usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Tailwind: Fast and Atomic RDMA-based Replication

Yacine Taleb, Univ Rennes, Inria, CNRS, IRISA; Ryan Stutsman, University of Utah;
Gabriel Antoniu, Univ Rennes, Inria, CNRS, IRISA; Toni Cortes, BSC, UPC

https://www.usenix.org/conference/atc18/presentation/taleb

This paper is included in the Proceedings of the

2018 USENIX Annual Technical Conference (USENIX ATC '18).
July 11-13, 2018 - Boston, MA, USA
ISBN 978-1-931971-44-7

Open access to the Proceedings of the
2018 USENIX Annual Technical Conference
is sponsored by USENIX.

https://www.usenix.org/conference/atc18/presentation/taleb

Tailwind: Fast and Atomic RDMA-based Replication

Yacine Taleb*, Ryan Stutsmanf, Gabriel Antoniu*, Toni Cortes::

*Univ Rennes, Inria, CNRS, IRISA {University of Utah, #BSC and UPC

Abstract

Replication is essential for fault-tolerance. However,
in in-memory systems, it is a source of high overhead.
Remote direct memory access (RDMA) is attractive to
create redundant copies of data, since it is low-latency
and has no CPU overhead at the target. However, ex-
isting approaches still result in redundant data copying
and active receivers. To ensure atomic data transfers, re-
ceivers check and apply only fully received messages.
Tailwind is a zero-copy recovery-log replication proto-
col for scale-out in-memory databases. Tailwind is the
first replication protocol that eliminates all CPU-driven
data copying and fully bypasses target server CPUs, thus
leaving backups idle. Tailwind ensures all writes are
atomic by leveraging a protocol that detects incomplete
RDMA transfers. Tailwind substantially improves repli-
cation throughput and response latency compared with
conventional RPC-based replication. In symmetric sys-
tems where servers both serve requests and act as repli-
cas, Tailwind also improves normal-case throughput by
freeing server CPU resources for request processing. We
implemented and evaluated Tailwind on RAMCloud, a
low-latency in-memory storage system. Experiments
show Tailwind improves RAMCloud’s normal-case re-
quest processing throughput by 1.7 x. It also cuts down
writes median and 99" percentile latencies by 2x and 3x
respectively.

1 Introduction

In-memory key-value stores are an essential building
block for large-scale data-intensive applications [3, 19].
Recent research has led to in-memory key-value stores
that can perform millions of operations per second per
machine with a few microseconds remote access times.
Harvesting CPU power and eliminating conventional
network overheads has been key to these gains. How-
ever, like many other systems, they must replicate data
in order to survive failures.

As the core frequency scaling and multi-core archi-
tecture scaling are both slowing down, it becomes criti-
cal to reduce replication overheads to keep-up with shift-
ing application workloads in key-value stores [13]. We
show that replication can consume up to 80% of the CPU
cycles for write-intensive workloads (§4.4), in strongly-
consistent in-memory key-value stores. Techniques like
remote-direct memory access (RDMA) are promising to

improve overall CPU efficiency of replication and keep
predictable tail latencies.

Existing RDMA-based approaches use message-
passing interfaces: a sender remotely places a message
into a receiver’s DRAM; a receiver must actively poll
and handle new RDMA messages. This approach guar-
antees the atomicity of RDMA transfers, since only fully
received messages are applied by the receiver [4, 10, 30].
However, this approach defeats RDMA efficiency goals
since it forces receivers to use their CPU to handle in-
coming RDMA messages and it incurs additional mem-
ory copies.

The main challenge of efficiently using RDMA for
replication is that failures could result in partially ap-
plied writes. The reason is that receivers are not aware of
data being written to their DRAM. Leaving receivers idle
is challenging because there is no protocol to guarantee
data consistency in the event of failures.

A second key limitation with RDMA is its low scal-
ability. This limitation comes from the connection-
oriented nature of RDMA transfers. Senders and re-
ceivers have to setup queue pairs (QP) to perform
RDMA. Lots of recent work has observed the high cost
of NIC connection cache misses [4, 11, 32]. Scalability
is limited as it typically depends on the cluster size.

To address the above challenges, we developed Tail-
wind, a zero-copy primary-backup log replication proto-
col that completely bypasses CPUs on all target backup
servers. In Tailwind, log records are transferred directly
from the source server’s DRAM to I/O buffers at tar-
get servers via RDMA writes. Backup servers are com-
pletely passive during replication, saving their CPUs for
other purposes; they flush these buffers to solid-state
drives (SSD) periodically when the source triggers it via
remote procedure call (RPC) or when power is inter-
rupted. Even though backups are idle during replication,
Tailwind is strongly consistent: it has a protocol that al-
lows backups to detect incomplete RDMA transfers.

Tailwind uses RDMA write operations for all data
movement, but all control operations such as buffer al-
location and setup, server failure notifications, buffer
flushing and freeing are all handled through conventional
RPCs. This simplifies such complex operations without
slowing down data movement. In our implementation,
RPCs only account for 107> of the replication requests.
This also makes Tailwind easier to use in systems that
use log replication over distributed blocks even if they

USENIX Association

2018 USENIX Annual Technical Conference 851

were not designed to exploit RDMA.

Since Tailwind needs only to maintain connections be-
tween a primary server and its backups, the number of
connections scales with the size of a replica group, not
with the cluster size, making Tailwind a scalable ap-
proach.

We implemented and evaluated Tailwind on RAM-
Cloud, a scale-out in-memory key-value store that ex-
ploits fast kernel-bypass networking. Tailwind is suited
to RAMCloud’s focus on strong consistency and low
latency. Tailwind significantly improves RAMCloud’s
throughput since each PUT operation in the cluster re-
sults in three remote replication operation that would oth-
erwise consume server CPU resources.

Tailwind improves RAMCloud’s throughput by 1.7
on the YCSB benchmark, and it reduces durable PUT
median latency from 32 ps to 16 ps and 99" percentile
latency from 78 ps to 28 us. Theses results stem from
the fact that Tailwind significantly reduces the CPU cy-
cles used by the replication operations: Tailwind only
needs 1/3 of the cores RAMCloud uses to achieve the
same throughput.

This paper makes four key contributions;

it analyzes and quantifies CPU related limitations in
modern in-memory key-value stores;

L]

it presents Tailwind’s design, it describes its imple-
mentation in the RAMCloud distributed in-memory
key-value store, and it evaluates its impact on RAM-
Cloud’s normal-case and recovery performance;

to our knowledge, Tailwind is the first log repli-
cation protocol that eliminates all superfluous data
copying between the primary replica and its back-
ups, and it is the first log replication protocol that
leaves servers CPU idle while serving as replication
targets; this allows servers to focus more resources
on normal-case request processing;

Tailwind separates the replication data path and
control path and optimizes them individually; it
uses RDMA for heavy transfer, but it retains the
simplicity of RPC for rare operations that must deal
with complex semantics like failure handling and
resource exhaustion.

2 Motivation and Background

Replication and redundancy are fundamental to fault tol-
erance, but at the same time they are costly. Primary-
backup replication (PBR) is popular in fault-tolerant stor-
age systems like file systems and key-value stores, since
it tolerates f stop-failures with f 41 replicas. Note that,
we refer to a primary replica server as primary, and sec-
ondary replica server as secondary or backup. In some
systems, backup servers don’t process user-facing re-
quests, but in many systems each node acts as both a
primary for some data items and as a backup for other
data items. In some systems this is implicit: for exam-
ple, a key-value store may store its state on HDFS [28],

MZ

Primary DRAM storage

Replicate(B)e

GET(C)@

M1

(Primary DRAM storage

ATD1

Non-volatile Buffer

hill(l

Primary DRAM storage

~Poll
) o
; @l

[D])
Non-volatile Buffer
S l _J
S—
—

Replicate(B) vy
i‘ AJ

— .
amm? | Non-volatile Buffer
—

Figure 1: Flow of primary-backup replication

and a single physical machine might run both a key-value
store frontend and an HDFS chunkserver.

Replication is expensive for three reasons. First, it is
inherently redundant and, hence, brings overhead: the
act of replication itself requires moving data over the net-
work. Second, replication in strongly consistent systems
is usually synchronous, so a primary must stall while
holding resources while waiting for acknowledgements
from backups (often spinning a CPU core in low-latency
stores). Third, in systems, where servers (either explic-
itly or implicitly) serve both client-facing requests and
replication operations, those operations contend.

Figure 1 shows this in more detail. Low-latency, high-
throughput stores use kernel-bypass to directly poll NIC
control (with a dispatch core) rings to avoid kernel code
paths and interrupt latency and throughput costs. Even
s0, a CPU on a primary node processing an update op-
eration must receive the request, hand the request off to
a core (worker core) to be processed, send remote mes-
sages, and then wait for multiple nodes acting as backup
to process these requests. Batching can improve the
number of backup request messages each server must re-
ceive, but at the cost of increased latency. Inherently,
though, replication can double, triple, or quadruple the
number of messages and the amount of data generated
by client-issued write requests. It also causes expensive
stalls at the primary while it waits for responses. In these
systems, responses take a few microseconds which is too
short a time for the primary to context switch to another
thread, yet its long enough that the worker core spends a
large fraction of its time waiting.

2.1 The Promise of RDMA

Recently, remote-direct memory access (RDMA) has
been used in several systems to avoid kernel overhead
and to reduce CPU load. Though the above kernel-
bypass-based request processing is sometimes called
(two-sided) RDMA, it still incurs request dispatching

852 2018 USENIX Annual Technical Conference

USENIX Association

)

o

£ 100

g 80

&, 60-

S 40+ Kial — Dispatch
< 20 /. === Worker

E 0 | | | |
s 0 10 20 30
= Clients

Figure 2: Dispatch and worker cores utilization percentage of a sin-
gle RAMCloud server. Requests consist of 95/5 GET/PUT ratio.

and processing overhead because a CPU, on the desti-
nation node, must poll for the message and process it.
RDMA-capable NICs also support so called one-sided
RDMA operations that directly access the remote host’s
memory, bypassing its CPU altogether. Remote NICs di-
rectly service RDMA operations without interrupting the
CPU (neither via explicit interrupt nor by enqueuing an
operation that the remote CPU must process). One-sided
operations are only possible through reliable-connected
queue pairs (QP) that ensure in-order and reliable mes-
sage delivery, similar to the guarantees TCP provides.

2.1.1 Opportunities

One-sided RDMA operations are attractive for replica-
tion; replication inherently requires expensive, redundant
data movement. Backups are (mostly) passive; they often
act as dumb storage, so they may not need CPU involve-
ment. Figure 2 shows that RAMCloud, an in-memory
low-latency kernel-bypass-based key-value store, is of-
ten bottlenecked on CPU (see §4 for experimental set-
tings). For read-heavy workloads, the cost of polling
network and dispatching requests to idle worker cores
dominates. Only 8 clients are enough to saturate a sin-
gle server dispatch core. Because of that, worker cores
cannot be fully utilized. One-sided operations for repli-
cating PUT operations would reduce the number of re-
quests each server handles in RAMCloud, which would
indirectly but significantly improve read throughput. For
workloads with a significant fraction of writes or where
a large amount of data is transferred, write throughput
can be improved, since remote CPUs needn’t copy data
between NIC receive buffers and I/O or non-volatile stor-
age buffers.

2.1.2 Challenges

The key challenge in using one-sided RDMA operations
is that they have simple semantics which offer little con-
trol on the remote side. This is by design; the remote
NIC executes RDMA operations directly, so they lack
the generality that a conventional CPU-based RPC han-
dlers would have. A host can issue a remote read of
a single, sequential region of the remote processes vir-
tual address space (the region to read must be registered
first, but a process could register its whole virtual address
space). Or, a host can issue a remote write of a single,

sequential region of the remote processes virtual address
space (again, the region must be registered with the NIC).
NICs support a few more complex operations (compare-
and-swap, atomic add), but these operations are currently
much slower than issuing an equivalent two-sided oper-
ation that is serviced by the remote CPU [11, 30]. These
simple, restricted semantics make RDMA operations ef-
ficient, but they also make them hard to use safely and
correctly. Some existing systems use one-sided RDMA
operations for replication (and some also even use them
for normal case operations [4, 5]).

However, no existing primary-backup replication
scheme reaps the full benefits of one-sided operations. In
existing approaches, source nodes send replication oper-
ations using RDMA writes to push data into ring buffers.
CPUs at backups poll for these operations and apply
them to replicas. In practice, this is is effectively emulat-
ing two-sided operations [4]. RDMA reads don’t work
well for replication, because they would require backup
CPUs to schedule operations and “pull” data, and pri-
maries wouldn’t immediately know when data was safely
replicated.

Two key, interrelated issues make it hard to use
RDMA writes for replication that fully avoids the re-
mote CPUs at backups. First, a primary can crash when
replicating data to a backup. Because RDMA writes (in-
herently) don’t buffer all of the data to be written to re-
mote memory, its possible that an RDMA write could
be partially applied when the primary crashes. If a pri-
mary crashes while updating state on the backup, the
backup’s replica wouldn’t be in the “before” or “after”
state, which could result in a corrupted replica. Worse,
since the primary was likely mutating all replicas concur-
rently, it is possible for all replicas to be corrupted. Inter-
estingly, backup crashes during RDMA writes don’t cre-
ate new challenges for replication, since protocols must
deal with that case with conventional two-sided oper-
ations too. Well-known techniques like log-structured
backups [18, 23, 25] or shadow paging [35] can be used
to prevent update-in-place and loss of atomicity. Tradi-
tional log implementations enforce a total ordering of log
entries [9]. In database systems, for instance, the order is
used to recreate a consistent state during recovery.

Unfortunately, a second key issue with RDMA oper-
ations makes this hard: each operation can only affect a
single, contiguous region of remote memory. To be ef-
ficient, one-sided writes must replicate data in its final,
stable form, otherwise backup CPU must be involved,
which defeats the purpose. For stable storage, this gen-
erally requires some metadata. For example, when a
backup uses data found in memory or storage it must
know which portions of memory contain valid objects,
and it must be able to verify that the objects and the
markers that delineate them haven’t been corrupted. As
a result, backups need some metadata about the objects
that they host in addition to the data items themselves.
However, RDMA writes make this hard. Metadata must

USENIX Association

2018 USENIX Annual Technical Conference 853

inherently be intermixed with data objects, since RDMA
writes are contiguous. Otherwise, multiple round trips
would be needed, again defeating the efficiency gains.

Tailwind solves these challenges through a form of
low-overhead redundancy in log metadata. Primaries in-
crementally log data items and metadata updates to re-
mote memory on backups via RDMA writes. Backups
remain unaware of the contents of the buffers and blindly
flush them to storage. In the rare event when a primary
fails, all backups work in parallel scanning log data to re-
construct metadata so data integrity can be checked. The
next section describes its design in detail.

3 Design

Tailwind is a strongly-consistent RDMA-based replica-
tion protocol. It was designed to meet four requirements:

Zero-copy, Zero-CPU on Backups for Data Path. In
order to relieve backups CPUs from processing replica-
tion requests, Tailwind relies on one-sided RDMA writes
for all data movement. In addition, it is zero-copy at
primary and secondary replicas; the sender uses kernel-
bypass and scatter/gather DMA for data transfer; on the
backup side, data is directly placed to its final storage
location via DMA transfer without CPU involvement.

Strong Consistency. For every object write Tailwind
synchronously waits for its replication on all backups be-
fore notifying the client. Although RDMA writes are
one-sided, reliable-connected QPs generate work com-
pletion to notify the sender once a message has been
correctly sent and acknowledged by the receiver NIC
(i.e. written to remote memory) [8]. One-sided opera-
tion raise many issues, Tailwind is designed to cover all
corner cases that may challenge correctness (§3.4).

Overhead-free Fault-Tolerance. Backups are un-
aware of replication as it happens, which can be unsafe
in case of failures. To address this, Tailwind appends a
piece of metadata in the log after every object update.
Backups use this metadata to check integrity and locate
valid objects during recovery. Although a few backups
have to do little extra work during crash recovery, that
work has no impact on recovery performance (§4.6).

Preserves Client-facing RPC Interface. Tailwind
has no requirement on the client side; all logic is imple-
mented between primaries and backups. Clients observe
the same consistency guarantees. However, for write op-
erations, Tailwind highly improves end-to-end latency
and throughput from the client perspective (§4.2).

3.1 The Metadata Challenge

Metadata is crucial for backups to be able to use repli-
cated data. For instance, a backup needs to know which
portions of the log contain valid data. In RPC-based sys-
tems, metadata is usually piggybacked within a replica-
tion request [11, 21]. However, it is challenging to up-
date both data and metadata with a single RDMA write

Primary Backup
put(A)=]
-CPU
‘ memory Step 1
Repli @ Open l @ buffer
ep! & Request RDMA Buffer
NIC
ACK &
t
pul(8) ® RDMA Buffer .
ai Step 2
Replicate(B) ;rgMSAds\?r ite @
| S|

NIC NIC
| S|

put(C () ACK

Joma
[ev]
Replicate(C) @ Close ®11 Step 3

Free RDMA Buffer
NIC —T‘_—> NIC
(® Ack

Figure 3: The three replication steps in Tailwind. During the first
(open) and third (close) steps, the communication is done through
RPCs. While the second step involves one-sided writes only.

since it can only affect a contiguous memory region. In
this case, updating both data and metadata would re-
quire sending two messages which would nullify one-
sided RDMA benefits. Moreover, this is risky: in case of
failures a primary may start updating the metadata and
fail before finishing, thereby invalidating all replicated
objects.

For log-structured data, backups need two pieces of in-
formation: (1) the offset through which data in the buffer
is valid. This is needed to guarantee the atomicity of
each update. An outdated offset may lead the backup
to use old and inconsistent data during crash recovery.
(2) A checksum used to check the integrity of the length
fields of each log record during recovery. Checksums are
critical for ensuring log entry headers are not corrupted
while in buffers or on storage. These checksums ensure
iterating over the buffer is safe; that is, a corrupted length
field does not “point” into the middle of another object,
out of buffer, or indicate an early end to the buffer.

The protocol assumes that each object has a header
next to it [4, 12, 26]. Implementation-agnostic informa-
tion in headers should include: (1) the size of the object
next to it to allow log traversal; (2) an integrity check that
ensures the integrity of the contents of the log entry.

Tailwind checksums are 32-bit CRCs computed over
log entry headers. The last checksum in the buffer covers
all previous headers in the buffer. For maximum protec-
tion, checksums are end-to-end: they should cover the
data while it is in transit over the network and while it
occupies storage.

To be able to perform atomic updates with one-sided
RDMAs in backups, the last checksum and the current
offset in the buffer must be present and consistent in the
backup after every update. A simple solution is to ap-
pend the checksum and the offset before or after every
object update. A single RDMA write would suffice then
for both data and metadata. The checksum must nec-
essarily be sent to the backup. Interestingly, this is not

854 2018 USENIX Annual Technical Conference

USENIX Association

the case for the offset. The nature of log-structured data
and the properties of one-sided RDMA make it possi-
ble, with careful design, for the backup to compute this
value at recovery time without hurting consistency. This
is possible because RDMA writes are performed (at the
receiver side) in an increasing address order [8]. In addi-
tion, reliable-connected QPs ensure that updates are ap-
plied in the order they were sent.

Based on these observations, Tailwind appends a
checksum in the log after every object update; at any
point of time a checksum guarantees, with high proba-
bility, the integrity of all previous headers preceding it in
the buffer. During failure-free time, a backup is ensured
to always have the latest checksum, at the end of the log.
On the other hand, backups have to compute the offset
themselves during crash recovery.

3.2 Non-volatile Buffers

In Tailwind, at start up, each backup machine allocates a
pool of in-memory I/O buffers (§ MB each, by default)
and registers them with the NIC. To guarantee safety,
each backup limits the number of buffers outstanding un-
flushed buffers it allows. This limit is a function of its
local, durable storage speed. A backup denies opening a
new replication buffer for a primary if it would exceed
the amount of data it could flush safely to storage on
backup power. Buffers are pre-zeroed. Servers require
power supplies that allow buffers to be flushed to stable
storage in the case of a power failure [4, 5, 20]. This
avoids the cost of a synchronous disk write on the fast
path of PUT operations.

Initiatives such as the OpenCompute Project propose
standards where racks are backed by batteries backup,
that could provide a minimum of 45 seconds of power
supply [1] at full load, including network switches.
Battery-backed DIMMs could have been another option,
but they require more careful attention. Because we use
RDMA, batteries need to back the CPU, the PCle con-
troller, and the memory itself. Moreover, there exists
no clear way to flush data that could still be residing in
NIC cache or in PCle controller, which would lead to
firmware modifications and to a non-portable solution.

3.3 Replication Protocol
3.3.1 Write Path

To be able to perform replication through RDMA, a pri-
mary has to has to reserve an RDMA-registered memory
buffer from a secondary replica. The first step in Figure 3
depicts this operation: a primary sends an open RPC to a
backup (1). Tailwind does not enforce any replica place-
ment policy, instead it leaves backup selection up to the
storage system. Once the open processed (2) + (3), the
backup sends an acknowledgement to the primary and
piggybacks necessary information to perform RDMA
writes (4) (i.e. remote_key and remote_address [8]).
The open call fails if there are no available buffers. The
primary has then to retry.

Backupl

~Backup2

Backup3

segmentID = 3
offset = *G
+

Figure 4: Primary DRAM storage consists of a monotonically grow-
ing log. It is logically split into fixed-size segments.

At the second step in Figure 3, the primary is able to
perform all subsequent replication requests with RDMA
writes (T). Backup NIC directly put objects to memory
buffers via DMA transfer (2) without involving the CPU.
The primary gets work completion notification from its
corresponding QP (3).

The primary keeps track of the last written offset in
the backup buffer. When the next object would exceed
the buffer capacity, the primary proceeds to the third step
in Figure 3. The last replication request is called close
and is performed through an RPC (). The close notifies
the backup (2) + (3) that the buffer is full and thus can be
flushed to durable storage. This eventually allows Tail-
wind to reclaim buffers and make them available to other
primaries. Buffers are zeroed again when flushed.

We use RPCs for open and close operations because
it simplifies the design of the protocol without hurting
latency. As an example of complication, a primary may
choose a secondary that has no buffers left. This can be
challenging to handle with RDMA. Moreover, these op-
erations are not frequent. If we consider 8 MB buffers
and objects of 100 B, which corresponds to real work-
loads object size [19], open and close RPCs would ac-
count for 2.38 x 107> of the replication requests. Larger
buffers imply less RPCs but longer times to flush backup
data to secondary storage.

Thanks to all these steps, Tailwind can effectively
replicate data using one-sided RDMA. However, without
taking care of failure scenarios the protocol would not be
correct. Next, we define essential notions Tailwind relies
on for its correctness.

3.3.2 Primary Memory Storage

The primary DRAM log-based storage is logically sliced
into equal segments (Figure 4). For every open and
close RPC the primary sends a metadata information
about current state: logID, latest checksum, segmentID,
and current offset in the last segment. In case of failures,
this information helps the backup in finding backup-data
it stores for the crashed server.

At any given time, a primary can only replicate a sin-
gle segment to its corresponding backups. This means
a backup has to do very little work during recovery; if
a primary replicates to r replicas then only r segments
would be open, in case the primary fails.

USENIX Association

2018 USENIX Annual Technical Conference 855

input : Pointer to a memory buffer rdmaBuf

output: Size of durably replicated data offset

currPosition = rdmaBuf ;

offset = currPosition ;

while currPosition < MAX_BUFFER_SIZE do

/* Create a header in the current position */

w o -

4 header = (Header) currPosition;
5 currPosition += sizeof(header);
/* Not Corrupted or incomplete header */
6 if header—type != INVALID then
7 if header—type == checksumType then
8 checksum = (Checksum) currPosition;
9 if checksum != currChecksum then
/* Primaries never append a zero
checksum, check if it is 1. *x/
10 if currChecksum == 0 and checksum == 1 then
11 ‘ offset = currPosition + size0f(checksum);
12 else
13 | return offset;
14 else
/* Move the offset at the end of
current checksum */
15 | offset = currPosition + size0f(checksum);
16 else
17 L currChecksum = crc32(currChecksum, header);
18 else
19 | return offset;
/* Move forward to next entry */
20 | currPosition += header—objectSize;

/* We should only reach this line if a primary
crashed before sending close */
21 return offset;

Algorithm 1: Updating RDMA buffer metadata

3.4 Failure Scenarios

When a primary or secondary replica fail the protocol
must recover from the failure and rebuild lost data. Pri-
mary and secondary replicas failure scenarios require
different actions to recover.

34.1 Primary-replica Failure

Primary replica crashes are one of the major concerns
in the design. In case of such failures, Tailwind has to:
(1) locate backup-data (of crashed primary) on secondary
replicas; (2) rebuild up-to-date metadata information on
secondary replicas; (3) ensure backup-data integrity and
consistency; (4) start recovery.

Locating Secondary Replicas. After detecting a pri-
mary replica crash, Tailwind sends a query to all sec-
ondary replicas to identify the ones storing data belong-
ing to the crashed primary. Since every primary has a
unique logID it is easy for backups to identify which
buffers belong to that logID.

Building Up-to-date Metadata. Backup buffers can
either be in open or close states. Buffers that are
closed do not pose any issue, they already have up-to-
date metadata. If they are in disk or SSD they will be
loaded to memory to get ready for recovery. However,
for open buffers, the backup has to compute the offset
and find the last checksum. Secondary replicas have to
scan their open buffers to update their respective check-
sum and offset. To do so, they iterate over all entries as
depicted in Algorithm 1.

Buffer on
Backup

Primary Log

ecksum ok

B &Che

[hecksum

EI not ok
N

B not ok

Figure 5: From top to bottom are three scenarios that can happen
when a primary replica crashes while writing an object (B in this case)
then synchronizing with backups. In the first scenario the primary
replica fully writes the message to the backup leaving the backup in
a correct state. B can be recovered in this case. In the second scenario,
the object B is written but the checksum is partially written. Therefore,
B is discarded. Similarly for the third scenario where B is partially
written.

Basically, the algorithm takes an open buffer and tries
to iterate over its entries. It moves forward thanks to the
size of the entry which should be in the header. For every
entry the backup computes a checksum over the header.
When reaching a checksum in the buffer it is compared
with the most recently computed checksum: the algo-
rithm stops in case of checksum mismatch. There are
three stop conditions: (1) integrity check failure; (2) in-
valid object found; (3) end of buffer reached.

A combination of three factors guarantee the correct-
ness of the algorithm: (1) the last entry is always a
checksum; Tailwind implicitly uses this condition as an
end-of-transmission marker. (2) Checksums are not al-
lowed to be zero; the primary replica always verifies
the checksum before appending it. If it is zero it sets
it to 1 and then appends it to the log. Otherwise, an in-
complete object could be interpreted as valid zero check-
sum. (3) Buffers are pre-zeroed; combined with condi-
tion (2), a backup has a means to correctly detect the last
valid offset in a buffer by using Algorithm 1.

3.4.2 Corrupted and Incomplete Objects

Figure 5 shows the three states of a backup RDMA buffer
in case a primary replica failure. The first scenario shows
a successful transmission of an object B and the check-
sum ahead of it. If the primary crashes, the backup is
able to safely recover all data (i.e. A and B).

In the second scenario. the backup received B, but the
checksum was not completely received. In this case the
integrity check will fail. Object A will be recovered and
B will be ignored. This is safe, since the client’s PUT of
B could not have been acknowledged.

The third scenario is similar: B was not completely
transmitted to the backup. However, there creates two
possibilities. If B’s header was fully transmitted, then the
algorithm will look past the entry and find a 0-byte at the
end of the log entry. This way it can tell that the RDMA

856 2018 USENIX Annual Technical Conference

USENIX Association

operation didn’t complete in full, so it will discard the
entry and treat the prefix of the buffer up through A as
valid. If the checksum is partially written, it will still be
discarded, since it will necessarily end in a O-byte: some-
thing that is disallowed for all valid checksums that the
primary creates. If B’s header was only partially written,
some of the bytes of the length field may be left zero.
Imagine that o is the offset of the start of B. If the pri-
mary intended B to have length [and I’ is the length
actually written into the backup buffer. It is necessar-
ily the case that I’ < I, since lengths are unsigned and
I’ is a subset of the bits in /. As a result, o + [’ falls
within the range where the original object data should
have been replicated in the buffer. Furthermore, the data
there consists entirely of zeroes, since an unsuccessful
RDMA write halts replication to the buffer, and replica-
tion already halted before o0 + sizeof (Header). As a
result, this case is handled identically to the incomplete
checksum case, leaving the (unacknowledged) B off of
the valid prefix of the buffer.

A key property maintained by Tailwind is that torn
writes never depend on checksum checks for correctness.
They can also be detected by careful construction of the
log entries headers and checksums and the ordering guar-
antees that RDMA NICs provide.

Bit-flips The checksums, both covering the log entry
headers and the individual objects themselves ensure that
recovery is robust against bit-flips. The checksums en-
sure with high probability that bit-flip anywhere in any
replica will be detected. In closed segments, whenever
data corruption is detected, Tailwind declares the replica
corrupted. The higher-level system will still successfully
recover a failed primary, but it must rely on replicas from
other backups to do so. In open segments data corrup-
tion is treated as partially transmitted buffers; as soon as
Tailwind immediately stops iterating over the buffer and
returns the last valid offset.

3.4.3 Secondary-replica Failure

When a server crashes the replicas it contained become
unavailable. Tailwind must re-create new replicas on
other backups in order to keep the same level of dura-
bility. Luckily, secondary-replica crashes are dealt with
naturally in storage systems and do not suffer from one-
sided RDMA complications. Tailwind takes several steps
to allocate a new replica: (1) It suspends all operations
on the corresponding primary replica; (2) It atomically
creates a new secondary replica; (3) It resumes normal
operations on the primary replica. Step (1) ensures that
data will always have the same level of durability. Step
(2) is crucial to avoid inconsistencies if a primary crashes
while re-creating a secondary replica. In this case the
newly created secondary replica would not have all data
and cannot be used.

However, it can happen that a secondary replica stops
and restarts after some time, which could lead to incon-
sistent states between secondary replicas. To cope with
this, Tailwind keeps, at any point of time, a version num-

ber for replicas. If a secondary replica crashes, Tailwind
updates the version number on the primary and secon-
daries. Since secondaries need to be notified, Tailwind
uses an RPC instead of an RDMA for this operation.
Tailwind updates the version number right after the step
(2) when re-creating a secondary replica. This ensures
that the primary and backups are synchronized. Replica-
tion can start again from a consistent state. Note that this
RPC is rare and only occurs after the crash of a backup.

3.4.4 Network Partitioning

It can happen that a primary is considered crashed by a
subset of servers. Tailwind would start locating its back-
ups, then rebuilding metadata on those backups. While
metadata is rebuilt, the primary could still perform one-
sided RDMA to its backups, since they are always un-
aware of these type of operations. To remedy this, as
soon as a primary or secondary failure is detected, all ma-
chines close their respective QPs with the crashed server.
This allows Tailwind to ensure that servers that are alive
but considered crashed by the environment do not inter-
fere with work done during recovery.

4 Evaluation

We implemented Tailwind on RAMCloud a low-latency
in-memory key-value store. Tailwind’s design perfectly
suits RAMCloud in many aspects:

Low latency. RAMCloud’s main objective is to pro-
vide low-latency access to data. It relies on fast net-
working and kernel-bypass to provide a fast RPC layer.
Tailwind can further improve RAMCloud (PUT) latency
(§4.2) by employing one-sided RDMA without any ad-
ditional complexity or resource usage.

Replication and Threading in RAMCloud. To
achieve low latency, RAMCloud dedicates one core
solely to poll network requests and dispatch them to
worker cores (Figure 1). Worker cores execute all client
and system tasks. They are never preempted to avoid
context switches that may hurt latency. To provide strong
consistency, RAMCloud always requests acknowledge-
ments from all backups for every update. With the above
threading-model, replication considerably slows down
the overall performance of RAMCloud [31]. Hence Tail-
wind can greatly improve RAMCloud’s CPU-efficiency
and remove replication overheads.

Log-structured Memory. RAMCloud organizes its
memory as an append-only log. Memory is sliced into
smaller chunks called segments that also act as the unit
of replication, i.e., for every segment a primary has to
choose a backup. Such an abstraction makes it easy to
replace RAMCloud’s replication system with Tailwind.
Tailwind checksums can be appended in the log-storage,
with data, and replicated with minimal changes to the
code. In addition, RAMCloud provides a log-cleaning
mechanism which can efficiently clean old checksums
and reclaim their storage space.

USENIX Association

2018 USENIX Annual Technical Conference 857

CPU Xeon E5-2450 2.1 GHz 8 cores, 16 hw threads
RAM 16 GB 1600 MHz DDR3

NIC Mellanox MX354A CX3 @ 56 Gbps

Switch 36 port Mellanox SX6036G

0OS Ubuntu 15.04, Linux 3.19.0-16,

MLX4 3.4.0, libibverbs 1.2.1

Table 1: Experimental cluster configuration.

We compared Tailwind with RAMCloud replication
protocol, focusing our analysis on three key questions:

Does Tailwind improve performance? Measure-
ments show Tailwind reduces RAMCloud’s median write
latency by 2x and 99" percentile latency by 3x (Fig-
ure 7). Tailwind improves throughput by 70% for write-
heavy workloads and by 27% for workloads that include
just a small fraction of writes.

Why does Tailwind improve performance? Tailwind
improves per-server throughput by eliminating backup
request processing (Figure 9), which allows servers to
focus effort on processing user-facing requests.

What is the Overhead of Tailwind? We show that
Tailwind’s performance improvement comes at no cost.
Specifically, we measure and find no overhead during
crash recovery compared to RAMCloud.

4.1 Experimental Setup

Experiments were done on a 35 server Dell r320 cluster
(Table 1) on the CloudLab [24] testbed.

We used three YCSB [2] workloads to evaluate
Tailwind: update-heavy (50% PUTs, 50% GETs),
read-heavy (5% PUTs, 95% GETs), and update-only
(100% PUTs). We intitially inserted 20 million objects
of 100 B plus 30 B for the key. Afterwards, we ran up to
30 client machines. Clients generated requests accord-
ing to a Zipfian distribution (8 = 0.99). Objects were
uniformly inserted in active servers. The replication fac-
tor was set to 3 and RDMA buffers size was set to 8§ MB.
Every data point in the experiments is averaged over 3
runs.

RAMCloud’s RPC-based replication protocol served
as a baseline for comparison. Note that, in the compar-
ison with Tailwind, we refer to RAMCloud’s replication
protocol as RAMCloud for simplicity.

4.2 Performance Improvement

The primary goal of Tailwind is to accelerate basic op-
erations throughput and latency. To demonstrate how
Tailwind improves performance we show Figure 6, i.e.
throughput per server as we increase the number of
clients. When client operations consist of 5% PUTs
and 95% GETs, RAMCloud achieves 500 KOp/s per
server while Tailwind reaches up to 635 KOp/s. Increas-
ing the update load enables Tailwind to further improve

the throughput. For instance with 50% PUTs Tailwind
sustains 340 KOp/s against 200 KOp/s for RAMCloud,
which is a 70% improvement. With update-only work-
load, improvement is not further increased: In this case
Tailwind improves the throughput by 65%.

Tailwind can improve the number of read operations
serviced by accelerating updates. CPU cycles saved al-
low servers (that are backups as well) to service more
requests in general.

Figure 7 shows that update latency is also consider-
ably improved by Tailwind. Under light load Tailwind
reduces median and 99™ percentile latency of an update
from 16 ps to 11.8 us and from 27 ps to 14 ps respec-
tively. Under heavy load, i.e. 500 KOp/s Tailwind re-
duces median latency from 32 ps to 16 us compared to
RAMCloud. Under the same load tail latency is even
further reduced from 78 s to 28 ps.

Tailwind can effectively reduce end-to-end client la-
tency. With reduced acknowledgements waiting time,
and more CPU power to process requests faster, servers
can sustain a very low latency even under heavy concur-
rent accesses.

4.3 Gains as Backup Load Varies

Since all servers in RAMCloud act as both backups and
primaries, Tailwind accelerates normal-case request pro-
cessing indirectly by eliminating the need for servers to
actively process replication operations. Figure 8 shows
the impact of this effect. In each trial load is directed
at a subset of four RAMCloud storage nodes; “Active
Primary Servers” indicates the number of storage nodes
that process client requests. Nodes do not replicate data
to themselves, so when only one primary is active it is re-
ceiving no backup operations. All of the active primary’s
backup operations are directed to the other three other-
wise idle nodes. Note that, in this figure, throughput is
per-active-primaries. So, as more primaries are added,
the aggregate cluster throughput increases.

As client GET/PUT operations are directed to more
nodes (more active primaries), each node slows down
because it must serve a mix of client operations inter-
mixed with an increasing number of incoming backup
operations. Enough client load is offered (30 clients) so
that storage nodes are the bottleneck at all points in the
graphs. With four active primaries, every server node is
saturated processing client requests and backup opera-
tions for all client-issued writes.

Even when only 5% of client-issued operations are
writes (Figure 8a), Tailwind increasingly improves per-
formance as backup load on nodes increases. When a
primary doesn’t perform backup operations Tailwind im-
proves throughput 3%, but that increases to 27% when
the primary services its fair share of backup operations.
The situation is similar when client operations are a
50/50 mix of reads and writes (Figure 8b) and when
clients only issue writes (Figure 8c).

As expected, Tailwind enables increasing gains over
RAMCloud with increasing load, since RDMA elimi-

858 2018 USENIX Annual Technical Conference

USENIX Association

L
0 5 10 15 20 25 30

§ e Tailwind
= = = = RAMCloud
wn

~

—~ 600 -

»n

=

o 400 -

g

- 200 -

=1

o

=

Q0

=

e}

-

<

=

Clients (YCSB-B)

0 5 10 15 20 25 30
(YCSB-A)

200 -

100 -

I L e |
0 5 10 15 20 25 30

(WRITE-ONLY)

Figure 6: Throughput per server in a 4 server cluster.

= Tailwind
=== RAMCloud

«

)
=)

0100 200 300 400 500 600
Throughput (Kops)

(2) (b)

=
o

Median Latency (us)

99" Percentile Latency (ys)
S

0 0 1(‘)() 2(‘]() 556(] 4[‘)[] 5(‘)[) 6(‘)()

Throughput (Kops)

Figure 7: (a) Median latency and (b) 99" percentile latency of PUT
operations when varying the load.

nates three RPCs that each server must handle for each
client-issued write, which, in turn, eliminates worker
core stalls on the node handling the write.

In short, the ability of Tailwind to eliminate replica-
tion work on backups translates into more availability for
normal request processing, and, hence, better GET/PUT
performance.

4.4 Resource Utilization

The improvements above have shown how Tailwind can
improve RAMCloud’s baseline replication normal-case.
The main reason is that operations contend with backup
operations for worker cores to process them. Figure 9a
illustrates this: we vary the offered load (updates-only)
to a 4-server cluster and report aggregated active worker
cores. For example, to service 450 KOp/s, Tailwind uses
5.7 worker cores while RAMCloud requires 17.6 active
cores, that is 3 x more resources. For the same scenario,
we also show Figure 9b that shows the aggregate active
dispatch cores. Interestingly, gains are higher for dis-
patch, e.g., to achieve 450 KOp/s, Tailwind needs only
1/4 of dispatch cores used by RAMCloud.

Both observations confirm that, for updates, most of
the resources are spent in processing replication requests.
To get a better view on the impact when GET/PUT oper-
ations are mixed, we show Figure 10. It represents active
worker and dispatch cores, respectively, when varying
clients. When requests consist of updates only, Tailwind
reduces worker cores utilization by 15% and dispatch

core utilization by 50%. This is stems from the fact that
a large fraction of dispatch load is due to replication re-
quests in this case. With 50/50 reads and writes, worker
utilization is slightly improved to 20% while it reaches
50% when the workload consists of 5% writes only.

Interestingly, dispatch utilization is not reduced when
reducing the proportion of writes. With 5% writes
Tailwind utilizes even more dispatch than RAMCloud.
This is actually a good sign, since read workloads are
dispatch-bound. Therefore, Tailwind allows RAMCloud
to process even more reads by accelerating write opera-
tions. This is implicitly shown in Figure 10 with “Repli-
cation” graphs that represent worker utilization due to
waiting for replication requests. For update-only work-
loads, RAMCloud spends 80% of the worker cycles in
replication. With 5% writes RAMCloud spends 62% of
worker cycles waiting for replication requests to com-
plete against 49% with Tailwind. The worker load dif-
ference is spent on servicing read requests.

4.5 Scaling with Available Resources

We also investigated how Tailwind improves internal
server parallelism (i.e. more cores). Figure 11 shows
throughput and worker utilization with respect to avail-
able worker cores. Clients (fixed to 30) issue 50/50 reads
and writes to 4 servers. Note that we do not count the
dispatch core with available cores, as it is always avail-
able. With only a single worker core per machine, RAM-
Cloud can serve 430 KOp/s compared to 660 KOp/s for
Tailwind with respectively 4.5 and 3.5 worker cores uti-
lization. RAMCloud can over-allocate resources to avoid
deadlocks, which explains why it can go above the limit
of available cores. Interestingly, when increasing the
available worker cores, Tailwind enables better scaling.
RAMCloud does not achieve more throughput with more
than 5 available cores. Tailwind continues to improve
throughput up to all 7 available cores per machine.

Even though both RAMCloud and Tailwind exhibit a
plateau, this is actually due to the dispatch thread limit
that cannot take more requests in. This suggests that Tail-
wind allows RAMCloud to better take advantage of per-
machine parallelism. In fact, by eliminating the replica-
tion requests from dispatch, Tailwind allows more client-

USENIX Association

2018 USENIX Annual Technical Conference 859

2501 \
200+

150{- L
|

Throughput / Server (KOp/s)

200 100 50
0 2 3 1 0 3 1 0 2 3 1
Active Primary Servers Active Primary Servers Active Primary Servers
(@) (©)

Figure 8: Throughput per active primary servers when running (a) YCSB-B (b) YCSB-A (c) WRITE-ONLY with 30 clients.

5 3

= — Tailwind | . g

E I RAMCloud :;' é 1.5

g -

2 3

5 0

g o

8 5

2 oL ‘ ‘ ‘ ‘ o Of ‘ ‘ ‘ ‘

O 0 200 400 600 800 % 0 200 400 600 800
Throughput (KOp/s) Throughput (KOp/s)

(@ (b)

Figure 9: Total (a) worker and (b) dispatch CPU core utilization on
a 4-server cluster. Clients use the WRITE-ONLY workload.

issued requests in the system.
4.6 Impact on Crash Recovery

Tailwind aims to accelerate replication while keeping
strong consistency guarantees and without impacting re-
covery performance. Figure 12 shows Tailwind’s recov-
ery performance against RAMCloud. In this setup data
is inserted into a primary replica with possibility to repli-
cate to 10 other backups. RAMCloud’s random backup
selection makes it so that all backups will end up with ap-
proximately equal share of backup data. After inserting
all data, the primary Kkills itself, triggering crash recovery.

As expected, Tailwind almost introduces no overhead.
For instance, to recover 1 million 100 B objects, it takes
half a second for Tailwind and 0.48 s for RAMCloud.
To recover 10 million 100 B objects, Both Tailwind and
RAMCloud take roughly 2.5 s.

Tailwind must reconstruct metadata during recovery
(§3.4.1), but this only accounts for a small fraction of the
total work of recovery. Moreover, reconstructing meta-
data is only necessary for open buffers, i.e. still in mem-
ory. This can be orders of magnitude faster than loading
a buffer previously flushed on SSD, for example.

5 Discussion
5.1 Metadata Space Overhead

In its current implementation, Tailwind appends meta-
data after every write to guarantee RDMA writes atom-
icity (§3.1). Although this approach appears to introduce

space overhead, RAMCloud’s log-cleaning mechanism
efficiently removes old checksums without performance
impact [26]. In general, Tailwind adds only 4 bytes per
object which is much smaller than, for example, RAM-
Cloud headers (30 bytes).

5.2 Applicability

Tailwind can be used in many systems that leverage dis-
tributed logging [4, 12, 18, 20, 22, 33] provided they have
access to RDMA-based networks. Recently, RDMA is
supported in Ethernet in the form of RoCE or iWARP [8]
and is becoming prevalent in datacenters [17, 39]. To be
properly integrated in any system, Tailwind needs: (1)
appending a checksum after each write; (2) implement-
ing algorithm | during recovery. Aspects such as memo-
ry/buffer management do not impact Tailwind’s core de-
sign nor performance gains because Tailwind reclaims
replication-processing CPU cycles at backups.

6 Related Work

One-sided RDMA-based Systems. There is a wide
range of systems recently introduced that leverage
RDMA [4, 5, 10, 15, 16, 27, 30, 33, 34, 36, 38]. For
instance, many of them use RDMA for normal-case op-
erations. Pilaf [15] implements client-lookup opera-
tions with one-sided RDMA reads. In contrast, with
HERD [10] clients use one-sided RDMA writes to send
GET and PUT requests to servers, that poll their receive
RDMA buffers to process requests. In RFP [10] clients
use RDMA writes to send requests, and RDMA reads to
poll (remotely) replies. Crail [29] uses one-sided RDMA
to transfer I/O blocks, but it is not designed for availabil-
ity or fault-tolerance. LITE [32] is a kernel module pro-
viding efficient one-sided operations and could be used
to implement Tailwind.

Many systems also use one-sided RDMA for repli-
cation. For instance, FaRM [4, 5], HydraDB [33],
and DARE [22] use one-sided RDMA writes to build a
message-passing interface. Replication uses this inter-
face to place messages in remote ring buffers. Servers
have to poll these ring buffers in order to fetch mes-
sages, process them, and apply changes. In [6] authors
use one-sided RDMA for VM migration. The sender
asynchronously replicate data and notifies the receiver at

860 2018 USENIX Annual Technical Conference

USENIX Association

= Tailwind ——@ Replication Tailwind
= = = RAMCloud —x Replication RAMCloud

‘Worker
I I
\Y
A Y
A Y
[\)
I

|
o
|

© o0
oChhR OO R
|

Dispatch

0 - |
0 5

0 5 10 15 20 25 30
Clients (YCSB-B)

| | | |
10 15 20 25 30

(YCSB-A)

0.2 -

/,'/"A‘
0 -

0 5 10 15 20 25 30
(WRITE-ONLY)

Figure 10: Total dispatch and worker cores utilization per server in a 4-server cluster. ”Replication” in worker graphs represent the fraction of

worker load spent on processing replication requests on primary servers.

=== RAMCloud

— Tailwind 2 E

- 1.200 % Wokrer Cores §
Z 5
& 1,000 15 2
X 2
= 800 2
5 10 =
& 600 =
Ed @
8 400 5 &
£ 200 °
0B

0 O

Available Cores

Figure 11: Throughput (lines) and total worker cores (bars) as a
function of available cores per machine. Values are aggregated over
4 servers.

Tailwind
IRAI\IC]UU(I

251

1.5

—
T

Recovery Time (s)

(==}

1M 10M
Recovery Size

Figure 12: Time to recover 1 and 10 million objects with 10 backups.

the end of transfer then the backup applies changes in a
transactional way.

No system that uses RDMA writes for replication
leaves the receiver CPU completely idle. Instead, the
receiver must poll receive buffers and process requests,
which defeats one-sided RDMA efficiency purposes.
Tailwind frees the receiver from processing requests by
directly placing data to its final storage location.

Reducing Replication Overheads. Many systems try
to reduce replication overheads either by relaxing/tun-
ing consistency guarantees [3, 7, 14] or using differ-
ent approaches for fault-tolerance [37]. Mojim [38] is

a replication framework intended for NVMM systems.
For each server it considers a mirror (backup) machine
to which it will replicate all data through (two-sided)
RDMA. It supports multiple levels of consistency and
durability. RedBlue [14] and Correctables [7] provide
different consistency levels to the applications and al-
lows them to trade consistency for performance. Tail-
wind does not sacrifice consistency to improve normal-
case system performance.

7 Conclusion

Tailwind is the first replication protocol that fully ex-
ploits one-sided RDMA,; it improves performance with-
out sacrificing durability, availability, or consistency.
Tailwind leaves backups unaware of RDMA writes as
they happen, but it provides them with a protocol to re-
build metadata in case of failures. When implemented
in RAMCloud, Tailwind substantially improves through-
put and latency with only a small fraction of resources
originally needed by RAMCloud.

Acknowledgments

This work has been supported by the BigStorage project,
funded by the European Union under the Marie Sklodowska-
Curie Actions (H2020-MSCA-ITN-2014-642963), by the
Spanish Ministry of Science and Innovation (contract
TIN2015- 65316), by Generalitat de Catalunya (contract 2014-
SGR-1051). This material is based upon work supported by the
National Science Foundation under Grant Nos. CNS-1566175
and CNS-1750558. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation. This work was supported in part by Face-
book and VMware.

References

[1] The OpenCompute Project. http://www.opencompute.org/.

[2] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with

USENIX Association

2018 USENIX Annual Technical Conference 861

http://www.opencompute.org/

[3

=

[4

=

[6

—

[7

—

[8

[t

[9

—

[10]

(11]

[12]

[13]

[14]

yesb. In Proceedings of the 1st ACM Symposium on Cloud Com-
puting (2010), SoCC 10, pp. 143-154.

DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAP-
ATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN,
S., VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s
highly available key-value store. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles (New
York, NY, USA, 2007), SOSP "07, ACM, pp. 205-220.

DRAGOJEVIC, A., NARAYANAN, D., HODSON, O., AND CAS-
TRO, M. Farm: Fast remote memory. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Imple-
mentation (Berkeley, CA, USA, 2014), NSDI'14, USENIX As-
sociation, pp. 401-414.

DRAGOIEVIC, A., NARAYANAN, D., NIGHTINGALE, E. B.,
RENZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO,
M. No compromises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th Sym-
posium on Operating Systems Principles (New York, NY, USA,
2015), SOSP ’15, ACM, pp. 54-70.

GEROFI, B., AND ISHIKAWA, Y. Rdma based replication of
multiprocessor virtual machines over high-performance intercon-
nects. In 2011 IEEE International Conference on Cluster Com-
puting (Sept 2011), pp. 35-44.

GUERRAOUI, R., PAVLOVIC, M., AND SEREDINSCHI, D.-A.
Incremental consistency guarantees for replicated objects. In
12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (GA, 2016), USENIX Association,
pp. 169-184.

INFINIBAND TRADE ASSOCIATION. IB Specification Vol 1, 03
2015. Release-1.3.

JOHNSON, R., PANDIS, I., STOICA, R., ATHANASSOULIS, M.,
AND AILAMAKI, A. Scalability of write-ahead logging on mul-
ticore and multisocket hardware. The VLDB Journal 21, 2 (Apr
2012), 239-263.

KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
rdma efficiently for key-value services. In Proceedings of the
2014 ACM Conference on SIGCOMM (New York, NY, USA,
2014), SIGCOMM ’ 14, ACM, pp. 295-306.

KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:
Fast, scalable and simple distributed transactions with two-sided
(rdma) datagram rpcs. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2016), OSDI’16, USENIX Association,
pp- 185-201.

KREPS, J., NARKHEDE, N., AND RAO, J. Kafka: A distributed
messaging system for log processing. In Proceedings of 6th In-
ternational Workshop on Networking Meets Databases (NetDB),
Athens, Greece (2011).

L1, B.,RUAN, Z., X1A0, W., LU, Y., XIONG, Y., PUTNAM, A .,
CHEN, E., AND ZHANG, L. Kv-direct: High-performance in-
memory key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles (New
York, NY, USA, 2017), SOSP *17, ACM, pp. 137-152.

L1, C., PORTO, D., CLEMENT, A., GEHRKE, J., PREGUICA,
N., AND RODRIGUES, R. Making geo-replicated systems fast
as possible, consistent when necessary. In Presented as part of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12) (Hollywood, CA, 2012), USENIX,
pp. 265-278.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

MITCHELL, C., GENG, Y., AND L1, J. Using one-sided rdma
reads to build a fast, cpu-efficient key-value store. In Proceed-
ings of the 2013 USENIX Conference on Annual Technical Con-
ference (Berkeley, CA, USA, 2013), USENIX ATC’ 13, USENIX
Association, pp. 103-114.

MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,
AND L1, J. Balancing CPU and network in the cell distributed
b-tree store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16) (Denver, CO, 2016), USENIX Association,
pp. 451-464.

MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM, E., WASSEL,
H., GHOBADI, M., VAHDAT, A., WANG, Y., WETHERALL, D.,
AND ZATS, D. Timely: Rtt-based congestion control for the dat-
acenter. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (New York, NY, USA,
2015), SIGCOMM 15, ACM, pp. 537-550.

MoHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H.,
AND SCHWARZ, P. Aries: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks using write-
ahead logging. ACM Trans. Database Syst. 17, 1 (Mar. 1992),
94-162.

NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., L1, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling memcache at facebook. In Presented as part of the
10th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 13) (Lombard, IL, 2013), USENIX, pp. 385—
398.

ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTER-
HOUT, J., AND ROSENBLUM, M. Fast crash recovery in ram-
cloud. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2011),
SOSP ’11, ACM, pp. 29-41.

OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRIWAL, A.,
LEE, C., MONTAZERI, B., ONGARO, D., PARK, S.J., QIN, H.,
ROSENBLUM, M., RUMBLE, S., STUTSMAN, R., AND YANG,
S. The ramcloud storage system. ACM Trans. Comput. Syst. 33,
3 (Aug. 2015), 7:1-7:55.

POKE, M., AND HOEFLER, T. Dare: High-performance state
machine replication on rdma networks. In Proceedings of the
24th International Symposium on High-Performance Parallel and
Distributed Computing (New York, NY, USA, 2015), HPDC 15,
ACM, pp. 107-118.

PRABHAKARAN, V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Analysis and evolution of journaling file sys-
tems. In Proceedings of the Annual Conference on USENIX An-
nual Technical Conference (Berkeley, CA, USA, 2005), ATEC
’05, USENIX Association, pp. 8-8.

ROBERT, R., AND ERIC, E. Introducing cloudlab: Scientific
infrastructure for advancing cloud architectures and applications.
;login: 39, 6 (2014), 36-38.

ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. ACM Trans. Com-
put. Syst. 10, 1 (Feb. 1992), 26-52.

RUMBLE, S. M., KEJRIWAL, A., AND OUSTERHOUT, J. Log-
structured memory for dram-based storage. In Proceedings of
the 12th USENIX Conference on File and Storage Technologies
(Berkeley, CA, USA, 2014), FAST 14, USENIX Association,
pp. 1-16.

862 2018 USENIX Annual Technical Conference

USENIX Association

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast and
concurrent RDF queries with rdma-based distributed graph ex-
ploration. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16) (GA, 2016), USENIX As-
sociation, pp. 317-332.

SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R.
The hadoop distributed file system. In Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and Technolo-
gies (MSST) (Washington, DC, USA, 2010), MSST ’10, IEEE
Computer Society, pp. 1-10.

STUEDI, P., TRIVEDI, A., PFEFFERLE, J., STOICA, R., MET-
ZLER, B., IoANNOU, N., AND KOLTSIDAS, I. Crail: A
high-performance i/o architecture for distributed data processing.
IEEE Data Eng. Bull. 40 (2017), 38-49.

Su, M., ZHANG, M., CHEN, K., Guo, Z., AND WU, Y. Rfp:
When rpc is faster than server-bypass with rdma. In Proceedings
of the Twelfth European Conference on Computer Systems (New
York, NY, USA, 2017), EuroSys ’17, ACM, pp. 1-15.

TALEB, Y., IBRAHIM, S., ANTONIU, G., AND CORTES, T.
Characterizing performance and energy-efficiency of the ram-
cloud storage system. In 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems (ICDCS) (June 2017),
pp. 1488-1498.

TSAL, S.-Y., AND ZHANG, Y. Lite kernel rdma support for
datacenter applications. In Proceedings of the 26th Symposium
on Operating Systems Principles (New York, NY, USA, 2017),
SOSP ’17, ACM, pp. 306-324.

WANG, Y., ZHANG, L., TAN, J., L1, M., GAO, Y., GUERIN,
X., MENG, X., AND MENG, S. Hydradb: A resilient rdma-
driven key-value middleware for in-memory cluster computing.
In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (New York,
NY, USA, 2015), SC ’15, ACM, pp. 22:1-22:11.

WEIL X., SHIL J., CHEN, Y., CHEN, R., AND CHEN, H. Fast
in-memory transaction processing using rdma and htm. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles
(New York, NY, USA, 2015), SOSP ’15, ACM, pp. 87-104.

YLONEN, T. Concurrent shadow paging: A new direction for
database research.

Yu, C., Xu, C.-Z., Liao, X., JIN, H., AND Liu, H. Live
virtual machine migration via asynchronous replication and state
synchronization. /[EEE Transactions on Parallel Distributed Sys-
tems 22 (2011), 1986-1999.

ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J.,
McCAULY, M., FRANKLIN, M. J., SHENKER, S., AND STO-
ICA, I. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12) (San Jose, CA, 2012), USENIX, pp. 15-28.

ZHANG, Y., YANG, J., MEMARIPOUR, A., AND SWANSON, S.
Mojim: A reliable and highly-available non-volatile memory sys-
tem. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2015), ASPLOS ’15, ACM,
pp- 3-18.

ZHU, Y., ERAN, H., FIRESTONE, D., Guo, C., LIPSHTEYN,
M., LIRON, Y., PADHYE, J., RAINDEL, S., YAHIA, M. H., AND
ZHANG, M. Congestion control for large-scale rdma deploy-
ments. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (New York, NY, USA,
2015), SIGCOMM 15, ACM, pp. 523-536.

USENIX Association

2018 USENIX Annual Technical Conference 863

