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Abstract
Motivated by recent results using shakenoptical lattices toperformatom interferometry, we explore the
splittingof an atomcloud trapped in a phase-modulated (‘shaken’)optical lattice.Using a simple analytic
modelwe are able to show thatwe canobtain the simplest case of±2ÿkL splitting via single-frequency
shaking. This is confirmedboth via simulation and experiment. Furthermore,we are able to splitwith a
relative phase θbetween the two split arms of 0 orπdependingonour shaking frequency.Addressing
higher-order splitting,wedetermine that±6ÿkL splitting is sufficient to be able to accelerate the atoms in
counterpropagating lattices. Finally,we show thatwe canuse a genetic algorithm tooptimize±4ÿkL and
±6ÿkL splitting towithin≈0.1%by restricting our optimization to the resonance frequencies
corresponding to single- and two-photon transitions betweenBloch bands. As a proof-of-principle, an
experimental demonstrationof simplifiedoptimization of 4ÿkL splitting is presented.

1. Introduction

The control of quantummechanical systems is of interest in a variety of applications, among themquantum
computing and atom interferometry. Thepioneeringwork in [1, 2] showed that by genetic optimizationof the
lattice phasemodulation (or ‘shaking’) function, one canprecisely control the atoms’final state after shaking.We
extended this idea to perform so-called ‘shaken lattice interferometry’ inwhich the quantizedmomentumstates of
the atoms trapped in a shallowoptical latticewere transformed andmade toundergo a conventional interferometry
sequence of splitting, propagation, reflection, reverse propagation, and recombination [3, 4].Optical lattices have
beenused for atom interferometry inRaman- orBragg-based light-pulse schemes [5] and to accelerate interrogated
atomsusingBlochoscillations [6]. In aMichelson configuration [7], one-dimensional shaken lattice interferometry
was shown tohave a sensitivity to applied acceleration that scales as the square of the interrogation timeTI.
Furthermore, its sensitivity canbe tuned to the signal of interest (e.g. anACacceleration signal). Atomshave been
held in amplitude-modulated lattices for times on the order of tens of seconds in order to preciselymeasure gravity
[8]. A shaken lattice interferometer thushas the possibility of achieving similar interrogation times.

In this paperwe take a different approach than the usual Floquet analysis [9–11] to the dynamics of a shaken
lattice system.Wewish to explore in detail howone can shake an optical lattice to transform thewavefunction of
atoms trapped in the lattice. Specifically, we seek to reduce the dimensionality of the shaking control landscape.
Themotivation for this is twofold: first, by simplifying the optimization landscapewe can improve the efficiency
of learning [12]. This is particularly important in experiments limited by drift orfinite cycle times. Second, we
wish to limit heating and decoherence in the shaken lattice system. Recent work has shown that atoms in a
shaken lattice are susceptible to decoherence [13–16]when shaken at certain amplitudesα and frequenciesω,
both in the presence and absence of an inertial signal. Furthermore, shaking of a BEC trapped in an optical lattice
has been shown to cause heating in the condensate due to atom–atom interactions [10, 11]. Atom scattering into
transversemodes has also been shown to be deleterious [17, 18]. Therefore, it is of interest to analyze the lattice
shaking protocols that drive these state-to-state transitions and reduce the subspace to eliminate deleterious
shaking frequencies.
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The desired transformation considered in this paper is thefirst step of shaken-lattice-based interferometry.
That is, wewish to start with atoms in the ground state of the lattice and transform them to a ‘split’ state with an
error less than 1%.The split state is defined such that the atoms equally populate twomomentum states with the
samemagnitude but opposite sign. In particular we consider the simplest cases of splitting the atompopulation
equally into the n k2 L states for n=1, 2, and 3.Here, we define the lattice wavenumber kL=2π/λL for a
lattice wavelengthλL. In general the nth order split state p,ny q ñ∣ ( ) may have a relative phase θ between the two

counterpropagatingmomentum components. That is, n k n k2 , e 2 ,n nL
i

L y q y qñ = - ñq∣ ( ) ∣ ( ) . It is important to
note that one is not limited to interferometric operations such as beamsplittingwhen using the shaken lattice
technique, but ourwork focuses primarily on this application, as increasedmomentum splitting increases
interferometer sensitivity, e.g. in the 102ÿk splitting demonstrated by the interferometer developed in [19].

For the simplest case of 2ÿkL splitting we show that if the lattice is shaken at frequencies near the Bloch band
0 to band 1 transition, we can split the atomwavefunction towithin the desired error. This transition gives a
relative phase difference ofπ between the twomomentum states in the resulting split state. If we shake the lattice
at half of the band 0 to band 2 transition frequency, we can split the atoms towithin 1% errorwith zero relative
phase between the twomomentum states. In each case, the simulation results are backed up by analytics. This
simple shaking scheme is not suitable for higher-order splitting because the transition rate between bands drops
precipitously as we transition fromband 0 to higher-lying bands.However, we find that if we optimize splitting
via a genetic algorithm (GA) using only the band-to-band transition frequencies, we can achieve 4 and 6ÿkL
splittingwithin 1%.Using this optimization scheme, we have obtained experimental 4ÿkL splitting with an
error of≈10%.

We show computationally that after splitting to third order (±6ÿkL)we can load the atoms into
counterpropagatingmoving lattices and accelerate them, potentially achieving acceleration sensitivities that
scale asTI

3 [6]. In similar schemes atommomentum transfer has also been achieved in optical lattices through the
use of Bloch oscillations in a tilted lattice [20, 21]. An interferometer of this type obtaining splitting of 80ÿkL was
demonstrated in [22].

The paper is structured as follows: in section 2wemotivate the description of the lattice dynamics in terms of
the Bloch states and describe the split state in terms of these states. Section 3will describe an analytic treatment of
the problem. Section 4 discusses the efficacy of 2ÿkL and higher-order splittingwith single-frequency shaking.
Section 5 shows computational and experimental results of optimizationwhereinwe restrict ourselves to
shaking at the band-to-band transition frequencies. Section 6 concludes.

2. Bloch decomposition of the split state

For the simulation results presented in this paper wewillmake the following assumptions: First, we assume that
the atoms are delocalized in the lattice, i.e. in a superfluid state [23].Wewill assume that the atoms are initialized
with quasimomentum q=0 and this quasimomentumdoes not change. Finally, we assume the atoms are non-
interacting and that the lattice is infinite.

Becausewe areworking in the regimewhere the atoms are delocalized in an infinite lattice, the Bloch states

r
qY ñ∣ ( ) are a convenient basis for calculations, where r denotes the band number and q is the quasimomentum.

For the simulations done in this paper the lattice depthwas chosen to beV0=10ER, where the recoil energy
E k m2R

2
L
2= for atomswithmassm. The band energyE is plotted against the quasimomentum q in

figure 1(a). The atoms begin in the state corresponding to the ground Bloch band r=0with q=0. Sincewe
assume that the quasimomentum is always zerowewill suppress the index q inwhat follows and denote the
Bloch states r

0Y ñ∣ ( ) as simply rñ∣ .
The Bloch states at zero quasimomentumpopulate only the 2nÿkLmomentum states (for integer n).We

expect then that in ourmodel latticemodulation does not transfermomentumout of these states [1]. This is
confirmed by simulation [3]. Therefore a complete description of the atomwavefunction can be given by the
amplitudes and (relative) phases of thewavefunction in these quantizedmomentum states. Of particular interest
is the relative phase θ between the twomomentum components of the split state, as defined in section 1.

Experimentally one cannot determine these relative phases from time-of-flight absorption images, as we
only have access to the probability amplitudes in these experimentalmeasurements. As such, we define a vector

P


with componentsPn containing the probability offinding an atom in the 2nÿkLmomentum state [3]. If we
consider an ensemble of atoms, this vector gives the relative population of atoms in eachmomentum state. In
practice because higher-ordermomentum states are negligibly populated, we can truncate n∣ ∣ atN=5.We can

then define an ‘error’Eab between twomomentum states described by vectors Pa


and Pb


as

2
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From equation (1), we see that themore similar two states are, the lower the errorEab. Note that if we are
comparing any state to the split state,Ewill be independent of θ and is thus amore useful quantity to look at
when considering the results in the context of what is experimentally observable. Thus, we use this expression as
an errormeasure to quantify howwell our optimization algorithm is doing.

For bands r>0 there is considerable similarity between the Bloch states and split states of various orders.
This ismost easily seenwhen one looks at themomentum state population of the Bloch states corresponding to
different bands, as shown infigure 2 [24]. Interestingly, there are two separate Bloch states at different band
energies that roughly correspond to each split state. To glean further insight, we calculate the inner productDnr

between the nth order split stateψn(p, θ) and the state rñ∣ as

Figure 1. (a)Band energy (as a fraction of the recoil energyER) versus quasimomentum q (in units of ÿkL) for thefirst seven bands,
starting with r=0 and ending with r=6. Bandswith even parity at q=0 are shownwith red solid lines and odd parity bands are
shownwith blue dashed lines. The black dotted line denotes the lattice depth. (b)Band-to-band transition frequencies (in units of
ωR=ER/ÿ) versus lattice depthV0 (in units ofER) for the transition fromband r=0 to r 1¢ = (red, solid), 2 (blue, dashed), 3 (gray,
dotted), 4 (magenta, dotted), and 5 (black). The band 6 transitions are almost degenerate with the band 5 transitions for all depths
considered here, so the r 6¢ = curvewould completely overlap the r 5¢ = curve.

Figure 2. ((a)–(h), in order of increasing bandnumber from r = 0 to 7)Momentum state populations and energies for thefirst 8 Bloch
states rñ∣ for atoms trapped in a latticewith V E100 R= . Note that for r>0 the states begin to resemble split states of higher and higher
orders n.

3
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D r p, . 2nr n
2y q= á ñ∣ ∣ ( ) ∣ ( )

Fromfigure 3, we see that the difference between twoBloch states corresponding to bands l 0> and l l 1¢ = +
is that the lower-energy state lñ∣ has a relative phase difference θ=π between the±(l+1)ÿkL states, and the
higher-energy band l¢ñ∣ is almost identical, except θ=0 (and thus the two states are orthogonal). This is
commensurate with the fact that states corresponding to adjacent bands have opposite parity.

In the rest of this paper wewill be referring to state-to-state transitions between different bands. The
transition frequencies for transitions from the ground band to thefirst 5 excited bands are shown infigure 1(b).
For an example of the energy scales at play here, we tabulate the transition frequencies fr r, ¢ between two bands r

and r ¢ in table 1. The frequencies given in table 1 assume that we areworkingwith 87Rb atoms (as in section 4.2)
at a lattice depth ofV E100 R= .We see that the band transitions lie between 0 and 121kHz, and this is the regime
inwhich our driving is simulated.

The next sectionwill analytically explore the dynamics of atoms trapped in a shaken optical lattice. This case
is somewhat difficult to solve analytically, but some basic results can be applied in the simple case of single-
frequency shaking at low amplitudes.We verify these results numerically, showing that we can split the atom
wavefunctionwith a phase difference of 0 orπ, depending on our driving frequency. Experimental results verify
the numerics. From this we gain some insight on how to restrict our optimization parameters and show the
results of rapid optimization of higher-order splitting in section 5.

Figure 3.Value of the integral in equation (2) versus the state rñ∣ corresponding to the band r for splitting order n=1 (red circles),
n=2 (black diamonds), and n=3 (blue squares) for (a) θ=0 and (b) θ=π. As the band number increases the Blochwavefunctions
lookmore andmore like the split states, with the relative phase θ between the n k2 L momentum states equal to θ=0 (π) for even
(odd) band numbers. Thus, alternating bands have relative phases θ of 0 andπ, depending on the band parity as shown in figure 1(a).

Table 1.Band transition frequencies fr r, ¢,

V0=10ER. The single (double) asterisk
marks frequencies withmatrix element
overlapsM(c) (M(s))>0.1 (seefigure 6 and
section 3).

Band n Bandm fr, r′ (kHz)

0 1 17.89**

0 2 24.61*

0 3 58.14

0 4 58.25

0 5 121.19

1 2 6.72**

1 3 40.25*

1 4 40.36**

1 5 103.30

2 3 33.53**

2 4 33.64*

2 5 96.58

3 4 0.10

3 5 63.0*

4 5 62.9**
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3. Analytics of phasemodulation of an optical lattice

TheHamiltonian for a phase-modulated (shaken) lattice with general shaking functionf(t) is written

H
p

m

V
k x t

2 2
cos 2 . 3

2
0

L f= + +[ ( )] ( )

For the specific casewhere t tsinf a w=( ) ( ), we can apply the Jacobi–Anger expansion to equation (3). Using
this we canwrite the potential termV(x, t) in equation (3) as

V x t V k x J J k t

k x J k t

, cos 2 2 cos 2

sin 2 sin 2 1 . 4

k
k

k
k

0 L 0
1
2

L
1
2 1

å

å

a a w

a w

= +

- -

=

¥

=

¥

-

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

( ) ( ) ( ) ( ) ( )

( ) ( ) [( ) ] ( )

Equation (4) shows that we can decompose the phasemodulation to a term representing the carrier (first term)
and a set of amplitudemodulation terms containing both sine and cosine termsThe strength of these amplitude
modulation terms are given by the Bessel functions Jk(α)whereα is the amplitude of the phasemodulation.
Because the sine terms are odd, theywill drive transitions between opposite parity states while the even cosine
termswill drive transitions between states with the same parity [24].

By taking the J0 term in equation (4) as the bareHamiltonianH0(x), we canwrite the rest of the terms as a
perturbation H x t,¢( ). Using Fermi’s golden rule, we can thenwrite down the transition rate r r,G ¢ from state rñ∣
to r ¢ñ∣ resulting from shaking at a frequencyω as

V J r k x r E k

J r k x r E k

2
cos 2 2

sin 2 2 1 , 5

r r
k

k r r

k r r

, 0
2

1
2
2

L
2

,

2 1
2

L
2

,






åp
a d w

a d w

G = á ¢ ñ ´ -

+ á ¢ ñ ´ - -

¢
=

¢

- ¢

[ ( )∣ ∣ ( )∣ ∣ ( )

( )∣ ∣ ( )∣ ∣ ( ( ) )] ( )

where E E Er r r r r r, ,w= = -¢ ¢ ¢ is the energy difference between states rñ∣ and r ¢ñ∣ . The transition rate r r,G ¢ is
governed by the squares of the Bessel functions Jk

2 a( ) (whereα is the amplitude of the phasemodulation) and
magnitudes of the transitionmatrix elements M r k x rsin 2r r,

s 2
L

2= á ¢ ñ¢∣ ∣ ∣ ∣ ( ∣ ∣( ) and M r k x rcos 2r r,
c 2

L
2= á ¢ ñ¢∣ ∣ ∣ ∣ ( ∣ ∣( ) .

4. Simplified splitting schemes

This section consists of four parts. Thefirst subsectionwill showfirst-order single-frequency shaking results via
simulation. Next, wewill show experimental data that supports the simulation results: namely thatwe can
obtainfirst-order splitting by shakingwith a single-frequency. This will lead into a discussion of the limitations
of the single-frequencymodel, especially with regards to higher-order splitting schemes. Finally, wewill discuss
howmuchwe need to split to implement an accelerating lattice scheme.

4.1. Theory and simulation of single-frequency splitting
Wecan use the theory derived in the previous section tomake some predictions about the effects of single-
frequency shaking. As stated in section 3 thematrix elements Mr r,

c 2
¢∣ ∣( ) connect states with the same parity, and the

matrix elements Mr r,
s 2
¢∣ ∣( ) connect states of opposite parity.

For a given value ofα the amplitude of the Bessel functions Jk(α)dies off as k increases. Forα�0.3we can
keep two terms, simplifying the potential in equation (4) to

V x t V J k x

J t k x J t k x

, cos 2 2

sin sin 2 cos 2 cos 2 . 6
0 0 L

1 L 2 L

a
a w a w

=
- +

( ) [ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )] ( )

Aswith equation (6) if we keep two terms in equation (5), we obtain

V J M E n

J M E n

2
2

2 1 . 7

r r r r r r

r r r r

, 0
2

2
2

,
c 2

,

1
2

,
s 2

,






p
a d w

a d w

G = -

+ - -

¢ ¢ ¢

¢ ¢

[ ( )∣ ∣ ( )

( )∣ ∣ ( ( ) )] ( )

( )

( )

From this we see that weak shaking of the lattice at f2r r r r, ,w p= ´¢ ¢will drive transitions between Bloch

states rñ∣ and r ¢ñ∣ if they have opposite parity, and driving at 2r r,w ¢ will drive transitions between rñ∣ and r ¢ñ∣ if
they have the same parity. In general, shaking at Nr r,w ¢ will drive transitions between rñ∣ and r ¢ñ∣ with parity
determined bywhetherN is odd or even. This is in keepingwith the results in [25] for the case of the amplitude-
modulated lattice (where only like-parity transitions are allowed) and the phasemodulation results in [26]. The
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difference in ourwork is that we approach this problem from a standpoint of inducing band-to-band transitions
to perform atombeamsplitting for interferometry.

The above analysis shows that if we begin in the ground state r 0= ñ∣ and shake atω=ω01 (ω02/2), wewill
drive odd (even) parity transitions between bands r=0 and r 1¢ = (r 2¢ = ).We simulate both cases using the
symmetric split-stepmethod [27] to simulate the time-dependent Schrödinger equation (TDSE)with the
Hamiltonian in equation (3)with a single-frequencyω and amplitudeα=0.3 forT≈1ms.

The band transition frequenciesω01 andω02/2 are plotted infigure 4(a) versus the lattice depth. Given
V E100 R= , results for odd parity shaking atω=ω01=2π×17.88 kHz are shown infigure 4(b), and results for
even parity shaking atω02/2=2π×12.3 kHz are shown in 4(c). For the simulation results presented in
figures 4(b) and (c), at each timestepwe calculate the percent error relative to the split state as in equation (1) and
the inner product between the simulated state tF ñ∣ ( ) at time t and thefirst-order split state p,1y q ñ∣ ( ) as in
equation (2).

We see that when the percent error is lowest infigure 4(b), the projection of the state yñ∣ onto the split states
is highest for the split state p,1y q p= ñ∣ ( ) . This shows thatwe are in fact splittingwith relative phase θ=π
between the two split arms. Conversely, infigure 4(c)we achieve splitting with θ=0. Thus, by controlling the
shaking frequencywe can control the relative phase between the two split arms.

4.2. Experimental results of single-frequencyfirst-order splitting
In this sectionwe demonstrate that thefirst-order splitting schemes described in the previous subsection and
shown infigure 4 are viable experimentally. The experimental scheme is similar to the shaken lattice
interferometry experiment described in [4]. In the experiment we start with Bose-condensed 87Rb atoms loaded
into the ground state of an optical lattice of (intentionally) unknowndepth. The lattice ismade by retro-
reflecting an 852nm laser onto itself. Bymodulating the frequency of the lattice laser [28], we shake the lattice
for a timeT=0.2mswith varying amplitudeA and frequency f 2.We use a computer-controlled arbitrary
waveform generator (AWG) to generate a pure tonemodulated by an envelope of the form f t t Tcos2 p=( ) ( ),
which allows for smooth turn-on and turn-off of the shaking, as in [3, 4]. After 20ms time-of-flight, we take an
absorption image of the atoms using aCCD camera and analyze the images to extract the atoms’momentum
state.

Wefind that we can split the atomwavefunction towithinE≈10%at frequencies corresponding toω01 and
ω02/2. This is shown infigure 5(b).We do not generally obtain splitting to better than 10%due to spurious
atoms detected in the 0ÿkLmomentum state (e.g. due to heating and imaging noise), the finitemomentum
spread of the condensed atoms in the lattice [29, 30], and the finite signal-to-noise ratio in imaging [4]. Our
experimentalmomentumwidth is about 0.6ÿkL, limitedmostly by the tight atom-chip-based trap inwhichwe

Figure 4. (a)The band transition frequenciesω01 (red, solid) andω02/2 (blue, dashed) as a function of the lattice depth. (b), (c)Results
of shaking simulations for a lattice depth of V E100 R= . The percent error relative to the split state (red, see equation (1)), projection of
the current state yñ∣ onto the split state with θ=0 (blue, dashed, see equation (2)) and θ=π (black, dot-dashed), plotted versus
shaking time for a shaking frequency of (b)ω01 and (c)ω02/2 and a shaking amplitude ofα=0.3 rad. For simplicity, we plot the
projection as a percent,multiplying the typical inner product by 100.

2
In [4]weused an electro-opticmodulator (EOM) tomodulate the lattice phase.Whenweweremade aware of themethod described in

[28], we abandoned the EOMmethod in favor of the frequency-modulationmethod. This was done because the EOMwas lossy and required
relatively high voltages to achieve the phaseswe required.
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performour evaporation. Simulations show that for suchmomentum spreadswe are limited to errors of about
4%–8%, depending on our shaking frequency.

From the results shown infigure 5, we estimate the lattice depth to beV E15.30 R» . In this case the relevant
band-to-band transition frequencies areω01=21.7 kHz andω02=2×17 kHz. This not only confirms the
simulation results from the previous subsection but provides uswith a reliable way to approximate the lattice
depth. In our current interferometry experiments the absolute lattice depth is less important than the day-to-day
and shot-to-shot stability of the lattice depth. Thus, an approximate depth combinedwith the stability provided
by a lattice laser intensity servo is sufficient for our purposes.

4.3. The limitations of the single-frequencymodel
While the single-frequencymodel workswell for thefirst-order splitting schemes described in section 4.2, for
higher amplitudes first-order perturbation theory becomes less and less applicable. Thuswe can no longer use
Fermi’s Golden rule to accurately describe the physics of the situation. In this casewemust keepmore terms in
the Jacobi–Anger sums of equation (6) and go to higher orders in perturbation theory. Furthermore, we cannot
use this simple picture to obtain higher-order splitting. This is due to the fact that thematrix elements Mr r,

c 2
¢∣ ∣( )

and Mr r,
s 2
¢∣ ∣( ) become relatively small as we consider transitions from the state r 0= ñ∣ to higher-lying states with

r 2> ñ∣ . This is shown in figure 6(a)where for higher-band transitions the relevantmatrix element is at least one
order ofmagnitude below the lower-band transitions. As such, the transition strength ismuch lower and the
transitions become less favorable.

However, we canmake transitions from the ground state r 0= ñ∣ to an intermediate state in band r 1¢ = or 2
and then to higher-lying states in bands r 2 > . If wemake these intermediate state transitions, thematrix

Figure 5. (a)A cartoon schematic of the experimental layout described in themain text. (b)Experimental results showing the percent
overlapwith the n=1 split state versus shaking amplitudeA for frequencies of 17kHz≈ω02/2 (red), 21.5kHz (blue), and 22kHz
(black), whereω01≈21.7 kHz for a lattice depthV0≈15.3ER (seefigure 4(a)). The points show themean of three separate
experimental runs with the same shaking function and the error bars show the standard deviation of these points.

Figure 6. (a)Thematrix elements Mr r,
c 2
¢∣ ∣( ) (red) and Mr r,

s 2
¢∣ ∣( ) (black) for band-to-band transitions plotted versus final band r ¢.

(b), (c)Plots of thematrix elements (b) Mr r,
c 2
¢∣ ∣( ) and (c) Mr r,

s 2
¢∣ ∣( ) for band-to-band transitions frombands r (x-axis) to r ¢ (y-axis). The

colorbar on the right gives themagnitude of the transitionmatrix element.
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elements becomemore favorable. This is shown infigures 6(b), (c). As expected, the cosine transitionmatrix
elements are strongest whenmaking transitions between states in next-to-adjacent bands, but the sinematrix
elements are strongest whenmaking transitions between states in adjacent bands. Interestingly, when
considering the sinematrix elements we see that it is also favorable tomake transitions between states in bands
r=1 to r 0, 2¢ = or 4.We also observe that transitions between bands r=3 and r 2¢ = and 6 are favorable,
but transitions between bands r=3 and r 4¢ = are not. This is possibly due to the avoided crossing between
bands 3 and 4 at q=0 (seefigure 1).Wefind that the strongest transitions infigure 6 aremost influential can be
used to simplify the optimization landscape for higher-order splitting in section 5.

4.4.Howmuchmustwe split?
Due to the fact that the single-frequency shaking does notwork as well for higher-order splitting (see figure 6),
higher-order splitting ismore difficult to obtain. This is the subject of section 5.However, before we dive into the
next section it is instructive to demonstrate howmuchwemust split the atoms to be able to accelerate them in a
moving lattice.

If we truncate the Bessel function expansion of equation (6) to two terms and do some trigonometry, we
obtain

V x t V J k x J k x t

k x t

, 2 cos 2 4 cos 2

cos 2 . 8
0 0 L 1 L

L

a a w
w

= + -
+ +

( ) { ( ) ( ) ( )[ ( )
( )]} ( )

Equation (8) describes a carrier lattice and two counterpropagatingmoving lattices with velocity v k2 Lw=  .
If we can split the atoms to a high enough order, we can trap the split atoms in one of the twomoving lattices. The
atomswill thenmovewith the lattice if we accelerate and decelerate the lattice. This will allow us to obtain
interferometry withTI

3 sensitivity to an applied signal [6]. In this case themoving atomswill not be able to ‘see’
the counterpropagating lattices andwill thus not be affected by them3. In this case, the atoms in the positive
(negative)momentum state will be trapped in the latticemovingwith positive (negative) velocity. Then, if the
lattices are accelerated by changing the shaking frequency such that themagnitude of the counterpropagating
lattice velocity changes, the atoms should follow the lattices inwhich they are trapped. The atomswill thus
accelerate as the lattices are accelerated, given that this is done slowly enough [31, 32].

Ifwebeginwith atoms split to third order (that is,±6ÿkL), we can shake the lattice at k m12 12L
2

Rw w= =
withα=1 such that the lattice ismovingwith v=±6ÿkL/mwithout disturbing the atomwavefunction
appreciably.Here,ωR=ER/ÿ is the recoil frequencyof the atoms in the lattice. In this case the atomsmaintain
their split state towithin≈1%, as shown infigure 7(a). Furthermore, simulations show that if the atomsbegin in
the±8ÿkL split state and are trapped in a lattice shaken at k m16 L

2w = , the atomswill continue tomaintain
their splitting towithin 1%, as shown infigure 7(b). This trend continues for evenhigher splitting orders.

This analysis shows that if we can achieve third-order splittingwe can then accelerate the atoms in the lattice
with negligible perturbation. In the next sectionwewill showhow to optimize such splitting by shaking at
frequencies corresponding to band-to-band transitions.

Figure 7.The percent error relative to the (a) third- (n = 3) and (b) fourth-order (n = 4) split state (red, see equation (1)), projection
of the current state tF ñ∣ ( ) onto the split state with 0q = (blue, dashed, see equation (2)) and θ=π (black, dot-dashed), plotted versus
shaking time for a shaking amplitudeα=1 rad. In each case, there are two counterpropagating latticesmoving at velocities
v n k m2 L=  . The oscillations between the blue and black curves are due to the phase accumulation between the twomomentum
components as they evolve in time. As infigure 4we plot the projection as a percent.

3
The atomsmovingwith one of the latticesmust be in an eigenstate of the lattice, but shaking can always bemodified to prepare the split

atoms so that they resemble the ground state of themoving lattice with depth V J0 1 a( ).
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5. Simplified optimization of higher-order splitting using band-to-band transitions

5.1. Computational results
This section presents results of simulations optimizing splitting protocols up to n=3.Our optimization
simulates the TDSE using theHamiltonian in equation (3) as in section 3 and the optimization tries tominimize
the error as given in equation (1). The optimization is done via aGA as detailed in [1, 3].We chose theGA
because the variation that we have developed has been proven towork verywell for simulations of atoms in a
shaken lattice. However, ourGAwas notwell-suited for our initial experiments in [4]due to the relatively large
number of iterations needed for the algorithm to converge.

Our experimental optimizations detailed in section 5.2make use of theCRAB and dCRAB algorithms
[33–35] in a closed-loop system. This choice of algorithms ismostly based onwhat worked for our initial
simulations and experiments, and our choices should not be taken as a hard-and-fast rule, as genetic optimizers
have been used in experiments (e.g. [36]), and theCRAB algorithmwas originally used to optimize simulation
dynamics.

Wewill compare results of theGAusing the full frequency bandwidth up to the r r0 5=  ¢ = ¢ transition
to optimize the lattice shaking to results where only single-photon band-to-band and two-photon half-band
transitions are used. By the term ‘half-band transitions’, wemean that we shake the lattice at a frequency 2r r,w ¢

to cause even parity transitions.We know from [11] that off-resonant shaking in the presence of atom–atom
interactions causes heating. Furthermore, to avoid the transverse scattering described in [17, 18]wewant to
shake at single- and two-photon band-to-band resonances so that no excess energy is available for transverse
scattering. Thereforewewish to restrict our optimization to resonant transitions in order to limit the heating
due to these factors. Note that as in [3] our simulations do not take interactions into account.

In the simulations presented herewe shook the lattice forT≈0.5ms and optimized for n k2 L splitting for
n=1, 2, and 3. To ensure smooth turn-on and turn-off of the shaking function, wemultiplied each shaking
function by an envelope function f t t Tcos 2p=( ) ( ) [3, 4]. Due to the inherent randomness in theGA, we ran
each class of simulations 10 separate times and took the best result for our analysis.

We ran five different classes of optimization simulations. One class included every frequency in the band
fromDCup to r r0 5=  ¢ = ¢, another included only the 10 band transition frequencies in this region, and a
third included the 10 half-band transition frequencies. All frequencies used here are tabulated in table 1. A
fourth simulation class included all 20 band and half-band transition frequencies, and afifth chose only the 9
frequencies corresponding to appreciable (>0.1)matrix element overlap infigure 6 (markedwith asterisks in
table 1).We plot the lowest error achieved after 1000 iterations infigure 8.Note that convergence below 10−3%
is limited by phase errors in the split-stepmethod.

From the results presented infigure 9, we see that in all cases we can split the atomwavefunction to better
than 0.3%.We see infigure 8(a) that the error is lowest if we include all frequencies, but in this regime the
interaction-induced heating (which is not present in our current simulationmodel)will be highest. For
simulations restricted to the select strongest band transitions we can obtain splitting to better than 0.05%.While
the use ofmore complex fitness functions (e.g. that used for first-order splitting in [3])may further improve this
splitting efficiency, we obtain good results by simplyminimizing the error in equation (1). In summary, by
truncating our search space from≈50 frequencies (limited by the discrete temporal sampling inherent in the
numerics) to≈10 frequencies, we can still split with sufficiently low error.

Figure 8. (a)Percent error versus splitting order for n=1, 2 and 3 for thefive simulations considered in this work. The frequency
ranges considered here are: band transition frequencies (cyan diamonds), half-band transitions (black stars), both band andhalf-band
transitions (blue squares), frequencies with non-negligiblematrix element overlap (magenta triangles), and all frequencies in the band
(red dots). (b)The best optimized shaking functions for the select frequency case corresponding to themagenta triangles in (a) for
n=1 (black, solid), n=2 (blue, dot-dashed), and n=3 (red, dashed).
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Even thoughwe cannot access the relative phase θ of the two split arms of these optimized split states
experimentally [4], it is of interest to examine them in simulation in order to better understand the shaking
dynamics. Thus, we plot the final phase θ of the optimized split state for the best results of each of the five
simulation classes and three splitting orders infigure 9.We include the error fromfigure 8 for easy reference and
comparison.

The results show that the phase dynamics ofmulti-frequency splitting aremore complex than the simple
model presented in section 3 predicts. For example, whenwe split using the half-band transition frequencies we
would expect that the phase θ be near zero.However, wefind that this phase is closer to θ=−π forfirst-order
splitting and−π/2 for higher-order splitting. Therefore, our simplemodel derived in the case of single-
frequency shaking has broken down.Unfortunately it is analytically difficult to considermultiple frequency
shaking due to the fact that neither the Jacobi–Anger expansion nor the results of Floquet analysis applies.
Furthermore, as shown infigure 8(b) the shaking function amplitude is about an order ofmagnitude greater
than that used to justify the truncation of the sum in equation (4) and applyfirst-order perturbation theory.
Fortunately, for the select case, these relative phases are robust in the face of experimental noise and remain
roughly constant aswhite noise is added to the shaking function up to a noise amplitude of 0.1 radians, as shown
infigure 10. This corresponds to roughly 5%–10%of themaximum shaking amplitude; this is consistent with
the robustness studies we did for 2ÿkL splitting in [3] and the phase coherence demonstrated in [4].

We can, however,make some general inferences fromour simplemodel. The fact that q p»∣ ∣ for thefirst-
order split state likely comes as a result of the fact that the two-photonmatrix element M0,2

c 2∣ ∣( ) is about a factor of

two lower than the single-photon element M0,1
s 2∣ ∣( ) connecting r=0 and r 1¢ = . Thus, transitions between the

odd parity states aremore favorable, as can be seen from figure 4where the dynamics of shaking atω01 are far less
complex than those of shaking atω02/2.

For higher-lying states, themultiple pathways for an atom to get from r 0= ñ∣ to the higher-lying states
means that the even and odd parity transitions tend to interfere, and the split state will in general be amixture of
the two bands. Fromfigure 1we see that these higher-lying states r 2¢ > ñ∣ corresponding to splittingwith
n>1 are nearly degenerate. This interference causes the phase difference between the two split arms to average
to 2q p=∣ ∣ . In these cases the optimized split state is not dominated by population transfer into a single
higher-lying band but rather this state is composed of amixture of states corresponding to two nearly degenerate
bands.

From a purely experimental standpoint our results dramatically simplify the optimization landscape that we
must explore. This allows for sufficient errorminimizationwithin a lownumber of iterations. That is, even
though simulationswithmore frequencies tend to converge to lower errors, they take longer to do so. For

Figure 9.Phase θ between the split arms (blue asterisks, left axis) and error (red dots, right axis) for (a) n=1, (b) n=2, and (c) n=3.
The best of ten runs for each of thefive simulation classes is shown. The classes are labeled on the x-axis as follows: band transition
frequencies (b), half-band transitions (hb), both band and half-band transitions (b+hb), select frequencies with non-negligiblematrix
element overlap (s), and all frequencies in the band (all).

Figure 10.Phase θ between the split arms (blue asterisks, left axis) and error (red dots, right axis) for the optimized select-frequency
shaking for (a) n=1, (b) n=2, and (c)n=3. The data is plotted as a function of the amplitude (in radians) of addedGaussianwhite
noise.We see that the phase remains flat and the error below 10% for noise amplitudes up to 0.1 radians.
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example, if we run 10 simulations to optimize splitting of the atomwavefunctionwith the select transition
frequencies indicated in table 1, for n=1, 2, and 3, we can achieve convergence to better than 1%error in (on
average) 1, 10, and 28 iterations, respectively. In each case, the error for the simulationswith all frequencies in
the band is>70%, as shown infigure 11.Our simulations also show that if we start with atoms in the n=2 split
state, we can optimize transfer into the n=3 split state within 1%within<10 iterations. In this case the total
splitting timewill double, but optimization of 6ÿkL splitting is possible with fewer than 20 total iterations. This
learning speedup is extremely important for practical implementations of shaken lattice interferometry in that
optimization happensmore quickly and effectively, allowing for fast optimization of the interferometer
sequence.

In the experiment, if the lattice depth is known (e.g. via themeasurement scheme described in section 3 or in
[24, 30])we can restrict our shaking the selected transitions with appreciable transitionmatrix elements. Then a
closed-loop algorithm (e.g. the CRABor dCRAB algorithm [33–35]) can be used to efficiently optimize the
splitting protocol (aswas done for first-order splitting in [4]). Thuswe have found a reduced subspace that
allows for faster optimization of the system and reduces heating due to off-resonant shaking [11]. As an example,
we demonstrate optimization of 4ÿkL splitting in the next section.

5.2. Experimental results
Herewe present experimental results of n=2 splitting using theCRAB algorithmusing the restricted subspace
defined in the previous section. Currently, experimental limitations prohibit us fromobtaining n=3 splitting,
butwith some straightforward improvements to the apparatus (as outlined in [4]), higher-order splitting can be
achieved. The results shown here therefore serve as an encouraging proof-of-principle of the efficacy of
optimizationwith the simplified subspace.

Using the apparatus described in section 4.2 and [4], we use theCRAB algorithm to optimize the higher-
order split state. For simplicity we do not use the ‘dressed’CRAB (dCRAB) algorithm, but this could be
implemented in the future as a way to improve the optimization. Aswith theGA,we fix the shaking frequency
components corresponding to the 9 select band-to-band transitions described in the previous section.
Optimization then occurs on 5 vectors of amplitudes corresponding to each of these frequency components. As
in section 4.2, we use an envelope function to ensure smooth turn-on and turn-off of the shaking function.

The system runs in closed-loop, shaking the lattice, taking and analyzing experimental absorption images,
then feeding the results (averaged over three separate but identical runs of the experiment) into the optimization
algorithm. The algorithmupdates the shaking function and the optimization continues. In this waywe can
converge on the desired state.We set the shaking time to be 0.4ms, twice the 2ÿkL splitting time used in [4]. The
learning curve is shown infigure 12(a). The error in splitting wasmeasured to be 8.4±2.4% after averaging
over 15 shots. (The value obtained infigure 12(a) is slightly higher due to the fact that it is an average over only 3
shots.)

From this, we have shown that the simplified shaking scheme can quickly optimize n=2 splitting towithin
10% in 5 iterations, which is consistent with the results shown infigure 11. Thus, it is expected that one should
be able to optimize n=3 splittingwithin about 10 iterations using the same optimization protocol.

Figure 11.Results of genetic optimization showing themean (openmarkers) and best (closedmarkers) error for splittingwith
(a) n=1, (b) n=2 and (c) n=3 versus number of iterations of the optimization algorithm. The black points indicate optimizations
with all frequencies in the band fromDC to 121kHz, and the red points indicate optimizations using only the truncated frequency
space corresponding to the select band-to-band transitions indicated in table 1. The error improvement ismuch faster with the
truncated subspace.
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6. Conclusion

In conclusionwe demonstrate a simplemeans of using the band-to-band transitions to implement an atom
beamsplitter in an optical lattice.We develop a theoreticalmodel that allows us to use a single shaking frequency
to implement low-order splitting. However, at higher frequencies our simplemodel breaks down andwemust
incorporatemultiple frequencies in order to obtain good splitting. Due to heating caused by atom–atom
interactions it is of interest to restrict our shaking frequencies to those resonant with single- and two-photon
transitions between bands.We show that we can obtain simulated higher-order splitting up to n=3with an
error<0.1%by optimizing shakingwith a learning algorithmusing a reduced subspace of frequencies
corresponding to the strongest band and half-band transition resonances.We show this experimentally for the
case of n=2 splitting. This simplification of the optimization landscape allows for faster optimizationwith less
deleterious heating effects due to atom–atom interactions. Finally, we show that higher-order splitting can be
implemented by accelerating the atoms in the optical lattice and can potentially allow for interferometry with
sensitivity that scales with the cube of the interrogation time. This opens up potential newpathways for
improving and expanding interferometry using atoms trapped in a shaken optical lattice.
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