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ABSTRACT
In 1937, NeymanQ2 introduced the notion of smooth tests of the null
hypothesis that the sample data come from a uniform distribution on
the interval (0,1) against alternatives in a smooth parametric family. This

10idea can be used to embed various nonparametric inference problems
in a parametric family. Focusing on nonparametric rank tests, we show
how to derive traditional rank tests by applying this approach. We also
show how to use it to obtain simplifying insights and optimality results
in complicated settings that involve censored and truncated data, for

15which it is more convenient to use hazard functions to define the
embedded family. We describe an application of the embedding
approach to the problem of testing for trend in environmental studies.
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1. Introduction and background

We have maintained repeated research interactions with Bimal Sinha since the 1980s. One
20of our shared common interests with him is statistical inference with rank data, and with

his twin brother Bikas a common interest is generalized linear models. Although the
former is inherently nonparametric and the latter is intrinsically parametric, parametric
embedding of nonparametric inference problems bridges the apparent gap between them.
This is the major theme of the present article, which shows that the key to deriving

25fundamental results on nonparametric inference with the embedding approach lies in
appropriate choice of the parametric family. We give in this section a review of this idea
dating back to Neyman (1937). In section 2, we revisit important developments in
semiparametric inference from censored and truncated data using this parametric embed-
ding approach as a versatile tool that provides simplifying insights into complicated

30settings and extends optimality arguments from parametric to nonparametric and semi-
parametric problems. Section 3 provides some concluding remarks, including an applica-
tion to environmetrics which is one of Bimal’s major research areas.

1.1. Smooth tests of uniform null against embedded alternatives in exponential
family and applications to rank data

35Neyman (1937) introduced smooth tests of the null hypothesis that the sample data are
generated from a uniform distribution on the interval (0,1) so that the tests have good
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power against alternatives whose probability densities depart smoothly from the null
hypothesis. Smooth changes include shifts in mean, variance, skewness, and kurtosis,
and the smooth alternative density has the form

g y; θð Þ ¼ exp
Xk
i¼1

θihi yð Þ � K θð Þ
( )

; 0< y< 1; (1)

40
where θ ¼ θ1; θ2; :::; θkð ÞT is a set of unknown parameters, K θð Þ is a normalizing constant,
and the hi yð Þ are the Legendre polynomials that are orthonormal with respect to the
uniform distribution on 0; 1ð Þ: The null hypothesis can be expressed as H0 : θ ¼ 0.

A parallel parametric family for inference from a sample consisting of ranking data of t
45objects can be described as follows. Let P be the space of t! permutations of the integers

1; 2; :::; t; and let

p ¼ p1; . . . ; pt!ð ÞT

with pj ¼ p ωj
� �

;ωj 2 P, be a probability mass distribution defined on P. Consider the
null hypothesis that all rankings are equally likely, that is,

H0 : p ¼ p0 ¼Δ 1
t!
1

against the alternative H1 : p�p0. Proceeding in the spirit of Neyman, let X be a random
50vector of dimension k defined over P and let its probability mass function be given by

πj θð Þ ¼ exp θTxj � K θð Þ� �
p0j; j ¼ 1; :::; t!; (2)

where θ ¼ θ1; :::; θkð ÞT is a k-dimensional vector of unknown parameters, K θð Þ is a
normalizing constant, and X ωj

� � ¼ xj. The p0j represent the values of the probabilities

prescribed by the null hypothesis, which reduces to p0j; 1
t! for the preceding H0. We can

55rewrite H0 as θ ¼ 0, or equivalently, H0 :
Pk

i¼1 θ
2
i ¼ 0. Since

Pt!
j¼1 πj θð Þ ¼ 1, the expecta-

tion of the vector X is

η θð Þ ¼Δ EθX ¼
X

xjπj θð Þ ¼ @K θð Þ
@θr

� �
;

and the variance–covariance matrix is

Covθ Xð Þ ¼ @2K θð Þ
@θr@θs

� �
:

Suppose we take a random sample of n observations. Let nj denote the frequency of
occurrence of the ranking ωj with Σjnj ¼ n. The likelihood function is given by the
multinomial distribution and is proportional to

L θð Þ ¼ πn11 θð Þπn22 θð Þ . . . πnt!t! θð Þ:

60Taking logs, we have log L θð Þ ¼ n θTη̂� K θð Þ� 	þ C, where C does not depend on θ and η̂
is the usual sufficient statistic given by
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η̂ ¼
Xt!
j¼1

xj nj=n
� �" #

:

The score test calculates the score statistic

U θð Þ ¼ @ log L θð Þ
@θr

� �
(3)

and rejects for large values of Sk ¼ U θ0ð Þ½ �T I θ0ð Þ½ ��1 U θ0ð Þ½ �, where θ0 is the value set by
the null hypothesis, which is 0 in the present case, and

I θð Þ ¼ �Eθ
@2 log L θð Þ
@θr@θs

� �

65is the Fisher information matrix. Note that the score statistic does not require the
calculation of the maximum likelihood estimate but does require the calculation of the
inverse (or generalized inverse) of the information matrix. It can be shown that for large n,
Sk)Lχ2f , where f is the rank of I θ0ð Þ. The Neyman smooth tests of fit provide a blueprint

for deriving various tests involving the use of ranks, as shown by Alvo (2016). This
70application of the blueprint dated back to the Nobel Laureate (in economics) Milton

Friedman in 1937 when he studied statistics and economics as a PhD student at Columbia
University.

Example 1. Suppose n judges rank t objects in accordance with some criterion. Let X be
the t-dimensional random vector of adjusted ranks for which

X ωj
� � ¼ ωj 1ð Þ � t þ 1

2
; . . . ;ωj tð Þ � t þ 1

2

� �T

; j ¼ 1; . . . ; t!:

75Under the null hypothesis H0 : θ ¼ 0, or equivalently that the t! possible rankings have the
same probability of being chosen,

Cov0 Xð Þ ¼ t þ 1ð Þ
12

tI � Jt½ �;

and where Jt is a matrix of 1’s. Hence, the score test statistic becomes

Sk ¼ U 0ð Þ½ �T I 0ð Þ½ ��1 U 0ð Þ½ � ¼ 12n
t t þ 1ð Þ

Xt
i¼0

�Ri � t þ 1ð Þ
2

� �2

;

where �Ri is mean rank for object i. This is the test of Friedman (1937), who showed that Sk
has a chi-squared distribution with t � 1ð Þ degrees of freedom under the null hypothesis.

80In section 1.2, we use the parametric embedding to derive some optimum properties of
this test.
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1.2. Locally most powerful rank tests

Lehmann and Stein (1949) and Hoeffding (1951) pioneered the development of an
optimality theory for nonparametric tests, parallel to that of Neyman and Pearson

85(1933) and Wald (1949) for parametric testing. They considered nonparametric hypoth-
eses that are invariant under permutations of the variables in k-sample problems1 so that
rank statistics are the maximal invariants, and extended the Neyman–Pearson and Wald
theories for independent observations to the joint density function of the maximal
invariants. Terry (1952) and others subsequently implemented and refined Hoeffding’s

90approach to show that a number of rank tests are locally most powerful at certain
alternatives near the null hypothesis. In particular, for k ¼ 2, let R1 < � � � <Rm denote
the ranks of sample 1 (with sample size m) in the combined sample of n independent
observations. Suppose sample 1 is generated from a distribution with density function g.
Let Vð1Þ; . . . ;VðnÞ denote the order statistics of the combined sample; Hoeffding (1951)

95introduced the change-of-measure formula

P R1 ¼ r1; . . . ;Rm ¼ rmf g ¼ Eg
f ðVðr1ÞÞ
gðVðr1ÞÞ

. . .
f ðVðrmÞÞ
gðVðrmÞÞ


 �
=

n
m

� �
; (4)

where Eg denotes expectation with respect to the probability measure under which the n
observations are i.i.d. with common density function g, assuming that g is positive
whenever f is. In particular, consider testing H0 : f ¼ g versus the location alternative

100f ðxÞ ¼ gðx� θÞ for small positive values of θ. In this case, differentiating both sides of Eq.
(4) with respect to θ and letting θ # 0 yield

@

@θ
P R1 ¼ r1; . . . ;Rm ¼ rmf gjθ¼0 ¼ �

Xm
i¼1

Eg
g0ðVðriÞÞ
gðVðriÞÞ

 �

=
n
m

� �
: (5)

Hence by an extension of the Neyman–Pearson lemma, the derivative of the power
function at θ ¼ 0 is maximized by a test that rejects H0 when the right-hand side of Eq.

105(4) exceeds some threshold C, which is chosen so that the test has type I error α when
θ ¼ 0. This test, therefore, is locally most powerful, for testing alternatives of the form
f ðxÞ ¼ gðx� θÞ, with θ # 0, and examples include the Fisher–Yates test when g is standard

normal and the Wilcoxon test when gðxÞ ¼ ex=ð1þ exÞ2 is the logistic density.
A parametric embedding argument similar to the second paragraph of section 1.1 can

110be used to give an alternative derivation of the local optimality of the Fisher–Yates and
Wilcoxon tests. Generalize Eq. (2) from the case k ¼ 1 to k ¼ 2 by defining

πj θ1; θ2ð Þ ¼ exp
X2
,¼1

θT,x,j � K θ,ð Þ� 	( )
p0j; j ¼ 1; :::; n!; (6)

where θ, ¼ θ,1; :::; θ,kð ÞT represents the parameter vector for sample ,( ¼ 1; 2) and x1j, x2j
are the data from sample 1 and sample 2 with respective sizes m and n�m that are

115associated with the ranking (permutation) ωj, j ¼ 1; . . . ; n!. Under the null hypothesis H0 :

θ1 ¼ θ2; we can assume without loss of generality that the underlying V1; . . . ;Vn from the
combined sample are i.i.d. uniform (by considering GðViÞ, where G is the common

1Lehmann and Stein considered the case k ¼ 2 and Hoeffding general k, including k ¼ 1.
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distribution function, assumed to be continuous, of the Vi) and that all rankings of the Vi

are equally likely. Hence Eq. (6) represents an exponential family constructed by expo-
120nential tilting of the baseline measure (i.e., corresponding to H0) on the rank-order data.

This has the same spirit as Neyman’s smooth test of the null hypothesis that the data are i.
i.d. uniform against alternatives in the exponential family of Eq. (1). Neyman and Pearson
(1936, 1938) applied the Neyman–Pearson lemma to show that the score tests based on
the statistics Eq. (3) have maximum local power at the alternatives in Eq. (1) that are near

125θ ¼ 0. The parametric embedding of Eqs. (2) or (6) makes these results directly applicable
to the rank-order statistics. In particular, this shows that the two-sample Wilcoxon test of
H0 is locally powerful for testing the uniform distribution against the truncated exponen-
tial distribution for which the x,j are constrained to lie in the range ð0; 1Þ of the uniform
distribution. Note that these exponential tilting alternatives differ from the location

130alternatives in the preceding paragraph not only in their distributional form (truncated
exponential instead of logistic) but also in avoiding the strong assumption of the preced-
ing paragraph that the data have to be generated from the logistic distribution even under
the null hypothesis.

1.3. Lecam’s local asymptotic normality and hajek-lecam theory

135The local alternatives in section 1.2 refer to θ near the value(s) θ0 assumed by the null
hypothesis. The sample size n is not involved in the analysis of local power. On the other
hand, the central limit theorem has played a major role in the development of rank tests,
as asymptotic normality is used to provide approximate critical values under the null
hypothesis and to approximate the power function under alternatives within Oðn�1=2Þ

140from θ0. LeCam (1960) introduced a fundamental concept, which he called contiguity of a
sequence Qn of probability measures to another sequence Pn, written Qn / Pn, defined by
the property that the likelihood ratio dQn=dPn is bounded in probability (under Pn) as
n ! 1 .2 He proved three key results that have been called LeCam’s first, second, and
third lemmas, related to the log-likelihood ratio logðdQn=dPnÞ; see Hajek et al. (1999,

145Section 7.1) and van der Vaart (1998, Section 6.2). Hajek (1962) applied this theory to
rank tests of the null hypothesis H0 : β ¼ 0 in the simple regression model
Yi ¼ αþ βui þ εi, in which εi are i.i.d. with common density function f , using linear
rank statistics of the form

Sn ¼
Xn
i¼1

ðui � �uÞφ Ri

nþ 1

� �
: (7)

150He derived the asymptotic normality of Sn under the null hypothesis and contiguous
alternatives, and showed the test to have asymptotically maximum power uniformly for
these alternatives if φ ¼ �ðf 0 � F�1Þ=ðf � F�1Þ, where F is the distribution function with
derivative f . Note that this result is consistent with the choice of the score function given
by Eq. (5) for locally most powerful tests in section 1.2. Hajek (1968) subsequently

155introduced the projection method to extend these results to local alternatives that need
not be contiguous to the null.

2This is also equivalent to PnðAnÞ ! 0 if and only if QnðAnÞ ! 0 for any sequence of events An.

JOURNAL OF STATISTICAL THEORY AND PRACTICE 5

plhyu
Sticky Note
LeCam

plhyu
Sticky Note
Hajek-LeCam



The rank tests in the preceding paragraph deal with the regression setting, which is
related to the location alternatives in the first paragraph of section 1.2. If we focus on
k-sample problems, then parametric embedding as in the second paragraph of that section

160can be applied and the idea of local asymptotic normality (LAN), which was also intro-
duced by LeCam (1960) in conjunction with contiguity, can be applied to derive the LAN
property of the embedded family. As pointed out by Van Der Vaart (1998, Chap. 7), a
sequence of parametric models is LAN if asymptotically (as n ! 1) their likelihood ratio
processes behave like those for the normal mean model via a quadratic expansion of the

165log-likelihood function. Hajek (1970; 1972) and LeCam (1972) made use of the LAN
property to derive asymptotic optimality in parametric estimation and testing via con-
volution theorems and local asymptotic minimax bounds; see Van Der Vaart (1998, Chap.
8). In the next section we discuss these results further and generalize them in the much
more complicated setting of censored and truncated data. We also apply the generalization

170of parametric embedding to revisit a number of major developments for these data.

2. Parametric embedding approach to rank tests with censored and
truncated data

Extension of rank tests to censored data began with Gehan’s (1965) extension of the
Wilcoxon test and Mantel’s (1966) logrank test. An idea similar to Gehan’s was extended

175to truncated data by Bhattacharya, Chernoff, and Yang (1983). Lai and Ying (1991; 1992)
gave a unified treatment of rank statistics for left-truncated and right-censored (LTRC)
data. Section 2.2 gives an overview of the developments of rank tests for these incomplete
data, highlighting the difficulties caused by ranking incomplete data and describing
important landmarks in overcoming these difficulties. In section 2.1 we generalize the

180parametric embedding approach to give a new derivation of what these landmarks have
finally led to. More importantly, coupled with the LAN and local minimaxity results of
section 2.3, the approach introduced in section 2.1 yields asymptotically optimal tests for
local alternatives in the embedded parametric family. Since the actual alternatives are
unknown, the problem of adaptive (data-dependent) choice of the score function for rank

185tests has witnessed important developments. Section 2.3 gives a brief review of this topic
and its implications on the choice of the parametric family in parametric embedding.

2.1. Extension of parametric embedding to censored data

We begin with the right-censored case for which our basic idea of using the hazard
function instead of the density function for exponential tilting can become transparent.

190For complete data V1; . . . ;Vn, the parametric embedding of Eq. (2) or Eq. (6) assumes (a)
equally likely rankings that give rise to p0j and i.i.d. uniform GðV1Þ; . . . ;GðVnÞ under the
null hypothesis, and (b) exponential tilting via distinct values of xj that are functions of
the ranks as in Example 1. The Vi are not completely observable when the data are
censored so that the observations are ð~Vi; δiÞ, where ~Vi ¼ minðVi; ciÞ and δi ¼ I Vi�cif g.

195Since the rank assigned to Vi for complete data is the empirical distribution function

evaluated to Vi, the analog for censored data is Ĝð~ViÞ, where Ĝ is the Kaplan–Meier
estimator, which is the nonparametric maximum likelihood estimator (MLE) of G for
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censored data. Hence the model under the null hypothesis is that of i.i.d. uniform

random variables censored by GðciÞ, providing a partial analog of (a). Since Ĝ puts all
200its mass at the uncensored observations (with δ ¼ 1), this causes some difficulty in

generalizing (b) because the sample also contains censored observations. Note that at
each uncensored observation ~Vi, the information in the ordered sample conveys not only
the value of Vi but also how many observations ~Vj in the sample are � ~Vi. When the Vi

denote failure times in survival analysis, this means the size of the risk set, that is, the
205number of subjects who are at risk at an observed failure time Vi. This resolves the

inherent difficulty of ordering the censored observations for which the actual failure
times are unknown except for their exceedance over ci. To rank the data, we need to have
a total order of the sample space, but the subset consisting of censored observations
cannot be totally ordered because the underlying failure times are unknown. Using the

210observed failure time and the risk set size at each uncensored observations gives a partial
analog of the ranking for complete data. To be at risk at an observed failure time Vi, the

subject cannot fail prior to Vi. The jump ΔĜð~ViÞ basically measures the conditional
probability of failing in an infinitesimal interval around ~Vi given that failure has not
occurred prior to ~Vi. This means that we should think of hazard functions instead of

215density functions and perform exponential tilting using the hazard functions rather
density functions. The hazard function is related to the density function f via

λðtÞ ¼ f ðtÞð1
t
f ðuÞdu

: (8)

Consider the two-sample problem with censored data. Let Vð1Þ < � � � <VðkÞ denote
the ordered uncensored observations of the combined sample, Nj (resp. Mj) denote the

220number of observations in the combined sample (resp. in sample 1) that are � VðjÞ,
and uj ¼ 1 (resp. 0) if VðjÞ comes from sample 1 (resp. sample 2). Note that
ð1Þ; . . . ; ðkÞ;M1;N1; . . . ;Mk;Nkf g is invariant under the group of strictly increasing

transformations on the testing problem. The model under the null hypothesis is
described in the preceding paragraph, and we now introduce embedding of the null

225model into a smooth parametric family that also consists of alternatives. Instead of
tilting the density functions as in Eq. (2) or Eq. (6), we define the change of measures
via intensity (hazard) functions, as in Section II.7 of Andersen et al. (1993). Because
the normalizing constant e�KðθÞ in Eq. (2) gets canceled in the numerator and denomi-
nator of Eq. (8), it does not appear in the likelihood ratio statistic. On the other hand,

230the denominator of Eq. (8) will induce a function λ0ðtÞ, which can be chosen as the
baseline (or null hypothesis) hazard function, in the likelihood ratio. An analog of Eq.
(2) or Eq. (6) therefore takes the proportional hazards form

λjðtÞ ¼ λ0ðtÞ exp θTxj
� �

: (9)

We discuss in the following the choice of xj that extends xj ¼ XðωjÞ in Eq. (2) to LTRC
235data, for which we also define the hazard-induced rank statistics.
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2.2. From Gehan and Bhattacharya et al. to hazard-induced rank tests

In this section we first focus on some landmark developments of two-sample rank tests for
censored data in the literature and then show how xj in Eq. (9) can be chosen on the basis
of the insights provided by these developments. We next show how these two-sample rank

240statistics can be extended to the k-sample and regression settings, and then further extend
them for left-truncated and LTRC data.

The first landmark development was Gehan’s extension of the Mann–Whitney version
of the Wilcoxon test to censored data. Let Ti (resp. Tj

0) denote the actual failure times of

sample 1 (resp. sample 2), and ~Ti; δi
� �

and ~Tj
0
; δj

0
� 


be the corresponding observations.

245For complete data, the Mann–Whitney statistic is W ¼Pm
i¼1

Pn�m
j¼1 wðTi;Tj

0Þ, where

wðt; t0Þ ¼ 1 (resp. � 1) if t > t0 (resp. t< t0), and wðt; t0Þ ¼ 0 if t ¼ t0. For censored data,
Gehan replaced wðTi;Tj

0Þ by

w ~Ti; δi; ~Tj
0
; δj

0
� 


¼
�1 if ~Ti � ~Tj

0
and δi ¼ 1

1 if ~Ti � ~Tj
0
and δj

0 ¼ 1
0 otherwise;

0
B@ (10)

noting that comparisons can be made if the smaller of ~Ti and ~Tj
0
is uncensored.3 Breslow

250(1970) subsequently extended this to the k-sample case and expressed W in the counting
process form

W ¼
ð
YðsÞdN 0ðsÞ �

ð
Y 0ðsÞdNðsÞ; (11)

where NðsÞ ¼Pm
i¼1 If~Ti�s;δi¼1g, N

0ðsÞ ¼Pn�m
j¼1 If~Tj

0�s;δj
0¼1g, and YðsÞ ¼Pm

i¼1 If~Ti�sg and

Y 0ðsÞ ¼Pn�m
j¼1 If~Tj

0�sg are the corresponding risk set sizes.

255Instead of the weight processes Y and Y 0 that depend on both failures and censoring,
Prentice (1978) suggested that a better alternative should depend on the survival experi-
ence in the combined sample. For complete data the classical two-sample rank statistics
have the form Sn ¼

Pm
i¼1 anðRiÞ, where the scores anðjÞ are obtained from a score function

φ on ð0; 1� by anðjÞ ¼ φðj=nÞ so that Sn ¼
Pm

i¼1 φðGnðTiÞÞ, where Gn is the distribution of
260the combined sample, or by some asymptotically equivalent variant such as the expected

value of φ evaluated at the jth uniform order statistic from a sample of size n. As pointed
out in the first paragraph of section 2.1, the counterpart of GnðTiÞ for censored data is

Ĝnð~TiÞ, where Ĝn is the Kaplan–Meier estimate based on the combined sample. If δi ¼ 1,
~Ti is the actual failure time and has score φðĜnð~TiÞÞ. On the other hand, if δi ¼ 0, then the

265actual failure time Ti is unknown, other than that it exceeds ~Ti and therefore has score

ΦðĜnð~TiÞÞ, where

ΦðtÞ ¼
ð1
t
φðuÞdu=ð1� tÞ; 0 � t< 1; (12)

3In fact, Gehan introduced a further refinement depending on whether the larger observation is
censored or not.

8 M. ALVO ET AL.



represents the average of scores φðuÞ with u � t. This leads to the following extension of
the classical rank statistic

Pm
i¼1 φðGnðTiÞÞ to censored data:

S�n ¼
Xm
i¼1

δiφð~TiÞ þ ð1� δiÞΦð~TiÞ
� �

: (13)

270
Prentice (1978) conjectured the asymptotic equivalence of Eq. (13) to another class of rank
statistics that he proposed for censored data based on the generalized rank vector, which is
a permutation of 1; . . . ; nf g of the form

R ¼ ð1Þ; . . . ; ðkÞ; ði 1Þ; . . . ; ði νiÞf gi¼0;...;k

h i
; (14)

275where Vð1Þ < � � � <VðkÞ are the ordered uncensored observations of the combined sample
(as in section 2.1) and f~Vði 1Þ; . . . ; ~Vði νiÞg is the unordered set of censored observations
between VðiÞ and Vðiþ1Þ, setting Vð0Þ ¼ 0. Cuzick (1985) proved this conjecture under
some smoothness assumptions on φ and also extended the proof to show in his Section 3
the asymptotic equivalence of Eq. (13) and

Sn ¼
Xk
j¼1

ψ ĜnðVðjÞÞ
� �

uj �
Mj

Nj

� �
; whereψ ¼ φ�Φ: (15)

280
This form of rank statistics for censored data dated back to Mantel (1966) with ψ ¼ 1. As
shown by Gu, Lai, and Lan (1991), there is a one-to-one correspondence between φ and ψ:

φðtÞ ¼ ψðtÞ �
ðt
0

ψðsÞ
1� s

ds; 0< t< 1;

and rank statistics of the form in Eq. (15) can be expressed in the form of generalized

Mann–Whitney statistics W ¼Pm
i¼1

Pn�m
j¼1 w ~Ti; δi; ~Tj

0
; δj

0
� 


with

w ~Ti; δi; ~Tj
0
; δj

0
� 


¼
�nω Ĝn

~Ti
� �� ��

Y: ~Ti
� �

if ~Ti � ~Tj
0
and δi ¼ 1

nω Ĝn ~Ti
� �� ��

Y: ~Ti
� �

if ~Ti � ~Tj
0
and δj

0 ¼ 1
0 otherwise;

0
B@ (16)

285
where Y: sð Þ ¼Pm

i¼1 I ~Ti � s
� �þPn�m

j¼1 I ~Ti � s
� �

is the risk set size of the combined
sample at s.

The representation (15) is convenient for extensions from two-sample to the regression
settting in which ujare the covariates in the regression model Vi ¼ βui þ εi, as in Eq. (7).

290The Mj=Nj in Eq. (15) is now generalized to

�uj ¼
Xn
i¼1

uiIf~Vi�~VðjÞg

 !
=Nj; (17)

which is the average value of the covariate associated with the risk set at the uncensored
observation ~VðjÞ. Lai and Ying (1991, Theorem 1) established the asymptotic normality of
these rank statistics under the null hypothesis H0 : β ¼ 0 and under local alternatives.

295Analogous to the complete data case, these tests are asymptotically efficient when
ψ ¼ ðλ0 � F�1Þ=ðλ � F�1Þ, where F is the common distribution function and λ the hazard
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function of the εi. They proved this result when the data can also be subject to left
truncation.

Suppose ðui;Vi; δiÞ can be observed only when ~Vi ¼ minðVi; ciÞ � τi, where ðτi; ci; uiÞ
300are independent random vectors that are independent of the εi. The τi are left truncation

variables and Vi is also subject to right censoring by ci. The case ci;1 corresponds to the
left-truncated model, for which multiplication of Vi and τi by � 1 converts it into a right-
truncated model. Motivated by a controversy in cosmology involving Hubble’s law and
chronometric theory, Bhattacharya, Chernoff, and Yang (1983) introduced a Mann–

305Whitney-type statistic WnðβÞ ¼
PP

i�j wijðβÞ in the regression model Vi ¼ βui þ εi, in

which ui represents log velocity and Vi the negative log of luminosity; moreover, ðui;ViÞ
can only be observed if Vi � v0. This is a right-truncated model with truncation variables
τi;v0, and letting ðV�

i ; u
�
i Þ; i ¼ 1; . . . ; n, denote the observations, they defined eiðβÞ ¼

V�
i � βu�i and

wijðβÞ ¼
u�i � u�j if ejðβÞ< eiðβÞ � v0 � βu�j
u�j � u�i if eiðβÞ< ejðβÞ � v0 � βu�i

0 otherwise

8<
: (18)

310

since it is impossible to compare eiðβÞ and ejðβÞ if V�
i � βu�j > v0 � βu�j or

V�
j � βu�i > v0 � βu�j . Note the similarity of this idea to Eq. (10) proposed by Gehan for

censored data, and again it has the same drawbacks as Eq. (10). In fact, as shown by Lai
and Ying (1991), what we discussed in the preceding paragraph for censored data can be

315readily extended to LTRC data ðu�i ; ~V�
i ; δ

�
i Þ; i ¼ 1; . . . ; n, that are generated from the larger

sample consisting of ðVi; uiÞ; i ¼ 1; . . . ;mðnÞ ¼Δ inf m :
Pm
i¼1

I τi�min ðVi;ciÞf g ¼ n

� �
, with

ð~Vi; δiÞ observable only when ~Vi � τi. The risk set size at t in this case is YðtÞ ¼PmðnÞ
i¼1 Ifτi�βui�t�~Vi�βuig and the nonparametric MLE of the common distribution function

G of εi is the product-limit estimator

ĜnðtÞ ¼ 1�
Y
s�t

1� ΔNðsÞ
YðsÞ

� �
;

320where NðsÞ ¼PmðnÞ
i¼1 Ifτi�βui�~Vi�βui�s;δi¼1g and ΔNðsÞ ¼ NðsÞ � Nðs�Þ when the value of β

is specified (e.g., β ¼ 0 under the null hypothesis). The counting process NðsÞ plays a
fundamental role in the martingale theory underlying the analysis of rank tests via NðsÞ
and YðsÞ by Aalen (1978), Gill (1980), and Andersen et al. (1993, Chap. 5) for censored
data, and by Lai and Ying (1991; 1992) for LTRC data.

325As pointed out in section 1.3, the parametric embedding associated with these regres-
sion models is that of a location shift family. Parametric embedding via exponential tilting
as in Eq. (9) is associated with another kind of regression models, called hazard regression
models, which model how the hazard functions (rather than the means) of Vi vary with
the covariates ui. Seminal contributions to this problem were made by Cox (1972), who

330introduced the model (9) for censored survival data. Kalbfleisch and Prentice (1973)
derived the marginal likelihood LðθÞ of the rank vector R given by Eq. (14) for this model:

10 M. ALVO ET AL.



LðθÞ ¼
Yk
j¼1

eθ
TxðjÞ=

X
i2Ij

eθ
TxðiÞ

0
@

1
A

8<
:

9=
;; (19)

where Ij ¼ i : ~Vi � ~VðjÞ
� �

is the risk set at the ordered uncensored observation ~VðjÞ, which
is the same as that given by Cox using conditional arguments and later by Cox (1975) using

335partial likelihood. This can be readily extended to LTRC data by redefining the risk set at
~VðjÞ as i : ~Vi � ~VðjÞ � τi

� �
. Basically, the regression model in the preceding paragraph

considers the residuals ~Vi � βui, whereas for hazard regression we consider ~Vi instead.

2.3. LAN, least favorable parametric submodels and semiparametric efficiency

The LAN property for the embedded families (exponential tilting of Eq. (6) and location
340shifts) associated with rank tests for complete data in section 1.3 can be extended to those

for LTRC data discussed in the preceding two sections; see Chapter 8 of Andersen et al.
(1993) for censored data and Lai and Ying (1992) for LTRC data in the regression setting.
For the embedded family (9), the well-known arguments for Cox regression extend readily
to LTRC data if the xi in Eq. (9) are the vector of covariates ui. For the two-sample problem

345in which xi depends on the generalized rank vector, we can choose xj ¼ ψ Ĝn ~V�
ðjÞ

� 
� 

to

devise an asymptotically efficient rank statistic as in the censored case, where ψ ¼ φ�Φ.
The asymptotic efficiency of the rank tests depends on the class of alternatives in the
embedded parametric family, which may not contain the actual alternative.

The problem of finding the parametric family that gives the best asymptotic minimax
350bound has been an active area of research since the seminal paper of Stein (1956) that

described a basic idea inherently related to the theme of our article, as follows.
Clearly, a nonparametric problem is at least as difficult as any of the parametric

problems obtained by assuming we have enough knowledge of the unknown state of
nature to restrict it to a finite-dimensional set. For a problem in which one wants to

355estimate a single real-valued function of the unknown state of nature it frequently happens
that there is, through each state of nature, a one-dimensional problem that is, for large
samples, at least as difficult (to a first approximation) as any other finite-dimensional
problem at that point. If a procedure does essentially as well, for large samples, as one
could do for each such one-dimensional problem, one is justified in considering the

360procedure efficient for large samples.
The implication of Stein’s idea on our parametric embedding theme is the possibility of

establishing full asymptotic efficiency of a nonparametric/semiparametric test by using a
“least favorable” parametric family of densities for parametric embedding. Lai and Ying
(1992, section 2) have shown how this can be done for regression models with i.i.d.

365additive noise εi. The least favorable parametric family has hazard functions of the form
λðtÞ þ θηðtÞ, where η is an approximation to � λ0Γ1=Γ0, λ is the hazard function of εi, and
it is assumed that for h ¼ 0; 1; 2, ΓhðsÞ ¼ limm!1m�1Pm

i¼1 E uhi I τi�βui�s�ci�βuif g=
�

ð1� Fðτi � βuiÞg exists for every s with FðsÞ< 1, where F is the distribution function
of εi. In particular, the technical details underlying the approximation are given in (2.26 a,

370b, c) of that paper. Lai and Ying (1991; 1992) have also shown how these semiparametric
information bounds can be attained by using a score function that incorporates adaptive
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estimation of λ. For a comprehensive overview of semiparametric efficiency and adaptive
estimation in other contexts, see Bickel et al. (1993).

3. Applications and discussion

375Although “it is customary to treat nonparametric statistical theory as a subject completely
different from parametric theory,” Stein (1956) developed the least favorable parametric
subfamilies for nonparametric testing and estimation as “one of the more obvious connec-
tions between the two subjects.” Our recent work on a parametric likelihood approach to
the analysis of rank tests described in section 1.1 and an ongoing research project on

380nonparametric tests and estimation of multiple change points have led us to formulate
herein a general parametric embedding approach to nonparametric inference problems,
focusing on rank data. We have shown how major developments in the theory of rank tests
can be related to this approach. In particular, for censored or truncated data, it is relatively
straightforward to write down the parametric likelihood ratio, which shows the advantages

385of using the hazard instead of the joint density function. Section 2 uses parametric embed-
ding via hazard functions to elucidate some landmark developments in rank tests based on
LTRC data and to derive optimality results in these complex settings.

Censored and truncated data arise in many applications in astronomy, biomedicine,
econometrics and industrial engineering, as pointed out by Lai and Ying (1991; 1992). We

390conclude with another application of the parametric embedding approach. In environmental
studies, it is often of interest to test for trend in monitoring data as for example in the study of
lake pH. The usual distribution-free tests based on either the Spearman or Kendall correlation
statistics require that data be collected at regularly spaced intervals in time. Alvo and Cabilio
(1994) developed a test of trend when data are collected at irregular time intervals. Suppose

395that observations are taken at T regularly spaced points but recorded only at the k time points
1 � t1 < t2 < :::< tk � T. Denote the ranks from smallest to largest of the recorded observa-
tions by R tið Þ; i ¼ 1; :::; k. Alvo and Cabilio (1994) introduced the test statistic

Ak ¼ T þ 1
kþ 1

� �Xk
i¼1

ti � T þ 1
2

� �
R tið Þ � kþ 1

2

� �
; (20)

which corresponds to the sample covariance between a string in which time forms a
400complete ranking 1; :::;Tð Þ and a string of the ranked observations from an incomplete

ranking with T � k blanks and ranks R ¼ R t1ð Þ; :::;R tkð Þð Þ at the time points t1; t2:::; tkð Þ.
We now show that the test statistic for the null hypothesis of no trend, Ak, may be

obtained from the following parametric model. In the complete data situation, let S ¼
1� Tþ1

2 ; 2� Tþ1
2 ; :::;T � Tþ1

2

� �T
be the centered permutation representing time and simi-

405larly let R ¼ R 1ð Þ � Tþ1
2 ; :::;R Tð Þ � Tþ1

2

� �T
be the centered permutation representing the

ranked observations. A parametric distance-based model described in Alvo and Yu (2014)

for the distribution of R has the form πðRjθÞ ¼ eθ STRð Þ�K θð Þ=T!. Note that the score
statistic for this sample is

@ log π Rjθð Þ
@θ

¼ STR� K 0 θð Þ

12 M. ALVO ET AL.



evaluated at θ ¼ 0: The asymptotics as T ! 1 lead to the well-known Spearman test of
410trend. In the situation when data is recorded only at k time points, we may make use of

the notion of compatibility as defined in Alvo and Yu (2014) whereby we project the
rankings on the class of complete order-preserving permutations. Specifically, if C Rð Þ
denotes the compatibility class corresponding to R, then

E R ið Þ � T þ 1
2

� �
jC Rð Þ


 �
¼ T þ 1

kþ 1

� �
R tið Þ � kþ 1

2

� �
δ ið Þ;

where δ ið Þ ¼ 0 or 1 according to whether the observation at the ith regularly spaced time
415is or is not recorded. This yields the statistic of Eq. (20), which has been shown to be more

efficient than the naive test, which ignores missing data. The parametric distance-based
model can thus be seen to provide a justification for this trend statistic.
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