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Abstract
Recently a class of multinetwork elastomers (MNEs) was developed by swelling a filler polymer

network with monomers that are subsequently polymerized to form matrix networks. Such
MNESs were reported to possess remarkable stiffness and fracture toughness while maintaining
the ability to sustain large deformation as found in simple elastomers. The enhancement in
toughness is attained by prestretching the chains of the filler network through the introduction of
one or more matrix network(s), thereby promoting energy dissipation through chain scission in
the filler network. In this work, a model to capture the mechanical response of MNEs is
developed, and validated with experimental data. Prestrech of the polymer chains is

incorporated into the model by basing the strain energy density function on the combined effect
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of swelling and subsequent deformation of the completed MNE. The filler network is modeled
as a polydisperse network of breakable polymer chains with nonlinear chain elasticity, while the
matrix networks are modeled using the generalized neo-Hookean model. Although the filler
network occupies only a small fraction of the material volume, the model shows that it
contributes to the majority of the stress. Finally, the hysteresis during cyclic loading is shown to

correlate with the accumulation of damage in the filler network during each cycle.

1 Introduction

Elastomers are widely utilized in many industrial and biomedical applications due to their ability
to undergo large and reversible deformations. In most of these applications, from traditional
industrial applications (e.g. tires) to emerging technologies (e.g. soft robotics and stretchable
electronics), elastomeric components are required to sustain certain levels of mechanical loading.
Therefore, it is desirable to design elastomers with high fracture toughness to enhance their load
carrying capabilities. The first theory describing the intrinsic or threshold fracture of elastomers
(in the absence of viscoelastic dissipation) was presented by Lake and Thomas [1], who stated
that all bonds on a polymer strand between two crosslinks must be stretched to the breaking point
before one bond ultimately fails. Thus, the energy to rupture a single polymer strand should
scale linearly with the length of the strand /. As a result, the intrinsic fracture energy, estimated
by multiplying the energy to rupture a single chain with the areal density of polymer chains
across the fracture plane (~ /%), scales with the square root of the average chain length (i.e. ~
I'?). A consequence of this mechanism is that any attempt to increase the stiffness of an

elastomer, by increasing the density of crosslinks and thereby decreasing the average chain



length, will also make the elastomer more brittle with a decreased intrinsic toughness. This trade-
off between stiffness and toughness has been observed in many experimental data [2, 3].
Another route to improve the fracture resistance of materials is to introduce bulk energy
dissipation mechanisms, which can lead to the formation of a dissipation zone surrounding a
crack [4]. The dissipation zone can prevent the energetic driving force for crack growth, supplied
by external loading, from being fully delivered to the crack tip, which enhances the apparent
fracture toughness without changing the intrinsic toughness. This is the underlying mechanism
for toughness enhancement in filled elastomers [5, 6] where chains can attach and detach from
filler particles embedded in the elastomer to dissipate energy, in viscoelastic elastomers [7]
where molecular friction provides dissipation, and in interpenetrating networks where dissipation
is introduced through the damage of sacrificial networks [8, 9]. The last strategy, i.e.
interpenetrating networks, has been implemented in numerous gel systems [8-12], but was only
realized in elastomers very recently [13], where a variable fraction of prestretched chains can be
built into the elastomer network to control the extent of chain rupture and energy dissipation.
Such interpenetrating multinetwork elastomers (MNEs), as described by Ducrot et al.
[13], were created by first forming a crosslinked elastomer, i.e., the ‘filler’ network. This
elastomer was then swollen using a solution containing monomers, during which chains of the
filler network were stretched. These monomers were then polymerized in place to form a
‘matrix’ network interpenetrated with the filler network. This procedure was repeated to
introduce additional matrix networks and further stretch the chains in the filler network. The
terminology of matrix and filler networks is used by drawing an analogy to classical composites,
where the filler material is of smaller fraction and is held together by the matrix to form the bulk

material [14]. To monitor the extent of damage, bond rupture in the filler network around a



crack tip was mapped by introducing light emitting photophores into the network. It was
hypothesized that the prestretched filler network makes the dominant contribution to stress,
while the matrix networks mainly serve to prevent large cracks from forming [13]. Validation of
this hypothesis, however, is still difficult within the experimental instrumentation. Also, a
systematic study of how physical parameters, such as degree of crosslinking and prestretch,
impact macroscopic mechanical and fracture behaviors is necessary to optimize the stiffness and
toughness of the MNEs, which is challenging with these types of time-consuming experiments.
Hence, there is a need to develop quantitative models which can describe the mechanical
response of this new class of materials. Such models will allow for an investigation of the
relative contributions of each network to the stress. Implementation of such models in finite
element analysis will allow for a systematic study of the impact of MNE parameters on the
fracture toughness, e.g. how the size of the damage zone around crack tip depends on bulk
material properties.

The objective of this work is to develop a nonlinear constitutive model capable of
quantitatively predicting the mechanical behavior of MNEs, especially how the network pre-
stretch induced by swelling affects the strain stiffening and damage in the MNEs. In particular,
new experimental data are presented where three sets of double network and triple network
elastomers are synthesized from a common parent single network elastomer. The pre-stretch of
the first network is changed by varying the fraction of volatile solvent versus monomers during
swelling, which enables a systematic study on the effect of pre-stretches. We will show that our
model can capture all experimental data using a fixed set of model parameters not pertaining to

swelling, thereby demonstrating predictive capability of our model.



Recently another model has been presented to capture the nonlinear mechanics of MNEs
[15]. However, the model is phenomenological in nature and requires many fitting parameters to
match the hysteresis measured in cyclic uniaxial tensile tests. Furthermore, in [15] the damage
evolution was implemented by increasing the critical extension of the network which prevents
the model from capturing the experimentally observed decrease in shear modulus due to chain
rupture [13, 14]. The key difference between our model and the previous one is that here the
fundamental physics of polymer chains in the filler network is directly incorporated in the
continuum model. Specifically, since the filler network contains a much higher density of
crosslinks and experiences larger prestretch than the matrix networks, the chains in the filler
network are expected to be highly stretched and subjected to stretch. Therefore, we implement a
chain elasticity model that combines configurational entropy and bond deformation on the
backbone of the polymer chain. Progressive damage in the MNEs is captured using a kinetic
model describing chain rupture in the filler network. In contrast, the matrix networks contain
relatively long and loosely crosslinked chains and thus are modeled using a generalized neo-
Hookean model [16]. The prestretches experienced by the filler and matrix networks due to the
swelling process are also taken into account. This physics based approach ensures that each
parameter in our model has a physical interpretation, which can elucidate the connection between
physical parameters (e.g., chain length) and continuum-level mechanical response.

The paper proceeds as follows. The experimental procedures to synthesize MNEs and the
subsequent uniaxial tensile testing method are given in Section 2. Formulation of the model is
presented in Section 3 which is divided to present the combined kinematics of swelling and

MNE deformation in Section 3.1, and the material models in Section 3.2. In Section 4, the



model is applied to uniaxial extension and is compared with experimental data. Conclusions are

given in Section 5.

2 Material and experimental methods

2.1 Reactants

The monomer ethyl acrylate (EA) and the crosslinker 1,4-butanediol diacrylate (BDA) were
purified over a column of activated alumina to remove the inhibitor. The UV initiator, 2-
hydroxy-2-methylpropiophenone (HMP) was used as received. Ethyl acetate was used as the

solvent. All reagents were purchased from Sigma Aldrich.

2.2 Synthesis

The synthesis of the MNEs was carried out in a glove box (Mbraun Unilab) under nitrogen
atmosphere to avoid side reactions with oxygen in the air. Before introduction into the glove box,
every reagent and solvent were bubbled with nitrogen for 45 minutes to remove the dissolved
oxygen. The reaction was triggered by UV light (Vilbert Lourmat lamp, model VL-215.L,
focused on 365 nm). The UV power was kept low (10 uW/cm?) to create slow polymerization.

The preparation of MNE:s is carried out in the following way starting from monomers, a
first network (i.e. the filler network) is synthesised, and then multiple steps of swelling and

polymerization are conducted to create a multiple network.

2.2.1 Synthesis of the filler network

The filler network was prepared from a solution in ethyl acetate consisting of: EA the

monomer (50 wt %), BDA the crosslinker (1.45 mol % relative to monomer) and HMP the UV



initiator (1 mol % relative to monomer). The solution was cast in a 1 mm thick glass mold and
the reaction was initiated by UV for 2 hours. After synthesis, the sample was washed and dried
to remove unreacted species and free chains as described in [13, 17]. This single network (SN) is

then fully dried under vacuum at 80 °C.

2.2.2 Preparation of MNEs with a controlled swelling of the filler network

The synthesis method previously described in [13, 17] has been adapted to obtain a larger
range of swelling states of the filler network. The filler network was swollen to equilibrium in a
bath composed of monomer and solvent. At equilibrium, a swollen piece of the network was
removed from the bath, sealed between PET sheets, and tightened between glass plates. Then a
second polymerization, in a similar manner to that of the filler network, was conducted. Then
the sample was dried under vacuum at 80°C overnight to remove the solvent. The resulting
material is a double network (DN) elastomer, and its synthesis procedure is schematically
depicted in Figure 1. This procedure can be then repeated multiple times leading to the creation
of a triple network (TN), a quadruple network (QN) and so on, with different volume fractions of

each network.



1: Synthesis of Filler Network 2: Swelling with Solvent and Monomers

Figure 1: Schematics of the synthesis procedure of a double network elastomer

2.3 Characterization of the synthesized materials

To characterize the composition of synthesized MNEs, the mass and thickness of a sample
are carefully measured after each step. Since in this work all the networks are comprised of the
same monomer (ethyl acrylate), it is reasonable to assume that all networks have the same

density (i.e., mass divided by the partial volume of the network). With the additional assumption



of isotropic swelling, the prestretch of the filler network Ao can be quantified using the measured

masses as follows

by=—t=— (1)

where ¢, is the volume fraction of the filler network in an MNE consisting of N networks, m, is
the mass of the SN sample, and m, is the mass of the MNE sample. It should be noted that the

model to be demonstrated in Section 3 is not limited to the assumption of same density in all
networks, and is applicable to networks polymerized from different monomers. Two different
ways of calculating the prestretches of the filler networks will be presented later, one being a

generalization of Eq. (1) and the other based on the measurement of sample thickness.

2.4 Mechanical Tests

Mechanical tests were performed on a standard tensile Instron machine (model 5565) using
a 100 N load cell. A video extensometer gave a local measurement of the stretch A = L/Lo where
Ly is the initial length and L is the corresponding deformed length. The relative uncertainty of the
measurements given by the load cell and the video extensometer are respectively 0.1 % in the
range of 0 to 100 N and 0.11 % at the full scale of 120 mm. Specimens were cut into a dumbbell
shape using a normalized cutter (central part: length 20 mm, cross-section 4 mm and thickness
0.6 — 2.5 mm depending on the sample). Uniaxial tensile tests from small to large strain were

performed at a constant 500 um.s™! crosshead velocity and the typical stretch rate on the central

part of the sample was around A = 0.04 s™'.



2.5 Set of materials

Mechanical properties of the MNE can be influenced by several factors [13]: (i) number of

networks, (ii) type of monomers used in each network, (iii) type of crosslinker, (iv) concentration

of crosslinker, and (v) degree of swelling which can be changed by adding a certain amount of

solvent to the solution of monomers. In this work, results from our theoretical modeling will be

compared with experiments on MNEs in which all networks are comprised of Ethyl Acrylate

(EA) but with different crosslinker concentrations and prestretches in the filler network. To be

consistent with existing report [ 18], we use the following notation to denote different MNEs:
EAeX(Y)EA

EA: ethyl acrylate, monomer of the filler network

e: ethyl acetate has been used for the synthesis

X: mol % of crosslinker used for the synthesis of filler network

(Y): Y=o, prestretch of the filler network

EA: ethyl acetate, monomer of matrix networks.

A summary of the experimental datasets used in this work is given in Table 1. A tag is added to
each elastomer for a simplified notation as well as to indicate the number of networks. We will
be referring to these tags when comparing the modeling results with experiments later. From the
base SN elastomer, three DN elastomers (DN1-3), with different pre-stretches, are created by
controlling the ratio of monomer to solvent during swelling. Specifically, DN1, DN2 and DN3
were prepared by swelling the SN elastomer using mixtures with monomer volume fraction of
50%, 70% and 100%, respectively. Three TN elastomers, with different pre-stretches, are

synthesised by swelling the DN elastomers with pure monomers; e.g. TN1 is synthesised from

10



DNI1. Measurements were also taken for the matrix network alone (M), where the crosslinker
concentration (0.01 mol%) is 145 times less than that used in forming the filler network. Finally
additional DN and TN data were extracted from Ducrot et al [13], DNP and TNP, where the
synthesis procedure was similar to that of DN3 and TN3 with the exception that a photophore,
chemiluminescent bis(adamantly)-1,2-dioxetane bisacrylate, was used as crosslinker in place of

BDA.

Table 1: Set of MNEs Investigated

Sample name Ao wt% Type of Tag

of filler network Numbgr O,f

network polymerization

(: 100¢}V) steps
EAel.45(1) 1 100 SN 1 SN
EAel.45(1.32)EA 1.32 | 42.0 DN 2 DNI1
EAel.45(1.51)EA 1.51 |29.2 DN 2 DN2
EAel.45(1.68)EA 1.68 | 20.5 DN 2 DN3
EAel.45(2.18)EA 2.18 |9.52 TN 3 TN1
EAel.45(2.41)EA 241 | 7.39 TN 3 TN2
EAel.45(2.55)EA 2.55 | 6.06 TN 3 TN3
EAe0.01(1) 1 100 Matrix 1 M
EAel.45(1.48)EA [13] | 1.48 | 30.8 DN 2 DNP
EAel.45(2.72)EA [13] |2.72 | 4.97 TN 3 TNP

3 Model

3.1 Kinematics
3.1.1 Swelling

We number the networks, in superscripts, by the order i (i =1... N ) in which they were
added to the material, where N is the total number of networks which comprise the material: for a
SN N=1, fora DN N =2, and for a TN N = 3. Each swelling and drying operation is denoted
using the index j, in subscripts, which runs from 1 to a maximum value of N—1. The swelling and

drying of a matrix network contains the following steps: (1) the networks is swollen to

11



equilibrium by a solution containing monomers and solvent; (2) polymerization of the matrix
network; and (3) the material is dried to evaporate the solvent. The relaxed configuration of each
matrix network is the one after step (2) but before step (3) since drying introduces volume
shrinkage of the material. The deformation gradient of each matrix network is measured relative
to its relaxed configuration.

Figure 2a) shows the jth swelling and drying operation and the associated deformation
. . max . 10lalt dr . _ di max
gradients: @, for the steps of swelling to equilibrium, Qj.y for dryingand @, = (I_)J.W @, for
the entire procedure. Assuming that the swelling and drying are isotropic, the isotropic stretches

during these steps (4™, ﬁ;”y and 4 ) can be calculated from

(l)j-lax :(J;nax)lB!:ﬂ;naxI, chz’ry :(Jj,},)l/312/1j;yl’ (l)j =(J .)1/3121.1,

S =

2)

where 1 is the second order identity tensor, J ;nax I ;l'y and J; are respectively the volume ratios
during the jth swelling only, during the jth drying only, and during combined swelling and

drying in the jth step. Clearly, J,, = JJ¢” and A, = A" 2" . Denote the volume fraction of

mon

monomers in the jth swelling solution as & then it follows that (see Supporting Information

Section S1)

mon
dry gj JV

Jim = mon " (3)
' Jy—1+¢

After the jth swelling and drying we obtain a MNE, and if the configuration at this point
is set to be the reference configuration of the MNE, the deformation gradient that maps the ith

network from its relaxed configuration to the reference configuration of the MNE is

@, :{

J
[T

k=i

J

}_Dldr; _ (J;i? )1/3 [H(Jsk )1/3

k=i

J
JI = /lzcilly [Hﬂ“skjl’
k=i

(4)




where the notation IT indicates multiplication. For example, consider a TN elastomer just
formed (N =3, j = 2), the total swelling and drying deformation gradients are given by

@, = @, P, for the filler network, ®; = ®,®" for the second network, and @, = ®3” for the

third network. Note that the IT notation returns 1 for an empty product. For example, for a SN

0
elastomer Qé = [H ﬁskjgg’” =1. Note that since the filler network was synthesized without

using additional solvent, it is in the relaxed configuration after polymerization and thus g)g”y =1.

Using Eq. (4) we can define the ratio between the volume of the ith network after the jth swelling

and drying and its volume when it is first introduced (before drying):

J;:det(‘l’i){ﬂi?’l]j&k] =(4% )T[( 2i) Jd'yHJvk (5)

k=i

In writing the constitutive relationship for the MNE, the contribution from each network
will be considered; hence it is necessary to determine the volume fraction of each network that
makes up the total MNE volume. The volume fraction that the ith network occupies in the

material when it is first introduced (j =i — 1) is given by

y' =1

W= é;lmon( (Jin_qilx)—‘) i1 (6)

The first equation (for the filler network) is straightforward, while the second equation (i > 1) for

the matrix networks can be explained as follows. After introduction of the ith network with the (
i —1)™ swelling, the volume of the MNE is increased by a factor of J™* . Assuming all the

original material remains intact after swelling, the volume fraction of the original material after

-1
this swelling becomes (J ffx) . Since the newly introduced matrix network and solvent occupy

13



i-1

.. -1 . . .
the remaining volume (1 — (J . ) ) , the volume fraction of the matrix networks is given by

mon

-1
& (1 - (J f?x) ) as stated by Eq. (6). Similarly, subsequent drying and introduction of

additional matrix networks with the jth swelling causes the volume fraction of the existing
networks to be divided by a factor of J ;. Therefore, if we extend this idea the volume fraction

of the ith network when N networks are present (j = N — 1), denoted by ¢y, , is obtained by

dividing the initial volume fraction ¥’ by J}(y

i

_ v
J;(N—l)

by : (7)

where J;'(N_l) is given by Eq. (5). Note that Eq. (1) is a special case of Eq. (7).

3.1.2 Deformation
If the MNE, after all swelling operations ( j = N —1), is then mechanically deformed, the

deformation gradient which maps the relaxed configuration of the i™ network to the current

configuration when N networks are present is given by

F, =Fo (8)

where F is the deformation gradient that maps the MNE configuration after all swelling and

drying to its deformed configuration. Eq. (8) can be understood by considering the example of a
TN elastomer for which a schematic of the deformation gradients is shown in Figure 2b). Six
configurations are shown: A) when the filler network is formed, B’) when the filler network has
been swollen to equilibrium by a matrix network B) after drying to remove excess solvent from
B’ to form a DN, C’) after the DN material in configuration B has been swollen to equilibrium

by an additional matrix network, C) after drying to remove excess solvent from C’ to form a TN,

14



and D) after the TN elastomer in configuration C has been mechanically deformed. A is the
relaxed configuration for the filler network, B’ is the relaxed configuration for the second
network, and C’ is the relaxed configuration for the third network. C represents the reference
configuration for the completed TN elastomer relative to which subsequent mechanical

deformations are measured.

15



Swollen to equilibrium

q)max

—J

Final Swollen Network

b)

max
@,

Figure 2: a) Swelling and drying in the jth step, and the corresponding deformation gradients. b) Deformation map for a TN
elastomer showing relaxed configurations for the 1°' (4), 2" (B’), 3 (C’) networks and the deformed configuration (D). The
deformation gradients which relate these configuratiolns are shown schematically.
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Spatial forms of constitutive relations are often written in terms of the invariants of the

left Cauchy-Green deformation tensor defined as B = FF' =B’ [19]. Since the swelling pre-

deforms the material we introduce the left Cauchy-Green deformation tensor for each network i,

denoted by 1_31& , which captures both swelling and post-swelling deformation:

N-

B, =F,(F,) =F®,  (Fe, ) —( T4 ]FF =(Fws) B O

k=i

The first, second and third invariants of 1_33\, are respectively given by

L(g;)zn(gg)z(J%WUfnw(gy (10)

Iz(l_siv):%[(zr(l_s;))z—tr((l_a;)z)} M[(W@))z_”(gz)}, (an

and

1,(B, )= det(B, )

I
_—

k
=
~—<

(12)

where

Jziv = det(EEv ) = det(QZN—l) )det(lj) = ‘];(N—l) det(E). (13)

In many cases the deformation of the completed MNE can be assumed to be incompressible so

that det(F)=1. In this case J, = J v -

3.2 Constitutive Model
The total strain energy per unit volume of the MNE is assumed to be the sum of the

contributions from each network (U, (B ( )) weighted by its volume fraction (¢}, ), or

=S AU (BL). (14)

If we assume that the completed MNE is incompressible under further deformation, the Cauchy

stress can be computed as follows (see Supporting Information Section S2)

17



IR an;(l_s”N)Ev_pL (15)

where p is a Lagrange multiplier used to satisfy incompressibility and (_’jv represents the

contribution to the Cauchy stress from network i and is given by

U (BY) 16
Oy =¢N2 aB, BN_p I. ( )
=N

N
Here p = Z p' and p’ is the contribution to the Lagrange multiplier from network i. Note that
i=1

the determination of p using boundary conditions must be based on o, and not &', . For the case

of uniaxial extension, it is possible to separate p into contributions p’ from each network.

To complete the constitutive relation for the MNE, it is necessary to specify the strain
energy density function U, (B’N) for each network. Since the properties of the first (and filler)
network usually differ significantly from the matrix networks, below we propose two different

formulations of U’ (I_S’N) for the filler and matrix networks.

3.2.1 Filler Network

The filler network contains a relatively high density of crosslinks. Also, based on
experimental measurements with photophores [ 13] many chains in this network can be ruptured
in the bulk material before crack propagation. Therefore, a constitutive model is needed to
capture the nonlinear response of polymer chains as they are stretched and ultimately break. In
addition, because damage was observed over a range of strains, the model must contain a feature
which allows the chains to reach critical extensions and break at different times. This has been
accomplished in several ways in the literature: polydispersity or a distribution of chain lengths

[20] results in shorter chains breaking before longer chains; a distribution of initial end-to-end

18



distance of the chains results in initially more stretched chains breaking before more coiled
chains [21]; and different orientations of the chains relative to the principal deformation direction
lead to chains aligned with the deformation breaking before unaligned chains [22, 23] .

Although in real materials all the previously mentioned effects may be present, we will focus on
polydispersity of chain lengths. It should be noted that in this work the distribution of chain
lengths is estimated based on experimental measurements of chain rupture in Section 4, which
effectively captures all effects that contribute to chain breakage at different extensions. Based
on the above considerations, for the filler network we propose a strain energy potential in the

following form

0

U]lV:ﬂjf(NK)b(r;xax9NK)NKE:h(r*)jNK’ (17)

1

where, u=v k,T, v is volumetric density of chains (before any swelling), k, is the Boltzmann

constant, 7 is the absolute temperature, N is the number of Kuhn segments in a polymer chain

between crosslinks (i.e. representing the chain length), and f (N K) is a probability density

function which describes the distribution of chain lengths and satisfies I f (N . }lN r=1.
1

¥ =r /| N A, is the fractional chain extension, where r is the end-to-end distance of the

*

polymer chain and 4, is the Kuhn length of the polymer chain. b(r N K) are a set of damage

max *

functions that depend on the chain-length (Nx) and will be described later. 7 is the maximum

fractional extension a chain has reached in its deformation history, and E, (l’*)= E, (r* )/ k,T is

the nondimensional chain energy to be discussed next. The integration in Eq. (17) accounts for

19



the total contribution of all chain lengths to the strain energy. More details on the derivation of
this type of strain energy potential can be found in [20].

Using the “8-chain” model by Arruda and Boyce [24], the following expression can be

written to relate the chain extension ~ to 7, (é’ ;)

1
. r
pat o [1By), (18)
Ned, | 3N,

*

Introducing a dimensionless chain force as F,, (r*)= AF, (r*)/ k,T , the dimensionless polymer

chain energy needed in Eq. (17) is calculated from

£, )= [0l (19)

where 7, =./1/ N, is the fractional extension of the chain under load-free condition. We have
chosen to start this integration at 7 rather than zero to enforce the zero-strain energy condition

at the relaxed state where 7/, (1_31,v)= 3; this choice introduces a constant into the strain energy

density and has no impact on the stress predicted by the model.

The kinematic assumption (Eq. (18)) implies that the strain energy density depends only

on /, (]_?»iv ) One may argue that during swelling and drying there is a large volume change which
implies the third invariant 7, (1_311\/) changes, and for this reason the strain energy can also depend

on /, (I_BIN) In fact, such a term has often been included in the strain energy function when

modeling swelling and drying. For example, Hong et al. include a term u« ln(\/[ 3 (1_3;, 0 for the

filler network [25] when modeling gels. On the other hand, this term has been the subject of

some controversy in the literature [26] and the discussion remains inconclusive [27].
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Nevertheless, the effect of such a term is shown to be rather small in most practical cases [27].

Furthermore, in this work we focus on the deformation of a pre-swollen MNE that remains
incompressible during post-swelling and drying deformation, in which case 7, (]_3;,) will be
constant, and whether the 7, (I_S;,) dependency is included in the strain energy density function
will not impact our results.

Since U}, depends only on 7, (]_3;, ), we can write

oui(n(By) _ avilrB) ) o)) _ avifiey ),
OB, anBy) B,  aBy) °

Thus, to evaluate the stress in Eq. (15) the derivative of the strain energy potential is needed,

which can be calculated by

v, (1,8 ETf(NK)b (s Vi ()
61 "

= dN - 20
Cale] K ”

There are several models in the literature which can be used to obtain 7, (r) or E, (r)

r

[24,28,29]; one of the most commonly used models is the Arruda-Boyce model [24]. However,
the F, (r*) relationship adopted in the Arruda-Boyce model is based on a freely jointed chain
model with Langevin statistics, where the chain is inextensible and there is a singularity in chain
force when 7" = 1. This singular behavior allows only a very small fraction of the chains to
experience large forces at any time, which limits the maximum stress that is obtainable. On the
contrary, the novel microstructure of the MNE leverages prestretch via swelling to create many
chains in the filler network that are subjected to large tensile forces and can rupture during the

deformation. These large tensile forces are sufficient to deform bonds and elongate chains, as

discussed in a recent work [30]. Therefore, the Arruda-Boyce or any inextensible model based
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purely on entropic elasticity may not be suitable for this type of material. In a work to be
reported separately, we incorporated bond deformation into the chains’ backbone, and obtained a
force-extension relationship by minimizing the free energy of a polymer chain consisting of
configurational entropy and bond deformation energy. Compared with entropic chain models,

this new relationship has been shown to provide better agreement with single chain extension

data in experiments, especially when » > 0.9 [31]. For the poly ethyl-acrylate (PEA) chain
relevant to the present work, the force-extension relationship can be approximated in closed form

by polynomial functions as follows

F :—(l—r*)_z—l—h* r <09
513 ? 21
Fo="0+ 501(-" —0.9)+26238(-" —0.9) +68436(r" —0.9] " >0.9

Last, we comment on the damage functions b, which represent the fractions of chains that
remain intact and are dependent on the number of Kuhn lengths N in the chain. b equals 1 for

undamaged material and decreases as chains are ruptured. The rupture of polymer chains can be
modeled using rate dependent nonlinear ordinary differential equations [20, 28] where the rate of
chain scission depends on the force acting on the bonds in the polymer chain. On the other hand,
it was found that [20] if the deformation speed was sufficiently high the damage was nearly rate
independent. Extension rates used in the experiment of Ducrot et al fall into this regime and the

material exhibited negligible rate dependence [13]. In this work, we focus on this regime and

*

approximate the damage functions by rate-independent functions in the form of b(r Ny )

These damage functions have been obtained in [31] by numerically solving the rate equations at

a given stretch rate in the rate-independent regime, and they are summarized in Supporting

Information Section S3. Since the chain rupture is irreversible, during loading (as 7. increases)
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b decreases, whereas upon unloading when the chain end-to-end distance »* becomes smaller

than 7, the value of b cannot increase.

max >

3.2.2 Matrix Networks

When the matrix networks (i > 1) are formed the concentration of the crosslinker used is
approximately 145 times less than that in the filler network [13]. This results in much longer
chain lengths between crosslinks in the matrix networks. Since the chains in these networks have
less (or even no) prestretch compared with the chains in the filler network and hence do not
experience large fractional extensions, it is reasonable to assume that they remain intact (i.e. no
rupture) during deformation and their strain stiffening is insignificant. With this consideration, a
neo-Hookean material model, which is based on Gaussian freely jointed chains with a linear
force extension relationship [27], would seem to be a good choice to represent the matrix
networks. However, because these networks are so lightly crosslinked, physical entanglements
create a strain softening effect at small deformations [13] which cannot be captured by the neo-
Hookean model. This softening effect is well described by a molecular model by Rubinstein and
Panyukov [32], but it is not straightforward to convert the molecular model into a continuum
model for general 3D deformations. Instead, we will use the generalized neo-Hookean
constitutive model [16] for the individual matrix networks to phenomenologically capture the
softening effect:

Ui (‘iiw)):f_M{[”(ll (8)-3)]" —1}’ i1 @2)

ny

where x,, is the shear modulus and 7,, is an additional parameter which controls the shape of

U, (] | (]_33\, )) . Note that a 3™ parameter from the generalized neo-Hookean model [16] was
omitted to minimize the number of parameters that are introduced into the MNE model. Like the
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filler network, the strain energy for each matrix network depends only on the first invariant, i.e.
I, (]_3'N ), thus as before to evaluate the stress in Eq. (15) the derivative of the strain energy

potential is obtained

dU/IV Il (EZN) M 4 e
S

4 Application of the Model

Below we will use the model established above to predict the mechanical response of
MNEs under uniaxial loading conditions and compare the results with experimental data.
Assuming that the networks contribute independently to the total stress, parameters pertaining to
the matrix networks will be extracted from available data for these networks alone. Chain length
distribution in the filler network will be estimated based on data for DN and TN elastomers with
light emitting photophores embedded in the filler network. Finally, comparison will be made to
uniaxial extension and cyclic loading experiments conducted [18] for a variety of MNEs (SN,
DN and TN) where the prestretch caused by the first swelling and drying was varied.

Before we proceed, it will be beneficial to specialize the general constitutive model for

uniaxial extension. The left Cauchy-Green deformation tensor in this case is given by

B=12e Qe +1'e,Qe,+1'e; Qe,, (24)

where A is the stretch of the sample and ¢€,,¢€,,€, are orthogonal unit vectors forming the basis
of the deformed configuration. Using Eq. (9) and the fact that the strain energy potentials

depend only on /, (]_3'N ), Eq.(15) can be rewritten as follows
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6, =2 ;ﬁv (Vi y) dll(—BiN B-pl (25)

In uniaxial extension, 6, only has one nonzero component which we denote as o, . Requiring

the other stress components to be zero gives the Lagrange multiplier p. Substituting Eq. (24) into

Eq. (25), we can obtain an expression for o,

2 dUy (1,(BY)

T R

oy =2 :Z]::¢;V (J;(N—l))

where the stress contribution from each network is given by

s AU (1, (BY

oy =@y 2(];'(%1)) m (1_3N) )) (,12 . ) (27)

Note that a portion of the Lagrange multiplier is assigned to each network so that the stress in
each network is zero in the MNE’s reference configuration which is equivalent to satisfying the
traction-free boundary condition on the lateral surface of the tensile sample for each network. As
such the stress o, is the contribution of each network to the total uniaxial tensile stress, instead
of the actual stress sustained in each network.

We will extensively compare predictions from the model with experimental data, which
without processing, will be the nominal (engineering) stress. For uniaxial extension, the

engineering stress can be related to the Cauchy stress (or true stress) as follows

p, ==X (28)

similarly, P, =o) /.
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4.1 Extracting Parameters for the Matrix Network
Experiments were conducted on the matrix networks alone to determine the parameters

M, and n,, in Eq. (22). The stress for a single matrix network alone, P, , can be evaluated
from Eqs. (26) and (28) by setting N =2, ¢} =0, and ¢ =1. The experimental data and the

best fit are shown in Figure 3. Since these experiments were done for a dry matrix network,

when applying Eq. (22) to the MNE, 1, is replaced by

i _ My

= e
A

Y7, i>1, (29)

where ,u; is the shear modulus for network i in its reference state.

0.5

m— o neriment
Maodel

Figure 3: Engineering stress plotted against stretch for uniaxial extension of the matrix network. The model with parameters

n,, =0.8325 and 4, =0.2MPa was found to provide a good fit to the experimental data.
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4.2 Distribution of Chain Lengths in Filler Network

Several specialized experiments were conducted for MNEs where photophores were used

to crosslink chains in the filler network [13]. These photophores emit light when they rupture,

and the recorded light intensity provides a means to estimate the distribution of polymer chain

lengths in the filler network. Specifically, when photophores are added to the chains they create

weaker links. If we assume that the rate of chain rupture is proportional to the rate of photophore

rupture, the chain length distribution can be correlated to the measured light emission data.

To see this, note that the recorded light intensity was integrated over the sample [13].

Assuming that the elastomer is transparent so light produced by scission throughout the volume

can all be collected, the light emission intensity can be expressed as

LI:—Ialef(NK) 7

% db (rl N,

)

dND,ds,

(30)

where ¢, is a proportionality constant which relates light intensity to photophore rupture, v is

the volumetric density of chains which is proportional to the density of photophores, # is time,

D, is the thickness of the sample after the (N — 1)™ swelling and drying, and S is the area of the

sample perpendicular to the thickness direction. Under homogeneous deformation during

uniaxial extension, Eq. (30) can be rewritten as follows

max ?

dt

% db (r
LI:ﬁlIf(NK) (

K)dNK,

(1)

where g, =—a,vV, and V, =D, S is the constant volume of the sample. To evaluate

db (r* )/ dt , consider
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where s i = o and ﬂlji) = (J:(Nfl))2/3(2ﬂ_2ﬂ_2) are

a,By) 20,B4) 20, ) 1,(B)

respectively obtained from Eq. (18) and Egs. (10) and (24), db /dr. is known based on the

damage functions presented in Supporting Information Section S3, and / is the stretching rate

. . . * . . . ..
prescribed in the experiment. If » does not exceed its previous maximum value, no additional

damage will occur and Eq. (32) should be taken to be zero.
In general, the rupture of bonds follows certain kinetics and will not occur at the same
extension even for chains of the same length. However, the damage will be concentrated near the

vicinity of highest extension. This allows us to simplify Eq. (32) by approximating

db /dr, = —5(rr;x - r;k) where ¢ is the Dirac delta distribution and ;k is the extension at

which the peak value of db /dr,, occurs (see Supporting Information Section S3). Introducing

X

this approximation and Eq. (32) into Eq. (31) gives

(1_172) . ., A=27) . N
LI:_ﬂlm/l.!.f(NK) 5<rmax_rpk)rmadeK :—ﬁzéTu_?)/lf<NK (rpk))rp"’

which can be rearranged to solve for f (N X (r;k ))

X LI(A) (A7 +227"
f(NK (rpk)) - _:Bzf}jk;' ((/1—12)) ’ (33)

where N, (r", )=1,(B}, )/3r? using Eq. (18). Based on Eq. (33), the experimentally measured
K\ pk 1 N pk

light emission data was converted into a chain length distribution, as shown in Figure 4. A
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probability distribution function in the form of Eq. (34) was found to provide a good fit for the

chain length distribution measured from light emission data (see Figure 4)

f(NK):Af(NK_Nmin )af eXp(_bf(NK_Nmin )) Ny 2N,

, 34
Ny <N, G4

where N, is the minimum number of load bearing Kuhn segments present in the material, a,

and b, control the shape of the probability function, and Ay is used to ensure the normalization

requirement I f (N K )dN « =1 is satisfied. a ,» b, ,and N, are the three parameters extracted
1

from the fitting. In Figure 4, light emission data are not available for large chain lengths since

the material already failed, so the fitting curve is a smooth extrapolation of the measured data.
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Figure 4: Chain length distribution estimated by fitting light emission data. Light emission experimental data from Ducrot et al
[13] are converted to chain length probability using Eq.(33) where ﬁz =2.7x10’° was found to provide a good fit. r;k ~1.03,

1

and for a 1 mm.s™! crosshead velocity the stretch rate for the central part of the sample was estimated to be A = 0.08 s7'. The

chain length distribution can be approximated by Eq. (34) with N ., =6, a,= 1.1, bf =0.105.
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4.3 Uniaxial Extension of MNE

Model prediction will be compared with two groups of experiments: MNEs with and without
photophore. The chain length distribution from Figure 4 was applied directly to the MNE with
photophore. Whereas for the MNE without photophore, the same form of distribution (Eq. (34))

was used but the parameters N, , a, and b, were slightly different from those in Figure 4. The

same tuned distribution was used for all the experiments without photophore, which involved

several data sets with different pre-stretches.

4.3.1 With Photophore
For the experiments on MNEs with photophores [13], i.e., DNP and TNP from Table 1, the

prestretches of the networks are 1, =1.48 and A A, =2.72, respectively. » in Eq. (17) is

related to the volumetric density of chains in the filler network before any swelling, and is a
fitting parameter since no SN data was available for MNE with photophores. When used with

the chain length distribution in Figure 4, it was found that ¢ =0.264MPa and a slightly adjusted
value of 4, =1.54 provided the best fit to the experimental data for both DN and TN elastomers

For TN A A, =2.72 was held fixed so that A, =1.77. The comparisons are shown in Figure 5,

where the model reproduces all the key features observed in the DN and TN data. For example,
the model correctly predicts the small initial slope observed in the stress-stretch curve for both
DN and TN; the slope is small in this region because no chains are sufficiently stretched to create
large forces. With further stretching the shortest chains become highly stretched to cause an
upturn in the stress, which is observed in both the model and the experimental data. Finally, for
the TN with further stretching, damage accumulates and causes a second inflection point after
which the stress-stretch curve levels off. This phenomenon is not observed in the DN because

the material fails before sufficient damage accumulation.
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It is of interest to calculate the extension of individual chains under the bulk deformation.
Because there is a distribution of different chain lengths in the filler network, these chains are
subjected to different extensions at the same bulk deformation. The chain extension as a function
of the number of Kuhn segments (i.e. chain length) are shown in Figure 6, for the chains in the
filler network of the SN, DN and TN elastomers. Results are shown for two different bulk
stretches: A =1, corresponding to undeformed elastomers, and A =2 . Both swelling and drying
(from SN to DN and then to TN) and additional bulk deformation (from A =1 to A =2) increase
the fractional extension, and their impacts are more significant for chains with shorter length. For
the TN with A =2, large fractional extensions for small Nk have caused material damage. To

quantify the damage, we define the following quantity

by = Tf(NK e N N (35)

1

which represents the fraction of surviving load bearing chains in the filler network of an MNE
with a total of N networks. The evolution of damage for the TN elastomer is presented in Figure
7a). No damage is observed until a sufficient stretch (above 1.5) is reached that causes the

shortest chains to break. Afterwards b, steadily decreases with additional stretching as more

chains are ruptured.
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Figure 5 Engineering stress plotted against stretch for uniaxial extension of (a) DNP, (b) TNP. The following prestretches
isl =1.54, Z’sZ =1.77 and parameter 1 =0.264MPa were found to give good agreement with the experimental data.
Experimental data from Ducrot et al [13].
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Figure 6 Fractional extension plotted against number of Kuhn segments for individual chains in the filler network of SN, DN and
TN elastomers.

Using the two prestretches and Egs. (5) to (7), the volume fractions of each network can be
calculated to be: for the DN elastomer ¢} = 0.274, ¢; = 0.726; for the TN elastomer ¢, =0.05,
#; =0.13, and ¢ =0.82. The prevailing hypothesis with these materials is that the chains in the

filler network (i = 1) control the stress whereas the subsequent matrix networks prevent large
cracks from forming [13]. Separating the total stress into components from individual
constituent networks of the MNE allows us to understand how each network is contributing to

the overall property of the MNE. For this purpose, the partial stress in each network, as defined

by P, =0} /4 with &} given by Eq. (27), is plotted in Figure 7b) for the TN elastomer. Here P/,

P’ and P represent the equivalent uniaxial tensile stress contributed by the first (and filler),
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second and third (both matrix) networks, respectively. In agreement with the hypothesis, the

filler network provides most of the stress ( P ), while the contributions of the matrix networks (

P?, P)) are almost negligible although they occupy an estimated 94% of the material volume.
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Figure 7: (a) The evolution of damage in the filler network of the TN elastomer is shown by plotting the surviving chain fraction
(bs) against stretch. (b) Contribution from each network to the engineering stress of a TN elastomer under uniaxial extension,
plotted against stretch.
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4.3.2 Without Photophore

For the MNEs without photophores, we consider three datasets formed from the same
original SN but with different prestretches. The stress-stretch curve for the SN is shown in
Figure 8, and matching the initial slope provides u =0.215MPa which will be used for the filler
network in all the MNEs. In each case experimental measurements of thickness, percentage of
filler network (based on weight), stretch and stress are available. Measurements of sample
thickness and weight (Table 2) can be used to estimate the prestretch of the networks. Here
%FN is the percentage of weight of the filler network obtained by weighing the sample before
and after swelling and drying. Since the filler and matrix networks are comprised of the same

monomers, it is reasonable to assume that all the networks have the same density. This allows

the measurement to be directly converted to volume fractions, i.e., % FN = 100¢L , which can

then be used to determine J; using Eqs. (5) and (7). J; can also be calculated using

J; = (D /D )3 = (/Lj )3 , and the values of 4 obtained from the two different approaches can

J+l J
be slightly different, see comparison in Table 3. For this reason, and due to variations observed
in samples with the same crosslink density and net swelling (see Supporting Information Section

S5), we allow a small amount of tunability in the chosen values of A, tabulated in Table 3, to

ensure that key features in the mechanical response are properly captured. Finally, other
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intermediate swelling variables calculated from J, ,J , and & are tabulated in Table 4.

P, (MPa)

Figure 8: Engineering stress plotted against stretch for uniaxial extension of SN elastomer. Experimental data and model fit

(with U= 0.215MPa ) are shown.

Table 2: Swelling data for the 3 datasets.

Before Swelling

After 1% Swelling and drying

After 2" Swelling and drying

Sample | % FN | Do Sample | %FN D; (mm) | Sample | %FN D>
(mm) (mm)
SN 100 0.74 DNI1 42 0.97 TN1 9.52 1.6
SN 100 0.74 DN2 29.17 1.13 TN2 7.39 1.79
SN 100 0.74 DN3 20.55 1.27 TN3 6.07 1.84

Table 3: Swelling ratios estimated by two approaches and the final chosen values. DN and TN in each dataset share the same

.]Sl values while .]S2 values are only applicable to TN samples.

Estimate using D; | Estimate Using %FN | Value Used
Sample A Ao A Ao A A
DNI1/TN1 1.32 1.65 1.34 1.64 1.34 1.60
DN2/TN2 1.51 1.58 1.51 1.58 1.54 1.49
DN3/TN3 1.68 1.45 1.70 1.50 1.75 1.40
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Table 4: Calculated swelling parameters. DN and TN in each dataset share the same J 511 and J fl values while J ;2 and J 522
values are only applicable to TN samples. Note that sz =1 for all networks. ¢21 and ¢22 are volume fractions in DN

1 2 .
samples, whereas ¢3, ¢3 and ¢33 are for TN samples.

Sample I3 I3 Ja I b, b, ¢, ¢; ¢;

DNI1/TN1 2.41 9.94 0.64 2.66 0.42 0.58 0.10 0.14 0.76
DN2/TN2 3.65 12.17 0.76 2.55 0.27 0.73 0.08 0.23 0.70
DN3/TN3 5.36 14.71 1.00 2.74 0.19 0.81 0.07 0.29 0.64

When no photophores are incorporated into the polymer network there is no light
emission data from which the chain length distribution can be extracted. However, since these
MNE:s use the same density of crosslinker in the filler network (EAe1.45) the expected

distribution will be similar to that of the network with photophores. Using the same form of the
distribution (Eq. (34)), the values of N,;, =6.2, a, =0.6, and b, =0.18 are determined based

on generating the best fit to the stress-stretch data for all DN and TN elastomers (6 independent
samples), which only differ slightly from the values extracted from Figure 4.

The results of the fitting are shown for the three datasets in Figure 9, Figure 10, and
Figure 11 respectively. Each figure shows a comparison between predicted and measured stress-
stretch relations for DN and TN elastomers. The model is in reasonable agreement with the
experimental data in all cases. A direct comparison between the stresses and damage predicted
by our model for the three datasets is presented in Figure 12, which illustrates the effect of
prestretch on the mechanical response. In Figure 12a) the stresses are presented for three DN
elastomers. DN3, which has the largest prestrech (Table 2), exhibits an upturn in stress at the
smallest stretch. As the prestretch is decreased, the stress upturn occurs at larger stretches.
Similar conclusions can be drawn from the TN data in Figure 12b). A comparison between the
damage evolutions for the three TN is shown in Figure 12c¢), where damage begins to occur at

lower stretches for MNE with larger prestretches.
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Figure 9 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer (b) TN elastomer. Experimental
data (from dataset DN1/TN1) and model fit are shown.



— Fxperiment
Maodel

P, (MPa)

b) ..

10

P, (MPa)
[=0]

Figure 10 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer (b) TN elastomer. Experimental
data (from the dataset DN2/TN2) and model fit are shown.
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Figure 11 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer (b) TN elastomer. Experimental

data (from dataset dataset DN3/TN3) and model fit are shown.
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Figure 12: Model predictions for (a) engineering stress vs. stretch for DN elastomers; (b) engineering stress vs. stretch for TN
elastomers; and (c) the evolution of damage (surviving chain fraction bs vs. stretch) for TN elastomers, all under uniaxial
extension. Each subfigure contains three curves corresponding to the three different datasets.
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4.4 Cyclic Loading of MNE
The experimental data presented in Ducrot et al [13] for the MNE with photophores was

for cyclic loading. It is interesting to apply the model under cyclic uniaxial extension to see how
the unloading curves compare with the experimental data; studying cyclic loading can also
further elucidate how the evolution of damage impacts the mechanical response of the MNE.

Consider the constant rate cyclic loading history shown in Figure 13a) where the amplitude
of loading is increased after each cycle. In the experiments, three identical cycles were first
performed before the amplitude was increased [13]; however, no noticeable change occurred in
the 2" and 3™ cycles so they have been omitted here to simplify the presentation of the
numerical results. Engineering stress is plotted against stretch in Figure 13b), where loading and
unloading curves are shown for both model prediction and experimental data of TNP. Similarly,
the evolution of the damage variable is shown in Figure 13c). It is important to note that the
loading envelope in the experiment (blue symbols) correspond to those in Figure 5b) and all the
fitting parameters in the model remain unchanged from those used to obtain the fit in Figure 5b).
No additional fitting was performed for the unloading branches.

To understand these results, consider the path A-O1-A-B-O; in Figure 13c). Suppose the
material has been loaded to reach the stretch at A for the first time. In reaching point A some
damage has occurred as can be seen in Figure 13¢) where b3 = 0.72 <1 at point A. When the
material is then unloaded from A to O it follows the lower “damaged” unloading path (red, A-
O) in Figure 13b) rather than the higher “undamaged” loading path (blue). From A to O; in
Figure 13c) we follow a horizontal curve because the damage variable depends on the maximum
stretch in the history of the deformation (in this case the stretch at point A) instead of the current
stretch. During the subsequent reloading O1-A-B, from O1-A we retrace the same path as during

unloading since the stretch has not exceeded its previous maximum value (at point A) so no
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additional damage occurs. From A-B stretching the sample further establishes a new maximum
stretch, and thus the damage evolves as seen in Figure 13¢) where the damage variable decreases
from 0.72 at point A to 0.49 at point B. This damage results in a decrease in the slope of the
stress-stretch curve in Figure 13b) at the transition (point A) from reload to additional stretch.
Similarly, when we unload after reaching point B we follow the lower unloading path (red, B-O)

and again the damage variable remains constant during unload.
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Figure 13: (a) Stretch plotted against deformation progress for constant rate cyclic loading where the amplitude is increased

after each cycle. (b) Engineering stress plotted against stretch for cyclic uniaxial extension of TN elastomer. All parameters in

the model are identical to those presented in section 4.3.1. Experimental data from Ducrot et al [13]. (c) The evolution of
damage is shown by plotting the surviving chain fraction (bs) against stretch.
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The cycle O-A-B-O in Figure 13b), included in the path we previously described, forms a

int

hysteresis loop, and the area enclosed in this loop, D, = CI) P,d A, has the physical

eyele

interpretation of energy dissipation. The hysteresis during cyclic uniaxial extension was found to
correlate, to some extent, with the size of damage zone in fracture experiments [13], and hence is
an important quantity to examine in attempt to increase the fracture toughness of the material. In
Ducrot et al. [13] this hysteresis was compared with the cumulative light emitted, whereas in our

work, an analogous quantity would be the change in damage variable during a cycle

‘Ab;y"

— § [ Bl N N (36)

cycle 1

An expression for the rate of energy dissipation in our model was obtained in the Supporting
Information Section S2, Dim =—¢, ,UJ-f (N K) max’N )N Ec;, ( ' )dN x>0 D2 can be
1

determined by either integrating D, over a cycle or by using

D =—¢) ygS jf s N )N E, (1 JAN ot = <J5 Pd. (37)

cycle 1 cycle

The numerical results for ‘Abg”" and D;° are presented in Figure 14, for cycles 2-5 from Figure

13. In Ducrot et al [13] the cumulative light was found to vary with the mechanical hysteresis by
a power of 0.75, while in Figure 14 a power of 0.63 provides a good fit which is in reasonable

agreement with experiments.
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Figure 14: Decrease in damage variable per cycle plotted against energy dissipated per cycle. Symbols are from integration of
numerical results obtained from the model. Dashed line is a linear fit to the model prediction, on the log-log scale.

4.5 Further Discussion

While our model predictions have shown good agreement with experiments, there are some
discrepancies that warrant further discussion. First, in the uniaxial extension results in Figure 9,
Figure 10, and Figure 11 for the TN elastomer, the model seems to overestimate the stress when
the sample is about to break. A possible explanation for this is the potential material
inhomogeneity not considered in the model. When we apply the model to an idealized uniaxial
extension, the deformation is assumed to be perfectly homogenous, which is certainly not valid
when the sample fails. Localized damage which grows near a pre-existing defect may also
impact the overall stress of the specimen at the stretches leading up to failure. There is evidence

to support this hypothesis in the TN light emission data [13]. Specifically, there is a peak in the

47



light emission after which the intensity decreases with further stretching. In obtaining the chain
length distribution from the light emission data (Figure 4), a distribution with a single peak was
used, because it was assumed that a single damage mechanism occurs within the material.
However, the experimental data also showed increased light emission intensity near failure
which may indicate the possibility of additional damage mechanisms such as inhomogeneous
deformation and localized damage around defects. This over-estimation does not exist in the DN
data because the DN elastomers are expected to have lower fracture toughness, evidenced by the
experiments of Ducrot et al. [13] where the damage zone in the area surrounding a crack tip [13]
is much smaller in the DN elastomers than the TN elastomers. The lower fracture toughness
could result in a more brittle failure once damage localizes at a defect; in this case, we do not
anticipate a reduction in stress growth near the failure point.

Another discrepancy between the model and the experimental results lies in the unloading
curves in Figure 13b), where the stress predicted by the model can be noticeably lower than
measured stress. To elucidate this point, we compute the unstretched Young’s modulus (see

Supporting Information Section S2 for definition), i.e., the Young’s modulus evaluated at 1 = 1.

The ratio between the value at the beginning of cycle i (i>1), (Ejv )k , and that before the first

cycle (E N )] is evaluated and plotted in Figure 15 against the maximum stretch Amax reached in

that cycle. Here the loss of chains (Figure 13c)) translates to a reduction in Young’s modulus. A
plot similar to Figure 15 was presented in the Supporting Material of Ducrot et al [13], for a
similar TN elastomer without photophores. In that work, after a maximum stretch of Amax =2.4
was reached in the cycle the unstretched Young’s modulus decreased by approximately 20%;
from Figure 15 at Amax = 2.4 the modulus decreases by approximately 50%. This suggests the

possibility that the model over predicts the rupture of chains. There are several potential
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explanations for the discrepancy. Firstly, one of the assumptions made in the model is that the
contribution of each network to the stress is independent. While this may be a reasonable first-
order approximation in modeling these materials, due to chain entanglements and a small degree
of transfer reactions (e.g., the (n+1)™ network reacting chemically with the 7 networks
previously formed), it is likely that damage in the filler network will result in dissipation in the
matrix networks and these additional dissipation mechanisms may have some impact on the
Young’s modulus. An evidence of this is the small amount of residual strain observed in the
experimental data [13], where after damage the material did not completely recover its initial
configuration. A second possibility could be the existence of critical pathways in the filler
network along which the rupture of bonds can result in the relaxation of many chains in the filler
network. In this case the damage would not be isotropic and homogenous as assumed in this
model. In fact, stretching pre-deformed samples perpendicular to the direction of initial
deformation has yielded some light emissions [33] indicating that damage is not entirely
isotropic. A third and related possibility is the coupling between chains in the filler network.
There is no direct experimental evidence for this, but in an existing model [34] the rupture of
chains was considered to effectively remove crosslinks and increase the length of existing chains
in the material. Finally, the specific chain force relationship (Eq. (21)) is used for both loading
and unloading. During loading the stress is dominated by chains with forces in the bond
stretching regime. However, during unloading this is no longer true, and the force on the

polymer chain can depend on its bending flexibility [29] which was not considered in Eq. (21).
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1 15 2 2.5 3 35

e
Figure 15: Evolution of unstretched Young'’s modulus at the beginning of cycle k, (k>1) normalized by the unstretched modulus
of a fresh sample, as a function of maximum elongation previously achieved by the sample.

Finally, we estimate the force and energy required to cause the rupture of a chain from the

cyclic loading data in Figure 13. When a bond breaks we define the average force [35],

1

1
)= kBTJ.FCZ (r*)db/Ao , and the average chain energy (E,, ) = kBTJ.NKE:h (r*)db . For the data
0

ch

(F,

0
in Figure 13b) the following values are obtained: (F,,) ~1.95nN and
<Ech> =1000—-2000kJ / mol depending on the chain length. The force value is comparable to

single chain pulling experiments for polymer chains [36], while the energy requires more
discussion. The dissociation energy of the photophore bond was reported to be 150kJ/mol [13],

which seems to be one order of magnitude smaller than the (£, ) value obtained here. However,

it is incorrect to make such a direct comparison, for several reasons explained below. Firstly, the
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bonds break via a transition state which is altered by the external force [33]. As a result, the
energy that the bond will be excited to when it breaks can be significantly less than the
dissociation energy. Secondly, when a bond on a polymer chain is ruptured the energy of the
entire chain is dissipated [ 1] which includes the deformation of all the bonds. The shortest

chains in the model had 6.5 Kuhn segments for PEA which corresponds to ~78 bonds [31].

Using <Ech> =1000kJ / mol and if all the bonds in a shortest chain are excited to approximately

the same energy this implies ~13 kJ/mol for each bond, which is approximately 8.5% of the
dissociation energy. Clough et al. [33] have found that typical C-C bonds store 15-18% of the
dissociation energy before rupture, which is on the same order of magnitude as was estimated for
the dioxetane bond in the photophore.

The model developed in this work provides a method to systematically study how
prestretch impacts the mechanical response and damage evolution of a MNE. It is also
instrumental to the design of MNE with optimized fracture toughness. Implementing the model
into finite element simulations will allow us to explore a wide range of problems involving stress
concentration and crack propagation, since this class of material can generate large damage
zones [13] locally. It is therefore of interest to systematically investigate how the different
prestretches will impact the size of the damage zone around cracks and the overall fracture
toughness. In recent experiments it was observed that when a third swelling operation was
performed to generate quadruple network elastomers, necking occurred in the samples during
uniaxial extension [14]. The mechanism of this phenomenon is believed to be transfer of load
from the filler network to the matrix network, which has only been observed to by stable when
the matrix network volume fraction exceeds 25 times the filler network volume fraction [14]. To

model this phenomena it will be necessary to extend the present model to consider stiffening and

51



failure of the matrix networks. Furthermore, mechanoluminescence has been used to
demonstrate that the rupture of chains does not occur homogenously within a sample during
necking [ 14]; this behavior will be captured by finite element implementation of an extended

version of this model in a future publication.

5 Conclusion
A continuum model is developed to capture the mechanical response of multinetwork

elastomers synthesized by introducing matrix network(s) into an existing filler network. The
swelling process prestretches the chains of the network formed in the previous step; such
prestretch is incorporated into the model by basing the strain energy of each network on the
combined deformation caused by swelling, drying and post-swelling deformation of the

completed MNE. Because the chains in the heavily crosslinked filler network undergo the

greatest amount of prestretch and often break during the deformation, separate material models

are used for the filler and matrix networks. The filler network is modeled as a polydisperse

network of breakable polymer chains with nonlinear chain elasticity, while the matrix networks

are modeled using the generalized neo-Hookean model. With a few fitting parameters, this

model provides a good match to the uniaxial extension, including cyclic loading, experimental

data. Although the filler network only occupies a small volume fraction of the MNE, it

contributes to the majority of the stress as confirmed by our model and recent experimental data

[14]. It was found that a larger prestretch of the filler network causes the MNE to exhibit strain

stiffening effect at a smaller stretch, and the damage due to chain rupture initiates at lower
stretches. Finally, the hysteresis of the stress-stretch curve during cyclic loading is found to

correlate to the accumulation of damage during the cycle.
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6 Nomenclature

S Area of sample in plane of view Dimension
A, Initial Kuhn length of polymer chain [L]
Q, Proportionality constant to relate light intensity to bond rupture [M][L][T]?
A, Parameter in chain length probability density function -
a, Parameter in chain length probability density function -
b, Parameter in chain length probability density function -
b Damage evolution function -
b, Surviving chain fraction -
B, Proportionality constant to relate light emission to damage [M][L][T]?
evolution
B Left Cauchy-Green deformation tensor for mechanical -
deformation of MNE
B?v Left Cauchy-Green Deformation tensor of multinetwork -
o elastomer with N networks, with respect to the relaxed
configuration of network i. Takes into account deformation by
swelling, drying and mechanically deformation by deformation
gradient F .
e, Unit vector in k direction -
E, Nondimensional Helmholtz free Energy of stretched polymer -
chain
& Volume fraction of monomers in swelling solution -
F, Tensile force acting on polymer chain [M][L][T]?
F Nondimensional Tensile force acting on polymer chain -
D Deformation gradient for jth swelling and dying operation -
—J
) Deformation gradient for jth swelling to equilibrium operation
—J
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(l)f/’fy Deformation gradient for jth drying operation -
0y Deformation gradient after j swelling and drying operations with | -
-’ respect to the relaxed configuration of network i.
F Deformation gradient applied to completed MNE by mechanical | -
- loading.
FIN Deformation gradient of MNE with N networks, with respect to | -
B the relaxed configuration of network i. Takes into account
deformation by swelling, drying and mechanically deformation
by deformation gradient F.
f Probability density function for chain length -
AF, Contribution of chain length PDF for bin m. -
g Arbitrary function -
I 2" order Identity tensor -
I, (1_3',\,) First invariant of B, ;
) (I_BIN) Second invariant of B, }
A (BZN) Third invariant of 1_3'}V -
i Identifies network -
j Identifies swelling operation -
J. Ratio of volume after to volume before jth swelling and drying -
Y operation
Jfry Ratio of volume after to volume before jth drying operation -
J Ratio of volume after to volume before jth swelling to -
' equilibrium operation
J; ratio of the volume of the material after j swelling operations to -
the volume of the material when the ith network was introduced
Jh ratio of the volume of the material when network 7 was -
introduced to its current volume (with N networks)
k, Boltzmann constant [M][L]A[T]?[6]"
A Stretch associated with uniaxial extension -
1. Isotropic stretch associated with jth swelling and drying -
Y operation (ratio of thickness after to before jth swelling and
drying operation)
,1;”7 Isotropic stretch associated with jth drying operation (ratio of -
thickness after to before jth drying operation)
Am Isotropic stretch associated with jth swelling operation (ratio of | -
thickness after to before jth swelling operation)
A, Isotropic stretch of 1% network due to swelling -
LI Light emission intensity [M][L][T]?
M Number of chain length bins -
m Identifies chain length bin -
m Mass of ith network [M]
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m, Mass of multinetwork elastomer with N networks [M]
n, Parameter in constitutive model for matrix networks. -
N Number of networks -
N, Number of Kuhn length is a polymer chain -
N_. Minimum number of Kuhn segments in chain length probability | -
density function
N Average number of Kuhn lengths per chain or bin m -
N, number of Kuhn lengths per chain at start of bin m -
N, . | numberof Kuhn lengths per chain at end of bin m -
p Lagrange multiplier [M][L]'[T]?
p' Lagrange multiplier for network i [M][L]'[T]?
r End to end distance of polymer chain [L]
r Fractional extension of polymer chain -
. Maximum achieved fractional extension of a polymer chain -
during deformation history
o Fractional extension where peak rate of bond rupture occurs -
pk p p
P, Nonzero engineering stress component for MNE with N [M][LT'[T]?
networks, under uniaxial extension
P, Nonzero engineering stress component for network i for MNE [M][LT'[T]?
with N networks, under uniaxial extension
w' Volume fraction that network 7 occupied in the material when it | -
was first introduced
4, Volume fraction of network 7 in a multinetwork elastomer with N | -
networks
N Cauchy stress tensor for MNE with N networks [M][LT'[T]?
o' Cauchy stress tensor for network i in MNE with N networks [M][L][T]?
oy Nonzero true stress component for MNE with N networks, under | [M][L]'[T]?
uniaxial extension
o Nonzero true stress component for network i for MNE with N [M][LT'[T]?
networks, under uniaxial extension
D, Thickness of sample after j - 1 swelling and drying operations [L]
t time [T]
U w1 =v k,T , parameter in constitutive model for 1% network. [M][L]'[T]?
Related to shear modulus.
Ly, Parameter in constitutive model for matrix networks. Related to | [M][L]'[T]?
shear modulus
U, Strain energy density of mutinetwork elastomer with N networks | [M][L]'[T]?
U (BIN ) Strain energy density for network i in a multinetwork elastomer | [M][L]'[T]?

with N networks, if the network were to occupy the entire
material when introduced.
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T Absolute temperature [4]

v Volumetric density of load bearing chains in reference [L]?
configuration of material.

v, Volumetric density of load bearing chains in reference [L]?
configuration of material in bin m.

v, Volume of sample after j - 1 swelling and drying operations [L]?
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Supporting Information

S1. Swelling and Drying Volume Change

Consider a swelling and drying process during the synthesis of the MNE. For the simplicity of
notation, the subscript j used in the main text for the jth swelling and drying step is omitted here.

Denote the volume before swelling as V. After swelling with a monomer solution, with

monomer volume fraction £, the volume becomes

Vmax = Jmaxl/o = Vo + I/solulion 4 (S 1)

where J™* is the ratio of the swollen volume to initial volume. The volume of the monomer

solution which was added is given by

Veotasion =Vason +Votwans =V, (J™ =1), (S2)

and V.

solvent

where V. =£&""V.

mon solution

are respectively the volume of monomers and volume of

solvent in the swelling solution. After drying V., ... =0 so the volume is given by

olvent

V

dry

=V, + &V (1) =T, (S3)

where J| is the volume ratio of the dry MNE to the original sample (before swelling and

drying). It follows that

J =T (S4)

From Egs. (S3)-(S4) it follows that

é;m(mJ< J
s — s 5
Js _1+§mon Jmax (S )

Jd'y _
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S2. Stress and Dissipation
The stress and dissipation associated with Eq. (14) can be derived by using the second law of

thermodynamics. If we introduce a Lagrange multiplier into the strain energy function, we can

rewrite Eq. (14) as follows

Uy =i¢fU5§(l_3;)— p(J =), (S6)

where p(J —1) =0 since this formulation will be restricted to an incompressible MNE (J =1).

Consider the balance of power per unit volume

W=U,+D, =P:F=JoF " :F=Jo:FF =Jo:L=Jo:D

(S7)

where W, U,, D, , F, J= det(E), L,D= (L+LT)/2 , 6, P=JoF ' are respectively the
work, strain energy, dissipation, deformation gradient tensor, its determinant, velocity gradient
tensor, symmetric part of velocity gradient tensor, Cauchy stress, and 1st Piola-Kirchhoff stress.

Here the overhead dot indicates differentiation with respect to time, and in component form

3 3
A:B= ZZA, B, . Because ¢ is symmetric 6:L=06:D. U can be evaluated by taking the

i=l j=1

appropriate derivatives of Eq. (S6) as follows

[Zqﬁ aUl( 2, B} ) S‘éj B+¢ uij Vol N NG ELL (7 JON (S8)

Using 6J/0B=0,1,(B)/0B=JB /2, B=LB+BL", Eq. (9) in the main text, and denoting

=—¢ ,U_[f ro Ny )N L,,( )ﬂ\’ this can be rewritten as

[z¢ J’NI)MM—) J (LB+BL")-D, (S9)

Further manipulations of Eq. (S9) gives
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s(N-1

i=1 OB, 2"

o s (S10)
. . N . ! ! . N . : ! !
Uy +D, =[Z¢'2%F—N)B’N—WIJ:D=(Z¢’2B’N T —pJIJ:D,
i=l 2N 2N

Uy, +D, (Z¢ M_)( :j(N]))2/3B_pJ1j:(L+LT):[i¢"( : ))2’3Bm_pJ1J;(L+LT

i=1

where 1 is the 2" order identity tensor. Note that the last two expressions in Eq. (S10) are
equivalent (owing to the symmetry of B). Comparing Eq. (S10) with Eq. (S7) two equivalent

expressions for the stress can be extracted

a-3¢ 200,081 )y _ -3¢ 2m, Sy (s1)
J OB, 8B B, -
Slmllarly, from comparing Eq. (SIO) with Eq. (S7) the dissipation can be identified as

D,, :_¢1ﬂTf(NK )B(FII‘mx’NK)NKE:h(r*}ZNK' (S12)

Note that the second law of thermodynamics is satisfied since b( N K)S 0 and all the other

max ’

quantities in the equation are non-negative.

Many hyperelastic models only depend on the 1* invariant of B, /,, in which case

A AN AR ) -
0B, onB,) oB,  a(B,)
For this case we can also define the initial Young’s and shear modulus for the material. Introducing

Eq. (S13) into Eq. (S11), and setting J = 1 gives

¥ oU\[,\B, oU\1,\By
Y %(éTD(J‘ B p1=3 0 %(i)—))l}—pl. (514)

i=l

Where Eq. Eq. (9) from the main text, B, =( ! )2/31_3 , has been used. The initial shear

s(N-1)

modulus, G , is defined for consistency with linear elasticity when [,(B)=3 , therefore

0 b

1B, )=3(s/y., ] and
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B o wnans Bl ) & auiBl, )
GO B 3 _;¢ 2(JS(N_1)) 8]1(1_3;,) _Z¢2 all(l_?’)

i=1

(S15)

where the initial Young’s modulus is £ =3G. due to incompressibility.
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S3. Chain Model and Damage Evolution Functions

The derivation of the chain model and damage evolution functions is to be reported in a separate
publication [31]. The fundamental idea of the model is that chain force-extension relationships
based solely on entropic elasticity (for example Arruda-Boyce) perform poorly near the critical
extension because they do not allow the contour length of the chain to increase [30]. For a MNE
the behavior in this regime is fundamentally important to the mechanical response, hence we
incorporated bond deformation into the chains’ backbone by minimizing energies of
configuration entropy, bond stretch, and bond angle deformation to obtain a force extension

relationship which is not singular at the critical extension (See Figure S1).

3 —
Our Model
25k Entropic Elasticity
2 -

05 06 07 0.8 09 1 11 12
Extension

Figure S1 Comparison of the force-extension relationship from the entropic elasticity model [31] for PEA chain.
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In the limit of large deformation rates, the results from the rate dependent damage model
presented in [31], can be reasonably approximated with Weibull distributions. The functions

given are as follows

db cl Fcr - F o E:r - F B
— = exp| —| — ) (S16)
Al C &) (&)
F -F)
b=1€xp[(”—} J (S17)
¢,

Note that Eq. (S16) represents the Weibull probability distribution function while Eq. (S17)

represents the Weibull cumulative distribution function. The constants F

cr

¢, and ¢, depend
on the material, the chain length and the chain extension rate. For the MNE with photophore in

the rate-independent regime F, =1.99nN and

¢, =0.000174N; —0.0138N, +1.2436, (S18)

¢, =—0.03019N2 —2.9816N, +22.314. (S19)

For the MNE without photophore in the rate independent regime F, =3.47nN and

¢, =—0.00034N2 +0.053178N, +0.6822, (S20)

¢, =—0.29114N? +33.01N, +4.8072. (S21)

S4. Numerical Methods
The following method is used to evaluate the integration with respect to N, in Egs. (17),

(20), and (31) in the main text. The integration of the product of the probability density function,
f (N X ) , and an arbitrary function g(r*, N K) is evaluated by dividing the range of chain lengths

into M bins and evaluating the following summation
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[N el N N, = S AF, gl M), (s22)

where

AFm = O'S(f(NK,m+1 )+ f(NKm )XNK,m+1 - NK,m )> (523)

and N, is the average Kuhn length for chains in bin m defined as

Nicw =05(N g, + Ny, ) (S24)

Here N

xmi1» and N are the chain lengths at the endpoints of bin m.

S5. Repeatability

In determining fitting parameters to provide the best fit of the model to the experimental data,
results were used from numerous experiments. To examine how much the parameters may vary
between different samples with a similar MNE structure, we did a comparison of 3 data sets of
DN elastomers and 3 datasets of TN elastomers. In each case the crosslink density is the same
and the network is swollen with approximately the same monomer/solvent ratio. The results are
shown in Figure S2. Here the yellow curves correspond to the data presented in Figure 9
(DN3/TN3). The red curves correspond to data from Fig 2. C of Ducrot et al [13]
(DND2C/TND2C). The red curves correspond to the MNE with photophore from Figure 5
(DNP/TNP). Due to the presence of photophores it is expected that the blue curves would
behave slightly differently. However, the variability between the red and yellow curves suggests
possible variation in the prestretch and/or the chain length distribution between samples.

Nevertheless, in each measurement the initial shear modulus is relatively constant.
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Figure S2 Engineering Stress plotted against stretch for 3 MNEs. a) DN elastomers b) TN elastomers. The yellow curves
correspond to the data presented in Figure 9 (DN3: EAel.45(1.68)EA/TN3: EAel.45(2.55)EA). The red curves correspond to
data from Fig 2. C of Ducrot et al [13] (DND2C: EAel.45(1.71)EA/TND2C: EAel.45(2.71)EA ). The blue curves correspond to
the MNE with photophore from Figure 5 (DNP: EAel.45(1.48)EA/TNP: EAel.45(2.72)EA ).

66



