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From general Fermi liquid theory arguments, we derive correlations among the symmetry energy (J),
its slope parameter (L), and curvature (Ksym) at nuclear matter saturation density. We argue that certain
properties of these correlations do not depend on details of the nuclear forces used in the calculation. We
derive as well a global parametrization of the density dependence of the symmetry energy that we show
is more reliable, especially at low densities, than the usual Taylor series expansion around saturation

density. We then benchmark these predictions against explicit results from chiral effective field theory.
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The nuclear isospin-asymmetry energy, which characterizes the
energy cost of converting protons into neutrons in an interact-
ing many-body system, is an important organizing concept linking
the properties of atomic nuclei to the structure and dynamics of
neutron stars. In particular the isospin-asymmetry energy governs
the proton fraction of dense matter in beta equilibrium, the thick-
ness of neutron star crusts, and the typical radii of neutron stars
[1-6]. For these reasons the nuclear isospin-asymmetry energy is a
primary focus of experimental investigations at current and next-
generation rare-isotope facilities such as the Radioactive Isotope
Beam Factory (RIBF), the Facility for Antiproton and Ion Research
(FAIR), and the Facility for Rare Isotope Beams (FRIB).

In recent years, theoretical [6-10] and experimental [11-15]
studies have reduced the uncertainties on the isospin-asymmetry
energy at and below the density scales of normal nuclei, but more
challenging is to derive constraints at the higher densities reached
in the cores of neutron stars. Given the experimental difficulties
of creating and studying high-density, low-temperature matter in
the lab, an alternative strategy has been to extract the coefficients
in the Taylor series expansion of the isospin-asymmetry energy
about nuclear matter saturation density. For instance, the slope pa-
rameter has been shown to correlate strongly with neutron skin
thicknesses in nuclei [13,16,17], nuclear electric dipole polarizabil-
ities [18-23], and the difference in charge radii of mirror nuclei
[24,25]. Determining the isospin-asymmetry energy curvature is
more challenging [26-28] with larger associated uncertainties.
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A feature observed in many experimental and theoretical in-
vestigations is a nearly linear correlation between the value of
the isospin-asymmetry energy at nuclear matter saturation den-
sity, its slope, and curvature (for a recent comprehensive analysis,
see Ref. [29]). In Ref. [10] it was shown that even chiral nuclear po-
tentials at next-to-leading order (NLO), which are rather simplistic
and contain no three-body forces, exhibit a correlation slope con-
sistent with previous microscopic calculations at N2LO and N3LO
in the chiral expansion. This suggests that certain aspects of the
correlation are ultimately associated with low-energy physics well
described even at next-to-leading order in the chiral expansion. In
the present work we will demonstrate that this is indeed the case
and that the slope of the correlation can be derived without refer-
ring to detailed properties of the nucleon-nucleon potential. The
overall scale is then set by a few constants that can in principle be
extracted from the properties of low-density homogeneous mat-
ter. We also show that the same arguments can be used to derive
the slope of the correlation between the symmetry energy and its
curvature at nuclear matter saturation density.

We take as a starting point the nuclear symmetry energy S(p),
which is defined as the difference in the energy per nucleon be-
tween neutron matter and symmetric nuclear matter at a given
density:

E E
S(p)=N(p,rﬁnp=l)—ﬁ(p,8np=0), (1)

where p is the total baryon number density, N is the total baryon
number, and 8pp = (on — Pp)/(Pn + Pp) Is the isospin asymmetry
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parameter. A Maclaurin expansion of the nuclear equation of state
around symmetric nuclear matter

E 00
ﬁ(pvanp) = ZAZH(/))‘S%; (2)

n=0

is in general [30,31] noncovergent due to the appearance of nonan-
alytic logarithm terms that appear beyond a mean field description
of the nuclear equation of state:

E o0
~ (P-0mp) = Ao(P) + S2(p)8%y + Y (San + Lann 8mp)) 875 (3)
n=2

However, all contributions beyond the quadratic term S,, which
we call the isospin-asymmetry energy, have been shown to be
small at low temperatures when realistic nuclear forces are em-
ployed [31-37]. It is therefore a good approximation to identify the
nuclear symmetry energy S(o0) with the isospin-asymmetry energy
S2(p). In practice it is the latter quantity that can be inferred from
laboratory measurements of finite nuclei.

It is common to expand the density dependence of the isospin-
asymmetry energy in a Taylor series around nuclear saturation:

2
L —po 1 P — po
S = L -K 4
2000=7]+ < 300 >+2 sym( 300 ) + , (4)

where ] = S2(pp). The parameters L and Ksym can then be ex-
tracted from properties of finite nuclei [38], but their uncertainties
are much larger than that associated with the isospin-asymmetry
energy. For this reason correlations between the nuclear symmetry
energy, the slope parameter, and curvature are routinely investi-
gated within a range of theoretical models [7,26-29,39-41].

In Fermi liquid theory the nuclear isospin-asymmetry energy is
rigorously defined at all densities in terms of the isotropic compo-
nent fj of the isovector-scalar quasiparticle interaction according
to

k2 2m*kg
_ F /
Sap) =gk (1 + 0 fo> : (5)
where kf is the Fermi momentum and the nucleon effective mass

m* is related to the Fermi liquid parameter f; through

1 1 2kr

m = m 3 ©

These Fermi liquid parameters are obtained by performing a Leg-
endre polynomial decomposition of the central quasiparticle inter-
action

F(B1,b2) =) (fi+&01 62+ fT1 B
[

+8/01 - 0271 - T2) Py(cos6), (7)
in the relative angle cos® = p1 - p». Expanding Eq. (5) we obtain
o= K g fi) (8)

2 10 - Gm 97[2 0 10 1 10 .

The relationship in Eq. (8) can be used to derive a correlation
between the symmetry energy slope parameter L and the symme-
try energy J at nuclear matter saturation density:

ds; £0 dfy dfy
L=3p0 2| =3J—So+ 22 (3kp® — ket
P |, T T ( Fdie ~ " dke

(9)

)
0
kg

where pg = 0.16 fm~> is nuclear matter saturation density, k3 is
the Fermi momentum at saturation density, and So = (k%)2/(6m)

is the noninteracting part of the isospin-asymmetry energy at sat-
uration density. To study the additional correlation between L and
J associated with the density derivative terms on the right-hand
side of Eq. (12), we perform a Taylor series expansion of the quan-
tity 3 f; — f1 around a small reference density set by kr = k;:

1
3fa<kp)—f1<kF)=ao+a1ﬂ+5azﬂz+-~, (10)

where 8 = (krp — ki) /kr.

In principle the choice of reference Fermi momentum k; is
arbitrary, but we note several constraints. First, logarithmic con-
tributions to the isospin-asymmetry energy of the form log(1 +
4k% /m%) arise from the one-pion-exchange Fock diagram [42] and
formally require that k > 0.9fm~! in order for the Taylor se-
ries to be convergent at nuclear matter saturation density. Sec-
ond, k- should be small enough that a reliable calculation of the
Fermi liquid parameters f)(k;) and fi(k;) may be achieved within
chiral effective field theory (EFT) whose formal expansion pa-
rameter at the reference density would be k./A,, where A, ~
500 MeV is a typical momentum-space cutoff scale in realistic chi-
ral nucleon-nucleon potentials. The effect of the less certain three-
body forces, which start contributing to the homogeneous matter
equation of state at a density p ~ 0.03fm~3 [43-45], should also
be minimized. From these considerations we choose the refer-
ence Fermi momentum k, = 0.9fm™! = 175MeV, which satisfies
(K% — k) /kr ~ 0.5, where kY is the Fermi momentum of nuclear
matter at saturation density. We will show later that this value,
which corresponds to the density o ~ 0.05fm=3, is large enough
that keeping the first three terms in the Taylor series expansion
in Eq. (10) provides a good description of the isospin-asymmetry
energy somewhat above nuclear saturation density, even though
formally the series fails to converge in that regime.

Only the terms in Eq. (10) proportional to a; and ay result in
additional correlations between L and J. Our strategy is therefore
to absorb the dependence of the L vs. J correlation on the choice
of nuclear interaction into the coefficient ag, which we expect
to be very similar for different nuclear force models. Combining
Egs. (10) and (12) and defining y = 2k%/(k? — k?), we find the
unique solution

L=G+]—A+1So—yL @-mai+ma). (1)

where 17 = (8 + 1)y~! — 8. This rearrangement simultaneously
minimizes the residual importance of a; and a, after we have in-
cluded their effect on the L vs. | correlation through the term
(3 + y)J. For instance, if k, = 0.9fm~!, then y ~3.7 and n; ~
—0.08. We therefore expect ag to give the dominant contribution
to the last term on the right-hand side of Eq. (11).

In Fig. 1 we show the values of the symmetry energy and its
slope parameter at nuclear matter saturation density for a set of
seven realistic nuclear potentials [46-49] at different orders in the
chiral expansion and different values of the momentum-space cut-
off A: {N1LO_450, N1LO_500, N2LO_450, N2LO_500, N3LO_414,
N3LO_450, N3LO_500}. Since the equation of state of pure neu-
tron matter is well converged in many-body perturbation theory
up to nuclear matter saturation density using modern chiral ef-
fective field theory forces with A < 500MeV [10], we compute in
Fig. 1 the symmetry energy assuming a symmetric nuclear matter
saturation density p = 0.155-0.165fm~> and a saturation binding
energy per particle of 16 MeV. The error bars on the data points
arise from varying the saturation density within the above range.
We can also extract the isospin-asymmetry energy directly from
a calculation of the quasiparticle interaction in Fermi liquid the-
ory starting from chiral two- and three-body forces as described in
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Fig. 1. (Color online.) Symmetry energy J vs. its slope parameter L from the seven
chiral nuclear potentials considered in this work. The bands are obtained by keeping
all terms up to ap (red dotted), a; (blue dashed), and a, (black solid) in Eq. (11).

Refs. [50-53]. In Fig. 1 we show as well the correlation bands ob-
tained by keeping in Eq. (11) only the ap term (red-dotted lines),
the ap and a; terms (blue-dashed lines), and all three terms ag,
ai, and ap (black solid lines) by fitting the density-dependent
isospin-asymmetry energy from Eqs. (8) and (10) over the range
0.85fm™! < kg < 1.8fm~! for each of the seven chiral nuclear
forces considered in this work. We see that indeed the model-
independent prediction for the slope of the J vs. L correlation,
my >~ 6.7, is well satisfied by all N1LO, N2LO, and N3LO chiral nu-
clear forces. We also observe that the size of the uncertainty band
is set already from the uncertainties in ag and that the inclusion
of a; and a; leads primarily to a shift of the band.

We can extend this analysis to derive an additional correlation
between the symmetry energy incompressibility Ksym and J:

, d?Sy

Ksyngpo W :4L—12]+250

o
2 ¢/ 2
£0 zd fo 2d fi
4+ — [ 3kz—5 — ki — 12
6 ( Pz 7 di2 (12)

K
By again minimizing the explicit dependence on a; and a, we ob-
tain the unique solution

Keym =57 ] = (57 +2)50 = 57 22 @0 — a1 + maz),  (13)

where 17, =4(8 + 1)y ! — 58. Now for k; =0.9fm~!, we obtain
12 >~ —0.16 and therefore we expect the residual importance of a;
and a; to be greater than in the L vs. ] correlation. Nevertheless,
we have derived a second universal slope parameter mg =5y ~
18.4 for the J vs. Ksym correlation that is independent of details
of the nuclear force employed.

In Fig. 2 we show the values of the symmetry energy J and
curvature Kgyym at nuclear saturation density using the same set
of chiral potentials. The largest source of uncertainty (represented
by the error bars on the correlation points) is the assumed value
the symmetric nuclear matter incompressibility Ko =220-260 MeV
[54,55]. We show as well the correlation bands obtained by keep-
ing in Eq. (13) only the ag term (red-dotted lines), the ap and
a; terms (blue-dashed lines), and all three terms ag, ai, and ay
(black solid lines). Again we see that the slope of the correlation
is well determined from our model-independent analysis and that
the overall spread in the uncertainty band is set with the inclusion
of only the ap term in Eq. (13).

In Fig. 3 we show the Fermi momentum dependence of the
quantity 3 fi(kr) — f1(kp) for the seven chiral potentials consid-
ered in this work. We note that the N3LO_500 chiral potential ex-
hibits the poorest convergence in many-body perturbation theory,
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Fig. 2. (Color online.) Symmetry energy J vs. its curvature parameter Ksym from the
seven chiral nuclear potentials considered in this work. The bands are obtained by
keeping all terms up to ap (red dotted), a; (blue dashed), and a, (black solid) in
Eq. (13).
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Fig. 3. (Color online.) Combination of the Fermi liquid parameters associated with
the isospin-asymmetry energy as a function of Fermi momentum. The solid lines are
fit functions of the form given in Eq. (10) over the range 0.85fm™! <kr < 1.8fm™".

which may account for its different low-density behavior. When
fitting the theoretical results with the functional form given in
Eq. (10), we include only the points for which kr > 0.85fm™!.
For smaller values of the Fermi momentum, we found that third-
order perturbative contributions (not included explicitly in this
work) become important. We see that indeed the functional form
in Eq. (10) is able to well reproduce the Fermi momentum depen-
dence of the Fermi liquid parameters up to kr ~ 1.8 fm—!. We find
for the values of the expansion coefficients: ag = 5.88 & 0.35 fm?,
a1 =—6.04+0.91fm?, and ay = 6.08 +2.48 fm? averaged over the
seven chiral potentials. Combined with the expansion parameter
B =0.5, we see that the explicit calculations suggest a convergent
series at nuclear matter saturation density.

Finally we observe that the ansatz for the density dependence
of the isospin-asymmetry energy in Eqgs. (8) and (10) produces the
first four terms in the general expansion

N 0 (i+2)/3
S = bi{ — . 14
2(p) ; <p0> (14)

Combining Eq. (14) with the definition of the symmetry energy
parameters in Eq. (4), we obtain

bo = So,

1
by = - Keym — 3L+ 10] — 35,

(15)
by = —Ksym + 5L —15] +3So,

b3=§KSym—2L+6]—50.
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Fig. 4. (Color online.) Left: nuclear isospin-asymmetry energy as a function of density from various Skyrme and Gogny force models. Right: nuclear isospin-asymmetry energy
as a function of density from various chiral nuclear forces. Note that in both figures we have introduced a vertical offset to better distinguish the different curves.

These expressions are of course independent of the choice of refer-
ence Fermi momentum k;. In Fig. 4 we show the accuracy of this
“global parametrization” (solid lines) compared to the normal Tay-
lor series “local parametrization” about nuclear saturation density
(dashed lines) in Eq. (4). We show results for both a representative
set of mean field models (Skyrme and Gogny) on the left as well as
the seven chiral interactions on the right. We note that a vertical
offset is used in order to separate the curves. In general the Taylor
expansion in Eq. (4) does not reproduce well the low-density be-
havior of the isospin-asymmetry energy, especially in the case of
chiral nuclear interactions.

Each mean field model contains a density-dependent interac-
tion with corresponding contribution to the symmetry energy

t3 /1 tg (1
S2d(p) == (5 +X3> pire — 24 (5 +x4> plte,

where t; and x; are independent of density. For example, UNEDF1
[56], SLy4 [57], NAPR [3], Ski4 [58], D1 [59], D1S [60], and DIN
[61] have the values e¢; = {0.27,1/6,0.1441,1/4,1/3,1/3,1/3},
while the Sky450 [62] interaction has the two parameters €; =
1/3, €2 = 1. Thus, the fitting function in Egs. (14) and (15) is quite
flexible, and we suggest that it may provide a more useful global
parametrization of the nuclear isospin-asymmetry energy.

Alternative parametrizations for the density dependence of the
isospin-asymmetry energy have been considered in recent works.
For example, a two-power law form S2(p) =a(p/p0)® + b(0/00)?
may be inferred from Ref. [6], and indeed we find that such a
four-parameter fit can reproduce nearly perfectly the density de-
pendence of the isospin asymmetry energy from chiral interac-
tions up to p =2pg. The effects of short-range correlations on the
isospin-asymmetry energy have also been investigated [63] and
were found to produce a novel term proportional to (p/p0)'/3,
which is absent in the expansion developed in this work. We found
that the four-parameter fit of Ref. [63] can also well accommodate
the density dependence of the isospin asymmetry energy from
chiral EFT when the parameters are allowed to vary somewhat be-
yond their suggested ranges.

In summary we have derived correlations between the nu-
clear isospin-asymmetry energy, its slope parameter, and curva-
ture within a Fermi liquid theory description of nuclear matter.
We derived universal slope parameters for the J vs. L and J
vs. Ksym correlations that are nearly independent of details of
the nuclear interaction. We have assumed only that the quasi-
particle interaction in nuclear matter at the low density scale set

(16)

by kr =k = 0.9fm~! should be well described by any realistic
nucleon-nucleon potential fitted to scattering phase shifts. Future
efforts to reduce the theoretical uncertainties on the Fermi liquid
parameters at this low-density scale may then give more stringent
constraints on the symmetry energy correlation curves.
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