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In 1937, Neyman introduced the notion of smooth tests of the null Received 15 September 2016
hypothesis that the sample data come from a uniform distribution on Accepted 30 October 2017
the interval (0,1) against alternatives in a smooth parametric family. This KEYWORDS

idea can be used to embed various nonparametric inference problems

in a parametric family. Focusing on nonparametric rank tests, we show

how to derive traditional rank tests by applying this approach. We also AMS SUBJECT

show how to use it to obtain simplifying insights and optimality results CLASSIFICATION

in complicated settings that involve censored and truncated data, for 626G

which it is more convenient to use hazard functions to define the

embedded family. We describe an application of the embedding

approach to the problem of testing for trend in environmental studies.

1. Introduction and background

We have maintained repeated research interactions with Bimal Sinha since the 1980s. One
of our shared common interests with him is statistical inference with rank data, and with
his twin brother Bikas a common interest is generalized linear models. Although the
former is inherently nonparametric and the latter is intrinsically parametric, parametric
embedding of nonparametric inference problems bridges the apparent gap between them.
This is the major theme of the present article, which shows that the key to deriving
fundamental results on nonparametric inference with the embedding approach lies in
appropriate choice of the parametric family. We give in this section a review of this idea
dating back to Neyman (1937). In section 2, we revisit important developments in
semiparametric inference from censored and truncated data using this parametric embed-
ding approach as a versatile tool that provides simplifying insights into complicated
settings and extends optimality arguments from parametric to nonparametric and semi-
parametric problems. Section 3 provides some concluding remarks, including an applica-
tion to environmetrics which is one of Bimal’s major research areas.

1.1. Smooth tests of uniform null against embedded alternatives in exponential
family and applications to rank data

Neyman (1937) introduced smooth tests of the null hypothesis that the sample data are
generated from a uniform distribution on the interval (0,1) so that the tests have good
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2 (& M ALVOETAL

power against alternatives whose probability densities depart smoothly from the null
hypothesis. Smooth changes include shifts in mean, variance, skewness, and kurtosis,
and the smooth alternative density has the form

k
g(yve):exp{zeihi(y)_K(9>}vO<y< 1, (1)
i=1 40
where 6 = (6,6, ...,0;)" is a set of unknown parameters, K(6) is a normalizing constant,
and the h;(y) are the Legendre polynomials that are orthonormal with respect to the
uniform distribution on (0, 1). The null hypothesis can be expressed as Hy : 6 = 0.
A parallel parametric family for inference from a sample consisting of ranking data of ¢
objects can be described as follows. Let P be the space of ¢! permutations of the integers 45
1,2,...,t, and let

p=(p1,-pn)"

with p; = p(wj),wj € P, be a probability mass distribution defined on P. Consider the
null hypothesis that all rankings are equally likely, that is,

Al
H()ZP:pO:Fl

against the alternative H; : p#py. Proceeding in the spirit of Neyman, let X be a random
vector of dimension k defined over P and let its probability mass function be given by 50

m;(0) = exp{Gij 4 K(G)}poj,j =1,..,1t (2)
where 6= (6,,...,6;)" is a k-dimensional vector of unknown parameters, K(6) is a
normalizing constant, and X (w;) = x;. The po; represent the values of the probabilities
prescribed by the null hypothesis, which reduces to py;= 7 for the preceding Hy. We can
rewrite Hy as 8 = 0, or equivalently, Hy : ZLI 67 = 0. Since Zjﬂzl mj(0) = 1, the expecta- 55
tion of the vector X is

n(0) = EoX = xmi(6) = (815(5?)),

and the variance—covariance matrix is

Cove(X) = (g;%?)

Suppose we take a random sample of n observations. Let n; denote the frequency of
occurrence of the ranking w; with 3jn; = n. The likelihood function is given by the
multinomial distribution and is proportional to

L(6) = m" (0)my*(6) - .. my" (6).

s Tl

Taking logs, we have log L(6) = n[0"#; — K(6)] + C, where C does not depend on fand 7 60
is the usual sufficient statistic given by
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f
n= l E xj(nj/n)‘| )
j=1

The score test calculates the score statistic

U(e) (alogef(g))

and rejects for large values of Sy = [U(6,)]"[I(60)] ' [U(6p)], where 6, is the value set by
the null hypothesis, which is 0 in the present case, and

106) = <_E9W)

(3)

is the Fisher information matrix. Note that the score statistic does not require the
calculation of the maximum likelihood estimate but does require the calculation of the
inverse (or generalized inverse) of the information matrix. It can be shown that for large n,
Sk= 5)(}%, where f is the rank of I(6;). The Neyman smooth tests of fit provide a blueprint

for deriving various tests involving the use of ranks, as shown by Alvo (2016). This
application of the blueprint dated back to the Nobel Laureate (in economics) Milton
Friedman in 1937 when he studied statistics and economics as a PhD student at Columbia
University.

Example 1. Suppose n judges rank ¢ objects in accordance with some criterion. Let X be
the ¢-dimensional random vector of adjusted ranks for which

t+1 t+1\"
X(wy) = (wj(l)—T,..~,wj(t)—T> =1t

Under the null hypothesis Hy : 8 = 0, or equivalently that the #! possible rankings have the
same probability of being chosen,

Covo(X) = ( [t — T,

and where J; is a matrix of 1’s. Hence, the score test statistic becomes

S = [U(0)]"[1(0)] "' [U(0)] = 2 > (Rf_ (til)) ’

(t+1) =

where R; is mean rank for object i. This is the test of Friedman (1937), who showed that S;
has a chi-squared distribution with (¢t — 1) degrees of freedom under the null hypothesis.
In section 1.2, we use the parametric embedding to derive some optimum properties of
this test.
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4 M. ALVO ET AL.

1.2. Locally most powerful rank tests

Lehmann and Stein (1949) and Hoeffding (1951) pioneered the development of an
optimality theory for nonparametric tests, parallel to that of Neyman and Pearson
(1933) and Wald (1949) for parametric testing. They considered nonparametric hypoth-
eses that are invariant under permutations of the variables in k-sample problems' so that
rank statistics are the maximal invariants, and extended the Neyman-Pearson and Wald
theories for independent observations to the joint density function of the maximal
invariants. Terry (1952) and others subsequently implemented and refined Hoeftding’s
approach to show that a number of rank tests are locally most powerful at certain
alternatives near the null hypothesis. In particular, for k =2, let Ry < --- <R, denote
the ranks of sample 1 (with sample size m) in the combined sample of n independent
observations. Suppose sample 1 is generated from a distribution with density function g.
Let V(1),..., V(y denote the order statistics of the combined sample; Hoeffding (1951)
introduced the change-of-measure formula

B F O

where E, denotes expectation with respect to the probability measure under which the n
observations are i.i.d. with common density function g, assuming that g is positive
whenever f is. In particular, consider testing Hy : f = g versus the location alternative
f(x) = g(x — 0) for small positive values of 6. In this case, differentiating both sides of Eq.
(4) with respect to 6 and letting 6 | 0 yield

9 _ _ o [EVE)T] (n
%P{Rl =11, Ru=tu}log =~ _E {g(V(n))]/<m>' (5)

i=1

Hence by an extension of the Neyman-Pearson lemma, the derivative of the power
function at 6 = 0 is maximized by a test that rejects Hy when the right-hand side of Eq.
(4) exceeds some threshold C, which is chosen so that the test has type I error « when
0 = 0. This test, therefore, is locally most powerful, for testing alternatives of the form
f(x) = g(x — 0), with 0 | 0, and examples include the Fisher-Yates test when g is standard
normal and the Wilcoxon test when g(x) = ¢*/(1 4 ¢*)* is the logistic density.

A parametric embedding argument similar to the second paragraph of section 1.1 can
be used to give an alternative derivation of the local optimality of the Fisher-Yates and
Wilcoxon tests. Generalize Eq. (2) from the case k = 1 to k = 2 by defining

=1

2
(61, 0;) = exp{Z[@}xgj — K(G(ﬂ }poj,j =1,..,nl, (6)

where 6 = (0¢1, ..., Hgk)T represents the parameter vector for sample €( = 1, 2) and xyj, xy;
are the data from sample 1 and sample 2 with respective sizes m and n — m that are
associated with the ranking (permutation) wj, j = 1, ..., n!. Under the null hypothesis H :
0, = 0,, we can assume without loss of generality that the underlying V7, ..., V, from the
combined sample are ii.d. uniform (by considering G(V;), where G is the common

"Lehmann and Stein considered the case k = 2 and Hoeffding general k, including k = 1.
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distribution function, assumed to be continuous, of the V;) and that all rankings of the V;
are equally likely. Hence Eq. (6) represents an exponential family constructed by expo-
nential tilting of the baseline measure (i.e., corresponding to Hy) on the rank-order data.
This has the same spirit as Neyman’s smooth test of the null hypothesis that the data are i.
i.d. uniform against alternatives in the exponential family of Eq. (1). Neyman and Pearson
(1936, 1938) applied the Neyman-Pearson lemma to show that the score tests based on
the statistics Eq. (3) have maximum local power at the alternatives in Eq. (1) that are near
0 = 0. The parametric embedding of Egs. (2) or (6) makes these results directly applicable
to the rank-order statistics. In particular, this shows that the two-sample Wilcoxon test of
Hj is locally powerful for testing the uniform distribution against the truncated exponen-
tial distribution for which the x¢; are constrained to lie in the range (0, 1) of the uniform
distribution. Note that these exponential tilting alternatives differ from the location
alternatives in the preceding paragraph not only in their distributional form (truncated
exponential instead of logistic) but also in avoiding the strong assumption of the preced-
ing paragraph that the data have to be generated from the logistic distribution even under
the null hypothesis.

1.3. Lecam’s local asymptotic normality and hajek-l@n theory

The local alternatives in section 1.2 refer to 6 near the value(s) 6, assumed by the null
hypothesis. The sample size # is not involved in the analysis of local power. On the other
hand, the central limit theorem has played a major role in the development of rank tests,
as asymptotic normality is used to provide approximate critical values under the null
hypothesis and to approximate the power function under alternatives within O(n~'/?)
from 6y. LeCam (1960) introduced a fundamental concept, which he called contiguity of a
sequence Q, of probability measures to another sequence P,, written Q, < P,, defined by
the property that the likelihood ratio dQ,/dP, is bounded in probability (under P,) as
n— o0o.> He proved three key results that have been called LeCam’s first, second, and
third lemmas, related to the log-likelihood ratio log(dQ,/dP,); see Hajek et al. (1999,
Section 7.1) and van der Vaart (1998, Section 6.2). Hajek (1962) applied this theory to
rank tests of the null hypothesis Hy:f =0 in the simple regression model
Y; = a+ fu; + &, in which ¢ are ii.d. with common density function f, using linear
rank statistics of the form

n R
Sn = ;(ui - u)(P<n4j 1>' (7)
He derived the asymptotic normality of S, under the null hypothesis and contiguous
alternatives, and showed the test to have asymptotically maximum power uniformly for
these alternatives if ¢ = —(f' o F~!)/(f o F~!), where F is the distribution function with
derivative f. Note that this result is consistent with the choice of the score function given
by Eq. (5) for locally most powerful tests in section 1.2. Hajek (1968) subsequently
introduced the projection method to extend these results to local alternatives that need
not be contiguous to the null.

*This is also equivalent to P,(A,) — 0 if and only if Q,(A,) — 0 for any sequence of events A,.
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6 M. ALVO ET AL.

The rank tests in the preceding paragraph deal with the regression setting, which is
related to the location alternatives in the first paragraph of section 1.2. If we focus on
k-sample problems, then parametric embedding as in the second paragraph of that section
can be applied and the idea of local asymptotic normality (LAN), which was also intro-
duced by LeCam (1960) in conjunction with contiguity, can be applied to derive the LAN
property of the embedded family. As pointed out by Van Der Vaart (1998, Chap. 7), a
sequence of parametric models is LAN if asymptotically (as n — o00) their likelihood ratio
processes behave like those for the normal mean model via a quadratic expansion of the
log-likelihood function. Hajek (1970; 1972) and LeCam (1972) made use of the LAN
property to derive asymptotic optimality in parametric estimation and testing via con-
volution theorems and local asymptotic minimax bounds; see Van Der Vaart (1998, Chap.
8). In the next section we discuss these results further and generalize them in the much
more complicated setting of censored and truncated data. We also apply the generalization
of parametric embedding to revisit a number of major developments for these data.

2. Parametric embedding approach to rank tests with censored and
truncated data

Extension of rank tests to censored data began with Gehan’s (1965) extension of the
Wilcoxon test and Mantel’s (1966) logrank test. An idea similar to Gehan’s was extended
to truncated data by Bhattacharya, Chernoff, and Yang (1983). Lai and Ying (1991; 1992)
gave a unified treatment of rank statistics for left-truncated and right-censored (LTRC)
data. Section 2.2 gives an overview of the developments of rank tests for these incomplete
data, highlighting the difficulties caused by ranking incomplete data and describing
important landmarks in overcoming these difficulties. In section 2.1 we generalize the
parametric embedding approach to give a new derivation of what these landmarks have
finally led to. More importantly, coupled with the LAN and local minimaxity results of
section 2.3, the approach introduced in section 2.1 yields asymptotically optimal tests for
local alternatives in the embedded parametric family. Since the actual alternatives are
unknown, the problem of adaptive (data-dependent) choice of the score function for rank
tests has witnessed important developments. Section 2.3 gives a brief review of this topic
and its implications on the choice of the parametric family in parametric embedding.

2.1. Extension of parametric embedding to censored data

We begin with the right-censored case for which our basic idea of using the hazard
function instead of the density function for exponential tilting can become transparent.
For complete data V7, ..., V,, the parametric embedding of Eq. (2) or Eq. (6) assumes (a)
equally likely rankings that give rise to pe; and i.i.d. uniform G(V,),...,G(V,) under the
null hypothesis, and (b) exponential tilting via distinct values of x; that are functions of
the ranks as in Example 1. The V; are not completely observable when the data are
censored so that the observations are (V;,9;), where V; = min(V;,¢;) and &; = Itv<cy-
Since the rank assigned to V; for complete data is the empirical distribution function
evaluated to V;, the analog for censored data is G(V;), where G is the Kaplan-Meier
estimator, which is the nonparametric maximum likelihood estimator (MLE) of G for

160

165

170

175

180

185

190

195



JOURNAL OF STATISTICAL THEORY AND PRACTICE @ 7

censored data. Hence the model under the null hypothesis is that of ii.d. uniform
random variables censored by G(c;), providing a partial analog of (a). Since G puts all
its mass at the uncensored observations (with § = 1), this causes some difficulty in
generalizing (b) because the sample also contains censored observations. Note that at
each uncensored observation V;, the information in the ordered sample conveys not only
the value of V; but also how many observations V] in the sample are > V.. When the V;
denote failure times in survival analysis, this means the size of the risk set, that is, the
number of subjects who are at risk at an observed failure time V;. This resolves the
inherent difficulty of ordering the censored observations for which the actual failure
times are unknown except for their exceedance over ¢;. To rank the data, we need to have
a total order of the sample space, but the subset consisting of censored observations
cannot be totally ordered because the underlying failure times are unknown. Using the
observed failure time and the risk set size at each uncensored observations gives a partial
analog of the ranking for complete data. To be at risk at an observed failure time V;, the
subject cannot fail prior to V;. The jump AG(V;) basically measures the conditional
probability of failing in an infinitesimal interval around V; given that failure has not
occurred prior to V;. This means that we should think of hazard functions instead of
density functions and perform exponential tilting using the hazard functions rather
density functions. The hazard function is related to the density function f via

My =T
J f(u)du

t

(8)

Consider the two-sample problem with censored data. Let V()< --- < V() denote
the ordered uncensored observations of the combined sample, N; (resp. M;) denote the
number of observations in the combined sample (resp. in sample 1) that are > Vj;,
and u; =1 (resp. 0) if V(;) comes from sample 1 (resp. sample 2). Note that
{(1),...,(k),M1,Ny,...,My,Ni} is invariant under the group of strictly increasing
transformations on the testing problem. The model under the null hypothesis is
described in the preceding paragraph, and we now introduce embedding of the null
model into a smooth parametric family that also consists of alternatives. Instead of
tilting the density functions as in Eq. (2) or Eq. (6), we define the change of measures
via intensity (hazard) functions, as in Section II.7 of Andersen et al. (1993). Because
the normalizing constant e X(®) in Eq. (2) gets canceled in the numerator and denomi-
nator of Eq. (8), it does not appear in the likelihood ratio statistic. On the other hand,
the denominator of Eq. (8) will induce a function A¢(t), which can be chosen as the
baseline (or null hypothesis) hazard function, in the likelihood ratio. An analog of Eq.
(2) or Eq. (6) therefore takes the proportional hazards form

We discuss in the following the choice of x; that extends xj = X(w;) in Eq. (2) to LTRC
data, for which we also define the hazard-induced rank statistics.
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8 M. ALVO ET AL.

2.2. From Gehan and Bhattacharya et al. to hazard-induced rank tests

In this section we first focus on some landmark developments of two-sample rank tests for
censored data in the literature and then show how x; in Eq. (9) can be chosen on the basis
of the insights provided by these developments. We next show how these two-sample rank
statistics can be extended to the k-sample and regression settings, and then further extend
them for left-truncated and LTRC data.

The first landmark development was Gehan’s extension of the Mann-Whitney version
of the Wilcoxon test to censored data. Let T; (resp. T/) denote the actual failure times of

sample 1 (resp. sample 2), and (Tl-, 6,-) and (Tj/, 6/) be the corresponding observations.
For complete data, the Mann-Whitney statistic is W = >, > " w(T;, T}'), where

w(t, ¥') =1 (resp. — 1) if t>1¢ (resp. t<t'), and w(¢t,¢') = 0 if t = ¢'. For censored data,
Gehan replaced w(T;, Tj') by

o —1 ifT; < Tjand§; =
w(Tz,&, ;,5/) =| v #Ti>Tands/ =1 (10)
0 otherwise,

noting that comparisons can be made if the smaller of T; and le is uncensored.” Breslow
(1970) subsequently extended this to the k-sample case and expressed W in the counting
process form

W= JY(S) dN'(s) — JY’(S) dN(s), (11)

where N(s) = >0 Iig oo 521y N'(s) = 200" Loy o1y and Y(s) =321 Ii7,»,) and

n—m

Yi(s) =21 (725 A€ the corresponding risk set sizes.

Instead of the weight processes Y and Y’ that depend on both failures and censoring,
Prentice (1978) suggested that a better alternative should depend on the survival experi-
ence in the combined sample. For complete data the classical two-sample rank statistics
have the form S, = >""| a,(R;), where the scores a,(j) are obtained from a score function
¢ on (0,1] by a,(j) = ¢(j/n) so that S, = > ", ¢(G,(T;)), where G, is the distribution of
the combined sample, or by some asymptotically equivalent variant such as the expected
value of ¢ evaluated at the jth uniform order statistic from a sample of size n. As pointed
out in the first paragraph of section 2.1, the counterpart of G,(T;) for censored data is
G,(T;), where G, is the Kaplan-Meier estimate based on the combined sample. If &; = 1,
T; is the actual failure time and has score ¢(G,(T;)). On the other hand, if 8; = 0, then the
actual failure time T; is unknown, other than that it exceeds T; and therefore has score
®(G,(T;)), where

O(t) = Jl(p(u)du/(l —t), 0<t<lI, (12)

t

3In fact, Gehan introduced a further refinement depending on whether the larger observation is
censored or not.
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represents the average of scores ¢(u) with u > t. This leads to the following extension of
the classical rank statistic >_." | ¢(G,(T;)) to censored data:

St = zm:{w(i-) +(1-8)0(T))}. (13)

Prentice (1978) conjectured the asymptotic equivalence of Eq. (13) to another class of rank
statistics that he proposed for censored data based on the generalized rank vector, which is
a permutation of {1,...,n} of the form

R=[(1),o (R (D), (9 o] (14)

where V(;y < -+ <V are the ordered uncensored observations of the combined sample
(as in section 2.1) and {\7(,»1>, e f/(,»vl.)} is the unordered set of censored observations
between V(; and V(;y), setting V(o) = 0. Cuzick (1985) proved this conjecture under
some smoothness assumptions on ¢ and also extended the proof to show in his Section 3
the asymptotic equivalence of Eq. (13) and

A M.
Sn :ZV/(Gn(Vg))) (uj_ﬁ;>, wherey = ¢ — ®. (15)

j=1

This form of rank statistics for censored data dated back to Mantel (1966) with y = 1. As
shown by Gu, Lai, and Lan (1991), there is a one-to-one correspondence between ¢ and y:

(p(t):y/(t)—J V) g o<i<r,

()1—5

and rank statistics of the form in Eq. (15) can be expressed in the form of generalized
Mann-Whitney statistics W = Y " | Z;’:_lm W(T,-, i T/, 6/) with

B —nw(Gn(T,))/Y(T,) Zf ’T,' S ’T]/ and (S,‘ =1
W(Tu 0, T ,6/) = | n0(Gy(T7))/Y.(T)) ifTi>T/and § =1 (16)
0 otherwise,

where Y.(s) = > 1, I{Ti > s} + Z}:{" I{Ti > s} is the risk set size of the combined
sample at s.

The representation (15) is convenient for extensions from two-sample to the regression
settting in which w;are the covariates in the regression model V; = Bu; + ¢;, as in Eq. (7).
The M;/N; in Eq. (15) is now generalized to

iy = (Z ”iI{V,-zV@}>/NJ‘a (17)
i=1

which is the average value of the covariate associated with the risk set at the uncensored
observation \70). Lai and Ying (1991, Theorem 1) established the asymptotic normality of
these rank statistics under the null hypothesis Hy : f = 0 and under local alternatives.
Analogous to the complete data case, these tests are asymptotically efficient when
v = oF')/(AoF1), where F is the common distribution function and A the hazard
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10 M. ALVO ET AL.

function of the ¢. They proved this result when the data can also be subject to left
truncation.

Suppose (u;, Vi, 8;) can be observed only when V; = min(V;, ¢;) > 1;, where (1;, ¢;, u;)
are independent random vectors that are independent of the ¢;. The 7; are left truncation
variables and V; is also subject to right censoring by ¢;. The case ¢c;=c0 corresponds to the
left-truncated model, for which multiplication of V; and 7; by — 1 converts it into a right-
truncated model. Motivated by a controversy in cosmology involving Hubble’s law and
chronometric theory, Bhattacharya, Chernoff, and Yang (1983) introduced a Mann-
Whitney-type statistic W,(8) = > > _,.; w;(B) in the regression model V; = Bu; + &, in
which u; represents log velocity and V; the negative log of luminosity; moreover, (u;, V;)
can only be observed if V; < v,. This is a right-truncated model with truncation variables
7;=vp, and letting (V;,u}),i =1,...,n, denote the observations, they defined ¢;() =
V¥ — Bu; and

ui —u; if (B)<ei(B) < vo— Pu;
wi(B) = uf —u  if ei(B)<e(B) < vo— Pu; (18)

0 otherwise

since it is impossible to compare ei(B) and e(B) if Vi —pui>vy—pu; or
Vi — Bu; >vo — Bu;. Note the similarity of this idea to Eq. (10) proposed by Gehan for
censored data, and again it has the same drawbacks as Eq. (10). In fact, as shown by Lai

and Ying (1991), what we discussed in the preceding paragraph for censored data can be
readily extended to LTRC data (u}, V;,8}),i = 1,...,n, that are generated from the larger

1771

sample consisting of (Vi u;),i=1,...,m(n) e inf{m 2> < min (Vi) = n}, with
i=1

(Vi,8;) observable only when V; > 7;. The risk set size at t in this case is Y(t) =

Z?i(ln ' {r—pu<t<¥;—pu;) and the nonparametric MLE of the common distribution function

G of ¢; is the product-limit estimator

Galt) =1 H(l - A;V(())>

where N(s) = Zlm:(f) Lty pu<¥i—pu<so—1} and AN(s) = N(s) — N(s—) when the value of
is specified (e.g, f = 0 under the null hypothesis). The counting process N(s) plays a
fundamental role in the martingale theory underlying the analysis of rank tests via N(s)
and Y(s) by Aalen (1978), Gill (1980), and Andersen et al. (1993, Chap. 5) for censored
data, and by Lai and Ying (1991; 1992) for LTRC data.

As pointed out in section 1.3, the parametric embedding associated with these regres-
sion models is that of a location shift family. Parametric embedding via exponential tilting
as in Eq. (9) is associated with another kind of regression models, called hazard regression
models, which model how the hazard functions (rather than the means) of V; vary with
the covariates ;. Seminal contributions to this problem were made by Cox (1972), who
introduced the model (9) for censored survival data. Kalbfleisch and Prentice (1973)
derived the marginal likelihood L(6) of the rank vector R given by Eq. (14) for this model:
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1(0) = Jq o/ S0 | ¢, (19)

j=1 i€l

where I; = {i SV > V(j)} is the risk set at the ordered uncensored observation V(j), which
is the same as that given by Cox using conditional arguments and later by Cox (1975) using
partial likelihood. This can be readily extended to LTRC data by redefining the risk set at
\7@ as {i: Vi> \7(]») > 7;}. Basically, the regression model in the preceding paragraph

considers the residuals V; — fu;, whereas for hazard regression we consider V; instead.

2.3. LAN, least favorable parametric submodels and semiparametric efficiency

The LAN property for the embedded families (exponential tilting of Eq. (6) and location
shifts) associated with rank tests for complete data in section 1.3 can be extended to those
for LTRC data discussed in the preceding two sections; see Chapter 8 of Andersen et al.
(1993) for censored data and Lai and Ying (1992) for LTRC data in the regression setting.
For the embedded family (9), the well-known arguments for Cox regression extend readily
to LTRC data if the x; in Eq. (9) are the vector of covariates u;. For the two-sample problem

in which x; depends on the generalized rank vector, we can choose x; = W(Gn (V(’;))) to

devise an asymptotically efficient rank statistic as in the censored case, where ¢ = ¢ — ®.
The asymptotic efficiency of the rank tests depends on the class of alternatives in the
embedded parametric family, which may not contain the actual alternative.

The problem of finding the parametric family that gives the best asymptotic minimax
bound has been an active area of research since the seminal paper of Stein (1956) that
described a basic idea inherently related to the theme of our article, as follows.

Clearly, a nonparametric problem is at least as difficult as any of the parametric
problems obtained by assuming we have enough knowledge of the unknown state of
nature to restrict it to a finite-dimensional set. For a problem in which one wants to
estimate a single real-valued function of the unknown state of nature it frequently happens
that there is, through each state of nature, a one-dimensional problem that is, for large
samples, at least as difficult (to a first approximation) as any other finite-dimensional
problem at that point. If a procedure does essentially as well, for large samples, as one
could do for each such one-dimensional problem, one is justified in considering the
procedure efficient for large samples.

The implication of Stein’s idea on our parametric embedding theme is the possibility of
establishing full asymptotic efficiency of a nonparametric/semiparametric test by using a
“least favorable” parametric family of densities for parametric embedding. Lai and Ying
(1992, section 2) have shown how this can be done for regression models with i.i.d.
additive noise ¢;. The least favorable parametric family has hazard functions of the form
A(t) + 04(t), where # is an approximation to — A'T; /Ty, A is the hazard function of ¢;, and
it is assumed that for h=0,1,2, Ty(s) =limpcom ' 31 E{tllir pu<s<cipu)/
(1 — F(1; — Bu;)} exists for every s with F(s)< 1, where F is the distribution function
of ¢;. In particular, the technical details underlying the approximation are given in (2.26 a,
b, ¢) of that paper. Lai and Ying (1991; 1992) have also shown how these semiparametric
information bounds can be attained by using a score function that incorporates adaptive
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estimation of A. For a comprehensive overview of semiparametric efficiency and adaptive
estimation in other contexts, see Bickel et al. (1993).

3. Applications and discussion

Although “it is customary to treat nonparametric statistical theory as a subject completely
different from parametric theory,” Stein (1956) developed the least favorable parametric
subfamilies for nonparametric testing and estimation as “one of the more obvious connec-
tions between the two subjects.” Our recent work on a parametric likelihood approach to
the analysis of rank tests described in section 1.1 and an ongoing research project on
nonparametric tests and estimation of multiple change points have led us to formulate
herein a general parametric embedding approach to nonparametric inference problems,
focusing on rank data. We have shown how major developments in the theory of rank tests
can be related to this approach. In particular, for censored or truncated data, it is relatively
straightforward to write down the parametric likelihood ratio, which shows the advantages
of using the hazard instead of the joint density function. Section 2 uses parametric embed-
ding via hazard functions to elucidate some landmark developments in rank tests based on
LTRC data and to derive optimality results in these complex settings.

Censored and truncated data arise in many applications in astronomy, biomedicine,
econometrics and industrial engineering, as pointed out by Lai and Ying (1991; 1992). We
conclude with another application of the parametric embedding approach. In environmental
studies, it is often of interest to test for trend in monitoring data as for example in the study of
lake pH. The usual distribution-free tests based on either the Spearman or Kendall correlation
statistics require that data be collected at regularly spaced intervals in time. Alvo and Cabilio
(1994) developed a test of trend when data are collected at irregular time intervals. Suppose
that observations are taken at T regularly spaced points but recorded only at the k time points
1 <t <t,<..<t <T.Denote the ranks from smallest to largest of the recorded observa-
tions by R(t;),i = 1, ..., k. Alvo and Cabilio (1994) introduced the test statistic

T k T k
A = (Fﬂl) Z(ti - %) <R<t,-) - %) (20)

i=1
which corresponds to the sample covariance between a string in which time forms a
complete ranking (1,...,T) and a string of the ranked observations from an incomplete
ranking with T — k blanks and ranks R = (R(#;), ..., R(t)) at the time points (t1, f,..., tx).

We now show that the test statistic for the null hypothesis of no trend, Ay, may be
obtained from the following parametric model. In the complete data situation, let S =

T . o .
(1 — % ,2 — %, vy T — %) be the centered permutation representing time and simi-

larly let R = (R(1) — &2, . R(T) — %)T be the centered permutation representing the
ranked observations. A parametric distance-based model described in Alvo and Yu (2014)
for the distribution of R has the form n(R|6) = H(S"R)-K(6) /T!. Note that the score

statistic for this sample is

Olog n(R|6)

—§TR_K
. S'R — K'(6)
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evaluated at 6 = 0. The asymptotics as T — oo lead to the well-known Spearman test of
trend. In the situation when data is recorded only at k time points, we may make use of
the notion of compatibility as defined in Alvo and Yu (2014) whereby we project the
rankings on the class of complete order-preserving permutations. Specifically, if C(R)
denotes the compatibility class corresponding to R, then

| (k) - T3 lew] = (157 (ke - 55 o0,

where §(i) = 0 or 1 according to whether the observation at the ith regularly spaced time
is or is not recorded. This yields the statistic of Eq. (20), which has been shown to be more
efficient than the naive test, which ignores missing data. The parametric distance-based
model can thus be seen to provide a justification for this trend statistic.
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