- 1 Radiogenic fingerprinting reveals anthropogenic and
- 2 buffering controls on sediment dynamics of the Mississippi
- 3 River system
- 4 Samuel E. Munoz^{1,2,3*}, Liviu Giosan³, Jurek Blusztajn³, Caitlin Rankin⁴, and Gary
- 5 E. Stinchcomb^{5,6}
- 6 ¹Department of Marine & Environmental Sciences, Northeastern University, Boston,
- 7 Massachusetts 02115, USA
- 8 ²Department of Civil & Environmental Engineering, Northeastern University, Boston,
- 9 Massachusetts 02115, USA
- ³Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods
- 11 Hole, Massachusetts 02543, USA
- 12 ⁴Department of Anthropology, Washington University, Saint Louis, Missouri 63130, USA
- 13 ⁵Watershed Studies Institute, Murray State University, Murray, Kentucky 42071, USA
- ⁶Department of Geosciences, Murray State University, Murray, Kentucky 42071, USA
- 15 *E-mail: s.munoz@northeastern.edu
- 16 ABSTRACT
- 17 Radiogenic isotopes of strontium (${}^{87}Sr/{}^{86}Sr$) and neodymium (${}^{144}Nd/{}^{143}Nd$) are
- 18 widely used to trace sediment across source-to-sink networks, with samples typically
- 19 collected from outcrops at basin headwaters and sediments along the channel margin,
- 20 floodplain, and/or sea floor. Here we establish Sr-Nd isotope systematics of recent (< 1k
- 21 yrs.) Mississippi River (USA) basin alluvial sediments, evaluate the sensitivity of these
- 22 isotope systems to the presence of artificial impoundments that trap sediments behind

23	them, and test their ability to provenance mixed sedimentary records. Sediment cores
24	collected from floodplain depressions and oxbow lakes along the Mississippi and its
25	major tributaries, where an extensive lock and dam system was constructed during the
26	mid-20 th century, show that the isotopic signatures of major tributaries are distinct, and
27	that some of these signatures shift following dam closure. We then use mixing models to
28	demonstrate that, near the confluence of major tributaries, Sr and Nd isotope signatures
29	can be used to provenance sediments deposited in floodplain lakes during overbank
30	floods. Further downstream, where sediments are well mixed, the provenance of
31	overbank deposits is more challenging to evaluate using Sr-Nd isotope systematics.
32	Given the global pervasiveness of artificial impoundments on rivers, our findings imply
33	that widely employed sediment fingerprinting techniques based on modern conditions
34	may not be representative of conditions from as recently as a century ago.

35 INTRODUCTION

36 Sediment transport from source to sink is a fundamental process that shapes 37 landscapes and the geological record (Allen, 2008). Radiogenic isotopes of strontium and 38 neodymium are widely used as sediment tracers to identify source area and patterns of 39 erosion and deposition within and across drainage networks (e.g., McLennan et al. 1989; 40 Clift et al., 2008; Padoan et al., 2011). Basin-wide systematics of Sr and Nd isotopes are 41 typically evaluated by collecting samples from outcrops at basin headwaters (i.e., source 42 rocks), along channel margins, the floodplain surface, and/or offshore (i.e., mixed 43 sediments). Over the last century, artificial impoundments that trap sediments have been 44 built on many of the world's major rivers and their tributaries, profoundly altering the 45 downstream delivery of sediments (Syvitski et al., 2005). The potential for these artificial

46	impoundments to influence Sr and Nd isotope systematics has previously been
47	recognized (e.g., Padoan et al., 2011) but, to our knowledge, the magnitude of this
48	influence has yet to be evaluated.
49	Here, we examine the Sr and Nd isotope systematics for the Mississippi River
50	system, USA (Fig. 1). The Mississippi is the largest river in North America and one of
51	the world's most heavily engineered drainage networks (Knox, 2007), where dams
52	constructed primarily during the mid-20 th century on the Missouri, Upper Mississippi,
53	and Ohio Rivers (Fig. DR1) have reduced average annual sediment fluxes to the Gulf of
54	Mexico by 50%–70% (Horowitz, 2010). We measured isotopes of Sr and Nd on sediment
55	samples collected from the floodplains of the Missouri, Upper Mississippi, and Ohio
56	Rivers to evaluate the isotopic variation among the major tributaries of the Mississippi
57	River system before and after dam closure. Using these data, we constructed Bayesian
58	mixing models (Parnell et al., 2013) to evaluate the provenance of flood deposits
59	preserved in oxbow lakes previously used in paleoflood reconstructions of the Upper
60	Mississippi (Munoz et al., 2015) and Lower Mississippi Rivers (Munoz et al., 2018).
61	Together, our analyses establish Sr-Nd isotope systematics for the largest drainage
62	network in North America, test their ability to provenance mixed sedimentary records,
63	and allow us to evaluate the sensitivity of these radiogenic tracers to artificial
64	impoundments.
65	MATERIALS AND METHODS

We collected a sediment core using a gouge auger in October 2016 from three infilling depressions in the floodplains of the Missouri (38.664869°N, 90.702690°W; core
length: 97 cm), Upper Mississippi (39.112535°N, 90.695270°W; core length: 137 cm),

69	and Ohio Rivers (37.166491°N, 89.064583°W; core length: 96 cm) that are periodically
70	inundated by floodwaters and are downstream of most dams (Fig. 1; Fig. DR2). To
71	establish chronological control on these cores, we measured ¹³⁷ Cs activity on bulk
72	sediment samples at 5 cm resolution on the upper 60 cm of each core in a Canberra
73	GL2020RS well detector for low-energy germanium radiation (Fig. DR3). We collected
74	five to seven samples from each core that were stratigraphically >20 cm below the base
75	of ¹³⁷ Cs activity (i.e., AD 1954) and above the peak of ¹³⁷ Cs activity (i.e., AD 1963) to
76	represent the depositional environment before and after the closing of the majority of
77	artificial impoundments on the Mississippi River system (Fig. DR1 in the GSA Data
78	Repository ¹). To test the significance of difference between pre- and post-dam samples,
79	we used Welch's <i>t</i> -test implemented in R.Studio v.1.1.423 (<i>t.test</i> function) because this
80	provides a conservative test of difference in the mean of two samples that is appropriate
81	for small sample sizes with unequal variance (Welch, 1947).
82	To minimize grain-size and hydraulic sorting effects, the $<63 \mu m$ filtrate was used
83	for grain size and isotopic analysis. For grain-size analysis, organics were removed by
84	burning at 360 °C in a muffle furnace, then dispersed in water before 5 s. sonication and
85	analysis in a Beckman Coulter LS 13 320 laser diffraction particle-size analyzer. Nd and
86	Sr chemistry was performed with conventional ion chromatography. Strontium was
87	separated and purified from samples using Sr-Spec (Eichrom) resin. Nd chemistry was
88	measured with LN resin (Eichrom) following method described by Scher and Delaney
89	(2010). Sr and Nd analyses were conducted on a NEPTUNE multi-collector ICP-MS with
90	internal precision around 10–20 ppm (2 σ). The ¹⁴³ Nd/ ¹⁴⁴ Nd and ⁸⁷ Sr/ ⁸⁶ Sr ratios for
91	unknowns were normalized by the offset between our average measured value of the Nd

92	La Jolla and Sr NBS987 standards during the analytical session and the preferred
93	$^{143}\mathrm{Nd}/^{144}\mathrm{Nd}$ of 0.511847 (White and Patchett, 1984) and $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ of 0.710240 (Jackson
94	and Hart, 2006), and external precision is estimated to be 15–25 ppm (2 σ). ¹⁴³ Nd/ ¹⁴⁴ Nd
95	isotopic composition is expressed further as ε_{Nd} (DePaolo and Wasserburg, 1976) units
96	relative to $(^{143}Nd/^{144}Nd)$ CHUR = 0.512638 (CHUR—chondritic uniform reservoir). We
97	tested the influence of grain-size on Sr and Nd isotopes (McLennan et al., 1989) using
98	regression to find a significant linear relationship between ϵ_{Nd} and the mode of grain-size
99	on Missouri River and oxbow lake samples ($R^2 = 0.7711$, $p < 0.001$) but not the other
100	tributaries (Fig. DR4) nor between grain size and ⁸⁶ Sr/ ⁸⁷ Sr ratios. We thus used linear
101	regression to normalize ϵ Nd of Missouri River and oxbow lake samples to the pooled
102	mode of grain-size measurements (Table DR1).
103	To compare the isotopic composition of the mixed sediments collected as part of
104	this study with that of the source rocks that underlie the Mississippi River basin, we
105	extracted the Sr and Nd isotope measurements within 500 km of the basin ($n = 1356$)
106	from the GeoRoc database (http://georoc.mpch-mainz.gwdg.de/georoc/; Sarbas and Nohl,
107	2008) and assigned each sample to its corresponding geological unit based on its location.
108	To evaluate the potential of Sr-Nd isotopes to provenance sedimentary paleoflood records
109	from oxbow lakes on the Mississippi River, we collected two samples from previously
110	dated cores at Horseshoe Lake, Illinois (HRM) ~20 km below the confluence of the
111	Missouri River (Munoz et al., 2015) and four samples from Lake Mary, Mississippi
112	(MRY) ~1000 km below the confluence of the Ohio River (Munoz et al., 2018), and
113	performed grain-size and isotope analysis on these samples using the same approach as
114	described above (Fig. 1). Chronologies of these oxbow paleoflood records were

115	developed using a Bayesian age model informed by ¹³⁷ Cs, ²¹⁰ Pb, ¹⁴ C, optically-stimulated
116	luminescence (OSL) and stratigraphic markers; additional details of their age models can
117	be found in their original publications (Munoz et al. 2015; 2018). At HRM, one sample is
118	from a fine-grained deposit dated to A.D. 1160 ± 90 yr (reported as median age $\pm 2\sigma$
119	confidence interval) interpreted by Munoz et al. (2014) as the suspended load from a
120	large Mississippi River flood event, and one sample from the same core dated to A.D.
121	1450 ± 160 yr that was not associated with a flood. At MRY, we collected samples of
122	fine-grained sediment immediately overlying prominent flood deposits dated to A.D.
123	1917 ± 13 yr, 1934 ± 12 yr, 2011 ± 7 yr, and 2014 ± 6 yr interpreted by Munoz et al.
124	(2018) to represent major historic floods in A.D. 1927, 1937, 2011, and 2016,
125	respectively. To evaluate the provenance of the oxbow lake sediments, we constructed
126	Bayesian mixing models using the <i>simmr</i> package (Parnell et al., 2013) in RStudio using
127	pre- and post-dam means and standard deviations for each tributary as end members, with
128	only the Missouri and Upper Mississippi for deposits at HRM and all three sampled
129	tributaries for deposits at MRY.
130	RESULTS AND DISCUSSION
131	Mississippi River Sr-Nd Isotope Systematics

132Mississippi River system floodplains sediment Sr and Nd isotopic compositions

exhibit a wide range of values that group into three distinct clusters, where these

- 134 differences are associated with the major tributaries of the Missouri, Upper Mississippi,
- and Ohio (Fig. 2). The ε Nd values and 87 Sr/ 86 Sr ratios of all floodplain sediments range
- 136 from -14.75 to -11.55 and 0.716688-0.729936, respectively. Floodplain samples from
- 137 the tributaries are highly differentiated over the ⁸⁷Sr/⁸⁶Sr range, with the lowest values for

138	the Missouri River (mean, $\overline{x} = 0.717807$, standard deviation, $\sigma = 0.000095$) and the
139	highest values from the Ohio River ($\overline{x} = 0.728123$, $\sigma = 0.000062$) and no overlap among
140	the three tributaries sampled. Over the range of ε Nd values, samples from the Missouri
141	and Upper Mississippi exhibit high variability (range 1.73 and 1.95, respectively), with
142	less variability in samples from the Ohio River (range of 0.98). All of the floodplain
143	samples fall within the ε Nd range for the Archean shield and Paleoproterozoic orogens
144	that have been subsequently incorporated into Paleozoic through Cenozoic age marine
145	and terrestrial sedimentary rocks covering much of the Mississippi basin (Peucker-
146	Ehrenbrink et al., 2010).
147	In contrast to Nd, strong radiogenic Sr enrichment is evident in Mississippi basin
148	sediments relative to source rocks (Fig. 2a). For the Sr system, older sedimentary cover
149	exhibits higher ⁸⁷ Sr/ ⁸⁶ Sr ratios relative to source rock composition (e.g., Peucker-
150	Ehrenbrink et al., 2010). Incongruent weathering of source rocks is the primary factor
151	leading to this enrichment as it elevates ⁸⁷ Rb/ ⁸⁶ Sr and favors ingrowth of radiogenic
152	⁸⁷ Sr/ ⁸⁶ Sr in the resulting sedimentary rocks; this effect is enhanced when sedimentary
153	rocks are recycled multiple times (e.g., Taylor et al., 1983). Sedimentary carbonates are
154	rich in Sr and less radiogenic than siliciclastic rocks, but they are roughly evenly
155	distributed across all three basins examined (King and Beikmanm, 1974). In comparison
156	to Missouri River sediments, lower ϵ Nd and enriched 87 Sr/ 86 Sr of upper Mississippi River
157	sediments likely reflect erosion of glacial till and loess originating from the Precambrian
158	Canadian Shield (e.g., Peucker-Ehrenbrink et al., 2010). The lack of radiogenic
159	enrichment for Nd but high 87Sr/86Sr ratio for Ohio sediments suggest instead erosional
160	inputs from old unglaciated sedimentary rocks outcropping in this sub-basin (e.g., Oh and

161	Raymond, 2006). In short, the three major tributaries of the Mississippi River system
162	exhibit distinct Sr-Nd isotopic signatures as a result of differences in underlying parent
163	rock material, sedimentary cover and weathering rates of each basin.
164	Floodplain sediments deposited prior to and after the closure of artificial
165	impoundments sometimes exhibit significant differences in their isotopic composition
166	(Fig. 2b). On the Missouri and Upper Mississippi River, ⁸⁷ Sr/ ⁸⁶ Sr ratios increase from
167	pre- to post-dam samples, with significant shifts ($p < 0.05$; unpaired <i>t</i> -tests) in their
168	means (Table DR2). This enrichment of radiogenic Sr may be related to sorting of the
169	sediment load by dams that keep lighter radiogenic minerals (e.g., muscovite) suspended
170	but trap the less radiogenic heavier fraction (Garçon et al., 2014). Alternatively, these
171	shifts in the isotopic composition of Missouri and Upper Mississippi River sediments
172	may be due to trapping of sediments from the upper reaches of their basins behind dams
173	(Meade and Moody, 2010) assuming these regions provide less radiogenic Sr. Sediments
174	from the Ohio River, in contrast, do not exhibit a significant shift in the either ⁸⁷ Sr/ ⁸⁶ Sr
175	ratio or ε Nd values ($p > 0.1$). The insensitivity of Ohio River sediments to the
176	establishment of dams may reflect the placement of the lock and dam system on that
177	tributary relative to the glaciated and unglaciated erodible lithologies. Overall, our data
178	demonstrate that the isotopic composition of sediments transported by the Mississippi
179	River system has shifted markedly over the last century, implying that dams can alter
180	isotope systematics of a continental drainage network.

181 **Provenance of Mixed Sediments**

182 The isotopic composition of sediments deposited in floodplain lakes below the183 confluence of major tributaries reflect both sediment provenance and the degree of

184	mixing (Fig. 3). The Missouri River is the dominant source of suspended sediment to the
185	lower Mississippi River (Knox, 2007), and this is reflected in the isotopic signatures of
186	sediments in oxbow lakes, which tend to have large contributions from the Missouri
187	River. In sediments from Horseshoe Lake (HRM), situated on the Upper Mississippi
188	River, a prehistoric deposit that was interpreted by Munoz et al. (2014) to be the result of
189	an overbank flood is composed primarily of Missouri River sediment ($\overline{x} = 80\%$, $\sigma =$
190	10%; Fig. 3a). Background sediment deposited in HRM, in contrast, is more similar in
191	composition to material from the Upper Mississippi River ($\overline{x} = 71\%$, $\sigma = 13\%$; Fig. 3b)
192	confirming the extra-local provenance of the presumed flood deposit in HRM as
193	hypothesized by Munoz et al. (2014; 2015). Further downstream, sediments in Lake
194	Mary (MRY) associated with the 1937 and 2011 floods are also composed primarily
195	(~60%) of Missouri River sediments and moderate contributions from the Upper
196	Mississippi (~25%) and Ohio (~15%), with only minor compositional differences
197	between the two events (Figs. 3c and d).
198	The 1937 and 2011 floods rank among the largest historical floods by discharge
199	on the lower Mississippi, but these events differed in their hydrometeorological
200	properties. The 2011 flood was triggered by large spring rainstorms over the lowermost
201	part of the basin, while the 1937 event was a winter flood caused by rainfall falling
202	primarily over the Ohio River basin (Smith and Baeck, 2015). Given the differences in
203	water source between the 1937 and 2011 floods, we expected the 1937 event to have a
204	larger contribution from the Ohio River, but mixing models demonstrate that the
205	sediments deposited by these two events are compositionally indistinguishable (Figs. 3c
206	and 3d). The compositional homogeneity of these sediments likely reflects buffering (i.e.,

207	mixing and reworking of sediments) along the lower Mississippi alluvial plain
208	constructed with sediment shed from the continental interior during the Cenozoic (Knox,
209	2007). We note that homogeneity in sediment composition was also observed in other
210	samples from the lower Mississippi River (Table DR1), implying that buffering is a
211	persistent effect along the lowermost reaches of the river. These findings imply that
212	isotope systems used to trace sediments are most useful to provenance fluvial deposits
213	when geological contrasts are not overwhelmed by buffering (e.g., near a tributary with
214	distinctive sediment geochemistry). Over longer timescales than those considered here,
215	more pronounced shifts in sediment composition may be distinguishable downstream or
216	offshore using the Sr-Nd isotope system.
017	

217 CONCLUSIONS

218 Sediments of the three major tributaries of the Mississippi River system—the 219 Missouri, Upper Mississippi, and Ohio Rivers-exhibit strong contrasts in their Sr-Nd 220 isotopic signatures as a result of their underlying geology. Dam closure can significantly 221 affect this isotopic composition via selective trapping and/or sorting of the sediment load. 222 We also demonstrate that these isotopes can provenance recent (< 1 kyr B.P.) mixed 223 sediments deposited in floodplain lakes, and show how they are sensitive to alluvial plain 224 buffering that increases downstream from confluences of major tributaries. The data and 225 analyses presented in this study will be useful for establishing the dynamics of erosion 226 and sedimentation for the largest river system in North America, and has implications for 227 similar studies on other large regulated rivers—including the Nile, Yellow, and Indus 228 Rivers—with sharply reduced sediment loads as a result of dams. Our findings imply that 229 dams act as valves that regulate tributary contributions to the main stem, and can generate

- 230 measurable shifts in sediment provenance. These findings indicate that widely employed
- 231 sediment fingerprinting techniques for current conditions may not be representative of
- past conditions as recently as a century ago.

233 ACKNOWLEDGMENTS

- 234 We thank P.D. Clift, J. Mason, B. Peucker-Ehrenbrink, W.H.J. Toonen, and A.J.
- 235 White for discussion and/or comments on this manuscript, and L. Stewart for field
- assistance. This project was supported by grants to Munoz and Giosan from the Ocean
- and Climate Change Institute of the Woods Hole Oceanographic Institution (WHOI) and
- the U.S. National Science Foundation (grant EAR-1804107), and a Postdoctoral
- 239 Scholarship from WHOI to Munoz.

240 **REFERENCES CITED**

- Allen, P.A., 2008, From landscapes into geological history: Nature, v. 451, p. 274–276,
- 242 https://doi.org/10.1038/nature06586.
- 243 Clift, P.D., Giosan, L., Blusztajn, J., Campbell, I.H., Allen, C., Pringle, M., Tabrez, A.R.,
- 244 Danish, M., Rabbani, M.M., Alizai, A., and Carter, A., 2008, Holocene erosion of
- the Lesser Himalaya triggered by intensified summer monsoon: Geology, v. 36,
- 246 p. 79–82, https://doi.org/10.1130/G24315A.1.
- 247 DePaolo, D.J., and Wasserburg, G.J., 1976, Nd isotopic variations and petrogenetic
- 248 models: Geophysical Research Letters, v. 3, p. 249–252,
- 249 https://doi.org/10.1029/GL003i005p00249.
- 250 Garçon, M., Chauvel, C., France-Lanord, C., Limonta, M. and Garzanti, E., 2014. Which
- 251 minerals control the Nd–Hf–Sr–Pb isotopic compositions of river sediments?.
- 252 *Chemical Geology*, *364*, pp.42-55

- 253 Goldstein, S.L., and Jacobsen, S.B., 1987, The Nd and Sr isotopic systematics of river-
- 254 water dissolved material: Implications for the sources of Nd and Sr in seawater:
- 255 Chemical Geology, v. 66, p. 245–272.
- 256 Heimann, D.C., Sprague, L.A., and Blevins, D.W., 2011, Trends in suspended-sediment
- loads and concentrations in the Mississippi River Basin, 1950–2009: U.S. Geological
- 258 Survey Scientific Investigations Report 2011–5200, 33 p.
- 259 Hoffman, P.F., 1989, Precambrian geology and tectonic history of North America, in
- 260 Bally, A.W. and Palmer, A.R., eds., The Geology of North America: An Overview:
- 261 Boulder, Colorado, Geological Society of America, Geology of North America, v. A,
- 262 p. 447–512.
- 263 Horowitz, A.J., 2010, A quarter century of declining suspended sediment fluxes in the
- 264 Mississippi River and the effect of the 1993 flood: Hydrological Processes, v. 24,
- 265 p. 13–34.
- 266 Jackson, M.G., Hart, S., 2006. Strontium isotopes in melt inclusions from Samoan
- 267 basalts: Implications for heterogeneity in the Samoan plume. Earth and Planetary
- 268 Science Letters 245, 260–277. doi:10.1016/j.epsl.2006.02.040
- King, P.B., and H.M. Beikman (1974), Geologic map of the United States. Department ofthe Interior.
- 271 Knox, J.C., 2007, The Mississippi River system, in Gupta, A. ed., Large Rivers-
- 272 Geomorphology and Management: West Sussex, England, John Wiley, p. 145–182,
- 273 https://doi.org/10.1002/9780470723722.ch9.

- 274 McLennan, S.M., McCulloch, M.T., Taylor, S.R., & Maynard, J. B. (1989). Effects of
- sedimentary sorting on neodymium isotopes in deep-sea
- 276 turbidites. Nature, *337*(6207), 547.
- 277 Meade, R.H., and Moody, J.A., 2010, Causes for the decline of suspended-sediment
- discharge in the Mississippi River system, 1940–2007: Hydrological Processes,
- 279 v. 24, p. 35–49.
- 280 Munoz, S.E., Schroeder, S., Fike, D.A., and Williams, J.W., 2014, A record of sustained
- 281 prehistoric and historic land use from the Cahokia region, Illinois, USA: Geology,
- 282 v. 42, p. 499–502, https://doi.org/10.1130/G35541.1.
- 283 Munoz, S.E., Gruley, K.E., Massie, A., Fike, D.A., Schroeder, S., and Williams, J.W.,
- 284 2015, Cahokia's emergence and decline coincided with shifts of flood frequency on
- 285 the Mississippi River: Proceedings of the National Academy of Sciences of the
- 286 United States of America, v. 112, p. 6319–6324,
- 287 https://doi.org/10.1073/pnas.1501904112.
- 288 Munoz, S.E., Giosan, L., Therrell, M.D., Remo, J.W., Shen, Z., Sullivan, R.M., Wiman,
- 289 C., O'Donnell, M., and Donnelly, J.P., 2018, Climatic control of Mississippi River
- flood hazard amplified by river engineering: Nature, v. 556, p. 95–98,
- 291 https://doi.org/10.1038/nature26145.
- 292 Oh, N.H. and Raymond, P.A., 2006. Contribution of agricultural liming to riverine
- bicarbonate export and CO₂ sequestration in the Ohio River basin. *Global*
- 294 Biogeochemical Cycles, 20(3).

- 295 Padoan, M., Garzanti, E., Harlavan, Y., and Villa, I.M., 2011, Tracing Nile sediment
- sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan): Geochimica et
- 297 Cosmochimica Acta, v. 75, p. 3627–3644, https://doi.org/10.1016/j.gca.2011.03.042.
- 298 Parnell, A.C., Phillips, D.L., Bearhop, S., Semmens, B.X., Ward, E.J., Moore, J.W.,
- 299 Moore, J.W., Jackson, A.L., Grey, J., and Inger, R., 2013, Bayesian stable isotope
- 300 mixing models: Environmetrics, v. 24, p. 387–399.
- 301 Peucker-Ehrenbrink, B., Miller, M. W., Arsouze, T., & Jeandel, C. (2010). Continental
- 302 bedrock and riverine fluxes of strontium and neodymium isotopes to the
- 303 oceans. Geochemistry, Geophysics, Geosystems, v. 11, no. 3,
- 304 https://doi.org/10.1029/2009GC002869.
- 305 Sarbas, B., and Nohl, U., 2008, GEOROC Database: Geochemistry of Rocks of the
- 306 Oceans and Continents (available at http://georoc.mpch-mainz.gwdg.de/georoc/;
- 307 accessed May 2018).
- 308 Scher, H.D., and Delaney, M.L., 2010, Breaking the glass ceiling for high resolution Nd
- 309 isotope records in early Cenozoic paleoceanography: Chemical Geology, v. 269,
- 310 p. 329–338, https://doi.org/10.1016/j.chemgeo.2009.10.007.
- 311 Smith, J.A., and Baeck, M.L., 2015, "Prophetic vision, vivid imagination": The 1927
- 312 Mississippi River flood: Water Resources Research, v. 51, p. 9964–9994,
- 313 https://doi.org/10.1002/2015WR017927.
- 314 Syvitski, J.P., Vörösmarty, C.J., Kettner, A.J., and Green, P., 2005, Impact of humans on
- the flux of terrestrial sediment to the global coastal ocean: Science, v. 308, p. 376–
- 316 380, https://doi.org/10.1126/science.1109454.

- 317 Taylor, S.R., McLennan, S.M. and McCulloch, M.T., 1983. Geochemistry of loess,
- 318 continental crustal composition and crustal model ages. *Geochimica et*
- 319 *Cosmochimica Acta*, 47(11), pp.1897-1905
- 320 Welch, B.L., 1947, The generalization of student's' problem when several different
- 321 population variances are involved: Biometrika, v. 34, p. 28–35.
- 322 White, W.M., Patchett, J., 1984. Hf-Nd-Sr isotopes and incompatible element abundances
- in island arcs" implications for magma origins and crust-mantle evolution. Earth and
- 324 Planetary Science Letters 67, 167–185.
- 325

326 FIGURE CAPTIONS

- 327 Figure 1. The Mississippi River system and the geological provinces of its basin
- 328 (Hoffman, 1989), showing locations of tributary floodplain sediment samples collected
- 329 for this study, oxbow lake sediment samples (Munoz et al. 2015; 2018), and artificial
- impoundments (dams on the Missouri River; lock and dam structures on the Upper
- 331 Mississippi and Ohio Rivers). More detailed maps of floodplain sediment sampling
- 332 locations are available in Fig. DR2.
- 333

- 340
- 341 Figure 3. Density plots describing the proportion of a floodplain lake sample contributed
- 342 by each tributary derived from Bayesian mixing model *simmr* (Parnell et al., 2013). A:
- A.D. 1160 flood in at Horseshoe Lake, Illinois (HRM). B: A.D. 1450 background in
- 344 HRM. C: A.D. 1937 flood in Lake Mary, Mississippi (MRY). D: A.D. 2011 flood in
- 345 MRY.
- 346
- ¹GSA Data Repository item 2018xxx, supplemental data tables (Tables DR1 and DR2)
- 348 and figures (Figs. DR1–DR4), is available online at
- 349 http://www.geosociety.org/datarepository/2018/, or on request from
- 350 editing@geosociety.org.