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Abstract. A standard artificial compression (AC) method for incompressible flow is
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for, typically, ε = k (timestep). It is fast, efficient and stable with accuracy O(ε + k). For adaptive (and thus variable)
timestep kn (and thus ε = εn) its long time stability is unknown. For variable k, ε this report shows how to adapt a
standard AC method to recover a provably stable method. For the associated continuum AC model, we prove convergence
of the ε = ε(t) artificial compression model to a weak solution of the incompressible Navier–Stokes equations as ε = ε(t) → 0.
The analysis is based on space-time Strichartz estimates for a non-autonomous acoustic equation. Variable ε, k numerical
tests in 2d and 3d are given for the new AC method.

1. Introduction

Of the many methods for predicting incompressible flow, artificial compression (AC) methods, based on
replacing ∇ · u = 0 by εpt + ∇ · u = 0 (0 < ε small) and advancing the pressure explicitly in time, are
among the most efficient. These methods also have a reputation for low time accuracy. Herein we study
one source of low accuracy, propose a resolution, give analytical support for the corrected method and
show some numerical comparisons of a common AC method and its proposed correction. Consider the
incompressible Navier–Stokes equations in a 3d domain Ω, here either a bounded open set or R3,

{

ut + (u · ∇)u + ∇p − ν∆u = f(t, x)
∇ · u = 0,

(1)

where (t, x) ∈ [0, T ] × Ω, u ∈ R3 is the velocity, p ∈ R the pressure, ν the kinematic viscosity, and f ∈ R3

the external force.
AC methods, e.g., [8,13,30], are based on approximating the solution of the slightly compressible

equations
{

uε
t + (uε · ∇)uε + 1

2 (∇ · uε)uε + ∇pε − ν∆uε = f

εpε
t + ∇ · uε = 0, where 0 < ε is small.

(2)

Here uε is the approximate velocity, pε is the approximate pressure and the nonlinearity has been explicitly
skew-symmetrized. (This is a common formulation but not the only one, Sect. 1.1). Time accuracy
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is obtained1 by either using explicit time discretization methods and small time steps for short time
simulations, using high order methods with moderate timesteps for longer time simulations or by adding
time adaptivity to a low or high order implicit method. The first is not considered herein. The second
leads to highly ill-conditioned linear systems.2 (Shen [32] also suggests that an accuracy barrier exists in
AC methods.) The third, considered herein, has the possibility to both increase efficiency and provide
time accuracy. To our knowledge, the defect correction based scheme of Guermond and Minev [16] is the
only previous work in this direction.

To fix ideas, suppress the space discretization and consider a commonly used fully-implicit time dis-
cretization
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For other time discretizations see, e.g., [8,28,45,46]. Here k is the timestep, tn = nk, uε
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This method is unconditionally, nonlinearly, long time stable, e.g., [13,14]. It has consistency error O(k+ε)
and thus determines ε balancing errors by ε = k. Time adaptivity means decreasing or increasing the
time step according to solution activity, [18]. Given the O(k + ε) consistency error, this means varying
both k = kn and ε = εn. To our knowledge, no long time stability analysis of this method with variable
k = kn and ε = εn is known or even possible at present, Sect. 2. Peculiar solution behavior seen in an
adaptive simulation thus cannot be ascribed to either a flow phenomenon or to an anomaly created by
the numerical method. This is the problem we address herein for the time discretized AC method (with
ε = εn) and for the associated continuum AC model (with ε = ε(t)).

In Sect. 2 we first show that the standard AC method, (3) above, is 0-stable for variable ε, k provided
ε, k are slowly varying. 0-stability allows non-catastrophic exponential growth. Thus, (3) suffices for
short time simulations with nearly constant timesteps. The long time stability of (3) with variable-ε, k is
analyzed in Sect. 2 as well. Some preliminary conclusions are presented but then complete resolution of
instability or stability is an open problem for the standard method.

Section 2 presents a stable extension of AC methods to variable ε, k, one central contribution of this
report. The proposed method is
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This method reduces to the standard AC method (3) for constant ε, k. Section 2 shows that the new
method (4) is unconditionally, nonlinearly, long time stable without assumptions on εn, kn, Theorem 2.3.

1 The separate issue of pressure initialization, not addressed here, also exists. We do note that for internal flows pressure
data is often more reliable than velocity data.
2 For a 4th order time discretization, ε = O(k4) is necessary to retain accuracy. This leads to a viscous term −ν∆uε

n+1 −

k−3∇∇ · uε

n+1 and a linear system to be solved at each timestep with condition number O(timestep−2 × spacemesh−2).
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In numerical tests of (4), for problems on bounded domains, in Sect. 5, the new method works well (as
expected) when kn+1 = εn+1 is picked self adaptively to ensure ||∇ · u|| is below a present tolerance. It
also performs well in tests where kn = εn is pre-chosen to try to break the method’s stability or physical
fidelity by increasing or fluctuating ε, k.

In support, we give an analysis of the physical fidelity of the non-autonomous continuum model
associated with (4):

∂tu
ε + (uε · ∇)uε + 1

2 (∇ · uε)uε + ∇pε − ν∆uε = f,

∂t(ε(t)p
ε) − 1

2εt(t)p
ε + ∇ · uε = 0.

(5)

Sections 3 and 4 address the question: Under what conditions on ε(t) do solutions to the new AC model
(1.3) converge to weak solutions of the incompressible NSE as ε → 0? Convergence (modulo a subse-
quence) is proven for the pure Cauchy problem under the assumption on the fluctuation εt(t) that

ε(t) ≤ Cǫ → 0,

∣

∣

∣

∣

εt(t)

ε(t)

∣

∣

∣

∣

≤ C, for t ∈ [0, T ]. (6)

This extension of model convergence to the non-autonomous system is a second central contribution
herein. In self-adaptive simulations based on (4), this condition requires smooth adjustment of timesteps
and precludes a common strategy of timestep halving or doubling. A similar smoothness condition on εt(t)
recently arose in stability analysis of other variable timestep methods in [34]. Weakening the condition
(6) on ε(t) (which we conjecture is possible) is an important open problem.

1.1. Related Work

Artificial compression (AC) methods were introduced by Chorin [4,5], Oskolkov [29] and Temam [41,42].
For constant (not time variable) ε, convergence of the AC approximation (2) to a weak solution of the
NSE (1) as ε → 0 has been proven for bounded 2d domains Temam [41,42,44] (using the method of
fractional derivatives of Lions [24]). Donatelli–Marcati [9,10] extended ε → 0 convergence to the case
of the 3d whole space and exterior domains and in [9] by using the dispersive structure of the acoustic
pressure equation. There is also a growing literature establishing convergence of discretizations of AC
models to NSE solutions including [3,6,11,14,15,19,22,31].

1.2. Analytical Difficulties of the ε(t) → 0 Limit

For Ω = R3, one difficulty in establishing convergence is the estimate for acoustic pressure waves. From the
acoustic pressure wave equation (32) for the new model (5), the pressure wave speed is O(1/ε), suggesting
only weak convergence of the velocity uε. Strong convergence of uε thus hinges upon the dispersive
behavior of these waves at infinity. In the case when ε is constant, the classical Strichartz type estimates
[12,20,37] together with a refined bilinear estimate [21,35] of the three-dimensional inhomogeneous wave
equations can be directly applied to infer (after some technical difficulties) sufficient control of the pressure
waves. However, when ε = ε(t), the resulting acoustic equation is non-autonomous. There are still results
on the space-time Strichartz estimates for variable-coefficient wave equations at our disposal; see, for e.g.
[40]. However the refined bilinear estimates do not seem to be immediately available, since these estimates
are based on the explicit structure of the Kirchhoff’s formula for the classical wave operator. To overcome
this difficulty, we further introduce a scale change in the time variable so that the resulting pressure wave
equation becomes the classical wave operator. This allows us to obtain the refined bilinear estimates, and
therefore establish the desired dispersive estimates for the pressure. Please refer to Sect. 3.3 for more
details.
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1.3. Other AC Formulations

Generally AC methods skew-symmetrize the nonlinearity and include a term εpt that uncouples pressure
and velocity and lets the pressure be explicitly advanced in time. There are several choices for the first
and several for the second. A few alternate possibilities are described next and combinations of these are
certainly possible.

Motivated by the equations of hyposonic flow [47], the material derivative can be used for the artificial
compression term, e.g., [29],

{

∂tu
ε + (uε · ∇)uε + 1

2 (∇ · uε)uε + ∇pε − ν∆uε = f,

ε (∂tp
ε + uε · ∇pε) + ∇ · uε = 0.

(7)

Numerical dissipation can be incorporated into the pressure equation, e.g. [22], as in
{

∂tu
ε + (uε · ∇)uε + 1

2 (∇ · uε)uε + ∇pε − ν∆uε = f

ε (∂tp
ε + pε) + ∇ · uε = 0.

(8)

A dispersive regularization has been included in the momentum equation in [8],
{

∂t

(

uε − 1
ε∇∇ · uε

)

+ (uε · ∇)uε + 1
2 (∇ · uε)uε + ∇pε − ν∆uε = f,

ε∂tp
ε + ∇ · uε = 0.

(9)

The nonlinearity can be skew symmetrized in various ways, replacing u · ∇u in the NSE by one of the
following

standard skew-symmetrization : (uε · ∇)uε + 1
2 (∇ · uε)uε

Rotational form : (∇ × uε) × uε

EMA form [7] : (∇uε + (∇uε)
T
)uε + (∇ · uε)uε

The penalty model (not studied herein) where ∇ · u = 0 is replaced by ∇ · uε = −εpε, is sometimes also
viewed as an artificial compression model, [30].

2. Stability of Variable-ε AC Methods

We begin by considering variable ε stability of the standard method under noslip boundary conditions
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subject to initial and boundary conditions:

uε
0(x) = u0(x), pε

0(x) = p0(x), in Ω ,

uε
n = 0 on ∂Ω for t > 0. (10)

We first prove 0-stability, namely that uε
n can grow no faster than exponential, when εn is slowly varying.

The case when f ≡ 0 is clearest since then any energy growth is then incorrect.

Theorem 2.1. For the standard method (10), let

fn = 0 for all n

and suppose

εn+1 − εn

kn
≤ βεn for some β for all n.
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Then
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from which the first result follows immediately. For the second inequality, note that since 1 + kjβ ≤ ekjβ

we have

Πn−1
j=1 (1 + kjβ) ≤ Πn−1
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[
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]
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Since β (by assumption) is independent of the timestep k, this implies 0-stability. For short time sim-
ulations, 0-stability suffices, but is insufficient for simulations over longer time intervals. The assumption
that ε (and thus also the timestep) is slowly varying:

εn+1 − εn

kn
≤ βεn

precludes the common adaptive strategy of timestep halving and doubling. For example, suppose

εn+1 = 2εn and kn+1 = 2kn then

εn+1 − εn

knεn
=

2εn − εn

knεn
=

1

kn
→ ∞ as k → 0.

3 Alternately, the algebraic identity vw = 1

2
v2 + 1

2
w2 − 1

2
(v − w)2.
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2.1. The Corrected, Variable-ε AC Method

The above proof indicates that the problem arises from the fact that the discrete εpt term is not a
time difference when multiplied by p. Under noslip boundary conditions, the standard method obeys the
discrete energy law
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Since the variable-ε term (εn − εn+1)(pn)2 has two signs, depending only on whether the timestep is
increasing or decreasing, it can either dissipate energy or input energy. The sign of the RHS shows that
if:

• kn is decreasing the effect of changing the timestep is dissipative, while if
• kn is increasing the effect of changing the timestep inputs energy into the approximate solution.

In the second case, if the term (εn − εn+1)|pn|2 dominates in the aggregate the other dissipative terms
non-physical energy growth may be possible. However, we stress that we have neither a proof of long time
stability of the variable-ε standard method nor a convincing example of instability. Resolving this is an
open problem discussed in the next sub-section.

The practical question is how to adapt the AC method to variable-ε so as to ensure long time stability.
After testing a few natural alternatives we propose the new AC method
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When ε is constant the new method (13) reduces to the standard method (3).

Remark 2.2 (Higher order methods).

If a higher order time discretization such as BDF2 is desired, the modification required is to use the
higher order discretization for the momentum equation, the same modification of the continuity equation
and select εn = kmethod order

n to preserve higher order consistency error. For example, for variable step
BDF2, let τ = kn+1/kn. Then we have
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n+1 = 0 with εn+1 = k2
n+1.

This is easily proven A−stable for constant timesteps. Since BDF2 is not A−stable for increasing
timesteps, the above would also not be expected to be more than 0−stable for increasing timesteps.

Theorem 2.3. The variable-ε, k method (13) under noslip boundary conditions is unconditionally, long
time stable. For any N > 0 the energy equality holds:
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Proof. We follow the stability analysis in the last proof. Take an inner product of the first equation
with kn+1u

ε
n+1, the second with kn+1p

ε
n+1, integrate over the flow domain, integrate by parts, use skew

symmetry, use the polarization identity twice and add. This yields
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Upon summation the first two terms telescope, completing the proof of the energy equality. The stability
estimate follows from the energy equality and the Cauchy–Schwarz–Young inequality. �

2.2. Insight into a Possible Variable-ε Instability

The difficulty in ensuring long time stability when simply solving (2) for variable ε can be understood
at the level of the continuum model. When f = 0 the NSE kinetic energy is monotonically decreasing
so any growth in model energy represents an instability. Dropping the superscript ε for this sub-section,
consider the kinetic energy evolution of

{

∂tu + ∇p = ν∆u − (u · ∇)u − 1
2 (∇ · u)u,

ε(t)∂tp + ∇ · u = 0,
(14)

subject to periodic or no slip boundary conditions. Computing the model’s kinetic energy by taking the
inner product with, respectively, u and p, integrating then adding gives the continuum equivalent of the
kinetic energy law of the standard AC method (11) above:

d

dt

1

2

∫

|u(t)|2 + ε(t)p(t)2dx +

∫

ν|∇u|2dx = +

∫

εt(t)p(t)2dx. (15)

The RHS suggests the following:
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Decreasing ε ( εt(t) < 0 ) acts to decrease the L2 norm of u and p while increasing ε ( εt(t) > 0)
acts to increase the L2 norm of u and p.

Thus it seems like an example of instability would be simple to generate by taking a solution with
large pressure, small velocity, small ν and εt(t) >> ε(t). However, consider next the equation for pressure
fluctuations about a rest state. Beginning with

∂tu + ∇p = 0 and ε(t)∂tp + ∇ · u = 0, (16)

eliminate the velocity in the standard manner for deriving the acoustic equation. This yields the following
induced equation for acoustic pressure oscillations

(ε(t)pt)t − △p = 0.

Oddly, ε(t) = t (increasing) occurs in [23]. Multiplying by pt and integrating yields

d

dt

∫

ε(t)(pt)
2 + |∇p|2dx = −

∫

εt(t)(pt)
2dx. (17)

The RHS of (17) yields the nearly opposite prediction that
Decreasing ε ( εt(t) < 0 ) acts to increase the L2 norm of pt and ∇p while increasing ε ( εt(t) > 0)

acts to increase the L2 norm of pt and ∇p.
The analytical conclusion is that long time stability of the standard AC method with variable-ε, k is

a murky open problem.

3. Analysis of the Variable-ε Continuum AC Model

The last subsection suggests that insight into the new model may be obtained through analysis of its
continuum analog without the assumption of small fluctuations about a rest state. Accordingly, this
section considers the pure Cauchy problem, Ω = R3, for

{
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ε + ∇pε = ν∆uε − (uε · ∇)uε − 1

2 (∇ · uε)uε + fε
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ε) − 1
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ε + ∇ · uε = 0.

(18)

To explain the change of the pressure term in the continuity equation from εpε
t to ∂t(ε(t)p

ε) − 1
2εt(t)p

ε,
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)

t

= pε

[

(εpε)t − 1

2
εtp

ε

]

= pε

[

εpε
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1

2
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ε

]

.

This can equivalently be formulated as 1
2 (εpε)t + 1

2εpε
t since

(

1

2
ε(pε)2

)

t

= pε 1

2
[(εpε)t + εpε

t ] .

Recall from (6) that our assumptions on the relaxation parameter ε(t) are

ε(t) ∈ C1([0, T ]), 0 < cǫ ≤ ε(t) ≤ Cǫ,

∣

∣

∣

∣

εt(t)

ε(t)

∣

∣

∣

∣

≤ C, (19)

for t ∈ [0, T ], c and C are some positive constants, and ǫ > 0 is some vanishing constant.
From the assumption (19) we may write

ε(t) = ǫA(t) (20)

for some function A(t) satisfying

A ∈ C1([0, T ]), c ≤ A(t) ≤ C,

∣

∣

∣

∣

At(t)

A(t)

∣

∣

∣

∣

≤ C. (21)

We will first recall the notion of Leray weak solution of the NS equation, and then derive the basic
energy estimate for the new AC system (1.3), which will lead to the appropriate assumptions on initial
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conditions. We then use the assumption on the variable ε(t), and perform a dispersive approach to obtain
the Strichartz estimate for the pressure.

3.1. Leray Weak Solution for NSE

We analyze the ε → 0 limit of the continuum AC model (5). Since we will be focused on the convergence
of the approximated system to a weak solution of the NSE, from now on we will for simplicity take ν = 1
and f = 0. The inclusion of a body force and a different value of the kinematic viscosity adds no technical
difficulty to the analysis.

Let us recall the notion of a Leray weak solution (see, for e.g. Lions [26] and Temam [44]) of the NSE.

Definition 1. We say that u ∈ L∞([0, T ];L2(R3)) ∩ L2([0, T ]; Ḣ1(R3)) is a Leray weak solution of the
NS equation if it satisfies (1) in the sense of distribution for all test functions ϕ ∈ C∞

0 ([0, T ] × R3) with
∇ · ϕ = 0 and moreover the following energy inequality holds for every t ∈ [0, T ]

1

2

∫

R3

|u(t, x)|2 dx + ν

∫ t

0

∫

R3

|∇u(s, x)|2 dxds

≤ 1

2

∫

R3

|u(0, x)|2 dx.

(22)

3.2. Energy Estimates

We can easily verify that system (5) obeys the classical energy type estimate.

Theorem 3.1. Let (uε, pε) be a strong solution to (5) on [0, T ]. Then it follows that for all t ∈ [0, T ]

E(t) +

∫ t

0

∫

R3

|∇uε(s, x)|2 dxds = E(0), (23)

where

E(t) =
1

2

∫

R3

(

|uε(t, x)|2 + ε(t)|pε(t, x)|2
)

dx. (24)

Since we expect the approximated solution (uε, pε) to converge to the Leray solution, we require the
finite energy constraint to be satisfied by (uε, pε). So following [9] we further restrict the initial condition
to system (5) (or (2)) to satisfy

{

uε
0 := uε(0, ·) → u0 strongly in L2(R3) as ε → 0,
√

ε(0)pε
0 :=

√

ε(0)pε(0, ·) → 0 strongly in L2(R3) as ε → 0.
(25)

This way we can obtain the following uniform estimates which are similar to those in [9, Corollary
4.2], except for (27), where we can use assumption (6) to conclude εt = O(ε), and hence we omit the
proof.

Corollary 3.2. Under the assumptions of Theorem 3.1, together with (25), it follows that
√

εpε is bounded in L∞([0, T ];L2(R3)), (26)

εpε
t is relatively compact in H−1([0, T ] × R3), (27)

∇uε is bounded in L2([0, T ] × R3), (28)

uε is bounded in L∞([0, T ];L2(R3)) ∩ L2([0, T ];L6(R3)), (29)

(uε · ∇)uε is bounded in L2([0, T ];L1(R3)) ∩ L1([0, T ];L3/2(R3)), (30)

(∇ · uε)uε is bounded in L2([0, T ];L1(R3)) ∩ L1([0, T ];L3/2(R3)). (31)
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3.3. Acoustic Pressure Wave and Strichartz Estimates

Note that we can derive from system (5) that the pressure pε satisfies the following wave equations

(εpε)tt −
(

1

2
εtp

ε

)

t

− ∆pε = −∆(∇ · uε) + ∇ ·
[

(uε · ∇)uε +
1

2
(∇ · uε)uε

]

. (32)

Performing the following rescaling

τ =
t√
ǫ
, p̊(τ, x) = pε(

√
ǫτ, x), ũ(τ, x) = uε(

√
ǫτ, x), Ã(τ) = A(

√
ǫτ), (33)

and plugging into (32) we obtain

(Ãp̊)ττ − ∆p̊ −
(

1

2
Ãτ p̊

)

τ

= −∆(∇ · ũ) + ∇ ·
[

(ũ · ∇)ũ +
1

2
(∇ · ũ)ũ

]

.

Setting

p̃(τ) :=

√

Ã(τ)p̊(τ),

then the above acoustic equation becomes following second order hyperbolic equation

(
√

Ãp̃τ )τ − 1
√

Ã
∆p̃ = −∆(∇ · ũ) + ∇ ·

[

(ũ · ∇)ũ +
1

2
(∇ · ũ)ũ

]

. (34)

Note that here the wave operator contains time-dependent coefficients. The space-time Strichartz
estimates involving variable coefficients were established by Mockenhaupt et al. [27] when the coefficients
are smooth. Operators with C1,1 coefficients were first considered by Smith [33] using wave packets. An
alternative method based on the FBI transform was later employed by Tataru [38–40] to prove the full
range of Strichartz estimates under weaker assumptions. It can be easily checked that the wave operator
at the left-hand side of (34) does satisfy those assumptions provided that, in addition to (21), A(t) enjoys
certain extra regularity, for e.g., Att ∈ L1([0, T ]).

However, assuming that A is only C1, we can further introduce a time-scale change

τ = β(s), p̄(s, x) = p̃(β(s), x), ū(s, x) = ũ(β(s), x), a(s) = Ã(β(s)).

From (33)–(34) we know that
√

a =
√

Ã(β) is Lipschitz in β. From standard ODE theory, we can uniquely

solve the following ODE for β:

β′(s) =
√

a(s) ≥
√

c > 0, β(0) = 0, (35)

which allows us to rewrite (34) as

p̄ss − ∆p̄ =
√

a

{

−∆(∇ · ū) + ∇ ·
[

(ū · ∇)ū +
1

2
(∇ · ū)ũ

]}

, (36)

which fits well in the classical framework of Strichartz estimates for wave equations, as given in the
following theorem.

Theorem 3.3. (see, for e.g. [20]). Let w be a (weak) solution of the following wave equations in [0, T ]×Rn

{

wtt − ∆w = F (t, x),

w(0, ·) = w0, wt(0, ·) = w1.
(37)

Then the following Strichartz estimates hold

‖w‖Lq
t Lr

x
+ ‖wt‖Lq

t W −1,r
x

� ‖w0‖Ḣγ
x

+ ‖w1‖Ḣγ−1
x

+ ‖F‖
Lq̃′

t Lr̃′

x

, (38)
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where (q, r, γ) and (q̃′, r̃′) satisfy
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2 ≤ q, r ≤ ∞,

(q, r, γ), (q̃′, r̃′, γ) 
= (2,∞, 1), when n = 3,

1

q
+

n

r
=

n

2
− γ =

1

q̃′
+

n

r̃′
− 2,

2

q
+

n − 1

r
≤ n − 1

2
,

2

q̃
+

n − 1

r̃
≤ n − 1

2
.

(39)

For our purpose, n = 3, and we will take (q, r) = (4, 4), (q̃′, r̃′) = (1, 3/2), and γ = 1/2. This way the
above Strichartz estimate becomes

‖w||L4
t,x

+ ‖wt‖L4
t W −1,4

x
� ‖w0‖

Ḣ
1
2

x

+ ‖w1‖
Ḣ

−
1
2

x

+ ‖F‖
L1

t L
3
2
x

. (40)

Moreover, in the case when n = 3, taking advantage of the explicit structure of the Kirchhoff’s formula
for the classical wave operator, one may perform a refined bilinear estimates as in [21, Theorem 2.2] in
the weak solution setting to obtain (see also [9, (2.4)])

‖w||L4
t,x

+ ‖wt‖L4
t W −1,4

x
� ‖w0‖

Ḣ
1
2

x

+ ‖w1‖
Ḣ

−
1
2

x

+ ‖F‖L1
t L2

x
. (41)

Following [9], we decompose the pressure as p̄ = p̄1 + p̄2 where
{

∂ssp̄1 − ∆p̄1 =
√

a∇ ·
[

(ū · ∇)ū + 1
2 (∇ · ū)ū

]

=: ∇ · F̄ ,

p̄1(x, 0) = p̄(x, 0), ∂sp̄1(x, 0) = p̄s(x, 0),
(42)

{

∂ssp̄2 − ∆p̄2 = −√
a∆(∇ · ū),

p̄2(x, 0) = ∂sp̄2(x, 0) = 0.
(43)

Applying Theorem 3.3 to the above two systems and unraveling the change-of-variables (33) we obtain
the following estimates.

Theorem 3.4. Let (uε, pε) be a strong solution of the Cauchy problem on [0, T ] to system (5) with initial
data (uε

0, p
ε
0) satisfying (25). Assume also that ε(t) satisfies (6). Then for ǫ small enough the following

estimate holds.

ǫ
3
8 ‖pε‖L4

t W −2,4
x

+ ǫ
7
8 ‖pε

t‖L4
t W −3,4

x
�

√
ǫ‖pε

0‖L2
x

+ ‖∇ · uε
0‖H−1

x

+
√

T‖∇ · uε‖L2
t,x

+

∥

∥

∥

∥

(uε · ∇)uε +
1

2
(∇ · uε)uε

∥

∥

∥

∥

L1
t L

3
2
x

.
(44)

Proof. We first apply (40) with w = ∆−1/2p̄1 to obtain

‖p̄1‖L4
sW −1,4

x
+ ‖∂sp̄1‖L4

sW −2,4
x

� ‖p̄(x, 0)‖
Ḣ

−
1
2

x

+ ‖p̄s(x, 0)‖
Ḣ

−
3
2

x

+ ‖F̄‖
L1

sL
3
2
x

. (45)

Then we apply (41) to w = ∆p̄2 to obtain

‖p̄2‖L4
sW −2,4

x
+ ‖∂sp̄2‖L4

sW −3,4
x

� ‖
√

a(∇ · ū)‖L1
sL2

x
� ‖(∇ · ū)‖L1

sL2
x
. (46)

Unraveling notations, we have that

‖∇ · ū‖L1
s

=

∫ β−1(T/
√

ǫ)

0

|∇ · ū(s)| ds ≤
[

β−1

(

T√
ǫ

)]1/2

‖∇ · ū‖L2
s

≤
√

T

(cǫ)1/4
‖∇ · ū‖L2

s
,

where the last inequality is due to the fact that (β−1)′ = 1/
√

a ≤ 1/
√

c.
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Moreover

‖p̄‖Lr
s

= ǫ−1/2r‖A
r−1

2r pε‖Lr
t

∼ ǫ−1/2r‖pε‖Lr
t
, p̄s =

√
ǫA(

√
Apε)t. (47)

Putting together (45) and (46) we have that

‖p̄‖L4
sW −2,4

x
+ ‖p̄s‖L4

sW −3,4
x

� ‖p̄(x, 0)‖
Ḣ

−
1
2

x

+ ‖p̄s(x, 0)‖
Ḣ

−
3
2

x

+

√
T

ǫ1/4
‖∇ · ū‖L2

sL2
x

+ ‖F̄‖
L1

sL
3
2
x

.

Note from the second equation in (5) and (20) that

√
ǫA(

√
Apε)t = −∇ · u√

ǫ
. (48)

Therefore from (47) and (48) we can estimate

‖p̄s(x, 0)‖
Ḣ

−
3
2

x

≤ ‖p̄s(x, 0)‖Ḣ−1
x

� ǫ−1/2‖∇ · uε
0‖H−1

x
.

Putting all the above together we derive (44). �

Given the a priori energy estimates Theorem 3.1 and the pressure estimates Theorem 3.4, we can now
obtain the global existence of weak solutions to system (5).

Theorem 3.5. Let ε(t) > 0 and (uε
0, p

ε
0) satisfy condition (25). Then for any T > 0, system (5) admits a

weak solution (uε, pε) with the following properties

(1) uε ∈ L∞([0, T ];L2(R3)) ∩ L2([0, T ]; Ḣ1(R3));
(2)

√
εpε ∈ L∞([0, T ];L2(R3)).

Proof. We will prove the theorem using the very classical Friedrich’s method (also called Galerkin method
in the periodic case) which consists in approximating the system (5) by a cutoff in the frequency space.
For this, we define the operator Jn as follows.

Jnf := F−1
(

1B(0,n)(ξ)f̂(ξ)
)

,

where F denotes the Fourier transform in the space variables. Let us consider the approximate system:

∂tu
ε
n + Jn (Jnuε

n · ∇Jnuε
n) + 1

2Jn [(∇ · Jnuε
n)Jnuε

n] + ∇Jnpε
n − ∆Jnuε

n = 0,

∂tp
ε
n +

εt(t)

2ε(t)
pε

n +
1

ε(t)
∇ · Jnuε

n = 0
(49)

with initial data

uε
n(0, ·) = Jnuε(0, ·), pε

n(0, ·) = Jnpε(0, ·).

The above system appears as a system of ODEs on L2 in transform space, and hence the standard
Cauchy–Lipschitz theorem implies the existence of a strictly positive maximal time Tn > 0 such that a
unique solution exists which is continuous in time with values in L2. On the other hand, as J2

n = Jn,
we claim that Jn(uε

n, pε
n) is also a solution. Therefore uniqueness implies that Jn(uε

n, pε
n) = (uε

n, pε
n) and

hence one can remove all the Jn in front of uε
n and pε

n in (49) keeping only those in front of the nonlinear
terms:

∂tu
ε
n + Jn (uε

n · ∇uε
n) + 1

2Jn [(∇ · uε
n)uε

n] + ∇pε
n − ∆uε

n = 0,

∂tp
ε
n +

εt(t)

2ε(t)
pε

n +
1

ε(t)
∇ · uε

n = 0
(50)
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Since Jn is a Fourier multiplier, it commutes with constant coefficient differentiations and hence, the
energy estimate (23) still holds:

1

2

(

‖uε
n‖2

L2 + ε‖pε
n‖2

L2

)

(t) +

∫ t

0

‖∇uε
n‖2

L2

=
1

2

(

‖Jnuε0‖2
L2 + ε(0)‖Jnpε0‖2

L2

)

≤ C.

This implies that the L2 norm of (uε
n, pε

n) is controlled and thus Tn = +∞.
Moreover we also have that for any T > 0, there exists some constant CT such that

‖∂tu
ε
n‖L2(0,T ;H−1) ≤ CT .

Therefore, extracting a subsequence, standard compactness arguments allow us to pass to the limit in
(50), proving the theorem. �

4. Convergence to the NSE

The goal of this section is to establish the convergence of the AC system ( 5) to the NS system, cf.
Theorem 4.5. The key step is to show the strong convergence of the gradient part and the divergence-free
part of the velocity field. For this, let us denote P the Leray projection defined by

P = I − Q, where Q = ∇(∆−1∇·). (51)

Note that P and Q are both bounded linear operators on W k,q(R3) for any k and q ∈ (1,∞). See, e.g.,
[36].

From Corollary 3.2 and Theorem 3.4 we easily obtain the following result.

Proposition 4.1. Let the assumptions in Theorem 3.4 hold. Then as ε → 0 it follows that

εpε → 0 strongly in L∞([0, T ];L2(R3)) ∩ L4([0, T ];W−2,4(R3)), (52)

∇ · uε → 0 strongly in W−1,∞([0, T ];L2(R3)) ∩ L4([0, T ];W−3,4(R3)). (53)

Proof. It is easily seen that (52) follows from (26), (44). Further, (53) follows from (44) and the second
equation of (5). �

4.1. Strong Convergence of Qu
ε

We will first prove that Quε goes to zero in some strong sense as ε → 0.

Lemma 4.2. Let (uε, pε) be the solution of the Cauchy problem to system (5) with initial data (uε
0, p

ε
0)

satisfying (25). Assume also that ε(t) satisfies (19). Then for any 4 ≤ p < 6,

Quε → 0 in L2([0, T ];Lp), as ε → 0. (54)

Proof. We follow the idea from [9, Proposition 5.3]. Consider the standard mollifier

η ∈ C∞
0 (R3), η ≥ 0,

∫

R3

η dx = 1; ηα(x) := α−3η(x/α), 0 < α < 1.

Set fα := f ∗ ηα. Then for any f ∈ Ḣ1(R3) it holds

‖f − fα‖Lp ≤ Cα1−3( 1
2
− 1

p )‖∇f‖L2 , ‖fα‖Lr ≤ Cα−s−3( 1
q

− 1
r )‖f‖W −s,q (55)

where p ∈ [2, 6], 1 ≤ q ≤ r ≤ ∞, s ≥ 0.
With the above, we decompose Quε as

‖Quε‖L2
t Lp

x
≤ ‖Quε − (Quε)α‖L2

t Lp
x

+ ‖(Quε)α‖L2
t Lp

x
=: J1 + J2.
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Applying (55) to J1 we have

J1 ≤ Cα1−3( 1
2
− 1

p )

(

∫ T

0

‖∇Quε‖2
L2

x
dt

)1/2

≤ Cα1−3( 1
2
− 1

p )‖∇uε‖L2
t L2

x
.

As for J2, from (48) we see that

Quε = ∇∆−1(∇ · uε) = −ǫ∇∆−1

(

Apε
t +

1

2
Atp

ε

)

.

Thus from (55) we have

J2 = ǫ

∥

∥

∥

∥

∇∆−1

(

Apε
t +

1

2
Atp

ε

)

∗ ψα

∥

∥

∥

∥

L2
t Lp

x

� ǫα− 3
2
−3( 1

4
− 1

p )‖Apε
t‖L2

t W −3,4
x

+ ǫα− 1
2
−3( 1

4
− 1

p )‖Atp
ε‖L2

t W −2,4
x

� T
1
4 ǫ

1
8 α− 3

2
−3( 1

4
− 1

p )‖ǫ
7
8 pε

t‖L4
t W −3,4

x
+ T

1
4 ǫ

5
8 α− 1

2
−3( 1

4
− 1

p )‖ǫ
3
8 pε‖L4

t W −2,4
x

.

Now summing up the estimates for J1 and J2 and using Corollary 3.2 and Theorem 3.4 we find that for
any 4 ≤ p < 6,

‖Quε‖L2
t Lp

x
� α1−3( 1

2
− 1

p ) + ǫ
1
8 α− 3

2
−3( 1

4
− 1

p ) + ǫ
5
8 α− 1

2
−3( 1

4
− 1

p ).

Therefore when choosing, e.g.,

α = ǫ
1
14 ,

the above estimate becomes

‖Quε‖L2
t Lp

x
� ǫ

6−p

28p + ǫ
6+15p

28p � ǫ
6−p

28p , for any 4 ≤ p < 6,

which implies (54). �

4.2. Strong Convergence of Pu
ε

Let us first recall the celebrated Aubin–Lions lemma [2,25].

Lemma 4.3. Let X0, X and X1 be Banach spaces with X0 ⊂ X ⊂ X1. Suppose that X0 is compactly
embedded in X and that X is continuously embedded in X1. Suppose also that X0 and X1 are reflexive.
For 1 < p, q < ∞, let

W :=

{

u ∈ Lq([0, T ];X0) :
du

dt
∈ Lq([0, T ];X1)

}

.

Then the embedding of W into Lp([0, T ];X) is compact.

Next we will apply the above lemma to establish the strong compactness of the divergence-free part
of the velocity field Puε.

Lemma 4.4. Let (uε, pε) be the solution of the Cauchy problem to system (5) with initial data (uε
0, p

ε
0)

satisfying (25). Assume also that ε(t) satisfies (21). Then Puε is pre-compact in L2([0, T ];L2
loc

(R3)).

Proof. We follow the standard idea in treating the NS equation to show that

Puε
t is uniformly bounded in L

4
3 ([0, T ];H−1(R3)). (56)

To this end, we apply P to the first equation in (5) to obtain

Puε
t = ∆(Puε) − P [(uε · ∇)uε] − P

[

1

2
(∇ · uε)uε

]

.



JMFM Analysis of Variable-Step Page 15 of 20    30 

From Theorem 3.1 we know that uε is uniformly bounded in L2([0, T ];H1(R3)), and hence ∆(Puε) is
uniformly bounded in L2([0, T ];H−1(R3)). The estimates for the second and the third terms on the
right-hand side of the above equation are quite similar. So we only consider the second term. From [43,
Lemma2.1] we know that

‖(uε · ∇)uε‖H−1 ≤ ‖uε‖
1
2

L2‖uε‖
3
2

H1 .

Therefore

‖(uε · ∇)uε‖
L

4
3
t H−1

x

≤ ‖uε‖
1
2

L∞

t L2
x
‖uε‖

3
2

L2
t H1

x

,

which implies (56), and hence proves the lemma. �

4.3. Convergence Theorem

We are now in a position to state and prove the main theorem of this section.

Theorem 4.5. Let (uε, pε) be the solution of the Cauchy problem to system (5) with initial data (uε
0, p

ε
0)

satisfying (25). Assume also that ε(t) satisfies (19). Then it holds that

(1) there exists a u ∈ L∞([0, T ];L2(R3)) ∩ L2([0, T ]; Ḣ1(R3)) such that

uε ⇀ u weakly in L2([0, T ]; Ḣ1(R3)).

(2) the divergence-free part and the gradient part of uε satisfy

Puε → Pu = u strongly in L2([0, T ];L2
loc

(R3));

Quε → 0 strongly in L2([0, T ];Lp(R3)), for any 4 ≤ p < 6.

(3) the pressure pε will converge in the sense of distribution. Indeed,

pε → p = ∆−1∇ · [(u · ∇)u] in D′.

Moreover, u = Pu is a Leray weak solution to the incompressible NS equation

P [ut − ∆u + (u · ∇)u] = 0 in D′,

and the energy inequality (22) holds.

Proof. It is easily seen that (1) follows from Theorem 3.1 and Corollary 3.2, and (2) follows from Lemmas
4.2 and 4.4. The proof of (3) and the energy inequality follows the same way as in the proof of [9, Theorem
3.3], so we omit it here. �

5. Numerical Tests of the New Model

To test the stability and accuracy of the new model, we perform numerical tests of the variable timestep
algorithm for problems on bounded domains under noslip boundary conditions. The tests employ the
finite element method to discretize space, with Taylor–Hood (P2/P1) elements, [17]. The meshes used for
both tests are generated using a 2d and 3d Delaunay algorithms. Finally, the software package FEniCS
is used for both experiments [1].
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(A) (B)

Fig. 1. Velocity and pressure norms over time t

5.1. Test 1: Oscillating ε(t)

We first apply the method to a three-
dimensional offset cylinder problem. Let Ω1 = {(x, y, z) : x2 + y2 < 1, 0 < z < 2} and Ω2 = {(x, y, z) :
(x − .5)2 + y2 ≤ .01, 0 ≤ z ≤ 2} be cylinders of radii 1 and .1 and height 2, respectively. Let then
Ω = Ω1\Ω2. Both cylinders and the top and bottom surfaces are fixed, so noslip boundary conditions are
imposed. A rotational body force f is imposed, where the Reynolds number Re = 1 and

f(x; t) := (−4y(1 − x2 − y2), 4x(1 − x2 − y2), 0)T .

For initial conditions, we let u(x; 0), p(x; 0) be the solutions to a stationary Stokes solve at t = 0. This
does not yield a fully developed initial condition so damped pressure oscillations at startup are expected
and observed. For this test, we let ν = .001 and the final time T = 5. We let εn = kn, where kn changes
according the function

ε(tn) = k(tn) :=

{

.01 0 ≤ n ≤ 10

.01 + .002 sin (10tn) n > 10.

The first plots in Fig. 1 below track the velocity and pressure L2 norms over the duration of the simulation.
After an initial spike (typical of artificial compression methods with poorly initialized pressures), the
velocity and pressure stabilize. The vertical axes of ||uh|| and ||ph|| are on a logarithmic scale. The
variable ε, velocity, and pressure are all clearly stable.

In Fig. 2, we give plots of velocity magnitude at times t = 1, 2, 3, 4 on Ω at five cross-sections of Ω.

5.2. Test 2: Adaptive, Variable ε(t)

The next test investigates self-adaptive variation of εn and the resulting accuracy. We now consider a
two-dimensional flow over Ω = ]0, 1[2 with the exact solution

u(x, y; t) := sin(t)(sin(2πx) sin2(2πx), sin(2πx) sin2(2πy))T ,

p(x, y; t) := cos(t) cos(πx) sin(πy)

and corresponding body force f . We let Re = 1000, the final time T = 1, εn = kn, and k0 = .001. To
adapt the timestep (and generate kn), we employ a halving-and-doubling technique using ||∇ ·uh|| as the
estimator. We let the tolerance interval be (.001, .01) (If ||∇ · uh|| < 0.001, kn and εn are doubled, while
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Fig. 2. Velocity magnitude at different t

if ||∇ ·uh|| > 0.01, the two are halved and the step is repeated). This procedure does not control the local
truncation error, only the violation of incompressibility.

The plots in Fig. 3 show the velocity and pressure errors, as well as the fluctuation of kn and ∇ · u,
over time. We see that the errors of both the velocity and pressure fluctuate with changes in the timestep,
as does the divergence.

Figure 3a shows that the velocity error is reasonable but does grow (slowly), consistent with separation
of trajectories of the Navier–Stokes equations. Figure 3d shows ||∇ · uh|| is controlled. Figure 3b shows
the pressure error actually decreases. Figure 3c shows that the evolution of kn, and therefore εn, is not as
smooth as required by condition (19). Nevertheless, the simulation produced approximations of reasonable
accuracy.
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(A) Velocity error (B) Pressure error

(C) Timestep evolution (D) Divergence evolution

Fig. 3. Accuracy and adaptability results

6. Conclusions and Future Prospects

Slightly compressible fluids models provide a basis for challenging numerical simulations. Efficiency and
especially time accuracy in such simulations require variable timestep and thus variable ε = ε(t). Vari-
able ε is beyond existing mathematical foundations for slightly compressible models. The method and
associated continuum model considered herein is modified from the standard one for variable ε, has been
proven to be stable and converge to a weak solution of the incompressible Navier–Stokes equations as
ε(t) → 0 and εt(t) → 0, provided εt(t),≤ Cε(t). The analysis of the long time stability of the standard
method and model for variable ε = ε(t) is an open problem with no clear entry point for its analysis
(Sect. 2). Preliminary numerical tests in Sect. 5 with halving and doubling indicate a good agreement
with the analytical results under the fluctuation condition εt(t) ≤ Cε(t). Other open questions include
convergence of flow quantities (e.g., vorticity, lift, drag, energy dissipation rates, Q-criterion values and
so on) to their incompressible values as ε(t), εt(t) · ·· → 0, derivation of the rates of convergence for strong
solutions and extension of the analysis herein.
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[34] Söderlind, G., Fekete, I., Faragó, I.: On the 0-stability of multistep methods on smooth nonuniform grids,

arXiv:1804.04553 (2018)
[35] Sogge, C.: Lectures on Nonlinear Wave Equations. International Press, Cambridge (1995)

https://doi.org/10.1142/S0219199716500644
https://doi.org/10.1142/S0219199716500644
https://doi.org/10.1137/140975231
http://arxiv.org/abs/1804.04553


   30 Page 20 of 20 R. M. Chen et al. JMFM

[36] Stein, E.M.: Harmonic Analysis (PMS-43), Volume 43: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.
Princeton University Press, Princeton (2016)

[37] Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke
Math. J. 44, 705–714 (1977)

[38] Tataru, D.: Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Am. J.
Math. 122, 349–376 (2000)

[39] Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II. Am. J. Math.
123, 385–423 (2001)

[40] Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III. J. Am. Math.
Soc. 15, 419–442 (2002)
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