S. EPA UIC Class VI injection rules. Neither of these outcomes
were predicted from pre-characterization data. Given that the original
objective of the BSCSP Phase III project cannot be achieved, the pri-
mary objective of the project has been revised to maximize the value of
the existing data to DOE’s Carbon Storage Program.

2.2. Measured data

2.2.1. Seismic data
Given the anticipated presence and importance of natural fracturing

in the targeted Duperow formation, the partnership acquired a multi-
component 3D seismic survey to characterize faulting, natural fractures
and porosity heterogeneity in the Duperow. The 9 component 3-di-
mensional (9C-3D) seismic survey was acquired over three winter field
seasons using both shear-wave vibrators and conventional P-wave vi-
brators. The chosen survey design was a relatively dense, symmetrically
sampled orthogonal layout with equal shot and receiver intervals of 110
feet. The corresponding shot and receiver line intervals were 880 and
660 feet respectively. The rectangular recording spread comprised 12
receiver lines, each having 96 channels, which delivered a very good
azimuth and offset distribution for inversion of the data for both azi-
muthal anisotropy parameters and quantities reliant on high-quality
long offset information from the horizontal and vertical shear wave (SH
and SV) datasets such as density. Each receiver group consisted of a
single digital three-component MEMS sensor augured into the ground
with dedicated hand drills.

The first phase of the survey comprised the acquisition of approxi-
mately 8.5 square miles of 9C-3D data from January to March 2012.
The second phase, acquired in the Winter of 2012/2013, resulted in the
addition of 19 square miles of data and the final field season in the
Winter of 2013/2014 completed data acquisition, resulting in a final
survey area of approximately 36 square miles. Notable challenges
during acquisition included both extremely cold and warm weather and
the ensuing freeze/thaw cycles that greatly slowed field operations, as
well as an unexpectedly large number of archeological sites, which had
to be delineated and avoided by the seismic acquisition crew.

Data processing for each mode included the traditional steps of
geometry assignment and trace edits; compression (P) and shear (S)
wave refraction statics using a general linear inversion (GLI) technique;
eigenimage ground roll attenuation followed by conventional residual
statics and velocity analysis; final noise attenuation in the cross-spread
domain; and prestack time migration. Additional steps specific to the
multicomponent data included source and receiver rotation (only re-
ceiver rotation in the case of the P, S data) and polarization analysis to

Fig. 3. Schematic cross-section showing the original technical approach that was envisioned for the project. Two principal wells were drilled to provide data for
reservoir and site characterization, and to test production potential for CO2 from the Duperow Fm. (Danielson 33-17 well) and to test potential injectivity (Wallewein
22-1 well).
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determine the appropriate anisotropic symmetry system for further
processing. Apart from a small area in the northeastern portion of the
survey, no measurable azimuthal anisotropy was observed on the shear
data, so further processing for the SH, SV, and PS data was performed in
a radial-transverse frame after layer stripping the shallow anisotropy
observed in the area that did possess azimuthal anisotropy. The PS
dataset also required common conversion-point binning due to the
asymmetric raypaths characteristic of this mode.

After processing, each individual mode was interpreted for structure
and amplitude variations corresponding to changes in rock properties in
the overburden and target section. An essential part of the interpreta-
tion included a joint inversion of the P data with all of the multi-
component data to generate bandlimited P and S impedance and den-
sity volumes on the P time scale (Clochard et al., 2018). These datasets
were depth converted with depth structure maps created by integrating
well tops with their corresponding seismic events at the Bow Island,
Sunburst, Potlach, mid-Duperow porosity zone, and Souris River hor-
izons and the resulting 3D seismic volumes were used to constrain the
reservoir model built for the project.

2.2.2. Well data
Two wells, the Danielson 33-17 (the first of several proposed pro-

duction wells to supply CO2 for the project) and the Wallewein 22-1 (a
characterization and monitoring well near the proposed injection site)
were drilled to depths below the base of the Duperow formation. The
wells were cored in the major Duperow reservoir porosity zone and in
primary and secondary caprock seals, and were logged with a detailed
suite of tools including gamma ray, neutron porosity, total porosity,
effective porosity, neutron magnetic resonance, and other physical
variables. An extensive well testing program was implemented in both
wells to test reservoir and fluid properties. It was discovered that CO2
could not feasibly be produced from Danielson 33-17 and the salinity
was too low in the middle Duperow formation to be able to obtain a
Class VI UIC permit from EPA.

A step-rate injection and pressure fall-off test was conducted by
Northern Lights Energy Company and Sanjel on the Wallewein 22-1
well in Toole County, Montana, from March 18, 2015, to March 27,
2015. Tandem electronic quartz gauges were run into the well on
March 18, taking gradient stops every 300 feet going into the well.
Gauges were set at 4019 ft, and injection of 3% NaCl water began on

March 19, 2015, at 09:57 a.m. After completion of all testing, gradient
stops were also taken every 300 ft while coming out of the well. Due to
operational difficulties with the flowmeter, the injection rates for days 2
and 3 were initially reported to be -854 barrels of water injected per
day (bwipd) on day 2, and a final rate of -2000 bwipd on day 3. It was
subsequently determined that day 2 and 3 rates were incorrect, thus, it
was believed that determining the average injection rate based on vo-
lumes pumped would be most accurate. Therefore, for day 2 of injec-
tion, an average injection rate of 664 bwipd was used for a pumped
volume of 225 barrels (bbls), and for day 3, an average injection rate of
686 bwipd was used for a pumped volume of 248 bbls. After injection,
the final fall-off period was extended to 135 h. This pump test data were
calibrated into the reservoir model by tuning permeability and porosity
(Onishi et al., 2017).

3. Model description

This section presents descriptions of the reservoir simulation model
and the risk analysis tools including NRAP-IAM and RROM-Gen.

3.1. Reservoir simulation model

We built a reservoir simulation model based on the measurement
and the calibration of the previously conducted pump test data and
carried out all simulation runs using the ECLIPSE. A sector model of the
field (Fig. 4) was extracted with 69 × 69 × 22 grid discretization with
average cell dimensions of 152.4 × 152.4 × 3.0m (injection zone) based
on the radius of investigation which is an analytical function estimating
propagation distance of the peak pressure disturbance for an impulse
source or sink (Lee, 1982). It is found that the radius of investigation
over 104 years (injection: 4 years+ post injection: 100 years) based on
parameters in the base case (Table 4) is roughly 1300 (m) which is
smaller than the distance between the injector and the boundary of our
sector model (∼5258 (m)). This radius can be larger depending on
reservoir properties (e.g., permeability distribution) that will be tuned
in the next sections for risk assessment. Through the risk assessment, it
is confirmed that size of the sector model is large enough even with
reservoir properties resulting in larger CO2/pressure plume (e.g., high
permeability, high CO2 end point relative permeability, etc.). These will
be further discussed in the following sections. Note that the concept of

Fig. 4. Permeability distribution of the reservoir simulation model with the injector (Wallewein 22-1) in the middle of the domain.
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radius of investigation can be generalized to heterogeneous media using
a high frequency asymptotic solution of the diffusivity equation (Iino
et al., 2018; Vasco and Datta-Gupta, 2016). In our application, how-
ever, the reservoir is slightly heterogeneous and therefore estimates
from the radius of investigation are a good approximation. We have
compared simulation results between the full model and the sector
model and found good agreement validating the use of the smaller
sector model.

The geologic model includes a low permeability caprock and base-
ment as part of the CO2 storage system. The caprock and the basement
were upscaled into single layers with average thickness of 60m.
Geological data described above show the existence of fractures with a
relatively low permeability contrast between fracture and matrix. A
dual-porosity dual-permeability model (Blaskovich et al., 1983; Warren
and Root, 1963) was therefore adopted to model fractures because
matrix-matrix interactions are important, and yet knowledge of fracture
distributions is too limited for use of discrete fracture models (Chen
et al., 2018; Noorishad and Mehran, 1982; Hyman et al., 2015; Li and
Lee, 2006; Monteagudo and Firoozabadi, 2004).

The fluids modeled in this study using the CO2STORE facility in
ECLIPSE for CO2 storage in the saline aquifer are described by aqueous,
gaseous and solid phases, with three components: water (H2O), carbon
dioxide (CO2), and salt (NaCl) and it is assumed that the system is
isothermal (Pruess and Garcia, 2002). Mutual solubilities of CO2 and
H2O are calculated to match experimental data for typical CO2 storage
conditions (Spycher and Pruess, 2005), based on fugacity equilibrium
between water and a CO2 phase. Henry’s law is used to calculate aqu-
eous fugacity; while CO2 fugacity is calculated using a modified Red-
lich-Kwong equation of state (Redlich and Kwong, 1949). The gaseous
density is obtained by the modified Redlich-Kwong equation of state, in
which the attraction parameter is temperature dependent (Spycher and
Pruess, 2010). The CO2 gaseous viscosity was computed based on re-
sults from Vesovic et al. (1990) and Fenghour et al. (1998).

In our approach, the Corey equations (Corey, 1954) were applied
for relative permeability curves:

=k k
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S S1.0r CO r CO
CO CO ir

CO ir brine ir

m

, 2 , 2
0 2 2,
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n
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0 ,
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where kr l,
0 is the end-point relative permeability of phase l, Sl is the

saturation of phase l, Sl ir, is the irreducible saturation of phase l, and m
and n are the curvature exponents of CO2 and brine relative perme-
abilities. Straight-line relative permeability curves are commonly used
in dual continuum models (Romm, 1966) for fracture relative perme-
ability functions. However, it has been experimentally and numerically
shown that the straight-line relative permeability curves are not always
valid (Fourar et al., 1993; Pieters and Graves, 1994). Therefore, we
follow previous simulation studies at this site (Zhou, 2013), in which
non-idealized relative permeability curves are used for fracture relative
permeability. Table 1 provides a summary of parameters used in Eqs.
(1) and Eq. (2) following Pruess and Garcia (2002) and Zhou (2013).

The capillary pressure model used in this work is the van Genuchten
(1980) model:

= ( )P P S( *) 1.0c 0
1 1.0

(3)

where P0 is the strength coefficient, is the pore size distribution index,
and the normalized brine saturation S* is given by

=S
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S
*
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brine brine ir

brine ir

,

, (4)

Table 2 presents parameter values in Eqs. (1) through (4) for the

base case following Pruess and Garcia (2002) and Zhou (2013). Note
that the same capillary pressure curves are used in the fracture and
matrix domain for the base case.

The model consists of a single injection well located in the center of
the storage formation. The well, assumed to be connected to all layers
in the injection zone, has a radius of 0.07m Zhou (2013) and injects
supercritical CO2 with a constant temperature of 34.4 °C and bottom-
hole pressure (BHP) control of 18.5MPa which is based on the hydro-
fracture limit for the Duperow formation (Dai et al., 2014). We applied
a pore volume multiplier of 3000 in lateral boundary cells to mimic a
continuous aquifer which is essentially equivalent to a constant pres-
sure boundary (Juanes et al., 2006), while no-flow boundary conditions
were applied to top and bottom boundaries. Initial temperature and
pressure were set at 34.4 ° C and 10.0MPa at the top of the injection
zone (Zhou, 2013) based on the geothermal gradient and hydrostatic
pressure gradient. The initial condition implies that injected CO2 will be
in a supercritical state in the reservoir. The CO2 injection period lasts
for 4 years and the CO2 plume is monitored over a period of 100 years
post-injection that is a sufficient duration for the system to be at
equilibrium as shown by the calculated reservoir pressure evolution.
Note that values for some of parameters presented in this section such
as relative permeability and capillary pressure related parameters are
values for the base case and will be tuned in the following sections for
sensitivity analysis and risk assessments. In our application, we inject
CO2 at the maximum bottom-hole pressure permitted without dama-
ging the reservoir. As a result, the amount of CO2 injected varies de-
pending on the reservoir properties. This will be further discussed in the
following sections.

3.2. Risk assessment tools

3.2.1. RROM-Gen
RROM-Gen is a tool to convert numerical reservoir simulation

outputs into the lookup table input format for NRAP-IAM (100 × 100
lookup bins). The workflow of the RROM-Gen is:

1 Determine a layer from the full-physics model in the injection zone
containing the highest CO2 concentrations (typically the uppermost
layer)

2 Extract permeability, porosity, elevation, pressure, temperature, and
CO2 concentrations of the layer from the reservoir simulation out-
puts

3 Bilinear interpolation to the properties from the step 2 and map
them onto a 100 × 100 grid used by NRAP-IAM as a simplified re-
presentation of the storage system

The procedures above are performed for every time step for

Table 1
Parameters for relative permeability model (from Zhou, 2013).

Parameter Values

Fracture
End-point CO2 relative permeability, kr CO, 2

0 (-) 0.50

End-point brine relative permeability, kr brine,
0 (-) 0.15

Irreducible CO2 saturation, SCO ir2, (-) 0.10
Irreducible brine saturation, Sbrine ir, (-) 0.30
Exponent for CO2 relative permeability, m (-) 2.0
Exponent for CO2 relative permeability, n (-) 5.0
Matrix
End-point CO2 relative permeability, kr CO, 2

0 (-) 0.30

End-point brine relative permeability, kr brine,
0 (-) 0.05

Irreducible CO2 saturation, SCO ir2, (-) 0.25
Irreducible brine saturation, Sbrine ir, (-) 0.30
Exponent for CO2 relative permeability, m (-) 2.0
Exponent for CO2 relative permeability, n (-) 5.0
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dynamic data. An example of the RROM-Gen results for a single reali-
zation of the Kevin Dome is presented in Fig. 5

In our application, it is found that the top layer of the injection zone
in the fracture domain has the highest CO2 concentrations and is
therefore selected as a representative layer. The interpolated sets of
properties, RROMs, will be used as uncertain parameters for the storage
reservoir in NRAP-IAM and linked through legacy wells to shallower
formations and the atmosphere Fig. 1. It is informative to mention that
this assumption (a single layer as a representative layer) might over-
estimate CO2 and brine leakage compared to the three dimensional full
numerical simulation results, however, it is a good approximation for
conservative risk assessment purposes.

3.2.2. NRAP-IAM
The NRAP-IAM is a tool to simulate CO2 storage reservoir security

using ROMs that are computationally efficient and allow analysis of the
impact of uncertainty on prediction of leakage potential. The NRAP-
IAM decomposes the problem into discrete components including a
storage reservoir, wells, faults, intermediate reservoirs, shallow aquifers
and the atmosphere. Each component has assigned properties with a
range of uncertainties and the compartments are linked through po-
tential leakage pathways such as legacy wells and faults. In the Big Sky
application, the regional geology includes permeable shallow

formations including the Sunburst and Banff (sandstone) and the
Madison (dolomitic limestone) (Figs. 3 and 6 (a)). The Madison for-
mation is known as a potential USDW (Kirk, 2002), and its properties
are available from previous studies, such as the Thayer (1983) in-
vestigation of porosity and permeability in the formation based on well
test data. Unfortunately, there is little prior knowledge available for the
other two formations. As a result, generic values (Lupe and Ahlbrandt,
1975) are used for the other two formations. Uniform values are used
for all gridblocks (100 × 100) in all shallow formations because of the
lack of data. In addition, we have prior knowledge for 5 legacy wells
penetrating the injection zone (Fig. 6(b)) and approximately 45 wells
penetrating the shallow formations. Information on wellbore integrity
(i.e., permeability of the external annulus) of these wells is not avail-
able.

To determine the most important process and parameters related to
aquifer impacts, we run the NRAP-IAM and compare CO2 and brine
leakage between cases varying shallow formation rock properties and
wellbore integrity. We find that wellbore integrity is more significant
than the properties of the shallow formations and conclude that the use
of uniform properties for the shallow formations is reasonable. Static
properties used in the NRAP-IAM are summarized in Table 3. These
data and the RROMs obtained from the RROM-Gen are assigned into
each discrete component in the NRAP-IAM. Then, the NRAP-IAM
samples N sets of parameters from each component including the at-
mosphere, shallow formations, the storage reservoir (RROMs), and the
legacy wells, where N is the number of Monte-Carlo samples. The CO2
and brine leakage are then computed for all samples using the wellbore
leakage ROMs (response surface) based on thousands of multiphase
numerical simulations using FEHM (Jordan et al. (2015); Harp et al.
(2016). Each Monte-Carlo realization simulates performance of the CO2
storage site over 104 years, which includes 4 years of CO2 injection
with BHP control and 100 years of post-injection relaxation and is
consistent with the duration in the reservoir simulation.

Table 2
Parameters for capillary pressure model (from Zhou, 2013).

Parameter Values

Strength coefficient, P0 (bar) 0.30
Exponent, (-) 0.457
Irreducible brine saturation, Sbrine ir, (-) 0.30
Maximum capillary pressure (bar) 5.0

Fig. 5. Extraction of model results for building ROMs using RROM-Gen. The parameters are extracted from the layer outlined in red in the top figure (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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4. Risk assessment

Here we present the methodology and results of the risk assessment
for GCS in the Kevin Dome site using the reservoir simulation and the
NRAP tools discussed in the previous sections. The workflow consists of
three primary elements: 1) Sensitivity analysis; 2) reservoir simulation;
3) NRAP-IAM simulation (Fig. 7). Details of each step will be discussed
in following subsections.

4.1. Sensitivity analysis

4.1.1. Methods
The first step of the sensitivity analysis is to identify the key per-

formance parameters that characterize CO2 and brine leakage. In our
approach, the workflow of the sensitivity analysis follows Olalotiti-
Lawal et al. (2017) whereby three values (low, base, and high) are used
for each parameter to address uncertainty. The list and range of para-
meters included in the sensitivity analysis are summarized in Table 4.
Below we discuss details of each parameter that cover the source of the
data and a brief theoretical background.

The values and ranges of fracture and matrix permeability related

parameters are based on previous simulation studies at this site (Dai
et al., 2014; Zhou, 2013). We use constant values for matrix perme-
ability and for the permeability and porosity of the confining layers
(caprock and basement). The latter values were the same as those used
in a previous simulation study at this site (Stauffer et al., 2013). As
described in Section 2.2.2, a step-rate injection and pressure fall-off test
is used to calibrate the reservoir model (Onishi et al., 2017). Since the
duration of the pump test was short (3 days) and permeability values
were modest (∼5.9e-14m2), pressure propagation was observed only
in the vicinity of the injector. As a result, only gridblocks around the
injector showed sensitivity with respect to the objective function de-
fined by the sum of differences between observed bottom-hole pressure
and simulated bottom-hole pressure at the injector. Although the pump
test data was successfully calibrated by adjusting permeability and
porosity at gridblocks near the injector, most of the reservoir properties
remain uncertain. The sensitive gridblocks used in the calibration were
therefore treated as hard data for the sequential Gaussian Simulation
(SGS) to generate heterogeneous permeability distributions (Deutsch
and Journel, 1998; Remy, 2004). Correlation length, angle and dip are
input parameters in SGS used to generate heterogeneous permeability
distributions (Remy, 2004). In our application, however, because 1) the
storage reservoir is thin, 2) elevation in the reservoir is relatively uni-
form, and 3) hard data is located at the center, we expect that the flow
response obtained from different angle and dip would not be sig-
nificant. Therefore correlation length was used as a single parameter to
represent heterogeneity (Fig. 8).

Matrix porosity is set as a constant value (Zhou, 2013) for simpli-
fication, whereas fracture porosity is computed using a correlation with
permeability (Bernabé et al., 2003; Deng et al., 2012) to reduce the
number of parameters:

=k a b (5)

where k is permeability (m2), is porosity, a and b are constants de-
pending on different processes and materials. In this study, a=5.92e-7
and b=3.0 (Deng et al., 2012). Relative permeability curves used in
the sensitivity analysis are presented in Fig. 9. Yoshida et al. (2016)
conducted a statistical sensitivity analysis of relative permeability
parameters in CO2 storage and concluded that total CO2 injected
(bottom-hole pressure constraint) is statistically correlated only to the
end-point CO2 relative permeability. Hence, we only use the end-point
CO2 relative permeability as an uncertain parameter for relative

Fig. 6. Shallow permeable formations and legacy well locations: (a) shallow permeable formations (b) legacy well locations in the Middle Duperow, top view (a
single injector at center and 5 sparse legacy wells).

Table 3
Parameters for NRAP-IAM.

Parameter Values

Sunburst
Thickness, (m) 30.0
Permeability, (m2) 9.9e-14
Porosity, (-) 0.15
Madison
Thickness, (m) 240.0
Permeability, (m2) 9.9e-15
Porosity, (-) 0.15
Banff
Thickness, (m) 30.0
Permeability, (m2) 9.9e-14
Porosity, (-) 0.15
Wells
Number of wells in the injection zone, (-) 5
Number of wells in shallow formations, (-) 45
Wellbore cement effective permeability,

(m2)
Sample from a probability
distribution*

*Log normal distribution (μ=9.5e-15(m2), σ=1.18e-13(m2)).
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permeability functions although the Corey equations have other para-
meters such as exponents and residual saturation.

Relative permeability hysteresis is an important parameter during
GCS (Juanes et al., 2006; Pham et al., 2011) and was therefore included
in this study. Different relative permeability curves were used for the
drainage and imbibition processes. Several empirical models have been
developed to describe hysteresis effects (Carlson, 1981; Killough, 1976;
Land, 1968). We used the Land model:

=
+

S
S

CS1.0CO t
CO i

CO i
2,

2,

2, (6)

and,

=C
S S

1.0 1.0
CO t CO2, ,max 2,max (7)

where SCO2,i is the initial CO2 saturation (CO2 saturation at flow re-
versal), C is the Land trapping coefficient, SCO2,max is the maximum CO2
saturation and SCO2,t,max is the maximum trapped gas saturation. The
Killough’s method was applied for scanning curves (Killough, 1976).
Because the parameters in Eq (7) are not available, the Land trapping
coefficient was set at 1.0 (Juanes et al., 2006) for the hysteresis ON case
(Table 3).

Capillary pressure plays an important role in CO2 storage (Alkan
et al., 2010; Li et al., 2013; Krevor et al., 2015). During the imbibition

process in GCS, small isolated blobs of CO2 will be trapped by capillary
forces which is called capillary trapping or residual trapping (Krevor
et al., 2015) and is an important process for maximizing capacity and
ensuring the integrity of CO2 storage. Capillary pressure also controls
fracture-matrix interactions in multiple-continuum models
(Firoozabadi and Hauge, 1990; Iino and Arihara, 2007). The strength
coefficient (Po) in Eq. (3) is used to explore the sensitivity of capillary
pressure curves (Fig. 10). Parameter values and ranges are based on
Zhou (2013) and Pruess and Garcia (2002) (Table 2). The same ranges
are used for both fracture and matrix capillary pressure curves as a
conservative choice and because of parameter uncertainty. Typically,
the capillary entry pressure of fractures is smaller than that in the
matrix (Wu et al., 2004; Oh et al., 2013); our use of the same values for
both fracture and matrix capillary pressure curves is conservative be-
cause it may overestimate the CO2 plume size.

In the dual-porosity dual-permeability model, an additional source/
sink term, the transfer function is used to describe fracture-matrix in-
teractions. The transfer function is proportional to a geometrical shape
factor (m−2), and the driving force is the pressure drop between a
matrix grid block and surrounding fractures. A variety of formulations
of the transfer function have been proposed (Kazemi et al., 1976; Lim
and Aziz, 1995; Warren and Root, 1963). We apply the commonly used
approach assuming a pseudo-steady-state flow between fracture and
matrix domain suggested by Kazemi et al., 1976:

Fig. 7. The risk assessment workflow using the reservoir simulation, RROM-Gen and NRAP-IAM.

Table 4
List of possible model sensitivity analysis parameters and their respective assigned bounds.

Parameter Description Low Base High

kf Fracture mean permeability (m2) 3.9e-14 5.9e-14 7.8e-14
kf_Corr Correlation length for fracture permeability, (m) 1000.0 3000.0 5000.0
kvkh Vertical fracture permeability anisotropy (-) 0.02 0.50 1.0
k_confrock Permeability of caprock and basement (m2) 3.0e-4 3.0e-2 3.0
km Matrix permeability (uniform), (m2) 1.0e-14 2.0e-14 3.0e-14
krfCO2_end End point CO2 relative permeability in fracture, (-) 0.30 0.50 0.70
krmCO2_end End point CO2 relative permeability in matrix, (-) 0.10 0.30 0.50
krfCO2_Hyst Hysteresis of CO2 relative permeability in fracture, (-) ON (C=1.0) and OFF (base)
P0f Strength coefficient of fracture capillary pressure (bar) 0.20 0.30 0.40
P0m Strength coefficient of matrix capillary pressure (bar) 0.20 0.30 0.40
sigma Shape factor (m−2) 0.12 1.2 5.0
Salinity Salinity of the aquifer (ppm) 1.0e+4 2.0e+4 3.0e+4
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where lx, ly, and lz are the distances (m) between fractures in the x, y,
and z directions. Because data for fracture distributions are not avail-
able, we apply a constant shape factor ( ) for the entire fracture domain
based on (Fakcharoenphol et al., 2014).

Salinity can affect solubility trapping (Barrufet et al., 2010). The
salinity range in this study is based on Zhou (2013).

The sensitivity analysis is then carried out using the values and
ranges discussed above as follows:

1 Run a single reservoir simulation with the base values shown in
Table 4

2 Use RROM-Gen and generate lookup table inputs for the NRAP-IAM
3 Run the NRAP-IAM using fixed settings (Table 3) to conduct fair
comparisons of parameter sensitivity

4 Save a realization (50 percentile) from each leakage rate obtained
from the NRAP-IAM (step 3)

5 Select 1 parameter in Table 4 and perturb (i.e., low or high) and run
a reservoir simulation using the updated value. Then, go to the step
2.

The NRAP-IAM calculations are conducted with parameters given in
Table 3 except for the wellbore cement quality which is held constant to
conduct comparisons of the impact of reservoir parameters on injection.
Step 2 through step 5 are repeated until all parameters in Table 4 are
covered, requiring 24 runs (1 base + 11 × 2 low and high for para-
meters except hysteresis + 1 with hysteresis). The graphical description
of the workflow is presented in Fig. 11.

The relative sensitivity of the mth parameter obtained from the
sensitivity study is computed using the dimensionless scaled sensitiv-
ities (Hill, 2000; Olalotiti-Lawal et al., 2017) which is the ratio of the

change in the objective function, O(m) to the relative perturbation in
the parameter. The dimensionless sensitivity, defined in the following
equation, eliminates disproportionate parameter perturbation sizes and
dimensions:
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x

x( )
m

m
m
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(9)

where xm is a value of parameter m, and the objective function is de-
fined as L2 norm of the difference of the computed leakage when the
mth parameter is used relative to the computed leakage from the base
case over the entire simulated time, scaled by the standard deviation of
the base case:
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where Ntstep is the number of time steps, gk (m) is a cumulative leakage
at time step k when the mth parameter is used, dBase,k is a cumulative
leakage of the base case at time step k, and m is the standard deviation
of the cumulative leakage of the case m. m is used to scale the objective
function for comparison purposes between different metrics including
CO2 and brine leakage to the atmosphere and the shallowformations.

4.1.2. Results
The results of the dimensionless scaled sensitivity studies using Eqs.

(9) and (10) are summarized in tornado diagrams (Figs. 13 and 14) and
are based on computed leakage using NRAP-IAM (Fig. 12). We found
that fracture permeability, capillary pressure in fracture and matrix,
fracture end-point CO2 relative permeability, permeability of the con-
fining rocks, and hysteresis effects were key parameters. Visual com-
parisons of the CO2 plume between the base case and cases with low
and high values of key parameters are provided in Fig. 15 in which we
see results consistent with the sensitivity analysis. The dominance of
fracture permeability is clear (Fig. 15 (a)-(c)) as a primary control on

Fig. 8. Heterogeneous permeability fields (top layer of the injection zone). (a) Correlation length= 1000 (m), (b) Correlation length= 3000 (m), and (c) Correlation
length=5000 (m).

Fig. 9. Relative permeability curves.
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plume geometry. The other key parameters are capillary pressure for
fracture and matrix. When fracture capillary pressure is higher than
matrix capillary pressure, more CO2 migrates into the matrix domain,
and vice versa (Fig. 15 (d)-(i)), consistent with the DPDP formulation
(Blaskovich, et al., 1983; Iino and Arihara, 2007; and others). Leakage
is sensitive to fracture end-point CO2 relative permeability (Fig. 15 (j)-
(l)) as suggested by Yoshida et al. (2016). Likewise, leakage is sensitive
to the permeability of the confining rocks (Fig. 15 (m)-(o)) which
confirms results from Dai et al., (2014). Last, hysteresis shows negative
correlation with CO2 and brine leakage (Fig. 15 (p)-(q)) as suggested by
Juanes et al. (2006) and Pham et al. (2011). It is informative to mention

that results obtained from the previous simulation study at this site by
Dai et al. (2014) and other studies of GCS (Pawar et al., 2016; Deng
et al., 2012) concluded that the heterogeneity of permeability dis-
tribution is one of the key parameters in GCS, whereas we find that
permeability heterogeneity is relatively less important. One possible
reason is that the range of permeability values used here is based on
Zho et al. (2013) and is much narrower than what Dai et al. (2014) used
and thus permeability heterogeneity shows little influence in our study
as illustrated in Fig. 16 (a)-(c). Another reason could be the values of
correlation length used in this study. These lengths are relatively large
in comparison with the domain size such that the domain can be locally

Fig. 10. Capillary pressure curves for the fracture and matrix domains.

Fig. 11. The sensitivity analysis workflow.
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homogeneous, resulting in little influence of permeability hetero-
geneity. Similar conclusions can be made for vertical permeability an-
isotropy (kv/kh). Dai et al. (2014) and other studies of GCS in saline

aquifers (Chanbari et al. 2006; Kumar et al. 2004) showed that the
magnitude of kv/kh significantly affects GCS in saline aquifers, but
again, the narrower range for kv/kh used in this study compared to

Fig. 12. Sensitivity analysis results: (a) CO2 leakage to the atmosphere, (b) CO2 leakage to the intermediate aquifers, (c) CO2 leakage to the groundwater aquifer, (d)
Brine leakage to the intermediate aquifers, (e) Brine leakage to the groundwater aquifer (green line is the base case) (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).

Fig. 13. Tornado chart of the dimensionless scaled sensitivity of model parameters for the injection period (4 years): (a) CO2 leakage to the atmosphere, (b) CO2
leakage to the intermediate aquifers, (c) CO2 leakage to the groundwater aquifer, (d) Brine leakage to the intermediate aquifers, (e) Brine leakage to the groundwater
aquifer.
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others results in limited influence (Fig. 16(d)-(f)). The relatively uni-
form elevation of the injection zone may be another reason why kv/kh
is found to be less important in this study. In fact, there is an up dip at
the edge of the injection zone, however, there is little chance for the
CO2 plume to reach the region as observed in Fig. 15. Fig. 17 visually
illustrates the effects of caprock permeability on the shape of the si-
mulated CO2 plumes.

Through this exercise, we find that the potential amount of CO2
leakage is most sensitive to values of 1) injection horizon permeability,
2+ 3) capillary pressure in both the fracture and matrix, 4) fracture
end-point CO2 relative permeability, 5) hysteresis of the fracture CO2
relative permeability, and 6) the permeability of the confining rocks.
These parameters are then used as representative uncertain parameters
for the storage reservoir component in the NRAP-IAM (Fig. 1). Note that
this conclusion could be different depending on the locations and
quality of legacy wells. It should also be noted that solely using tornado
diagrams to screen out parameters might not be a best practice in
nonlinear cases where interactions between parameters can be sig-
nificant. For such cases, it is recommended to use a more sophisticated
approach (e.g., Bhark and Dehghani, 2014). In our application, how-
ever, this simple approach can provide intuitive understanding of un-
certain parameters and, thus, is sufficient to demonstrate the un-
certainty quantification workflow using the NRAP-tools.

4.2. Reservoir simulation

4.2.1. Methods
We applied LHS to reduce the number of realizations and efficiently

conduct our analysis. Fewer numerical simulations are required to
cover the same range of uncertainties in the developed workflow
compared to previous approaches in which 3N simulations, where N is
the number of uncertain parameters, are required. Following the above
recommendations, we select 6 sensitive parameters from the sensitivity
analysis. Therefore, 36= 729 numerical reservoir simulations are re-
quired if the previously suggested (Jordan et al., 2015) approach is
used. Because reservoir simulation runs can take days depending on the
combination of the parameters, the previous approach is not suitable
when available information of the storage reservoir is limited, which is
rather common in GCS in saline aquifers. In contrast, for this study, we
apply LHS and sample 50 realizations for reservoir simulation using the
6 sensitive parameters obtained from the sensitivity analysis. We select

50 realizations because this entire workflow is intended for a wide
range of users including research institutes, universities, and industry.
For those who do not have sufficient computational facilities to conduct
hundreds or thousands of full 3-D reservoir simulations, the new ap-
proach utilizing LHS method will prove more accessible. More im-
portantly, the quality of the legacy well cements specified in the NRAP-
IAM have a larger impact on leakage results than the variability seen in
the LHS reservoir simulations. This will be further discussed in the
Section 4.3.2.

One of the 6 chosen sensitive parameters is hysteresis of fracture
CO2 relative permeability, for which a constant value of the Land
trapping coefficient was used in the sensitivity study (C=1.0). Here we
provided a range for Land trapping coefficient between the values
0.2< C<5.0 (Krevor et al., 2015). The significance of C is illustrated
in Fig. 18. Higher C results in less trapping (i.e., similar drainage and
imbibition curves), and vice versa.

4.2.2. Results
Based on the sensitivity analysis presented in the previous section,

LHS is performed for the 6 most sensitive parameters and the results are
summarized in Fig. 19 in which scatter plots show correlations between
parameters (bottom-left), whereas values on top-right are corre-
sponding correlation coefficients and size of makers are proportional to
correlation coefficients. As seen in the Fig. 19, none of parameters are
strongly correlated, meaning that parameters are efficiently sampled, or
sampled realizations cover a wide range of uncertainties.

The ensemble of simulation results of cumulative CO2 injected
during the first six years are overlaid in Fig. 20 with P10, P50, and P90
(percentile) probability values based on total amount of CO2 injected at
the end of injection period. Realizations with high permeability, high
Land trapping coefficient, and high strength coefficients for fracture
and matrix capillary pressure yield higher total injected CO2 (Fig. 20).
One interesting factor here is that fracture CO2 end-point relative per-
meability in P10 is higher than that of P50 and P90. This is because the
injectivity is strongly affected by permeability values at completion
gridblocks although end-point relative permeability is an important
parameter determining the size and shape of the CO2 plume as dis-
cussed in the sensitivity analysis section. We also obtain results that
differ from the conclusion of the previous simulation study at this site
by Dai et al. (2014). The previous work found a four year maximum
injected mass of approximately 5.0MT of CO2 with the same well

Fig. 14. Tornado chart of the dimensionless scaled sensitivity of model parameters for the post-injection period (100 years): (a) CO2 leakage to the atmosphere, (b)
CO2 leakage to the intermediate aquifers, (c) CO2 leakage to the groundwater aquifer, (d) Brine leakage to the intermediate aquifers, (e) Brine leakage to the
groundwater aquifer.
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Fig. 15. CO2 saturation profiles in the reservoir for sensitive parameters at the end of injection period.
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constraint, whereas our results predict that the maximum mass of CO2
that can be injected in four years is around 1.2MT. Based on Fig. 20,
our study finds a low (4.0%) likelihood of successfully injecting 1.0MT/
yr (target injection rate) into the storage reservoir as compared to 58%
probability of successful injection of 1MT/yr reported by Dai et al.
(2014). One possible reason is that ranges for static data such as per-
meability of the injection zone and the confining rocks used by Dai
et al., (2014) are much wider that what we are using here. More im-
portantly, the effect of hysteresis was included in our study which can
significantly affect trapping mechanisms and thus the size of the CO2
plume as depicted in Fig. 15. Our results show more trapping with
hysteresis effects and therefore BHP at the injector more easily reaches
18.5MPa (hydro-fracture limit) resulting in a reduced amount of CO2
injected.

Fig. 16. Further investigation of parameters used in the sensitivity analysis: insensitive parameters including correlation length and kvkh at the end of injection
period.

Fig. 17. CO2 saturation profiles of low, base, and high confining rock permeability cases at the end of monitoring (104 years).

Fig. 18. CO2-Brine relative permeability functions, an illustration of hysteresis.
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4.3. NRAP-IAM simulation

The application of the NRAP-IAM is demonstrated in this section.
We first present simulation results of the NRAP-IAM with the base case
scenario, followed by analysis of wellbore integrity using Monte-Carlo
sampling.

4.3.1. CO2 and brine leakage calculation for the base case
The NRAP-IAM simulation results use 50 lookup table ROMs, ex-

tracted from 50 full 3-D reservoir simulations using RROM-GEN, which
represent time dependent pressure, temperature, supercritical CO2 mass
fraction, and dissolved CO2 at the top of the storage formation (Fig. 5).
The lookup tables are combined with other input data for shallow
formations and legacy wells (Table 3). Calculated leakage is summar-
ized in Fig. 21 showing cumulative CO2 and brine leakage to the
shallow formations. CO2 leakage to the atmosphere is predicted to be
negligible and thus not shown here. While we see P10, P50, and P90
(percentiles) in brine leakage to the shallow formations (thick lines in
Fig. 21(c) and (d)), only P90 can be seen in CO2 leakage to the shallow
formations (thick lines in Fig. 21(a) and (b)). This is because more than
half of realizations predict no leakage due to low wellbore permeability
or combination of sampled paremeters resulting in low leakage (e.g.,
low fracture permeability, low CO2 end-point relative permeability,
etc.).

4.3.2. Wellbore integrity
Wellbore integrity is an important parameter in GCS (Carey, 2013;

Carey et al., 2009, 2010; Crow et al., 2010). A built-in log normal
probability distribution (Table 3) for wellbore cement quality is used
for the base case presented in the previous section, because wellbore

integrity information is not available for all legacy wells; however
wider ranges of cement quality are used in the Big Sky NRAP-IAM si-
mulations to investigate the impact of wellbore integrity at this site. In
our application, we test 5 scenarios in which we use a single constant
permeability (cement quality) value for all wells in each case. Recent
global analysis indicates that maximum acceptable leakage rates are
between 0.01 percent and 1.0 percent leakage per year (Kutz and Elk-
amel, 2010). The following equation is applied to calculate the CO2
leakage rate to the atmosphere:

= ×CO Leakage year CO Leakage Rates MT year
Cumulative CO Injected MT

(%/ ) 100.0 ( / )
( )2

2

2 (11)

Simulation results over first 50 years are summarized in Fig. 22 in
which 50 realizations are sampled for each scenario (different wellbore
integrity values) and the green shade is acceptable CO2 leakage (0.01
percent) range. The ensembles with different colors correspond to dif-
ferent wellbore cement qualities and each set of the ensemble with the
same color contains 50 realizations. Variation of CO2 leakage rates
within the same color essentially arises from varying RROMs. Fig. 22
shows that unless cement permeability quality is extremely poor (i.e.,
larger than 10 Darcy (9.87e-12m2)), GCS in the Kevin Dome is expected
to be secure over the entire monitoring period according to the selected
criteria. Some realizations (realization #3, 29, 36) show unacceptable
leakage rates even after the injection period (red circle). Parameters of
these realizations are revisited as depicted in the bottom part of Fig. 22
to determine what is causing this behavior. We confirm that for these
leaks, higher fracture permeability, lower confining rock permeability,
and higher Land’s trapping coefficient result in higher CO2 leakage rates
that are also strongly affected by the combination of the capillary
pressure in both fracture and matrix as observed in Sections 4.1 and 4.2.

Fig. 19. Correlation matrix for 6 parameters generated from LHS.
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Fig. 20. Reservoir simulation results: total amount of CO2 injected with P10, P50 and P90 probability ranges.

Fig. 21. NRAP-IAM base case results: (a) CO2 leakage to the intermediate aquifers, (b) CO2 leakage to the groundwater aquifers, (c) Brine leakage to the intermediate
aquifers, and (d) Brine leakage to the groundwater aquifers. Thick lines are percentiles: P90 (solid line), P50(dash line), and P10 (dot).
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Nevertheless, leakage rates in all cases converge within the acceptable
leakage rates after 30 years. This observation is useful to determine, for
example, duration of monitoring of this site.

4.3.3. Convergence analysis of the NRAP-IAM
The NRAP-IAM gives slightly different results in every simulation

when risk assessment is performed using 50 realizations. It is worth-
while to study the impact of the number of realizations for Monte-Carlo
sampling in the NRAP-IAM to determine the optimum number of
samples for convergence. We again used the data from Table 3 for
shallow formations and wellbores and 50 sets of ROMs for the storage
reservoir. While constant values are used for thickness, permeability,
and porosity for the shallow aquifers, a built-in log normal distribution
is used for wellbore cement quality uncertainties. Starting from 50
realizations, the number of realizations was increased up to 1000 with
increments of 100 (50 in the first step). Selected results are presented in

Fig. 22. NRAP-IAM simulation results of wellbore cement quality sensitivity (top) and parameters of realizations (realization#3, 29, 36) that showed unacceptable
leakage rates.

Fig. 23. Convergence analysis results for Monte Carlo sampling in NRAP-IAM with columns giving the number of samples. Results for CO2 and brine in the
intermediate aquifer and groundwater are shown.

Fig. 24. Convergence analysis results for Monte Carlo sampling in NRAP-IAM.
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Fig. 23. CO2 leakage to the atmosphere is predicted to be negligible and
thus not shown here. A more quantitative analysis was conducted
comparing the L2 norm of difference of P10, P50, P90 values (prob-
ability percentiles) using the following equation:

= +

+
=

Error P P P P

P P

[|| 10 10 || || 50 50 ||

|| 90 90 || ]
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where n represents the number of samples (e.g., n: number of sam-
ples= 200 and n-1:number of samples= 100), thus, P10i j

n
, represents

P10 of nth step and jth leakage metrics at ith time step, and same for
other percentiles. Note that the calculated errors are normalized in such
a way that the maximum and minimum values become 1.0 and 0.0,
respectively.

Fig. 24 plots results obtained from this analysis, from which all
leakage rates show steep reductions of error after 400 realizations. The
optimum number of realizations for this specific example is therefore
between 500 and 600. Small errors are seen beyond 500 realizations,
however, these are because of the nature of Monte-Carlo random
sampling: the NRAP-IAM shows slightly different results in every run,
which is inevitable. Unfortunately, the optimum number of realizations
in the NRAP-IAM is case dependent and therefore investigation of the
optimum number of realizations and engineering judgements are ne-
cessary in each specific case. One interesting factor here is that error
starts low for CO2 leakage to the intermediate aquifer then increases
unlike other metrics. This is because P90 values in the 50 and 100
realization cases for CO2 leakage to the intermediate aquifer are similar,
whereas these converge to slightly lower values when the number of
realizations is 200 (1st row in Fig. 23). As a result, the error becomes
larger at 200 realizations, and then decreases beyond 300 realizations.
The other important factor here is that rapid analytical calculations
(usually order of minutes) and the powerful stochastic framework of the
NRAP-IAM allows users to explore a variety of analyses, even for field-
scale applications, within realistic simulation times that would be dif-
ficult to achieve solely with full physics, 3-D numerical simulations or
analytical methods. It is informative to mention that convergence
analysis of Monte-Carlo sampling is typically done by comparing
sample variance at different number of samples. It is known that con-
vergence behavior of Monte-Carlo sampling typically follows log scale
(Ballio and Guadagnini, 2004). This means that increasing the number
of Monte-Carlo samples from 100 to 200 to obtain a better stabilization
of the results has basically no effect on convergence of Monte-Carlo
sampling. In other words, it is necessary to use an order of magnitude
greater number of samples to see significant effects. In our application,
however, the use of thousands of samples can be computationally ex-
pensive in terms of both processors and memory and may not be
practical, even with the rapid simulation ability of the NRAP-IAM. In-
stead, as we are interested in convergence of calculated leakage rather
than convergence of Monte-Carlo sampling itself, we recommend the
use of Eq. (12) as an objective function to quantify convergence of the
NRAP-IAM simulations.

5. Summary and Conclusion

1 NRAP tools have been successfully applied to risk assessment of GCS
for a fractured saline aquifer, Kevin Dome in Montana.

2 The maximum total mass of CO2 injected into the middle Duperow is
predicted to be 1.2MT. This is lower than the estimate by Dai et al.,
(2014) because of different parameter settings, such as ranges for
permeability and the inclusion of hysteresis effects in the current
study.

3 The newly developed workflow for the NRAP-IAM (using LHS to
generate realizations for full 3-D numerical simulations) can sig-
nificantly reduce computational requirements compared to the
previously suggested workflow. The powerful stochastic framework

is capable of risk assessment in field-scale applications.
4 The potential amount of CO2 and brine leakage is most sensitive to
values of fracture permeability, capillary pressure in both the frac-
ture and matrix, end-point fracture CO2 relative permeability, per-
meability of confining rocks, and hysteresis in the CO2 relative
permeability.

5 GCS in the Kevin Dome has little risk of CO2 leakage to the atmo-
sphere unless the quality of the legacy wells is extremely poor.

Future work will incorporate more detailed injection reservoir
characterization including lithofacies classification, seismically condi-
tioned reservoir property modeling, distribution of fracture networks
and their impact on permeability heterogeneity. The inclusion of these
conditioning data and methods will affect predicted pressure and CO2
saturation distributions over the extent of injection. The addition of
fracture networks, as preferential flow paths, is expected to have a
significant influence on CO2 plume dynamics and the leakage rate up-
ward to multiple susceptible USDW aquifers. Additionally, potential
CO2 and brine leakage through fault pathways is also under con-
sideration using the NRAP fault ROM (Nguyen et al., 2017a).
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