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Abstract

Motivated by recent results using shaken optical lattices to perform atom interferometry, we explore the
splitting of an atom cloud trapped in a phase-modulated (‘shaken’) optical lattice. Using a simple analytic
model we are able to show that we can obtain the simplest case of +=2/k; splitting via single-frequency
shaking. This is confirmed both via simulation and experiment. Furthermore, we are able to split with a
relative phase 0 between the two split arms of 0 or ™ depending on our shaking frequency. Addressing
higher-order splitting, we determine that 67k splitting is sufficient to be able to accelerate the atoms in
counterpropagating lattices. Finally, we show that we can use a genetic algorithm to optimize £4hk; and
+6hk; splitting to within ~0.1% by restricting our optimization to the resonance frequencies
corresponding to single- and two-photon transitions between Bloch bands. As a proof-of-principle, an
experimental demonstration of simplified optimization of 4hk; splitting is presented.

1. Introduction

The control of quantum mechanical systems is of interest in a variety of applications, among them quantum
computing and atom interferometry. The pioneering work in [1, 2] showed that by genetic optimization of the
lattice phase modulation (or ‘shaking’) function, one can precisely control the atoms’ final state after shaking. We
extended this idea to perform so-called ‘shaken lattice interferometry’ in which the quantized momentum states of
the atoms trapped in a shallow optical lattice were transformed and made to undergo a conventional interferometry
sequence of splitting, propagation, reflection, reverse propagation, and recombination [3, 4]. Optical lattices have
been used for atom interferometry in Raman- or Bragg-based light-pulse schemes [5] and to accelerate interrogated
atoms using Bloch oscillations [6]. In a Michelson configuration [7], one-dimensional shaken lattice interferometry
was shown to have a sensitivity to applied acceleration that scales as the square of the interrogation time T;.
Furthermore, its sensitivity can be tuned to the signal of interest (e.g. an AC acceleration signal). Atoms have been
held in amplitude-modulated lattices for times on the order of tens of seconds in order to precisely measure gravity
[8]. A shaken lattice interferometer thus has the possibility of achieving similar interrogation times.

In this paper we take a different approach than the usual Floquet analysis [9-11] to the dynamics of a shaken
lattice system. We wish to explore in detail how one can shake an optical lattice to transform the wavefunction of
atoms trapped in the lattice. Specifically, we seek to reduce the dimensionality of the shaking control landscape.
The motivation for this is twofold: first, by simplifying the optimization landscape we can improve the efficiency
oflearning [12]. This is particularly important in experiments limited by drift or finite cycle times. Second, we
wish to limit heating and decoherence in the shaken lattice system. Recent work has shown that atoms in a
shaken lattice are susceptible to decoherence [13—16] when shaken at certain amplitudes v and frequencies w,
both in the presence and absence of an inertial signal. Furthermore, shaking of a BEC trapped in an optical lattice
has been shown to cause heating in the condensate due to atom—atom interactions [10, 11]. Atom scattering into
transverse modes has also been shown to be deleterious [17, 18]. Therefore, it is of interest to analyze the lattice
shaking protocols that drive these state-to-state transitions and reduce the subspace to eliminate deleterious
shaking frequencies.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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The desired transformation considered in this paper is the first step of shaken-lattice-based interferometry.
That is, we wish to start with atoms in the ground state of the lattice and transform them to a ‘split’ state with an
error less than 1%. The split state is defined such that the atoms equally populate two momentum states with the
same magnitude but opposite sign. In particular we consider the simplest cases of splitting the atom population
equally into the +2n/k; states for n = 1,2, and 3. Here, we define the lattice wavenumber k;, = 27/ fora
lattice wavelength A;. In general the nth order split state |15, (p, 6)) may have a relative phase 0 between the two
counterpropagating momentum components. That s, |1, (2n/k, 0)) = €|, (—2n/k;, 0)). Itisimportant to
note that one is not limited to interferometric operations such as beamsplitting when using the shaken lattice
technique, but our work focuses primarily on this application, as increased momentum splitting increases
interferometer sensitivity, e.g. in the 102/k splitting demonstrated by the interferometer developed in [19].

For the simplest case of 2hik; splitting we show that if the lattice is shaken at frequencies near the Bloch band
0 to band 1 transition, we can split the atom wavefunction to within the desired error. This transition gives a
relative phase difference of m between the two momentum states in the resulting split state. If we shake the lattice
at half of the band 0 to band 2 transition frequency, we can split the atoms to within 1% error with zero relative
phase between the two momentum states. In each case, the simulation results are backed up by analytics. This
simple shaking scheme is not suitable for higher-order splitting because the transition rate between bands drops
precipitously as we transition from band 0 to higher-lying bands. However, we find that if we optimize splitting
via a genetic algorithm (GA) using only the band-to-band transition frequencies, we can achieve 4 and 67k,
splitting within 1%. Using this optimization scheme, we have obtained experimental 45k splitting with an
error of ~10%.

We show computationally that after splitting to third order (-6/k ) we can load the atoms into
counterpropagating moving lattices and accelerate them, potentially achieving acceleration sensitivities that
scaleas T} [6]. In similar schemes atom momentum transfer has also been achieved in optical lattices through the
use of Bloch oscillations in a tilted lattice [20, 21]. An interferometer of this type obtaining splitting of 807k, was
demonstrated in [22].

The paper is structured as follows: in section 2 we motivate the description of the lattice dynamics in terms of
the Bloch states and describe the split state in terms of these states. Section 3 will describe an analytic treatment of
the problem. Section 4 discusses the efficacy of 27ik; and higher-order splitting with single-frequency shaking.
Section 5 shows computational and experimental results of optimization wherein we restrict ourselves to
shaking at the band-to-band transition frequencies. Section 6 concludes.

2. Bloch decomposition of the split state

For the simulation results presented in this paper we will make the following assumptions: First, we assume that
the atoms are delocalized in the lattice, i.e. in a superfluid state [23]. We will assume that the atoms are initialized
with quasimomentum g = 0 and this quasimomentum does not change. Finally, we assume the atoms are non-
interacting and that the lattice is infinite.

Because we are working in the regime where the atoms are delocalized in an infinite lattice, the Bloch states
| TP are a convenient basis for calculations, where r denotes the band number and g is the quasimomentum.
For the simulations done in this paper the lattice depth was chosen to be V; = 10Eg, where the recoil energy
Eg = /%k{* /2m for atoms with mass . The band energy E is plotted against the quasimomentum g in
figure 1(a). The atoms begin in the state corresponding to the ground Bloch band r = 0 with g = 0. Since we
assume that the quasimomentum is always zero we will suppress the index q in what follows and denote the
Bloch states [U”) as simply |r).

The Bloch states at zero quasimomentum populate only the 2nfik;, momentum states (for integer n). We
expect then that in our model lattice modulation does not transfer momentum out of these states [ 1]. This is
confirmed by simulation [3]. Therefore a complete description of the atom wavefunction can be given by the
amplitudes and (relative) phases of the wavefunction in these quantized momentum states. Of particular interest
is the relative phase § between the two momentum components of the split state, as defined in section 1.

Experimentally one cannot determine these relative phases from time-of-flight absorption images, as we
only have access to the probability amplitudes in these experimental measurements. As such, we define a vector

BN
P with components P, containing the probability of finding an atom in the 2nAk; momentum state [3]. If we
consider an ensemble of atoms, this vector gives the relative population of atoms in each momentum state. In
practice because higher-order momentum states are negligibly populated, we can truncate |n| at N = 5. We can

. — —
then define an ‘error’ E,;, between two momentum states described by vectors B and Py as
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Figure 1. (a) Band energy (as a fraction of the recoil energy Er) versus quasimomentum ¢ (in units of k; ) for the first seven bands,
starting with r = 0 and ending with r = 6. Bands with even parity atq = 0 are shown with red solid lines and odd parity bands are
shown with blue dashed lines. The black dotted line denotes the lattice depth. (b) Band-to-band transition frequencies (in units of
wr = Er/h)versus lattice depth V; (in units of Ey) for the transition from band r = 0to ' = 1 (red, solid), 2 (blue, dashed), 3 (gray,
dotted), 4 (magenta, dotted), and 5 (black). The band 6 transitions are almost degenerate with the band 5 transitions for all depths
considered here, so the ' = 6 curve would completely overlap the ' = 5 curve.
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Figure 2. ((a)—(h), in order of increasing band number from r = 0 to 7) Momentum state populations and energies for the first 8 Bloch
states |r) for atoms trapped in a lattice with V = 10Eg. Note thatfor r > 0 the states begin to resemble split states of higher and higher
orders n.
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From equation (1), we see that the more similar two states are, the lower the error E,,. Note that if we are
comparing any state to the split state, E will be independent of 6 and is thus a more useful quantity to look at
when considering the results in the context of what is experimentally observable. Thus, we use this expression as
an error measure to quantify how well our optimization algorithm is doing.

Forbandsr > 0 there is considerable similarity between the Bloch states and split states of various orders.

This is most easily seen when one looks at the momentum state population of the Bloch states corresponding to
different bands, as shown in figure 2 [24]. Interestingly, there are two separate Bloch states at different band
energies that roughly correspond to each split state. To glean further insight, we calculate the inner product D,,,
between the nth order split state ¢,,(p, ) and the state |r) as
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Figure 3. Value of the integral in equation (2) versus the state |r) corresponding to the band r for splitting order n = 1 (red circles),
n = 2 (black diamonds),and n = 3 (blue squares) for (a) § = 0and (b) @ = 7. As the band number increases the Bloch wavefunctions
look more and more like the split states, with the relative phase 6 between the +2n/k; momentum states equal to § = 0 () for even
(odd) band numbers. Thus, alternating bands have relative phases 6 of 0 and 7, depending on the band parity as shown in figure 1(a).

Table 1. Band transition frequencies fr s
Vo = 10Eg. The single (double) asterisk
marks frequencies with matrix element
overlaps M@ (M®) > 0.1 (see figure 6 and

section 3).

Band n Band m 1, »(kHz)
0 1 17.89™*
0 2 24.61"
0 3 58.14
0 4 58.25
0 5 121.19
1 2 6.72""
1 3 40.25"

1 4 40.36™"
1 5 103.30

2 3 33.53**
2 4 33.64"

2 5 96.58

3 4 0.10

3 5 63.0"

4 5 62.9""

Dnr = |<T|¢n(P> 0)>|2 (2)

From figure 3, we see that the difference between two Bloch states correspondingtobands I > Oand !’ = [ + 1
is that the lower-energy state |) has a relative phase difference § = 7between the (I + 1)%ik; states, and the
higher-energy band |I’) is almost identical, except # = 0 (and thus the two states are orthogonal). This is
commensurate with the fact that states corresponding to adjacent bands have opposite parity.

In the rest of this paper we will be referring to state-to-state transitions between different bands. The
transition frequencies for transitions from the ground band to the first 5 excited bands are shown in figure 1(b).
For an example of the energy scales at play here, we tabulate the transition frequencies f, , between two bands r
and ' in table 1. The frequencies given in table I assume that we are working with *’Rb atoms (as in section 4.2)
atalattice depth of Vj = 10Eg. We see that the band transitions lie between 0 and 121 kHz, and this is the regime
in which our driving is simulated.

The next section will analytically explore the dynamics of atoms trapped in a shaken optical lattice. This case
is somewhat difficult to solve analytically, but some basic results can be applied in the simple case of single-
frequency shaking at low amplitudes. We verify these results numerically, showing that we can split the atom
wavefunction with a phase difference of 0 or 7, depending on our driving frequency. Experimental results verify
the numerics. From this we gain some insight on how to restrict our optimization parameters and show the
results of rapid optimization of higher-order splitting in section 5.
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3. Analytics of phase modulation of an optical lattice

The Hamiltonian for a phase-modulated (shaken) lattice with general shaking function ¢(t) is written

2
=2 + Ecos Rkix + ¢ ()] 3)
2m 2

For the specific case where ¢ (t) = « sin(wt), we can apply the Jacobi—Anger expansion to equation (3). Using
this we can write the potential term V{(x, t) in equation (3) as

k=1

Vix, t)= %{cos(Zka)[]o(a)/Z + iJZk(a)cos(kat)]

k=1

— sin(2ka)i]zk,l(a)sin[(Zk — l)wt]}. (4)

Equation (4) shows that we can decompose the phase modulation to a term representing the carrier (first term)
and a set of amplitude modulation terms containing both sine and cosine terms The strength of these amplitude
modulation terms are given by the Bessel functions Ji(«) where « is the amplitude of the phase modulation.
Because the sine terms are odd, they will drive transitions between opposite parity states while the even cosine
terms will drive transitions between states with the same parity [24].

By taking the ], term in equation (4) as the bare Hamiltonian Hy(x), we can write the rest of the termsasa
perturbation H'(x, t). Using Fermi’s golden rule, we can then write down the transition rate I} - from state |r)
to |r’) resulting from shaking at a frequency was

T, — %”Vg S U2 ()| (' cos@iLx) |P) P X 8(E,p — 2k/iw)
k=1

+ I (@ {r'|sinQkpx) [r) [ % S§(E,.» — (2k — 1) /w)], 5)

where E, ,» = /7w, = E, — E, isthe energy difference between states |r) and |r'). The transition rate T, s is
governed by the squares of the Bessel functions J¢(cv) (where « is the amplitude of the phase modulation) and
magnitudes of the transition matrix elements |Mr(sr),|2 = |{(r'| sin(2ky x|r) |* and | Mr(cr),|2 = |(r'| cos(Rky x|r) |*.

4. Simplified splitting schemes

This section consists of four parts. The first subsection will show first-order single-frequency shaking results via
simulation. Next, we will show experimental data that supports the simulation results: namely that we can
obtain first-order splitting by shaking with a single-frequency. This will lead into a discussion of the limitations
of the single-frequency model, especially with regards to higher-order splitting schemes. Finally, we will discuss
how much we need to split to implement an accelerating lattice scheme.

4.1. Theory and simulation of single-frequency splitting
We can use the theory derived in the previous section to make some predictions about the effects of single-
frequency shaking. As stated in section 3 the matrix elements |[M r(fr),|2 connect states with the same parity, and the
matrix elements M%) [> connect states of opposite parity.

For a given value of a the amplitude of the Bessel functions Ji(«) dies off as k increases. For a < 0.3 we can
keep two terms, simplifying the potential in equation (4) to

V(x, t) = Vo [Jo(a)cos(2k; x) /2
— Ji(e)sin(wt)sin(2kpx) + [ () cos(2wt) cos(2ky x)]. (6)

As with equation (6) if we keep two terms in equation (5), we obtain

L= 2/§_7TV02 Uzz(a) |Mr(,cr)’|26(Er,r’ — 2n/w)
+ (@) IMOPSE,y — 2n — 1) w)]. @)

From this we see that weak shaking of the lattice at w, ,» = 27 X f, , will drive transitions between Bloch
states |r) and |r’) if they have opposite parity, and driving at w, ,» /2 will drive transitions between |r) and |r’) if
they have the same parity. In general, shaking at w, ,» /N will drive transitions between |r) and |r’) with parity
determined by whether N is odd or even. This is in keeping with the results in [25] for the case of the amplitude-
modulated lattice (where only like-parity transitions are allowed) and the phase modulation results in [26]. The

5
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Figure 4. (a) The band transition frequencies wy, (red, solid) and wp,/2 (blue, dashed) as a function of the lattice depth. (b), (c) Results
of shaking simulations for a lattice depth of V; = 10Eg. The percent error relative to the split state (red, see equation (1)), projection of
the current state |t)) onto the split state with § = 0 (blue, dashed, see equation (2)) and # = 7 (black, dot-dashed), plotted versus
shaking time for a shaking frequency of (b) wy; and (c) wy,/2 and a shaking amplitude of « = 0.3 rad. For simplicity, we plot the
projection as a percent, multiplying the typical inner product by 100.

difference in our work is that we approach this problem from a standpoint of inducing band-to-band transitions
to perform atom beamsplitting for interferometry.

The above analysis shows that if we begin in the ground state |r = 0) and shake atw = wy; (wWpy/2), we will
drive odd (even) parity transitions between bandsr = Oand r’ = 1 (+' = 2). We simulate both cases using the
symmetric split-step method [27] to simulate the time-dependent Schrédinger equation (TDSE) with the
Hamiltonian in equation (3) with a single-frequency wand amplitude o« = 0.3 for T ~ 1 ms.

The band transition frequencies wy; and wy,/2 are plotted in figure 4(a) versus the lattice depth. Given
Vo = 10Eg, results for odd parity shaking atw = wy, = 27 x 17.88 kHz are shown in figure 4(b), and results for
even parity shakingatwy,/2 = 27 x 12.3 kHz are shown in 4(c). For the simulation results presented in
figures 4(b) and (c), at each timestep we calculate the percent error relative to the split state as in equation (1) and
the inner product between the simulated state |®(#)) at time tand the first-order split state [¢);(p, 6)) asin
equation (2).

We see that when the percent error is lowest in figure 4(b), the projection of the state |¢)) onto the split states
is highest for the split state |1);(p, 8 = 7)). This shows that we are in fact splitting with relative phase § = 7
between the two split arms. Conversely, in figure 4(c) we achieve splitting with = 0. Thus, by controlling the
shaking frequency we can control the relative phase between the two split arms.

4.2. Experimental results of single-frequency first-order splitting

In this section we demonstrate that the first-order splitting schemes described in the previous subsection and
shown in figure 4 are viable experimentally. The experimental scheme is similar to the shaken lattice
interferometry experiment described in [4]. In the experiment we start with Bose-condensed *’Rb atoms loaded
into the ground state of an optical lattice of (intentionally) unknown depth. The lattice is made by retro-
reflecting an 852 nm laser onto itself. By modulating the frequency of the lattice laser [28], we shake the lattice
foratime T = 0.2 ms with varying amplitude A and frequency f°. We use a computer-controlled arbitrary
waveform generator (AWG) to generate a pure tone modulated by an envelope of the form f (t) = cos®(wt/T),
which allows for smooth turn-on and turn-off of the shaking, as in [3, 4]. After 20 ms time-of-flight, we take an
absorption image of the atoms using a CCD camera and analyze the images to extract the atoms’ momentum
state.

We find that we can split the atom wavefunction to within E ~ 10% at frequencies corresponding to wy; and
woy/2. This is shown in figure 5(b). We do not generally obtain splitting to better than 10% due to spurious
atoms detected in the 07tk; momentum state (e.g. due to heating and imaging noise), the finite momentum
spread of the condensed atoms in the lattice [29, 30], and the finite signal-to-noise ratio in imaging [4]. Our
experimental momentum width is about 0.6/ik;, limited mostly by the tight atom-chip-based trap in which we

2 In [4] we used an electro-optic modulator (EOM) to modulate the lattice phase. When we were made aware of the method described in
[28], we abandoned the EOM method in favor of the frequency-modulation method. This was done because the EOM was lossy and required
relatively high voltages to achieve the phases we required.
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Figure 6. (a) The matrix elements |MT(CY),|2 (red)and |M ,(S,)r|2 (black) for band-to-band transitions plotted versus final band r’.

(b), (¢) Plots of the matrix elements (b) |M y(f,),lz and (c) |M r(fr),lz for band-to-band transitions from bands r (x-axis) to r’ (y-axis). The
colorbar on the right gives the magnitude of the transition matrix element.

perform our evaporation. Simulations show that for such momentum spreads we are limited to errors of about
4%—8%, depending on our shaking frequency.

From the results shown in figure 5, we estimate the lattice depth to be V &2 15.3Eg. In this case the relevant
band-to-band transition frequencies are wy; = 21.7 kHzand wy, = 2 x 17 kHz. This not only confirms the
simulation results from the previous subsection but provides us with a reliable way to approximate the lattice
depth. In our current interferometry experiments the absolute lattice depth is less important than the day-to-day
and shot-to-shot stability of the lattice depth. Thus, an approximate depth combined with the stability provided
by a lattice laser intensity servo is sufficient for our purposes.

4.3. The limitations of the single-frequency model
While the single-frequency model works well for the first-order splitting schemes described in section 4.2, for
higher amplitudes first-order perturbation theory becomes less and less applicable. Thus we can no longer use
Fermi’s Golden rule to accurately describe the physics of the situation. In this case we must keep more terms in
the Jacobi—Anger sums of equation (6) and go to higher orders in perturbation theory. Furthermore, we cannot
use this simple picture to obtain higher-order splitting. This is due to the fact that the matrix elements |Mr(’cr>,|2
and |Mr(fr),|2 become relatively small as we consider transitions from the state |r = 0) to higher-lying states with
|[r > 2). This is shown in figure 6(a) where for higher-band transitions the relevant matrix element is at least one
order of magnitude below the lower-band transitions. As such, the transition strength is much lower and the
transitions become less favorable.

However, we can make transitions from the ground state |r = 0) to an intermediate stateinband v’ = 1 or2
and then to higher-lying states in bands r”” > 2.If we make these intermediate state transitions, the matrix

7
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Figure 7. The percent error relative to the (a) third- (n = 3) and (b) fourth-order (n = 4) split state (red, see equation (1)), projection
of the current state |®(#)) onto the split state with 6 = 0 (blue, dashed, see equation (2)) and § = 7 (black, dot-dashed), plotted versus
shaking time for a shaking amplitude o = 1 rad. In each case, there are two counterpropagating lattices moving at velocities

v = +2n/k; /m. The oscillations between the blue and black curves are due to the phase accumulation between the two momentum
components as they evolve in time. As in figure 4 we plot the projection as a percent.

elements become more favorable. This is shown in figures 6(b), (). As expected, the cosine transition matrix
elements are strongest when making transitions between states in next-to-adjacent bands, but the sine matrix
elements are strongest when making transitions between states in adjacent bands. Interestingly, when
considering the sine matrix elements we see that it is also favorable to make transitions between states in bands
r= 1tor’ = 0, 2 or4. We also observe that transitions between bandsr = 3 and ' = 2 and 6 are favorable,
but transitions between bands r = 3 and r’ = 4 are not. This is possibly due to the avoided crossing between
bands 3and 4 atg = 0 (see figure 1). We find that the strongest transitions in figure 6 are most influential can be
used to simplify the optimization landscape for higher-order splitting in section 5.

4.4. How much must we split?
Due to the fact that the single-frequency shaking does not work as well for higher-order splitting (see figure 6),
higher-order splitting is more difficult to obtain. This is the subject of section 5. However, before we dive into the
next section it is instructive to demonstrate how much we must split the atoms to be able to accelerate themina
moving lattice.

If we truncate the Bessel function expansion of equation (6) to two terms and do some trigonometry, we
obtain

Vi(x, t) = 2Vo{Jo(a)cos(RkLx) /4 + Ji(a)[cosRkpx — wt)
+ cos(kpx + wh)]}. (¥

Equation (8) describes a carrier lattice and two counterpropagating moving lattices with velocity v = +w/2k; .
If we can split the atoms to a high enough order, we can trap the split atoms in one of the two moving lattices. The
atoms will then move with the lattice if we accelerate and decelerate the lattice. This will allow us to obtain
interferometry with T} sensitivity to an applied signal [6]. In this case the moving atoms will not be able to ‘see’
the counterpropagating lattices and will thus not be affected by them”. In this case, the atoms in the positive
(negative) momentum state will be trapped in the lattice moving with positive (negative) velocity. Then, if the
lattices are accelerated by changing the shaking frequency such that the magnitude of the counterpropagating
lattice velocity changes, the atoms should follow the lattices in which they are trapped. The atoms will thus
accelerate as the lattices are accelerated, given that this is done slowly enough [31, 32].

Ifwe begin with atoms split to third order (that is, 61k ), we can shake the lattice at w = 12/k{ /m = 12wy
with o« = 1 such that the lattice is moving with v = +6hk; /m without disturbing the atom wavefunction
appreciably. Here, wr = Egr/histhe recoil frequency of the atoms in the lattice. In this case the atoms maintain
their split state to within ~21%, as shown in figure 7(a). Furthermore, simulations show that if the atoms begin in
the +8%k; split state and are trapped in a lattice shaken at w = 16/k{ /m, the atoms will continue to maintain
their splitting to within 1%, as shown in figure 7(b). This trend continues for even higher splitting orders.

This analysis shows that if we can achieve third-order splitting we can then accelerate the atoms in the lattice
with negligible perturbation. In the next section we will show how to optimize such splitting by shaking at
frequencies corresponding to band-to-band transitions.

? The atoms moving with one of the lattices must be in an eigenstate of the lattice, but shaking can always be modified to prepare the split
atoms so that they resemble the ground state of the moving lattice with depth Vj J; (a).
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Figure 8. (a) Percent error versus splitting order for n = 1,2 and 3 for the five simulations considered in this work. The frequency
ranges considered here are: band transition frequencies (cyan diamonds), half-band transitions (black stars), both band and half-band
transitions (blue squares), frequencies with non-negligible matrix element overlap (magenta triangles), and all frequencies in the band
(red dots). (b) The best optimized shaking functions for the select frequency case corresponding to the magenta triangles in (a) for
n = 1 (black, solid), n = 2 (blue, dot-dashed), and n = 3 (red, dashed).

5. Simplified optimization of higher-order splitting using band-to-band transitions

5.1. Computational results

This section presents results of simulations optimizing splitting protocols up to n = 3. Our optimization
simulates the TDSE using the Hamiltonian in equation (3) as in section 3 and the optimization tries to minimize
the error as given in equation (1). The optimization is done via a GA as detailed in [1, 3]. We chose the GA
because the variation that we have developed has been proven to work very well for simulations of atomsin a
shaken lattice. However, our GA was not well-suited for our initial experiments in [4] due to the relatively large
number of iterations needed for the algorithm to converge.

Our experimental optimizations detailed in section 5.2 make use of the CRAB and dCRAB algorithms
[33-35] in a closed-loop system. This choice of algorithms is mostly based on what worked for our initial
simulations and experiments, and our choices should not be taken as a hard-and-fast rule, as genetic optimizers
have been used in experiments (e.g. [36]), and the CRAB algorithm was originally used to optimize simulation
dynamics.

We will compare results of the GA using the full frequency bandwidth up to the r = 0 — r/ = 5’ transition
to optimize the lattice shaking to results where only single-photon band-to-band and two-photon half-band
transitions are used. By the term ‘half-band transitions’, we mean that we shake the lattice at a frequency w; /2
to cause even parity transitions. We know from [11] that off-resonant shaking in the presence of atom—atom
interactions causes heating. Furthermore, to avoid the transverse scattering described in [17, 18] we want to
shake at single- and two-photon band-to-band resonances so that no excess energy is available for transverse
scattering. Therefore we wish to restrict our optimization to resonant transitions in order to limit the heating
due to these factors. Note that as in [3] our simulations do not take interactions into account.

In the simulations presented here we shook the lattice for T ~ 0.5 ms and optimized for +2n/k; splitting for
n = 1,2, and 3. To ensure smooth turn-on and turn-off of the shaking function, we multiplied each shaking
function by an envelope function f (t) = cos(27t/T) [3, 4]. Due to the inherent randomness in the GA, we ran
each class of simulations 10 separate times and took the best result for our analysis.

We ran five different classes of optimization simulations. One class included every frequency in the band
fromDCuptor = 0 — r’ = 5/, another included only the 10 band transition frequencies in this region, and a
third included the 10 half-band transition frequencies. All frequencies used here are tabulated in table 1. A
fourth simulation class included all 20 band and half-band transition frequencies, and a fifth chose only the 9
frequencies corresponding to appreciable (>0.1) matrix element overlap in figure 6 (marked with asterisks in
table 1). We plot the lowest error achieved after 1000 iterations in figure 8. Note that convergence below 10 2%
is limited by phase errors in the split-step method.

From the results presented in figure 9, we see that in all cases we can split the atom wavefunction to better
than 0.3%. We see in figure 8(a) that the error is lowest if we include all frequencies, but in this regime the
interaction-induced heating (which is not present in our current simulation model) will be highest. For
simulations restricted to the select strongest band transitions we can obtain splitting to better than 0.05%. While
the use of more complex fitness functions (e.g. that used for first-order splitting in [3]) may further improve this
splitting efficiency, we obtain good results by simply minimizing the error in equation (1). In summary, by
truncating our search space from ~50 frequencies (limited by the discrete temporal sampling inherent in the
numerics) to 2210 frequencies, we can still split with sufficiently low error.
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shaking for (a)n = 1,(b)n = 2,and (c)n = 3. The data s plotted as a function of the amplitude (in radians) of added Gaussian white
noise. We see that the phase remains flat and the error below 10% for noise amplitudes up to 0.1 radians.

Even though we cannot access the relative phase 6 of the two split arms of these optimized split states
experimentally [4], it is of interest to examine them in simulation in order to better understand the shaking
dynamics. Thus, we plot the final phase 6 of the optimized split state for the best results of each of the five
simulation classes and three splitting orders in figure 9. We include the error from figure 8 for easy reference and
comparison.

The results show that the phase dynamics of multi-frequency splitting are more complex than the simple
model presented in section 3 predicts. For example, when we split using the half-band transition frequencies we
would expect that the phase 6 be near zero. However, we find that this phase is closer to § = — for first-order
splitting and —/2 for higher-order splitting. Therefore, our simple model derived in the case of single-
frequency shaking has broken down. Unfortunately it is analytically difficult to consider multiple frequency
shaking due to the fact that neither the Jacobi—Anger expansion nor the results of Floquet analysis applies.
Furthermore, as shown in figure 8(b) the shaking function amplitude is about an order of magnitude greater
than that used to justify the truncation of the sum in equation (4) and apply first-order perturbation theory.
Fortunately, for the select case, these relative phases are robust in the face of experimental noise and remain
roughly constant as white noise is added to the shaking function up to a noise amplitude of 0.1 radians, as shown
in figure 10. This corresponds to roughly 5%—10% of the maximum shaking amplitude; this is consistent with
the robustness studies we did for 27k splitting in [3] and the phase coherence demonstrated in [4].

We can, however, make some general inferences from our simple model. The fact that |0] ~  for the first-
order split state likely comes as a result of the fact that the two-photon matrix element [M{3|? is about a factor of
two lower than the single-photon element M) ? connecting r = 0and r’ = 1. Thus, transitions between the
odd parity states are more favorable, as can be seen from figure 4 where the dynamics of shaking at wy, are far less
complex than those of shaking at wp, /2.

For higher-lying states, the multiple pathways for an atom to get from |r = 0) to the higher-lying states
means that the even and odd parity transitions tend to interfere, and the split state will in general be a mixture of
the two bands. From figure 1 we see that these higher-lying states [’ > 2) corresponding to splitting with
n > 1 are nearly degenerate. This interference causes the phase difference between the two split arms to average
to |#] = /2. 1In these cases the optimized split state is not dominated by population transfer into a single
higher-lying band but rather this state is composed of a mixture of states corresponding to two nearly degenerate
bands.

From a purely experimental standpoint our results dramatically simplify the optimization landscape that we
must explore. This allows for sufficient error minimization within a low number of iterations. That is, even
though simulations with more frequencies tend to converge to lower errors, they take longer to do so. For
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Figure 11. Results of genetic optimization showing the mean (open markers) and best (closed markers) error for splitting with

(a)n = 1,(b)n = 2and(c) n = 3 versus number of iterations of the optimization algorithm. The black points indicate optimizations
with all frequencies in the band from DC to 121 kHz, and the red points indicate optimizations using only the truncated frequency
space corresponding to the select band-to-band transitions indicated in table 1. The error improvement is much faster with the
truncated subspace.

example, if we run 10 simulations to optimize splitting of the atom wavefunction with the select transition
frequencies indicated in table 1, for n = 1,2, and 3, we can achieve convergence to better than 1% error in (on
average) 1, 10, and 28 iterations, respectively. In each case, the error for the simulations with all frequencies in
the band is >70%, as shown in figure 11. Our simulations also show that if we start with atoms in the n = 2 split
state, we can optimize transfer into the n = 3 split state within 1% within <10 iterations. In this case the total
splitting time will double, but optimization of 6/ik; splitting is possible with fewer than 20 total iterations. This
learning speedup is extremely important for practical implementations of shaken lattice interferometry in that
optimization happens more quickly and effectively, allowing for fast optimization of the interferometer
sequence.

In the experiment, if the lattice depth is known (e.g. via the measurement scheme described in section 3 or in
[24, 30]) we can restrict our shaking the selected transitions with appreciable transition matrix elements. Then a
closed-loop algorithm (e.g. the CRAB or dCRAB algorithm [33—35]) can be used to efficiently optimize the
splitting protocol (as was done for first-order splitting in [4]). Thus we have found a reduced subspace that
allows for faster optimization of the system and reduces heating due to off-resonant shaking [11]. As an example,
we demonstrate optimization of 4%y splitting in the next section.

5.2. Experimental results

Here we present experimental results of n = 2 splitting using the CRAB algorithm using the restricted subspace
defined in the previous section. Currently, experimental limitations prohibit us from obtaining n = 3 splitting,
but with some straightforward improvements to the apparatus (as outlined in [4]), higher-order splitting can be
achieved. The results shown here therefore serve as an encouraging proof-of-principle of the efficacy of
optimization with the simplified subspace.

Using the apparatus described in section 4.2 and [4], we use the CRAB algorithm to optimize the higher-
order split state. For simplicity we do not use the ‘dressed’ CRAB (dCRAB) algorithm, but this could be
implemented in the future as a way to improve the optimization. As with the GA, we fix the shaking frequency
components corresponding to the 9 select band-to-band transitions described in the previous section.
Optimization then occurs on 5 vectors of amplitudes corresponding to each of these frequency components. As
in section 4.2, we use an envelope function to ensure smooth turn-on and turn-off of the shaking function.

The system runs in closed-loop, shaking the lattice, taking and analyzing experimental absorption images,
then feeding the results (averaged over three separate but identical runs of the experiment) into the optimization
algorithm. The algorithm updates the shaking function and the optimization continues. In this way we can
converge on the desired state. We set the shaking time to be 0.4 ms, twice the 2/k; splitting time used in [4]. The
learning curve is shown in figure 12(a). The error in splitting was measured to be 8.4 £ 2.4% after averaging
over 15 shots. (The value obtained in figure 12(a) is slightly higher due to the fact that it is an average over only 3
shots.)

From this, we have shown that the simplified shaking scheme can quickly optimize n = 2 splitting to within
10% in 5 iterations, which is consistent with the results shown in figure 11. Thus, it is expected that one should
be able to optimize n = 3 splitting within about 10 iterations using the same optimization protocol.
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Figure 12. (a) The learning curve, showing the average error (black) and the best error (red) for the five iterations it took to converge.
(b) An image of the optimized n = 2 split atoms. For reference, an image of n = 1 split atoms obtained via single-frequency shaking
are shown in (c).

6. Conclusion

In conclusion we demonstrate a simple means of using the band-to-band transitions to implement an atom
beamsplitter in an optical lattice. We develop a theoretical model that allows us to use a single shaking frequency
to implement low-order splitting. However, at higher frequencies our simple model breaks down and we must
incorporate multiple frequencies in order to obtain good splitting. Due to heating caused by atom—atom
interactions it is of interest to restrict our shaking frequencies to those resonant with single- and two-photon
transitions between bands. We show that we can obtain simulated higher-order splitting up ton = 3 with an
error <0.1% by optimizing shaking with a learning algorithm using a reduced subspace of frequencies
corresponding to the strongest band and half-band transition resonances. We show this experimentally for the
case of n = 2 splitting. This simplification of the optimization landscape allows for faster optimization with less
deleterious heating effects due to atom—atom interactions. Finally, we show that higher-order splitting can be
implemented by accelerating the atoms in the optical lattice and can potentially allow for interferometry with
sensitivity that scales with the cube of the interrogation time. This opens up potential new pathways for
improving and expanding interferometry using atoms trapped in a shaken optical lattice.
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