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Enhancing Localization Scalability and Accuracy
via Opportunistic Sensing

Kaikai Liu*, and Xiaolin Li

Abstract—Using a mobile phone for fine-grained indoor local-
ization remains an open problem. Low-complexity approaches
without infrastructure have not achieved accurate and reliable
results due to various restrictions. Existing accurate solutions
rely on dense anchor nodes for infrastructure and are therefore
inconvenient and cumbersome. The problem of beacon signal
blockage further reduces the effective coverage. In this paper, we
investigate the problems associated with improving localization
scalability and accuracy of a mobile phone via opportunistic
anchor sensing, a new sensing paradigm which leverages oppor-
tunistically connected anchors. One key motivation is that the
scalability of the infrastructure-based localization system can be
improved by lifting the minimum requirement for anchor num-
bers or constellations in trilateration. At the same time, location
accuracy under insufficient anchor coverage will be improved
by exploring the opportunity of diverse data types rather than
deploying more anchor nodes. To enable this highly scalable
and accurate design, we leverage low-coupling hybrid ranging
using our low-cost anchor nodes with centimeter-level relative
distance estimation. Activity patterns extracted in users’ smart-
phones are utilized for displacement compensation and direction
estimation. The system also scales to finer location resolution
when anchor access is improved. We introduce robust delay-
constraint semidefinite programming in location estimation to
realize optimized system scalability and resolution flexibility. We
conduct extensive experiments in various scenarios. Compared
with existing approaches, opportunistic sensing could improve
the location accuracy and scalability, as well as robustness, under
various anchor accessibilities.

Index Terms—Localization, Smartphone, Anchor network,
Motion, Acoustic.

I. INTRODUCTION

Ubiquitous smartphone and location information are en-
abling new features of location-based services (LBS) around
local navigation, retail recommendations, proximity social net-
working, and location-aware advertising. Recently, the focus
has also been shifting geographically from outdoors to indoors,
where we spend the most money, meet friends, work, and do
business.

Location information has infiltrated our everyday life in
ways that we had not imagined before. The indoor location
market will be more enormous than the outdoor, since we
spend more than 80% of our time indoors on our daily
activities, e.g., working, shopping, eating, etc. Technologically
speaking, outdoor localization techniques cannot be directly
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applied indoors. Satellites-based localization, i.e., GPS, has
been one of the most important technological advances of
the last half century. However, no matter how effective these
systems are outdoors, their accuracy, coverage, and quality
deteriorate significantly in small-scale indoor spaces. Over
the past few years, a broad variety of location services has
been targeted to revolutionize how people sense and interact
with everyday objects and locations. For example, sensor
networks help firefighters find the best route for search and
rescue; GPS and WLAN systems provide coarse-grained way-
finding and navigation services [1], [2], [3], [4], [5], [6],
[7]; RFID and short range communication devices provide
proximity detection and awareness [8], [9], [10], [11], [12],
[13]. As the market needs keep escalating, customers need new
and fine-grained location-based services and applications, for
example, offering in-store deals, delivering biographies or art
commentaries on a specific objects when wandering through a
museum, reminding users of social events in close proximity,
dispatching police officers to indoor/outdoor places in need,
navigating a blind or visually impaired person visiting public
places with step-by-step navigation, or enabling augmented-
reality for city visitors with fine-grained location beacon
support of the VR headset or smartphone. However, different
location services have dramatically different application needs.
Different Accuracy Requirements: Meter-level (e.g., GPS
with five-meter accuracy) localization is sufficient to navigate a
car (meter-level footprint) on a street (several-meter footprint),
but it is far from sufficient to navigate a user (foot-level
footprint) in a library (with half-meter-wide aisles and inch-
level books). Speed in terms of Latency or Refresh Rate:
Tens of seconds delay for outdoor navigation could lead to
a wrong turn decision for drivers; with second-level delay it
is still hard to get the complete moving trace of a basket-
ball player for performance analysis and evaluation. Various
Costs: With infrastructure already installed throughout the
great indoors, the easiest solution may be Wi-Fi fingerprinting
approaches. While the cost may be attractive, the accuracy is
barely sufficient for differentiating different stores, e.g., WiFi
access point and cellular towers, could only achieve limited
accuracy, or need extensive war-driving and calibration [3],
[7]. Other accurate approaches rely on the deployment of
additional infrastructure [12], [14], [15], [16], [17], e.g., dense
anchor nodes. These approaches have a high requirement for
the minimum anchor number, e.g., at least three anchors for
2-D trilateration.

In this paper, we propose a highly accurate and scalable
mobile phone localization system via opportunistic anchor
access. This work narrows down to fine-grained localization
techniques for future location-aware applications, for example,
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step-by-step indoor navigation for the blind, locating Virtual
Reality (VR) headsets in gaming, and robotic indoor naviga-
tion, mapping, and autonomous driving. The key motivation
of our design is originated from the problem associated
with acoustic anchor-based solution [14] with centimeter-level
accuracy, i.e., the acoustic anchor can be easily blocked,
and it is hard to access the minimum three anchors for
trilateration in real environments. Deploying more anchor
nodes is not economically practical. Furthermore, most fine-
grained solutions rely on high timing accuracy of entire anchor
networks. Increasing the anchor number also increases the
management burden of the timing accuracy. Leveraging multi-
modal opportunistic sensor data instead of deploying more
nodes is a good step toward improving the efficiency and
scalability. However, existing multi-modal solutions mainly
focused on meter-level coarse-grained applications, for exam-
ple, using motion data to improve the room-level or meter-
level WiFi localization accuracy. For fine-grained applications,
such approaches are not well suited. One particular example is
that combining meter-level results with centimeter-level results
would downgrade the overall performance.

Transforming this high-level design goal into a practical
working system poses significant challenges: (1) How can
we improve the location accuracy even with limited anchor
nodes? (2) Will our system adapt to higher accuracy with more
data types or better anchor accessibility? This paper addresses
these challenges, and prototypes the system via opportunistic
anchor sensing. Testbed results confirm that our design goals
could adapt to different anchor coverage and service quality
requirement with high scalability, e.g., from only one node to
multiple nodes with multi-modal data. We believe this could be
a practical approach to achieve fine-grained localization results
with very low hardware requirement and deployment costs,
while also being scalable for applications with fine-grained
resolution demand, e.g., indoor accessibility assistance for the
visually impaired, and robotic navigation.

II. SYSTEM OVERVIEW
A. Motivation

The major metrics of existing spatial enabling technologies,
most notably accuracy, and deployability performance, are
far from satisfactory. Existing trilateration approaches require
proper GDOP of the infrastructure coverage, for example,
deploying at least three nodes around the area of interest for
trilateration. However, many real world scenarios pose signifi-
cant constraints in terms of the number of nodes deployed and
the geometric distribution of the nodes. For example, existing
infrastructure-based fine-grained localization solutions require
a minimum of three anchors [14]. The achieved localization
accuracy drops significantly when the number of accessed
anchor nodes is less than four; it is in fact unlocalizable
with less than three nodes. Even if there are 3 anchors,
the achieved accuracy is very low compared with scenarios
involving redundant anchor coverage (larger than 3). There
exist inherent tradeoffs between the localization accuracy and
the deployment complexity. Existing low accuracy or high-
complexity indoor localization solutions in a mobile phone

call for significant innovations in balancing both accuracy and
complexity.

Highly dynamic and mobile settings, where humans are
essentially moving, present further challenges for current
solutions either using existing infrastructure or self-deployed
anchor networks. Fig. 1 shows a real case of a person moving
across multiple local anchor networks. The nodes deployed
along the way can not provide sufficient coverage, i.e., the
GDOP is very high. When the target moves from one location
to another, i.e., ] to ts in Fig. 1, the number of accessible
anchor nodes changes over time. In anchor coverage area 1,
the target can perform trilateration to get its location; how-
ever, the location of the target is unsolvable using traditional
trilateration when it moves into the coverage area 2 (only one
or two anchor nodes are accessed). The only obtainable error
surface forms a ring shape, with the distance as the radius
and the RSS ranging accuracy (meter-level) as the width.
Thus, the accuracy, coverage, and quality of location services
deteriorate significantly and even stop working in real-world
environments.

B. System Challenges

Lowering the minimum anchor number requirement is
essential for system scalability and low-complexity. The ap-
proach proposed in this paper works under different “anchor”
coverage environments, i.e., scales from only one ‘“anchor”
rather than the minimum three anchors. For applications with
a limited budget for anchor deployment, deploying several
anchor nodes (less than three) could still achieve significantly
higher accuracy than an anchor-free system. When the number
of deployed anchors increases (larger than three), our proposed
algorithms can adapt to reach highly accurate results as a result
of the additional anchors. With this flexibility, location service
operators could select configurations that suit various service
quality requirements.

In this project, we propose a highly accurate and scalable
location sensing system via opportunistic anchor access. The
key motivation of our design originated from the problems
associated with insufficient anchor coverage for trilateration in
real environments. Deploying more anchor nodes is economi-
cally impractical and hard to manage, especially in maintaining
high timing accuracy of the complex network. Leveraging
more data types instead of more nodes is a better option.
However, existing hybrid solutions mainly focuse on meter-
level coarse-grained applications [18], and these approaches
do not match well with fine-grained approaches. For example,
combining meter-level results with centimeter-level results
would downgrade overall performance instead of improve it.
Moreover, transforming the high-level system design goal into
a practical working system poses significant challenges in
1) adaptively fusing sensor results according to application
demand and 2) making the solution robust at various levels of
infrastructure coverage. The major research problem is how
to achieve the desired accuracy when only a few nodes are
accessed (i.e., trilateration cannot be used), and how to scale
to higher accuracy when the coverage of the infrastructure is
sufficient. Specifically, we utilize three opportunistic sensing
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sources: 1) ranging information for the anchor node and smart-
phone pair; 2) relative angle information; and 3) displacement
and moving direction of the target. If multiple anchor nodes
could be sensed by the smartphone, i.e., multiple ranging
and relative direction results, the accuracy of the location
estimation result could be further improved and optimized via
multiple constraints.
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Fig. 1. System model.

C. System Design and Implementation

In this paper, we present an opportunistic sensing scheme
that involves Bluetooth-Low-Energy (BLE) based received-
signal-strength (RSS) ranging, acoustic-based angle mea-
surement, relative Time-of-Arrival (TOA) ranging, and dis-
placement and moving direction estimation. We further fuse
these hybrid data, and develop an algorithm which achieves
centimeter-level accuracy with sufficient measurements. The
overall system architecture is shown in Fig. 2.
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Fig. 2. System Implementation.

We propose a smartphone-based indoor localization sys-
tem using our newly designed low-complexity anchor node,
because opportunistic sensing will never succeed without
adequate anchor nodes as sensing sources. We select the BLE
and acoustic signal as the two main beacon signal types. The
BLE signal is low-power and high efficiency in terms of RSS
scanning compared to WiFi; it is also the reason that Apple
and Qualcomm both select BLE as the main beacon source
[19], [20]. Due to the strong promotion force by these industry
leaders, and the convenient iBeacon APIs introduced in iOS7
[19], we propose to design an anchor node that could support
Apple’s iBeacon specifications.

We design this low-complexity anchor node from scratch to
lower the overall cost and meet our long-term objective. The
overall bill of material (BOM) price is kept lower than $20
to allow for low cost and thus potential for wider availability.
The system architecture is shown in Fig. 2 with three important

parts: BLE radio, microcontroller, and audio codec. The power
system is designed to adapt power from multiple sources, i.e.,
micro-USB, lithium battery and solar-panel.

We implement the signal processing, ranging, and
trilateration-based localization algorithm inside the smart-
phone. To fast deploy the developed algorithm, we design a
back-end server for the smartphone to optionally offloading
complex processing tasks. This approach balances compu-
tation and network consumption in smartphones, and the
introduced delay is less than 100ms, which is negligibe for
the sub-second level location update rate. It also helps the
debugging process, where the data will be transmitted to the
backend server in real-time. A Redis server [21] is used as a
cloud key-value store based on Pub/Sub for the smartphone;
A Java server performs computation for the structured data
in the Redis server and sends the final results back to the
smartphone.

III. MULTIMODAL RANGING AND MEASUREMENTS

In the simplest case, one anchor node provides basic check-
in services, and coarse-grained location estimation. To improve
accuracy, we utilize the acoustic ranging for distance mea-
surement, inertial navigation system (INS) for displacement
and direction estimation, and leverage activity measurement
for error mitigation. To support multiple users simultaneously,
the ranging process occurs entirely in one-way passive mode,
whereby only the smartphone needs to receive beacons. Thus,
the highly accurate TOA result is in the pseudorange be-
tween the smartphone and anchor pair. The inertial sensors,
i.e., accelerometer and gyroscope, are utilized for accurate
displacement and direction estimation.

When utilizing the omnidirectional ranging information
with the single anchor node, the performance improvement
is limited if the rough direction is unknown. To estimate the
direction, BLE signal needs an expensive directional antenna;
while the speaker of acoustic signal is mostly directional.
Thus, combining BLE and acoustic for ranging could be an
economical way to obtain coarse-grained distance and angle.
Another benefit comes from the acoustic TOA estimation
result, which is beneficial if the user start moving under single
anchor coverage.

A. The Model of Signal Detection and Ranging

Signal Detection. The total number of anchor nodes is My,
where m is the index with m =1, ..., M4. Each anchor node
broadcasts its own unique pseudocode sequence pm = [p;]
with length L for the m-th anchor node (j = 1,...,L). The
symbol duration of the acoustic beacon is Ty, i.e., the total
time for each beacon is LT.

Assume the sampling rate of the smartphone is Fg, and
the received acoustic signal sample is g(k). We decode the
pj associated with the current symbol (p; for the estimated
version of p;, with the vector term as p). By performing code
matching with the pre-stored pseudocode sequence pp, we
could obtain the station id m for the j-th symbol.

Ranging. The basic process of ranging is to measure the
flight delay (¢;) of the first one in all multipaths, i.e., r = vy Xxt;,
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where vy is the acoustic sound speed. In the discrete sample
domain, we estimate the sampling point of TOA path IQJ for
the j-th symbol as a TOA value of 7; = IQJ-/FS. In this process,
we associate the TOA measurement IQJ- to the m-th anchor
node and /-th index of the pseudocode pm. We also convert 7;
into the base symbol time (j = 1) and add it into the vector of
TOA measurement k,,, = [lgj — jTFy,...], and obtain ranging
measurements as t,, = K,,,vs/F.

Due to the one-way passive ranging mode utilized for multi-
user simultaneous access, the distance measured by TOA
estimation is pseudorange, with unknown bias J,. To solve
this unknown bias, we synchronize all the M anchor nodes,
and make the §, fixed for every node.

B. BLE and Acoustic Ranging
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Fig. 3. (a) Modulated acoustic beacons; (b) One received beacon.

1) Acoustic TOA Based Ranging: TOA based ranging ap-
proaches rely on delay estimation of the beacon signal from
the anchor node to the mobile phone. Based on [14], we
design acoustic one-way TOA ranging approaches to support
multiple users simultaneously, and make the beacon signal
unnoticeable to the human ear. Leveraging the DAC and
miniDSP module in our audio chip, we generate modulated
signal beacons based on the pseudocode pp. As shown in
Fig. 3 (a), the transmitted acoustic beacons are modulated
based pulse amplitude modulation (PAM). The smartphone
samples the acoustic beacon in full resolution, and obtain the
channel response in full detail as shown in Fig. 3 (b).

The basic process of ranging is to measure the flight delay
(¢;) of the first one in all multipaths as shown in Fig. 3 (b), i.e.,
r = vy X t;, where v, is the acoustic sound speed. In discrete
sample domain, we estimate the sampling point of TOA path
k; for the j-th symbol as TOA value of 7; = k;/Fs. In this
process, we associate the TOA measurement /2, to the m-th
anchor node and /-th index of the pseudocode py demodulated
from the beacon as shown in Fig. 3 (a). We also convert 7,
into the base symbol time (j = 1) and add it into the vector of
TOA measurement k,,, = [12]- — jTF;, . ..], and obtain ranging
measurements as t,, = k,,,v;/Fs. After detecting the first path
in the channel response, the delay and energy of the first path is
the TOA (¢,,,) and RSS value (e7,). The obtained TOA ranging
measurement is 7, ,, for the n-th user from the m-th anchor.

To further improve the robustness, we differentiate multi-
paths to get the highly accurate ranging results as shown in
Fig. 4. The first path, i.e., the TOA path, in differentiated
multi-paths may not be the strongest (NLOS case), but it

provides an accurate representation of the real physical dis-
tance. We utilized the iterative optimization approaches to
predict the first path region via the previous location estimation
results. These two approaches combined together can help
significantly reduce the rate of outliers and large errors. As
shown in Fig. 4, we can extract fine-grained multi-path beacon
components from the initial noisy signals.
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Due to the one-way passive ranging mode utilized for multi-
user simultaneous access, the distance measured by TOA
estimation is pseudorange, with unknown bias J,. To solve
this unknown bias, we need to synchronize all the M anchor
nodes, and make the ¢, fixed for every nodes.

2) RSS Based Ranging: One drawback of one-way TOA-
based ranging lies in its relative measurement feature, i.e.,
the bias caused by clock drift in (5) is unknown. To obtain
an absolute distance measurement, we can directly utilize the
acoustic and BLE RSS for coarse-grained ranging, and then
apply the fine-grained relative TOA distance as a constraint
when the user is moving.

The RSS from BLE is calculated at the packet level, where
the energy is averaged over all multi-path components. Using
the BLE RSS for ranging, we can obtain a fast energy scan at
low cost, e.g., micro-second level scanning time for the BLE
signal in i0S platform, compared to a WiFi scan, which takes
nearly one second and is even not allowed by Apple.

Compared with the RSS value obtained from the BLE
signal, the RSS from the acoustic beacon of the anchor node is
more accurate and sensitive, especially in short range and LOS
conditions. Moreover, as the full channel impulse response is
available in our acoustic ranging system, we can obtain the
signal energy (egj,,) of the TOA path as the RSS, which is
more precise and shows better robustness on multi-paths in
indoor complex environments.

Although the RSS ranging result from acoustic beacon is
more accurate, the coverage and the NLOS robustness are
still worse than BLE beacon. If the received TOA RSS is
unavailable, the RSS ranging result should be replaced by the
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BLE RSS ranging value. Thus, the RSS ranging result f,(,k,),, is

a combined value from BLE and acoustic signals.

C. Displacement Estimation

To estimate the relative translation (t) of the smartphone, we
can utilize the Accelerometer on board by measuring its force,
acceleration, and infer the displacement by double integrating
the acceleration. The quantity resulting from the Accelerom-
eter is the acceleration rate in m/s2, and can be denoted as
o = (f,hx,f,by,f,bZ)T, where f,bx""‘Z is the measured force in
3-axis directions in the body frame.
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Fig. 5. Motion estimation result via conventional method: (a) acceleration,
(b) velocity, (c) displacement.
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Fig. 6. Motion estimation result via proposed method: (a) acceleration, (b)
velocity, (c) displacement.

Direct integration f,b obtains the displacement in the body
coordinate, which is not related to the real geodesic displace-
ment. To convert the obtained acceleration of the smartphone
to the local navigation coordinate, we could apply rotation and
translation over f? by

n _ pneb n
£ =R’ +e

(D

where e" is the error of the force that is applied to the
smartphone. R} is the rotation matrix used to convert the
coordinate, which can be directly accessed from mobile OS
[22]. To obtain the acceleration caused by the applied forces,
gravity should be subtracted by a} = f/' —g, where g = [0, 0, g]
is the gravity vector.

We use a rectangular shaped movement to quantify the
displacement estimation accuracy. The user walks in a rect-
angular path and go back to the original point. The estimated
displacement trace should be close to the ground truth with the
ending point overlaping with the starting point. The measured
acceleration results after gravity subtraction are shown in
Fig. 5a. After the denoising process, the velocity of the
smartphone can be obtained by v{ = vij + fot al! as shown in
Fig. 5b. From Fig. 5b, we know that the velocity drifts even
when the user is stationary. The displacement can be calculated
by sy =s;+ fot vy, where vij, and s; are the initial velocity and
displacement. The results of estimated displacement in the x

and y directions are shown in Fig. 5b. As shown in Fig. 5b,
the starting point (5 second) and the ending point (30 second)
do not overlap with each other, which means the estimated
displacement trace has a significant drift (> 20 meters) when
compared to the group truth.

The process of obtaining relative displacement s} involves
double integration, whereby the measurement noise, i.e.,
J [€", is also integrated and amplified. Here, the white
noise in acceleration measurements is integrated twice and
causes a second-order random walk in displacement of the
smartphone. As a result, bias errors lead to errors in position
that grow proportionally to 7%. The error of the accelerometer
measurement can be modeled as

2

. 1
O0=—0+W
T, ?
where T, is the correlation time of the accelerometer. The
value of the T, differs across devices, and needs to be
estimated prior to calibration. w, is the modeled Gaussian
white noise.

D. Mitigating Displacement Estimation Error

Performing moving pattern extraction before integration
can be a feasible approach to calibrating drift. The normal
movement model cannot be applied to estimating human’s
movement. That is, we cannot walk at constant velocity (CV)
or constant acceleration (CA) like a vehicle or a plane. Human
walking or movement has its own pattern, and we need to
“accelerate” and “decelerate”, and then “accelerate” again for
another footstep. Here we use the “start-moving-stop” (SMS)
movement model.

Performing “‘start-moving-stop” pattern decomposition
could help us estimate the displacement in a more meaningful
way. Using start, acceleration, deceleration, and stop as one
basic step, the velocity changes (from zero to top to zero)
can be modeled as a Gaussian shape g, (u, o) = zexp{—(x —
1)?/(20?)}, where + means moving forward and — means
backward. In this case, acceleration is the derivative of the
velocity, i.e., g4(it, 0) = +(x — p)/o? exp{—(x — p)*/(20?)}.
Using g, (u, o) as the kernel function, we can decompose the
acceleration measurement ay into a series of 1g,(u, o) with
different parameters 1, y, and o. Thus, the decomposed series
of acceleration is X" | ;84 (ti» 07;), Where 7; is the amplitude
of each Gaussian derivative pulse. The fitting process can be
modeled as

min
{(ni.pi, 0

{ni, pi» i} = } llay = niga(pi, oi)ll 3)
To reduce the number of parameters during the fitting pro-
cess, we extract the feature points of aj, e.g., peak position
and width, by thresholding the peak maximum and rising
edges. We then use the number of peaks found and the peak
positions and widths to fit the specified peak model. This
combination yields better and faster computation, and deals
with overlapping peaks as well. During the decomposition and
fitting process, the sign of n; is determined by comparing the
remaining error of using positive and negative results.
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Fig. 7a shows the measured acceleration of (1). Instead of
directly integrating the noisy results, we use the “start-moving-
stop” (SMS) movement model to extract the key moving
features, and reconstruct the acceleration as shown in Fig. 7b,
which is significantly clean and represents most of the original
moving details.

Acceleration (m/sz)
Acceleration (m/s2)

5 10 15 20 25 30 5 10 15 20 25 30
Time (s) Time (s)

(a) Measured acceleration (b) Modeled acceleration

Fig. 7. (a) Measured acceleration and (b) the modeled acceleration.

After applying the SMS approach for the results in Fig. 5,
we could obtain better acceleration, velocity, and displacement
results as shown in Fig. 6. The ground truth of the moving
path is like a rectangle, where the starting point and ending
point overlap. The velocity is calibrated as multiple start-
moving-stop patterns. Comparing with Fig. 5c, the drift of
the estimated displacement in Fig. 6¢ is significantly reduced
(<25cm), and the starting point and end point of the walking
trace are very close.

IV. OPPORTUNISTIC SENSING AND MULTI-MODAL
CONSTRAINTS

With the acoustic ranging results and the displacement and
direction estimation, we perform location optimization to the
initial location even with a single anchor.

A. Localization Model

The signal detection, ranging, localization and tracking are
the four basic steps involved in the whole system. For the
localization and tracking process, we define y" and xJ}, as the
positions of the smartphone and m-th anchor in the n-frame.
Using M pseudoranges f,, and the preconfigured coordinates
of anchor nodes xJ;,, we can estimate the 3D position of
the smartphone y” by minimizing the quadric term of the
remaining error

4)

where §, is the unknown delay that compensates for the
difference between the pseudorange and real distance. The
unknown bias (0,) can be estimated during the localization
process with sufficient anchor numbers, e.g., solving a 3D
location (x, y, z) needs four equations (anchor nodes) instead
of three.

em = Itm — (||Y" - Xnm”Z + 0,k

B. Initial Location Constrains

The initial location of the smartphone could be accessed
by using the API provided by the mobile operating system

via conventional GPS and WiFi localization approaches. The
obtained initial location is in geodetic coordinates (WGS 84
datum latitude ¢, longitude A, height k) with room-level
accuracy. To convert the geodetic coordinates to the navigation
coordinate, we first convert it to the earth-centered, earth-
fixed (ECEF) coordinate, and then convert the ECEF to the
ENU frame. By subtracting the reference point Og, the GPS
location is mapped to the navigation coordinate (n-frame) for
more intuitive and practical analysis. We define the POI’'s 3D
position as x:' = [xl’.‘, y;’, zlf’]T, where the superscript n denotes
the position value in the navigation coordinate and i denotes
the i-th POI in M POIs (i = 0, M — 1). The current location
of the smartphone is defined as p” = [x",y", z"]7. In most
location applications, the z-axis z" is not required, and we
can convert the 3D location space into the 2D coordinate as

p" =[xy "
C. Delay Constraints
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Fig. 8. Delay constraints.

Most of the existing literature on mobile phone localization
focuses on the case where the ranging measurements are
known with some slight perturbations, i.e., using zero-mean
Gaussian noise to represent ranging error. This assumption is
only effective when all the ranging results are in line-of-sight
(LOS) conditions with no bias or large error. However, in prac-
tice, a significant portion of the ranging results contain outliers.
For example, the non-line-of-sight (NLOS) propagation of the
beacon introduces outliers or large errors.

One possible way to minimize these outliers is to have an
accurate model of the delay, i.e., the distance. By predicting
the region of the next beacon in the detection process based
on the previous measurements, the outliers and large errors
can be significantly reduced. For example, we can directly
search the narrow region around the truth TOA path in Fig. 3
by leveraging the iterative feedback based on the previous
location results.

As shown in Fig. 3, the TOA ranging process is designed
to detect the first path in the channel response, i.e., the
delay and energy of the first path is the TOA (¢,,) and RSS
values (e7,). This one-way ranging mode does not require
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peer synchronization, and is scalable for multiple users’ cases.
However, there is one unknown delay between the transmitter
and receiver. When the user moves, the delay of the received
beacon becomes more complicated due to the unknown move-
ment of the users. The delay model can be formulated as the
obtained TOA ranging measurement 7, , for the n-th user
from the m-th anchor as

~ 2
Faym = O + Vs (fn = fm)tm/Fs + (Vg,m + Vs) Im + aﬁ,mtm

clock drift

user movement

4)
where 6,,, is the unknown bias for the m-th anchor node that
maps the 7, ,, to the real distance; #,, is the TOA time for the
m-th anchor; (f, — fin) is the clock frequency drift between
the n-th mobile phone (f,) and m-th anchor node (f,); v,’:’ m
and al, ,, are the projected moving speed and acceleration of
the n-th user in the direction to the m-th anchor. v is the
speed of the acoustic signal and F is the sampling rate of the
mobile phone. The first part of (5) is contributed to the clock
drift, and can be approximated as a linear function to the time
tm, while the second part is contributed to the user movement,
and becomes a curve (second or third order) when the user is
moving.

After the localization and tracking process through which
we obtain the estimated value of the users’ movement, we can
input the estimated results into (5) to get the predicted region
of the next beacon signal. We model the clock drift as one
unknown parameter, and estimate this parameter together with
an unknown location. The detailed process is shown in Section.
IV-F. Through this interactive process, we will eliminate large
ranging errors by enforcing the delay constraints.

D. Geometric Movement Constraints

oving
Direction

Fig. 9. Geometric movement constraint for one anchor node.

Assume the position coordinate of the anchor node is a,, €
R4, where m is the index of total M anchor nodes. For 2-D
coordinates (d = 2), a,, 1S [X;, ym]T, m=1,...,M. Denote
the location coordinate of the n-th user as p,, n =1,...,N.

To refine the user’s location, ranging information is utilized
as a constraint. Assume the initial position coordinate of a user
obtained by smartphone is p,,, which is direct from location
API and low-accurate compared to the location of anchor
nodes (a,,). Defining the RSS ranging measurement between
the user and anchor pair is 7, ;,, and the estimated relative TOA

distance is 7, ;. The real distance r, , from the n-th mobile
phone to the m-th anchor node is written as rp,_, = ||pr—amll2,
where || - || calculates the 2-norm and obtains the Euclidean
distance. The vector form of the RSS ranging observation from
m-th anchor to n-th mobile phone can be written as

(6)

where 1i,, ,,, is the measurement noise; m = 1,-- -, NB. Then,
the TOA distance measurement from m-th anchor to n-th
mobile phone is

i\'n,m = ||pn - am||2 + ﬁn,m

f'n,m = ||pn - am||2 + 6n,m + Ny (7)
where n,, ,, is the TOA measurement noise, which is lower
than f,,,, in (6) m = 1,---, N4, where NA < NB. Onm 1s the

unknown bias between the m-th anchor and n-th mobile phone
pair due to the unsynchronized clock. Thus, TOA result (7)
shows the relative distance measured between the smartphone
and anchor.

The obtained displacement could be another measurement
that contributes to the location optimization. For k£ and &k + 1
measurements, the displacement can be written as

(k)

k,k—1 _
s = Ipy

®)

The direction of the motion traces obtained from the altitude
value is assumed as @, as shown in Fig. 9. With the RSS
ranging results and TOA relative ranging results from the
anchor to the smartphone, the anchor-related measurement
could be written as

-1
—p Vs +ny

)

£ n COS(0 ) — 5, COS (O + Brm)
= sk T sin(a,) +na

where the angle (,,, could be calculated by the law of

cosines. The geometric relation is shown in Fig. 9.

On,m 1s the angle measurement information. When the user
moves into the acoustic beacon coverage, the rough value of
0n,m is related to the anchor installation direction, which is
known. 6, ,, is also related to the location difference of p, =
[px, py] and a,, = [ay, ay], with its x and y coordinates related
by px = ax + 85} sin(0,,m) and py = ay — 57} cos(6,,,). Due
to the wide beam of the acoustic speakers, the accuracy of 6, ,,
is not high. This is the inherent limitation of (9). However, the
error surface reduction is significant when compared with the
case in which the angle is not utilized.

E. Anchor Coverage Constraints

1) Cramer-Rao Low Bound and Fisher Information Matrix:
To evaluate the position accuracy, the Cramér-Rao low bound
(CRLB) is often used as a theoretical optimal value from any
unbiased estimator. The CRLB can be written as the reciprocal
of the fisher information. For an estimate of # obtained, we
have the CRLB as

E{0-0)@-0T) =], (10)

where (10) is in the form of covariance matrix, and the right
part of (10) is CRLB = J;l, which means the variance of
the estimated parameter could not be lower than the CRLB
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under the given estimator. The term A > B expresses that the
difference A — B of the real symmetric matrices A and B is
positive semidefinite. > will be reduced to > if 6 is a scalar
[23]. The ng in (10) is the Fisher information.

For 2-D coordinates, denote the unit vector from the m-
th anchor node to target as a,, = (x — x;;,)/rp, in x domain;
Bm = (y=Ym)/rm in y domain, where rp, = [y —Xmll. Joj2x2)
can be shown as

M M
Zm:l a/mz/o'% m=1 a’mﬁm/o'%

ZrI\r/L[=1 amﬂm/o—z 2%:1 ,Bmz/O'E

2) Anchor Network Coverage: Relying on the anchor net-
work for mobile phone localization, the placement of anchor
nodes is very important in achieving high resolution results. To
evaluate the effects caused by the geometric layout of anchor
nodes, the term of geometric dilution of precision (GDOP)
is often used. GDOP can be defined as GDOP = op/0,
where o, and o, indicates the variance of position and
ranging results, respectively. o, is the variance of localization
resulting in the previous iteration. The GDOP quantifies the
amplification of the ranging error in the position result when
passing through the position calculating unit.

For an unbiased estimator, GDOP can be written as

GDOP = ,/trace(J;‘l(ZXz))/a'r = ,/trace(j;,l(zxz))

= trace([ Z%ﬂamz Z%ﬂamﬂm ]l)

Z,A,{zl A Pm Z%:l IBmz

where «,, and B,, comprise the unit vector in the x and y
directions.

As (12) only depends on the positions of the anchor node
X,, and mobile phone y, it is independent of the ranging noise
variance. The difference between GDOP (12) and CRLB lies
in the ranging variance .

The GDOP calculated by (12) can be used as a metric
for evaluating the anchor network coverage. The value of
GDOP is determined by the relation between the position of
mobile phone (y) and anchor networks (X,,). A smaller value
of GDOP indicates solid coverage. If the location estimation
result (§) is available, the corresponding GDOP value of (12)
can be calculated. If the GDOP value for § is higher than the
threshold, then the confidence level of § should be lowered.
Such a scheme could be used as a post-position constraint
to filter out the localization results. If the ranging variance
is available or set as a constant, using CRLB in (10) as the
metric for evaluating the coverage is equivalent to GDOP.

The GDOP value of (12) can be calculated by inserting the
estimated location results from the previous iteration. If the
GDOP value is higher than a threshold, then the result § should
be mitigated. Specifically, if the calculated position result falls
outside of the anchor network coverage, the confidence of the
result is low (high GDOP value). The threshold is determined
by the minimum acceptable resolution and is calculated by
experiment. Using the GDOP as the coverage constraint, the
problematic localization results could be filtered out. If the
ranging variance is available, using CRLB of (10) instead
of GDOP is equivalent. The filtered result of ¥ is the final

(1)

Jojox2) =

12)

calculated position of mobile phones, and can be delivered to
the user for other location-based-services (LBS).

F. Location Optimization

Thus, the location optimization problem when the anchor
node number is insufficient for trilateration can be defined by
using (6), (7), (8), and (9) to obtain a refined result of p,,.

For the k-th iteration, the position refinement process is

achieved by minimizing the error term of adjacent measure-
(k)

ments p,, ,, and pﬁf;ll) for all the received anchor nodes as
(k) ._ ; (k) (k=1)
Py = arg min > e(ppl ") (13)
n meépy

where &)y is the set of all the received anchor nodes; when
there is only one anchor node in the coverage area, then m = 1.
The error term e(pﬁlk),pﬁlk_l)) illustrates the residual error
between the measured distance and the calculated distance
of the position coordinates (anchor and mobile phone). The
introduced term pﬁ,k_l) is to improve accuracy by leveraging
the highly accurate relative TOA measurements and estimated
moving direction. By refining the search region of p’fl within
the region R, some local optimum values outside the real
region could be avoided. Such refinement could significantly
minimize large errors caused by insufficient and inaccurate
measurements.

Considering all the available measurements, the error con-
straints between the current and previous (k — 1)-th term

e(p®, p%=1) can be written as

(k) (k=1)

e(py, s Pu (14)

) = (yies + y2ep +y3eym + ysen)
where es and ep show the remaining error term of the RSS
and relative TOA in (6) and (7). ey; and e, indicate the
remaining error of (8) and (9), respectively. yi, y2, ¥y3 and
v4 are weighting coefficients that control the contribution of
different measurements.

By performing the gradient operation V to the error residues
e(pﬁ,’f,)n, pﬁf;,,l)) with respect to the anchor node m, the refined
position can be updated via the steepest descent approach by
PP i =pl +aV > (yies+yrep + ysem + yaea) (15)

meépm

where @ € (0,1] is the update step size to control the
convergence rate and &y is the total received anchor nodes,
where the number is insufficient for trilateration. Substituting
measurements into (15), pﬁ,k) can be optimized and updated
by leveraging the RSS and TOA ranging measurements. (15)
starts with the initial coarse-grained location result f)ﬁlk), and
optimizes the location result by substituting the initial value
of pi” by Py’

The form of the (15) is very flexible, so all these measure-
ments (es, ep, €y, €4) can be opportunistically combined
depending on the availability. For the ranging results, the
refined position can be updated by

Pn :=pn + aVe(py) (16)
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where @ € (0, 1] is the update step size. The Ve(p,) in (16)
can be written as

A = Pn —Xm
Ve@) =2 3, (IIpn = amll = (B = 6,)) = —"—
m;M [P — Ximll2
(17)
fu — 6, )
:2 1_— ( - x )
ZE( 1P — Xenll2) 0"
mesm

V. LOCATION OPTIMIZATION VIA SEMIDEFINITE
PROGRAMMING

When there are multiple measurements from different an-
chor nodes, a fine-grained location result could be obtained
by aggregating all the available information together. However,
we need to carefully prevent adding bad measurements into our
data pool, as this would downgrade the overall performance,
and may cause the estimation algorithm to diverge if not
handled appropriately.

To prevent the location estimation algorithm from diverging
or converging to the local optimality, the concept of relaxation
onto convex sets has been proposed [24]. Without the require-
ment of performing the inverse operation on the Jacobian ma-
trix in LS-based approaches, an SDP-based approach achieves
better computational efficiency by leveraging existing SDP
packages, which is especially important when the Jacobian
matrix in LS problems is badly scaled or close to singular.
Existing SDP algorithms are mainly used for sensor network
localization applications, where the key principle is leveraging
multiple nodes and their relative distance measurements to
optimize overall location accuracy. However, our application
demand is different. We need to leverage multiple data sources
rather than multiple nodes. In this section, we propose an
optimized real-time SDP algorithm in mobile phone location
estimation. The proposed algorithm is made robust in the
presence of outliers by leveraging the delay-constraint, and
Huber M-estimator [25].

A. Min-max Criterion

The location estimation process has a nonconvex opti-
mization problem. While semidefinite programming (SDP)
techniques can be used to relax the initial nonconvex problem
into a convex one, among existing relaxation criteria, min-max
approximation and semidefinite relaxation can find the global
minimum value without the “inside convex hull” requirement
[24]. To utilize the SDP relaxation, we modify the problem
formulation into ¥ — 6, = ||p — a;,||> + n. Performing a square
operation on both sides leads to

#-6,)"L"(®~6,) = (Ip - amll +n)* (18)

where the right side of (18) is ||[p—ay,||3+2n” [[p—a, ||, +n"n.
By adopting the min-max criterion [24], (18) can be formulated
as

. 2 a Ty—1a
= - - - 6r - 6?‘
p=argmin max |||p anlly - (F-6,)" L (F-6,)

¢
19)

where the term & can be viewed as the residual error. (19)
calculates y that corresponds to the minimum value of the
maximum residual error. (19) remains nonconvex, but it is
comfortable for the following semidefinite relaxations.

The first term in & can be written into a matrix form of

Id e ) p
2 T

—a,lls = 1

||P ”2 [ P ]I:_aT aTa ][ 1 :l

p T Id t: )
= trace 1
el el
t P |Y Id —am
= trace
p’ 1| |-x! ala,

where P = pp, trace{-} calculates the trace of the matrix and
I; is an identity matrix of order d. Following the same process
in (20), the second term in ¢ can be written into

B. Delay-Constraint Robust Semidefinite Programming

(20)

#-6)"'27 ' -6,)

{ A 6,
= trace

T 1
where A = §,67.

21
I, -xlp

Tyl §Tr-lg

From (5), we know that the unknown parameter ¢, incor-
porates the unknown clock drift. The trend of &, is known
as a line and the future value can be directly estimated, e.g.,
by linear fitting. Using such prior information, the location
estimation accuracy can be further improved by substituting
this pre-estimated delay ¢, as a constraint; we name this
approach as delay constraint (DC).

The objective function of & can be converted to minimize
€ at the constraint of an inequality expression —e < & < €,
while & can be written as the form of (20) and (21). However,
the outliers could not be ignored during location estimation.
One possible solution is to apply a penalty function to the
residual error rather than only using the quartic term (/-
norm). Specifically, we still apply /,-norm on any residual
smaller than a preset threshold o, but put a linear weight
(reverts to /j-like linear growth) on any residual larger than
op,. Using l1-norm for large errors would lower the weight
for outliers and improve the robustness. We choose Huber
function 6y, (g) as the penalty function [23]. This penalty
function can be considered as a convex approximation of other
outlier penalty functions. The constraint forms of (20) and
(21) are convex, but the equality constraints of P = pp’
and A = 6,6? are nonconvex. Using semidefinite relaxation,
these two equalities can be relaxed to inequality constraints
of P > pp’ and A > 6,67, respectively. The matrix form of

these two equalities is
0 Ao >0
=0 sr g | B

where > means a positive definite (semidefinite) matrix, which
is different from >.

P p

oo 22)
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Accordingly, the initial localization problem can be relaxed
to a semidefinite programming form as

ming, p s, A} Onup (€)

st. —Opup(e) < trace{ T P [ IdT _Tam ]} _
p 1l||-a, a,a,
A 6 || X', rIf
trace { [6? gyt aryeip < Opup(€),
m=1,....,.M,
P p A 6,
pl 1 B A W

S

5.(1—a) <6, <6,(1 +a)

where 6, is the estimated delay value based on historical
data of ¢, and « is predefined and used to relax the delay-
constraint (DC). The n-th mobile phone position p can be
extracted from the optimal solution of {p, P, §,, A}. This delay-
constraint robust SDP problem can be solved by some standard
convex optimization packages, e.g., SeDuMi. By using the
steepest descent approach in (15), the estimation error can be
further reduced by performing a local search above the global
optimized value obtained by SDP.

VI. EVALUATION
A. System Design and Evaluation

We implemented the basic beacon detection, ranging, and
localization algorithm in a smartphone based on Apple’s iOS
10 system. The SDP optimization part was offloaded to the
server. To evaluate the power consumption of our app, we
utilized the Xcode Energy Profile to get the the Graphics,
Audio, Foreground App, and Total CPU activity (all of which
are defined by Apple in iOS 10). As shown in Fig. 10, our app
has less CPU utilization than the Google Maps. The reason we
used the Google Maps iOS App as the baseline for comparison
is to demonstrate: the CPU utilization of our App is acceptable
for most users.

Google Map iOS APP

01:30.000

Our Localization App

00:30.000 BR1:00000 l02:00.000

Fig. 10. The screenshot of the Xcode Energy Profile of our localization app
vs. Google Map iOS App.

Besides the implementation in smartphones, we designed
two versions of the anchor node for indoor localization pur-
poses as shown in Fig. 11. As shown in Fig. 12, the power con-
sumption of the anchor node in two different modes (network-
only and network plus the acoustic beacon) is 0.071W and
0.143W under USB power, respectively. Using a 2000mAh
battery as the power source, the life time of the anchor network

(relying on the node with the shortest battery life) is can be
calculated by ¢ty = 2000mAhx5V /(1000x0.143W = 70hours.

Version 1

Fig. 11. Our developed hardware: (left) version 1 vs. version 2; (center)
debuging via the extensition board; (right) multiple pieces.

Network+Acoustic (0.143W)

! [
Network-only (0.071W)

Fig. 12. The energy consumption of our anchor node in two different modes:
network-only and network plus the acoustic beacon.

B. Experiment Setting

To evaluate the effectiveness of the system, we deployed 8
anchor nodes via tripod in multiple places, for example, office
environment, two museum environments, and one classroom
environment, as shown in Fig. 13. The maximum operating
distance for one anchor node is near 20 meters. To evaluate
the maximum operating distance, we utilized two large en-
vironments (aisle and hall) for the ranging test as shown in
Fig. 13.

Rar‘ging

\
Localization

Fig. 13. Anchor deployment and experiment environment.

C. Displacement Estimation

To evaluate the performance of our proposed INS dis-
placement estimation algorithm, we compared our proposed
solution (SMS) to other approaches (e.g., AD, ATAD, WAV
in [26]) in terms of drift. As shown in Fig. 14, we tested over
15 cases with different configurations: we put smartphones
in hand (case 1-7); smartphones in pocket (case 8-11), and



IEEE/ACM TRANSACTION ON NETWORKING, VOL. 14, NO. 8, AUGUST XXXX

smartphones in handbag (case 12-15). From the drift results,
our proposed solution achieves the smallest drift for most
cases.

251

Fig. 14. Displacement test cases

D. Ranging Results

To evaluate and quantify ranging performance, we con-
ducted a series of ranging measurements by changing the
relative distance of smartphone-anchor pairs from 1.5m to
20m with the step size of 0.762m as shown in Fig. 13.
Every measurement lasted more than 100 seconds to minimize
randomness.

To model the RSS attenuation curve as the distance changes,
we conducted experiments to measure the RSS of the acoustic
signal and BLE signal by changing the distance of the anchor
and the mobile phone pair. The obtained RSS attenuation curve
from BLE signal and acoustic signal are shown in Fig. 15.
The RSS value of the BLE signal in Fig. 15a was obtained by
using our anchor node and Apple iOS device as the beacon,
respectively. The acoustic RSS result in Fig. 15b shows strong
monotonicity due to the fine-grained channel measurement of
the TOA path, which contributes to better ranging accuracy.
Using the power law function to fit the RSS attenuation data,
the fitted curve can be modeled as rss(d) = 0.0115d4-1-19,
where d is the distance. In real cases, the RSS ranging could be
realized by measuring the current RSS value rss, and inputting
the rss into the inverse function of rss(d), where the distance
can be calculated by d = (rss/0.0115)70-834,

The TOA ranging errors in different environments are shown
in Fig. 16 and Fig. 17a. The 20 meter coverage with less than
10 cm ranging error is a very attractive feature for the indoor
anchor node.

To evaluate the performance improvement achieved by the
delay-constraints (DC), we compared the ranging results in
Fig. 17b. Using 50%, 80% and 95% probability of the CDF
results, the performance improvement is more than 3 times for
most cases, especially in the large error part.

&
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Fig. 15. The RSS attenuation model for ranging when using: (a) Bluetooth-
Low-Energy (BLE) signal and (b) the TOA path of acoustic signal.
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Fig. 16. The ranging result in two different scenarios.

E. Angle Measurement Results

To test the directional coverage or the angle of the BLE and
acoustic RSS signals, we conducted experiments to measure
the radiation beam of the BLE antenna and acoustic speaker
as shown in Fig. 18a and Fig. 18b, respectively. The measured
RSS values in different angles (0 to 360?) are normalized.
Compared with the almost omnidirectional radiation of the
BLE beacon, acoustic beacon has high directionality, which
contributes to its angle estimation features.

F. Improving Location Accuracy with Fewer Anchors

To evaluate the performance improvement of our proposed
algorithm when the anchor nodes are insufficient for trilater-
ation, we conducted experiments using Apple iPhone in the
museum environment. We randomly selected 1 to 2 anchors
from the total 8 anchors in Fig. 13 as 7 different configurations
in the x-axis of Fig. 19. Fig. 19a was conducted when no an-
chor is blocked, i.e., the line-of-sight (LOS) case; Fig. 19b was

0.14
[l 50 Percentile 45(] B Initial, 50%
_0.12| 180 Percentile C_Jinitial, 80%
€ B 95 Percentile [ Initial, 95%

@loc, 50%
[oc, 80%
W DC, 95%

30|

Initial

Initial

TOA Ranging Error (
Ranging Error (cm)

0 5 10 15 20 1
Distance (m)

8

3 4 5 6 7
Different Nodes (index)

(a) TOA Ranging Error

Fig. 17.
methods.

(b) Error Comparison

(a) TOA ranging error and (b) the ranging error for two different
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270 270

(a) BLE RSS (b) Acoustic RSS
Fig. 18. The polar distribution of normalized (a) BLE and (b) acoustic RSS.

conducted when one anchor was blocked, i.e., the non-line-of-
sight (NLOS) case. To quantify the location performance and
smooth out the random effect, we conducted measurements at
20 different location points for each configuration. And every
location measurement contains more than 400 test results in
each location point. In total, we have 8000 results for each
bar in Fig. 19. The ‘initial’ approach is based on state-of-
the-art BLE-based localization (Apple’s iBeacon), where there
is no acoustic beacon received. The ‘m=1, static’ leverages
the acoustic beacon from one anchor node and the ‘m=2,
Dynamic’ leverages the one acoustic beacon plus the motion
results.

As shown in Fig. 19, when the anchor number is m = 1,2,
our proposed approach could significantly improved the loca-
tion accuracy compared with normal BLE-based localization.
Applying the dynamic part of (15) by leveraging the relative
TOA distance measurement and moving direction, the per-
formance was even improved as shown in the case of “m=2,
Dynamic”. From Fig. 19, we know that accuracy improvement
ranged from 2 to 11 times over the initial results.

80

200

Winitial Minitial
m=1,Static [Em=1,Static
[CIm=2,Static
£ 60) Bllm=2,Dynamic| £ 150 Il m=2,Dynamic|

Location Error(cm)
IS
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N
1=}

3 4 5
Position Spots

(b) NLOS Results

3 4 5
Position Spots

(a) LOS Results

Fig. 19. The location error when the anchor number is m = 0 ~ 2 in (a)
outdoor and (b) indoor environments.

G. Location Optimization via Semidefinite Programming

To evaluate and compare the performance of different
localization algorithms when there are more anchor nodes
available, we randomly selected 3, 4 and 5 anchors from all
8 anchors in Fig. 13, and average them together. To emulate
the real application scenarios, the experimental environment
was polluted with random voice sounds and other acoustic
interferences.

Performance Comparison. The algorithms compared are
“LS-Classic” [10], “LS-PR” [14], “SDP-PR” [27], “SDP-PR-
DC” and “SDP-PR-DCR”. Fig. 20a and Fig. 20b show the

CDF of the position error when the mobile phone is in
LOS and NLOS environments, respectively. The SDP-based
approaches perform better than the LS-based approaches in
these two cases. By performing delay-constraint (DC) and the
robust (R) approach (using Huber Estimator) during the SDP
optimization, “SDP-PR-DCR” outperforms other approaches
in most situations with different performance gains.
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0.6 0.6
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Fig. 20. Cumulative distribution of different algorithms when the mobile
phone is in (a) LOS and (b) NLOS environment by averaging 40 cases with
3, 4 and 5 anchors.

Localization Error. For a more detailed comparison, we
created Fig. 21a by listing the localization accuracy that was
achieved by 80% measurements. From Fig. 21a, we know that
the localization accuracy of “SDP-PR-SD” is near 6cm, i.e.,
80% of position results within 6cm of error. Fig. 21b shows
averaged localization results in different indoor environments
(as shown in Fig. 13) with respect to different statistical
probabilities. Comparing with the trilateration approach, our
optimization solution achieved more than 3 times the perfor-
mance improvement. Achieving such a high-accuracy position
is low-cost and only relies on the normal mobile phone on the
user side.

IlProposed Method
04 [Trilateration

Localization Error (m)
Localization Error (m)

20% 40% 60% 80% 90% 95% 100%
Percentages

(b) Statistical Results

[s-Classic LS-PR__ SDP-PR_SDP-PR-LSSOP-PR-SO
Different Approaches

(a) Fixed Spots

Fig. 21. The localization error of different algorithms with a) 80% proba-
bility when the mobile phone is placed near Posl [5.13, 1.08]m and Pos2
[5.5, 1.4]m and b) averaged results vs. different probabilities in CDF.

Dynamic Performance over Time. To demonstrate the
dynamic localization performance over time, we calculated the
localization accuracy of “SDP-PR-DCR” when its user stands
still at different location spots. To support quantitative analysis,
we use the time series (Fig. 22a) and CDF (Fig. 22b) of the
localization error to illustrate the performance. If using 80%
probability, the localization errors for all the spots are in the
range between 4cm to 10cm. These results are very accurate
for indoor mobile phone based localization.

Location Scalability. Fig. 23 shows the achieved average
location accuracy under different anchor numbers. Compared
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Fig. 22. (a) The time series and (b) CDF of location error at different spots
with 6 anchors.

with the normal trilateration case, we can achieve sub-meter
level location accuracy when there are fewer than 3 anchors.
This low requirement in terms of accessed anchor numbers
will make the system scalable for various real world deploy-
ment conditions.
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Fig. 23.
coverage.

The scalability of the location accuracy under different anchor

Moving Traces. Fig. 24 shows the location tracking traces
of a smartphone when a user is stationary and moving.
These smooth moving traces of line and curve illustrate the
effectiveness of tracking a user with sufficient accuracy and
update rate.
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Fig. 24. Two tracking traces (a) line and (b) curve of a smartphone with 8
anchors.

VII. RELATED WORK

Localization via anchor nodes: Conventional highly ac-
curate infrastructure-based localization systems rely on dense
anchor nodes for trilateration computations, and require special

devices on the user side for ranging purposes, e.g., ultrasound
[15], [10], [12], [14], [3], [28], [7]. Recent approaches relying
on the high-band of the microphone sensor introduces a con-
venient approach for trilateration without additional hardware
attachment on a user’s smartphone [15], [10], [12], [14]. Liu et
al. [14] utilized low-complexity anchor nodes for broadcasting
unnoticeable acoustic beacon with high accuracy. However,
at least three anchor nodes are needed for one location
calculation with 2-D coordinates, and more nodes are needed
for covering large areas, all of which inhibits wide deployment.

Localization via hybrid approaches: Leveraging multiple
sensors in a mobile phone and optimizing the location ac-
curacy via moving traces without anchor nodes are proposed
in [29], [30], [31]. However, the moving traces obtained by
accelerometer and compass are inaccurate and highly depen-
dent on the prior information of the foot-step length. Authors
[11], [32] proposed a localization optimization approach via
peer-to-peer ranging. However, the two-way ranging process
among all user-pairs is too time-consuming and inconvenient.
Rajalakshmi et al. [10] proposed systems named EchoBeep
and DeafBeep that fuse RF and acoustic-based techniques
into a single framework. However, all these scenarios are
based on fixed desktops without any mobility considerations
and are not directly applicable to smartphones. Moreover, the
requirement on the two-way ranging for EchoBeep and the
triangular ranging for DeafBeep would limit the user numbers
(as they only support one user) and introduce complex ranging
protocols and long delay, which is impractical in a smartphone-
based mobile system.

Proximity detection without localization: Relying on the
proximity detection, one anchor node can provide location
references to the users whose accuracy depends on the density
of the anchor deployment. The RFID network and the recently
introduced BLE network, e.g., Apple’s iBeacon [19] and
Qualcomm’s Gimbal proximity beacons [20], and Estimote
[33], are examples of using proximity detection approaches.
However, proximity-based approaches are simple but inac-
curate, so relying purely on the anchor density to improve
accuracy is neither an efficient nor economic method.

VIII. CONCLUSION

We proposed location optimization approaches in mobile
phones via opportunistic anchor sensing. Using the obtained
coarse-grained absolute and fine-grained relative ranging in-
formation from accessible anchors, location accuracy achieved
significant improvement — even with only one or two anchors.
When sufficient anchors are available for trilateration, we
proposed delay-constraint robust semidefinite programming to
ensure robustness in the presence of ranging outliers. The
achieved results show 2 to 11 times greater performance
with limited anchors and sub-second delay for supporting
unlimited users, and they achieve 80% accuracy of 8cm with
sufficient anchors. The flexibility and accuracy of the proposed
approaches provide strong incentives for service operators
to deploy this low-complexity system for various location
resolution demands.
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