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From general Fermi liquid theory arguments, we derive correlations among the symmetry energy ( J ), 
its slope parameter (L), and curvature (Ksym) at nuclear matter saturation density. We argue that certain 
properties of these correlations do not depend on details of the nuclear forces used in the calculation. We 
derive as well a global parametrization of the density dependence of the symmetry energy that we show 
is more reliable, especially at low densities, than the usual Taylor series expansion around saturation 
density. We then benchmark these predictions against explicit results from chiral effective field theory.
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The nuclear isospin-asymmetry energy, which characterizes the 
energy cost of converting protons into neutrons in an interact-
ing many-body system, is an important organizing concept linking 
the properties of atomic nuclei to the structure and dynamics of 
neutron stars. In particular the isospin-asymmetry energy governs 
the proton fraction of dense matter in beta equilibrium, the thick-
ness of neutron star crusts, and the typical radii of neutron stars 
[1–6]. For these reasons the nuclear isospin-asymmetry energy is a 
primary focus of experimental investigations at current and next-
generation rare-isotope facilities such as the Radioactive Isotope 
Beam Factory (RIBF), the Facility for Antiproton and Ion Research 
(FAIR), and the Facility for Rare Isotope Beams (FRIB).

In recent years, theoretical [6–10] and experimental [11–15]
studies have reduced the uncertainties on the isospin-asymmetry 
energy at and below the density scales of normal nuclei, but more 
challenging is to derive constraints at the higher densities reached 
in the cores of neutron stars. Given the experimental difficulties 
of creating and studying high-density, low-temperature matter in 
the lab, an alternative strategy has been to extract the coefficients 
in the Taylor series expansion of the isospin-asymmetry energy 
about nuclear matter saturation density. For instance, the slope pa-
rameter has been shown to correlate strongly with neutron skin 
thicknesses in nuclei [13,16,17], nuclear electric dipole polarizabil-
ities [18–23], and the difference in charge radii of mirror nuclei 
[24,25]. Determining the isospin-asymmetry energy curvature is 
more challenging [26–28] with larger associated uncertainties.
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A feature observed in many experimental and theoretical in-
vestigations is a nearly linear correlation between the value of 
the isospin-asymmetry energy at nuclear matter saturation den-
sity, its slope, and curvature (for a recent comprehensive analysis, 
see Ref. [29]). In Ref. [10] it was shown that even chiral nuclear po-
tentials at next-to-leading order (NLO), which are rather simplistic 
and contain no three-body forces, exhibit a correlation slope con-
sistent with previous microscopic calculations at N2LO and N3LO 
in the chiral expansion. This suggests that certain aspects of the 
correlation are ultimately associated with low-energy physics well 
described even at next-to-leading order in the chiral expansion. In 
the present work we will demonstrate that this is indeed the case 
and that the slope of the correlation can be derived without refer-
ring to detailed properties of the nucleon–nucleon potential. The 
overall scale is then set by a few constants that can in principle be 
extracted from the properties of low-density homogeneous mat-
ter. We also show that the same arguments can be used to derive 
the slope of the correlation between the symmetry energy and its 
curvature at nuclear matter saturation density.

We take as a starting point the nuclear symmetry energy S(ρ), 
which is defined as the difference in the energy per nucleon be-
tween neutron matter and symmetric nuclear matter at a given 
density:

S(ρ) = E

N
(ρ, δnp = 1) − E

N
(ρ, δnp = 0), (1)

where ρ is the total baryon number density, N is the total baryon 
number, and δnp = (ρn − ρp)/(ρn + ρp) is the isospin asymmetry 
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parameter. A Maclaurin expansion of the nuclear equation of state 
around symmetric nuclear matter

E

N
(ρ, δnp) =

∞∑
n=0

A2n(ρ)δ2n
np (2)

is in general [30,31] noncovergent due to the appearance of nonan-
alytic logarithm terms that appear beyond a mean field description 
of the nuclear equation of state:

E

N
(ρ, δnp) = A0(ρ) + S2(ρ)δ2

np +
∞∑

n=2

(S2n + L2n ln |δnp|) δ2n
np . (3)

However, all contributions beyond the quadratic term S2, which 
we call the isospin-asymmetry energy, have been shown to be 
small at low temperatures when realistic nuclear forces are em-
ployed [31–37]. It is therefore a good approximation to identify the 
nuclear symmetry energy S(ρ) with the isospin-asymmetry energy 
S2(ρ). In practice it is the latter quantity that can be inferred from 
laboratory measurements of finite nuclei.

It is common to expand the density dependence of the isospin-
asymmetry energy in a Taylor series around nuclear saturation:

S2(ρ) = J + L

(
ρ − ρ0

3ρ0

)
+ 1

2
Ksym

(
ρ − ρ0

3ρ0

)2

+ · · · , (4)

where J ≡ S2(ρ0). The parameters L and Ksym can then be ex-
tracted from properties of finite nuclei [38], but their uncertainties 
are much larger than that associated with the isospin-asymmetry 
energy. For this reason correlations between the nuclear symmetry 
energy, the slope parameter, and curvature are routinely investi-
gated within a range of theoretical models [7,26–29,39–41].

In Fermi liquid theory the nuclear isospin-asymmetry energy is 
rigorously defined at all densities in terms of the isotropic compo-
nent f ′

0 of the isovector-scalar quasiparticle interaction according 
to

S2(ρ) = k2
F

6m∗

(
1 + 2m∗kF

π2
f ′
0

)
, (5)

where kF is the Fermi momentum and the nucleon effective mass 
m∗ is related to the Fermi liquid parameter f1 through

1

m∗ = 1

m
− 2kF

3π2
f1. (6)

These Fermi liquid parameters are obtained by performing a Leg-
endre polynomial decomposition of the central quasiparticle inter-
action

F(�p1, �p2) =
∑

l

(
fl + gl �σ1 · �σ2 + f ′

l �τ1 · �τ2

+g′
l �σ1 · �σ2 �τ1 · �τ2

)
Pl(cos θ), (7)

in the relative angle cos θ = p̂1 · p̂2. Expanding Eq. (5) we obtain

S2(ρ) = k2
F

6m
+ k3

F

9π2

[
3 f ′

0(ρ) − f1(ρ)
]
. (8)

The relationship in Eq. (8) can be used to derive a correlation 
between the symmetry energy slope parameter L and the symme-
try energy J at nuclear matter saturation density:

L = 3ρ0
dS2

dρ

∣∣∣∣
ρ0

= 3 J − S0 + ρ0

6

(
3kF

df ′
0

dkF
− kF

df1

dkF

)∣∣∣∣
k0

F

, (9)

where ρ0 = 0.16 fm−3 is nuclear matter saturation density, k0
F is 

the Fermi momentum at saturation density, and S0 ≡ (k0 )2/(6m)
F
is the noninteracting part of the isospin-asymmetry energy at sat-
uration density. To study the additional correlation between L and 
J associated with the density derivative terms on the right-hand 
side of Eq. (12), we perform a Taylor series expansion of the quan-
tity 3 f ′

0 − f1 around a small reference density set by kF = kr :

3 f ′
0(kF ) − f1(kF ) = a0 + a1 β + 1

2
a2 β2 + · · · , (10)

where β = (kF − kr)/kr .
In principle the choice of reference Fermi momentum kr is 

arbitrary, but we note several constraints. First, logarithmic con-
tributions to the isospin-asymmetry energy of the form log(1 +
4k2

F /m2
π ) arise from the one-pion-exchange Fock diagram [42] and 

formally require that kr � 0.9 fm−1 in order for the Taylor se-
ries to be convergent at nuclear matter saturation density. Sec-
ond, kr should be small enough that a reliable calculation of the 
Fermi liquid parameters f ′

0(kr) and f1(kr) may be achieved within 
chiral effective field theory (EFT) whose formal expansion pa-
rameter at the reference density would be kr/	χ , where 	χ ∼
500 MeV is a typical momentum-space cutoff scale in realistic chi-
ral nucleon–nucleon potentials. The effect of the less certain three-
body forces, which start contributing to the homogeneous matter 
equation of state at a density ρ � 0.03 fm−3 [43–45], should also 
be minimized. From these considerations we choose the refer-
ence Fermi momentum kr = 0.9 fm−1 = 175 MeV, which satisfies 
(k0

F − kr)/kr � 0.5, where k0
F is the Fermi momentum of nuclear 

matter at saturation density. We will show later that this value, 
which corresponds to the density ρ � 0.05 fm−3, is large enough 
that keeping the first three terms in the Taylor series expansion 
in Eq. (10) provides a good description of the isospin-asymmetry 
energy somewhat above nuclear saturation density, even though 
formally the series fails to converge in that regime.

Only the terms in Eq. (10) proportional to a1 and a2 result in 
additional correlations between L and J . Our strategy is therefore 
to absorb the dependence of the L vs. J correlation on the choice 
of nuclear interaction into the coefficient a0, which we expect 
to be very similar for different nuclear force models. Combining 
Eqs. (10) and (12) and defining γ ≡ 2k2

F /(k2
F − k2

r ), we find the 
unique solution

L = (3 + γ ) J − (1 + γ )S0 − γ
ρ0

6
(a0 − η1a1 + η1a2) , (11)

where η1 = (β + 1)γ −1 − β . This rearrangement simultaneously 
minimizes the residual importance of a1 and a2 after we have in-
cluded their effect on the L vs. J correlation through the term 
(3 + γ ) J . For instance, if kr = 0.9 fm−1, then γ � 3.7 and η1 �
−0.08. We therefore expect a0 to give the dominant contribution 
to the last term on the right-hand side of Eq. (11).

In Fig. 1 we show the values of the symmetry energy and its 
slope parameter at nuclear matter saturation density for a set of 
seven realistic nuclear potentials [46–49] at different orders in the 
chiral expansion and different values of the momentum-space cut-
off 	: {N1LO_450, N1LO_500, N2LO_450, N2LO_500, N3LO_414, 
N3LO_450, N3LO_500}. Since the equation of state of pure neu-
tron matter is well converged in many-body perturbation theory 
up to nuclear matter saturation density using modern chiral ef-
fective field theory forces with 	 � 500 MeV [10], we compute in 
Fig. 1 the symmetry energy assuming a symmetric nuclear matter 
saturation density ρ = 0.155–0.165 fm−3 and a saturation binding 
energy per particle of 16 MeV. The error bars on the data points 
arise from varying the saturation density within the above range. 
We can also extract the isospin-asymmetry energy directly from 
a calculation of the quasiparticle interaction in Fermi liquid the-
ory starting from chiral two- and three-body forces as described in 
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Fig. 1. (Color online.) Symmetry energy J vs. its slope parameter L from the seven 
chiral nuclear potentials considered in this work. The bands are obtained by keeping 
all terms up to a0 (red dotted), a1 (blue dashed), and a2 (black solid) in Eq. (11).

Refs. [50–53]. In Fig. 1 we show as well the correlation bands ob-
tained by keeping in Eq. (11) only the a0 term (red-dotted lines), 
the a0 and a1 terms (blue-dashed lines), and all three terms a0, 
a1, and a2 (black solid lines) by fitting the density-dependent 
isospin-asymmetry energy from Eqs. (8) and (10) over the range 
0.85 fm−1 < kF < 1.8 fm−1 for each of the seven chiral nuclear 
forces considered in this work. We see that indeed the model-
independent prediction for the slope of the J vs. L correlation, 
mL � 6.7, is well satisfied by all N1LO, N2LO, and N3LO chiral nu-
clear forces. We also observe that the size of the uncertainty band 
is set already from the uncertainties in a0 and that the inclusion 
of a1 and a2 leads primarily to a shift of the band.

We can extend this analysis to derive an additional correlation 
between the symmetry energy incompressibility Ksym and J :

Ksym = 9ρ2
0

d2 S2

dρ2

∣∣∣∣
ρ0

= 4L − 12 J + 2S0

+ ρ0

6

(
3k2

F
d2 f ′

0

dk2
F

− k2
F

d2 f1

dk2
F

)∣∣∣∣∣
k0

F

. (12)

By again minimizing the explicit dependence on a1 and a2 we ob-
tain the unique solution

Ksym = 5γ J − (5γ + 2)S0 − 5γ
ρ0

6
(a0 − η2a1 + η2a2) , (13)

where η2 = 4(β + 1)γ −1 − 5β . Now for kr = 0.9 fm−1, we obtain 
η2 � −0.16 and therefore we expect the residual importance of a1
and a2 to be greater than in the L vs. J correlation. Nevertheless, 
we have derived a second universal slope parameter mK = 5γ �
18.4 for the J vs. Ksym correlation that is independent of details 
of the nuclear force employed.

In Fig. 2 we show the values of the symmetry energy J and 
curvature Ksym at nuclear saturation density using the same set 
of chiral potentials. The largest source of uncertainty (represented 
by the error bars on the correlation points) is the assumed value 
the symmetric nuclear matter incompressibility K0 = 220–260 MeV 
[54,55]. We show as well the correlation bands obtained by keep-
ing in Eq. (13) only the a0 term (red-dotted lines), the a0 and 
a1 terms (blue-dashed lines), and all three terms a0, a1, and a2
(black solid lines). Again we see that the slope of the correlation 
is well determined from our model-independent analysis and that 
the overall spread in the uncertainty band is set with the inclusion 
of only the a0 term in Eq. (13).

In Fig. 3 we show the Fermi momentum dependence of the 
quantity 3 f ′

0(kF ) − f1(kF ) for the seven chiral potentials consid-
ered in this work. We note that the N3LO_500 chiral potential ex-
hibits the poorest convergence in many-body perturbation theory, 
Fig. 2. (Color online.) Symmetry energy J vs. its curvature parameter Ksym from the 
seven chiral nuclear potentials considered in this work. The bands are obtained by 
keeping all terms up to a0 (red dotted), a1 (blue dashed), and a2 (black solid) in 
Eq. (13).

Fig. 3. (Color online.) Combination of the Fermi liquid parameters associated with 
the isospin-asymmetry energy as a function of Fermi momentum. The solid lines are 
fit functions of the form given in Eq. (10) over the range 0.85 fm−1 < kF < 1.8 fm−1.

which may account for its different low-density behavior. When 
fitting the theoretical results with the functional form given in 
Eq. (10), we include only the points for which kF > 0.85 fm−1. 
For smaller values of the Fermi momentum, we found that third-
order perturbative contributions (not included explicitly in this 
work) become important. We see that indeed the functional form 
in Eq. (10) is able to well reproduce the Fermi momentum depen-
dence of the Fermi liquid parameters up to kF � 1.8 fm−1. We find 
for the values of the expansion coefficients: a0 = 5.88 ± 0.35 fm2, 
a1 = −6.04 ± 0.91 fm2, and a2 = 6.08 ± 2.48 fm2 averaged over the 
seven chiral potentials. Combined with the expansion parameter 
β = 0.5, we see that the explicit calculations suggest a convergent 
series at nuclear matter saturation density.

Finally we observe that the ansatz for the density dependence 
of the isospin-asymmetry energy in Eqs. (8) and (10) produces the 
first four terms in the general expansion

S2(ρ) =
N∑

i=0

bi

(
ρ

ρ0

)(i+2)/3

. (14)

Combining Eq. (14) with the definition of the symmetry energy 
parameters in Eq. (4), we obtain

b0 = S0,

b1 = 1

2
Ksym − 3L + 10 J − 3S0,

b2 = −Ksym + 5L − 15 J + 3S0,

b3 = 1
Ksym − 2L + 6 J − S0 .

(15)
2
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Fig. 4. (Color online.) Left: nuclear isospin-asymmetry energy as a function of density from various Skyrme and Gogny force models. Right: nuclear isospin-asymmetry energy 
as a function of density from various chiral nuclear forces. Note that in both figures we have introduced a vertical offset to better distinguish the different curves.
These expressions are of course independent of the choice of refer-
ence Fermi momentum kr . In Fig. 4 we show the accuracy of this 
“global parametrization” (solid lines) compared to the normal Tay-
lor series “local parametrization” about nuclear saturation density 
(dashed lines) in Eq. (4). We show results for both a representative 
set of mean field models (Skyrme and Gogny) on the left as well as 
the seven chiral interactions on the right. We note that a vertical 
offset is used in order to separate the curves. In general the Taylor 
expansion in Eq. (4) does not reproduce well the low-density be-
havior of the isospin-asymmetry energy, especially in the case of 
chiral nuclear interactions.

Each mean field model contains a density-dependent interac-
tion with corresponding contribution to the symmetry energy

S2d(ρ) = − t3

24

(
1

2
+ x3

)
ρ1+ε1 − t4

24

(
1

2
+ x4

)
ρ1+ε2 , (16)

where ti and xi are independent of density. For example, UNEDF1 
[56], SLy4 [57], NAPR [3], SkI4 [58], D1 [59], D1S [60], and D1N 
[61] have the values ε1 = {0.27, 1/6, 0.1441, 1/4, 1/3, 1/3, 1/3}, 
while the Skχ450 [62] interaction has the two parameters ε1 =
1/3, ε2 = 1. Thus, the fitting function in Eqs. (14) and (15) is quite 
flexible, and we suggest that it may provide a more useful global 
parametrization of the nuclear isospin-asymmetry energy.

Alternative parametrizations for the density dependence of the 
isospin-asymmetry energy have been considered in recent works. 
For example, a two-power law form S2(ρ) = a(ρ/ρ0)

α + b(ρ/ρ0)
β

may be inferred from Ref. [6], and indeed we find that such a 
four-parameter fit can reproduce nearly perfectly the density de-
pendence of the isospin asymmetry energy from chiral interac-
tions up to ρ = 2ρ0. The effects of short-range correlations on the 
isospin-asymmetry energy have also been investigated [63] and 
were found to produce a novel term proportional to (ρ/ρ0)

1/3, 
which is absent in the expansion developed in this work. We found 
that the four-parameter fit of Ref. [63] can also well accommodate 
the density dependence of the isospin asymmetry energy from 
chiral EFT when the parameters are allowed to vary somewhat be-
yond their suggested ranges.

In summary we have derived correlations between the nu-
clear isospin-asymmetry energy, its slope parameter, and curva-
ture within a Fermi liquid theory description of nuclear matter. 
We derived universal slope parameters for the J vs. L and J
vs. Ksym correlations that are nearly independent of details of 
the nuclear interaction. We have assumed only that the quasi-
particle interaction in nuclear matter at the low density scale set 
by kF = kr = 0.9 fm−1 should be well described by any realistic 
nucleon–nucleon potential fitted to scattering phase shifts. Future 
efforts to reduce the theoretical uncertainties on the Fermi liquid 
parameters at this low-density scale may then give more stringent 
constraints on the symmetry energy correlation curves.
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