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The Super Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory studied

energy loss associated with defect formation in germanium crystals at mK temperatures using in situ
210Pb sources. We examine the spectrum of 206Pb nuclear recoils near its expected 103 keV endpoint

energy and determine an energy loss of (6:086 0:18)%, which we attribute to defect formation.

From this result and using TRIM simulations, we extract the first experimentally determined average

displacement threshold energy of 19:7þ0:6
�0:5 eV for germanium. This has implications for the analysis

thresholds of future germanium-based dark matter searches. Published by AIP Publishing.
https://doi.org/10.1063/1.5041457
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Crystal defects can occur when incident radiation recoils

off of an atom transferring sufficient energy to displace the

atom from its lattice site, thus creating a vacancy. If the dis-

placed atom remains in the crystal, it is referred to as an

interstitial atom (or an “interstitial”). The combination of the

vacancy and the interstitial is referred to as a Frenkel pair or

Frenkel defect.1 Energy can also be lost through creation of

defect clusters, dislocations, and amorphous zones. The crea-

tion of these defects permanently stores energy in the crystal,

with the fraction of incident energy that goes into defect for-

mation depending in part on the mass of the impinging parti-

cle, the deposited energy, and the crystal properties.2

Collectively, the total energy lost to formation of defects is

referred to as the Wigner energy.3

The energy required to displace an atom from its lattice

site is the displacement threshold energy. For germanium,

previously determined displacement threshold energy values

from theory and various molecular dynamics simulations are

inconsistent, ranging from 7 to 30 eV.4–10

The value of the displacement threshold energy has impli-

cations for physics experiments that employ solid-state detectors

to search for nuclear recoil events with sub-keV energy deposi-

tions. In this letter, we focus on defect formation with data from

the Super Cryogenic Dark Matter Search (SuperCDMS) experi-

ment,11–17 which aims to detect nuclear recoils from weakly

interacting massive particles (WIMPs)18 by measuring the

energy deposited when a WIMP scatters off of an atomic

nucleus in a detector’s crystal lattice. The SuperCDMS program

is targeting low-mass WIMPs17—from a few hundred MeV/c2

to several GeV/c2—using advanced detector designs having

detection thresholds on the order of the Ge-atom displacement

energy. Because the energy that goes into the formation of

defects is not directly observable, an accurate determination of

the energy loss to defect formation is important for understand-

ing the low-energy detector response and thus for discerning the

ultimate low-mass-WIMP sensitivity reach.

To measure the Wigner energy associated with 206Pb-on-

Ge interactions, we consider data from the most recent phase

of the SuperCDMS experiment,11–16 when it was located in the

Soudan Underground Laboratory. 210Pb sources were deployed

adjacent to two detectors to evaluate their in situ response to

non-penetrating radiation from the decays of 210Pb and its

daughters 210Bi and 210Po (see Ref. 11 and Fig. 2 therein).

These data include 206Pb-on-Ge recoils, for which a significant

disagreement between the simulated and measured spectra is

evident near the expected 103 keV endpoint energy (cf. Fig. 4
in Ref. 11). In this letter, we reconsider this discrepancy while

allowing for the possibility that the measured recoil energy is

effectively reduced due to formation of defects. The measured

and simulated 206Pb spectra are compared using a v2 statistic

to find a best-fit energy-loss fraction that brings the two into

agreement. The results from each detector are calibrated for

events near the detector surface (vs. in the bulk) to obtain a

value for energy loss due to defect formation in Ge.

The SuperCDMS Soudan experiment operated 15 cylin-

drical, interleaved Z-sensitive Ionization and Phonon (iZIP)

Ge detectors at �mK from 2012 to 2015,11,12,16 arranged in

five stacks of three detectors each. Data from the top and bot-

tom detectors of the third such stack—called T3Z1 and

T3Z3, respectively—are used in this study.

Each iZIP detector had several independent phonon and

ionization readout channels on both of its flat faces. The ioniza-

tion electrodes on the top and bottom faces were biased at

þ2V and �2V, respectively, while the interleaved phonon

sensors were held at ground. The resulting electric field caused

positive and negative charge carriers from particle interactions

in the detector bulk to drift to opposing faces, whereas within

�1mm of either face, most of the charge carriers were col-

lected by the electrodes on that face of the detector. This asym-

metry in charge collection between the two detector faces

makes it possible to distinguish energy depositions near a

detector face from those in its bulk (cf. Fig. 3 in Ref. 11).
The SuperCDMS Soudan experiment had two in situ

210Pb sources, with one installed facing the top side of T3Z1

and the other facing the bottom side of T3Z3. The sources

were produced by exposing silicon wafers to a 5 kBq 226Ra

source (which produces 222Rn gas) for 12 days inside a sealed

aluminum box. After exposure, the wafers were surface etched

to remove dust and radon daughters resting on the surface. This

process resulted in a near-uniform implantation profile of 210Pb

to a depth of approximately 58 nm.11,19 Based on the subse-

quent time of exposure to lab air, we estimate a 1.66 0.1 nm

oxide layer formed on the surface of each source wafer.20,21

The data used in this analysis were collected from

March 2012 to July 2014.11,12 Ionization and phonon signals

were measured for each event, and the ratio of these mea-

surements (“ionization yield”) allowed for discrimination

between event types. The detector responses were calibrated

using 133Ba gamma rays such that electron recoils in the

detector bulk have ionization yield equal to one. 206Pb

recoils have comparatively low ionization yield; in Fig. 1,

they appear at a yield of �0.3 and they extend in energy to

near the expected 103 keV endpoint.

In this study, 206Pb recoils are selected based on their

ionization yield and the surface-event criteria developed in

Ref. 11. Similar criteria are used to select near-surface elec-

tron recoil events (highlighted in Fig. 1) that correspond to

gamma rays (top box) and betas (middle box) from decays of
210Pb and 210Bi. These event selections are used to estimate

the detector resolution and energy scale for surface events,

independent of the 206Pb recoils used to study energy loss

from defect formation.

The SuperCDMS Soudan experiment was simulated with

Geant422–24 version 10.1.p2 using the Screened Nuclear

Recoil physics list.25 A detailed simulation geometry was

FIG. 1. Ionization yield vs. recoil energy for events from one of the 210Pb

sources. Gamma rays and betas from 210Pb and 210Bi decays appear in the

top and middle boxes, while 206Pb recoils from 210Po decays are visible as a

band that cuts off at �100 keV near ionization yield of 0.3 (bottom box).

092101-2 Agnese et al. Appl. Phys. Lett. 113, 092101 (2018)



used including the detectors, all surrounding materials, and

the 210Pb source wafers. The source wafers were simulated

with zero surface roughness. The full chain of 210Pb decays

was simulated according to the source wafers’ implantation

profile. One million primary 210Pb atoms were simulated, with

Geant4 allowed to handle the full decay chain for each event.

Selecting simulated 206Pb events in the 80–110 keV

region of interest yields a total of �44 000 simulated events,

approximately twice the corresponding number of measured
206Pb recoils. The simulation results show good agreement

with the shape of the measured spectra up to 80 keV.

However, as shown in Fig. 2, for larger recoil energies, there

is a significant discrepancy between the measured and simu-

lated spectra for each detector. The former are softer with sub-

stantially fewer events measuring the full 103 keV endpoint

energy. This disagreement near the 206Pb-recoil endpoint is

indicative of energy loss due to defect formation in the detec-

tor crystal, a process not taken into account in the simulation.

Two factors are considered to account for the discrep-

ancy in Fig. 2: energy loss due to defect formation and

energy smearing due to detector resolution. Each simulated

event is first scaled to

Ê ¼ E 1� fð Þ; (1)

where E is the deposited energy, f is the fraction of energy

lost to defect formation, and Ê is the remaining energy. Ê is

then treated with a Gaussian smearing function that has a stan-

dard deviation corresponding to the 1r detector resolution at

that energy. The resulting smeared event energy ~E is thus rep-

resentative of the actual energy measured by a detector.

As demonstrated in Ref. 19, the resolution is an approxi-

mately linear function of energy in the range of 80–110 keV:

rE ¼ 0:63 keVþ 0:024E. The parameters are estimated by

fitting to the 46 keV and 66.7 keV peaks in surface-event

gamma-ray spectra. We assume that the energy resolution of
206Pb recoils has the same functional form, but the absolute

value may differ slightly. To account for this difference, the

resolution is scaled by a multiplicative factor Ps

rPb Eð Þ ¼ Psr Eð Þ; (2)

where rPb is the resolution function used to smear the simu-

lated 206Pb recoil energies. Both f and Ps represent free

parameters that are allowed to float in the fitting method out-

lined below.

After the simulated events are scaled and smeared, the

resulting energies are compared directly to the measured

energies as follows. Let A and B represent the set of mea-

sured and simulated event energies, respectively,

A ¼ E1;E2;…ENf g; B ¼ f ~E1; ~E2;… ~EMg;

where the sets are of size N and M, respectively. Each set is

binned by energy into q bins

BinsA ¼ a1; a2;…aqf g; BinsB ¼ fb1; b2;…bqg;

where ai and bi indicate the number of events in the ith bin.

To gauge the level of agreement between these binned

energy distributions, a v2 statistic is calculated

v2 ¼
Xq
i¼1

ai
N
� bi
M

� �2

ai
N2

þ bi
M2

:

We generate approximately one million sets B for each

detector, corresponding to different combinations of the scal-

ing (f ) and smearing (Ps) parameters. A v2 value is deter-

mined for each set, creating a well-defined parameter space

from which a minimum can be found yielding the best-fit

values for f and Ps.

The measured event energies are based on the detectors’

default energy calibrations, which are developed using

gamma rays in the bulk of the crystal. The energy scale for

surface events may be slightly different than for bulk

events.11 Consequently, the measured 206Pb recoil energies

may differ from their simulated counterparts by an additional

energy scaling factor that represents an intrinsic miscalibra-

tion and therefore is independent of defect formation. If pre-

sent, a best-fit determination of the scaling factor f in Eq. (1)

would account for both this miscalibration and energy loss

due to defect formation

1� fð Þ ¼ 1� fDFð Þ 1� fsurð Þ; (3)

where fDF is the scale factor from energy loss due to defect

formation, and fsur is the surface-event scale factor. Because

the total energy loss to defect formation depends on the mass

of the incident particle, surface events from gamma rays and

betas should have fDF � 0 to within the precision of this

study. This allows for the determination of any intrinsic mis-

calibration via an independent examination of these alternate

event classes. The energy loss to defect formation is thus

fDF ¼ 1� 1� fð Þ
1� fsurð Þ ; (4)

with f determined from 206Pb events and fsur determined

from surface gamma-ray and beta events.

Application of the procedure outlined above to

the measured and simulated 206Pb recoil energies gives a

best-fit energy-scale parameter of f ¼ 5:5260:10ð Þ% and

6:6760:11ð Þ% for detectors T3Z1 and T3Z3, respectively.

Figure 3 shows the v2 statistic as a 2-dimensional function

FIG. 2. Measured 206Pb-recoil spectra for detectors T3Z1 (blue) and T3Z3

(yellow), compared to Monte Carlo simulations (green and red, respec-

tively). The spectral shapes show approximate agreement up to �80 keV.

However, there is a clear discrepancy near the 103 keV 206Pb-recoil endpoint

where fewer counts are seen in the data compared to the Monte Carlo predic-

tion. Error bars correspond to 1 sigma statistical uncertainties.

092101-3 Agnese et al. Appl. Phys. Lett. 113, 092101 (2018)



of the smearing strength Ps and the energy loss parameter f .
Statistical uncertainties (at 1r confidence) on the best-fit values

of f are determined by projecting the Dv2 ¼ 1 contours onto

the “Energy Scale Parameter” axis. After application of the

best-fit parameters, the simulated and measured 206Pb recoil

energy distributions are in good agreement, as shown in Fig. 4.

The same analysis procedure is applied to simulated and

measured distributions of surface-event gamma rays and

betas highlighted in Fig. 1, with the results summarized in

Table I. Because fDF � 0 for these event classes, the values

in Table I are a direct measure of fsur. A single value of fsur is
obtained for each detector by taking a weighted mean of the

gamma-ray and beta results, which is then used to determine

fDF from Eq. (4); these results are summarized in Table II.

The weighted mean of the two detectors is 6:0860:08ð Þ%,

but because the individual measurements differ by 2.06 stan-

dard deviations (p-value 0.04), the uncertainty on the

weighted mean is increased by a factor of 2.06 by increasing

each uncertainty by that factor. This results in a more reason-

able difference of one standard deviation and gives a

weighted mean of 6:0860:17ð Þ% where the uncertainty is a

combination of statistical and systematic uncertainty.

There is an additional systematic uncertainty of þ0:04
�0:03%

from the 1:660:1ð Þ nm silicon dioxide layer on the surface

of each source wafer. The best-fit energy loss is therefore

6:0860:18ð Þ% after adding the uncertainties in quadrature.

Additional potential sources of uncertainty are discussed in

the below paragraph.

Using our best estimate of the value for energy loss to

the formation of defects, it is possible to determine the dis-

placement threshold energy of a germanium atom. This is

the average displacement threshold energy over all lattice

angles26 and is an important quantity for radiation detectors,

WIMP-searches, and other applications.10,27,28

For interactions involving the same species of incident

and target atoms, the Kinchin-Pease equation estimates the

number of defects formed29 (with further refinement by

Norgett et al.30) In the case of an incident 206Pb recoil on Ge,

displaced Ge atoms may be liberated with enough energy to

form yet more defects; so there are two types of interactions to

consider. TRIM-201331 simulations were used to model the

entire defect formation process, for a range of user-defined val-

ues of the Ge displacement threshold energy from 15 to 23 eV.

The target material in the TRIM simulations was a solid

mass of pure Ge with a thin layer of GeO2 on top. As with

Si, pure Ge reacts with oxygen in the atmosphere to create

GeO2 with a thickness that logarithmically depends on expo-

sure time.32,33 We estimated a GeO2 layer thickness of

0:9860:02ð Þ nm.

TRIM predicts a monotonic, decreasing relationship

between the percent energy lost to defects in the 80–110 keV

energy range and the Ge displacement threshold energy. To

match our best estimate of the energy loss value of

6:0860:18ð Þ%, TRIM simulations suggest using a displace-

ment threshold energy of 19:7þ0:6
�0:5

� �
eV. The systematic error

does not include modeling imperfections in Geant4 and TRIM.

This value is somewhat in tension with some molecular

dynamics calculations.10,34,35 However, TRIM uses simple

potentials and includes tuned parameters to fit experimental

implantation data. The more sophisticated potentials used in

molecular dynamics simulations may yield different values.

More experimental data are required to further investigate this.

Other sources of uncertainty were considered, resulting

in no significant increase in the quoted uncertainty.

FIG. 3. The v2 statistic plotted versus the smearing factor Ps and the energy-

scale parameter f for detectors T3Z1 (left) and T3Z3 (right). The best-fit values
are indicated by a green star. The contours correspond to the 2-dimensional 1

sigma, 2 sigma, and 3 sigma confidence intervals (Dv2 ¼ 2.3, 6.2, and 11.8,

respectively).

FIG. 4. Measured 206Pb recoil spectrum (blue) compared to simulated 206Pb

recoils after application of the best-fit energy scaling and smearing parame-

ters (orange) for detectors T3Z1 (top) and T3Z3 (bottom).

TABLE I. The best-fit energy-scale parameter f obtained for surface-event

gamma rays and betas with the associated reduced chi-square (v2�) and p-
value for each detector. Because fDF � 0 for these event classes, these values

provide a direct measure of the energy-scale correction factor for surface

events.

Detector Population f (%) v2� p-value

T3Z1 Gamma events �0.746 0.07 1.9 0.01

Beta events �0.756 0.11 1.3 0.11

T3Z3 Gamma events 0.846 0.09 1.9 0.01

Beta events 0.876 0.17 1.4 0.05

TABLE II. The energy scale factor f determined by examining 206Pb recoils

in detectors T3Z1 and T3Z3 and the corresponding reduced chi-square (v2�)
and p-values. The intrinsic scaling factor fsur is the weighted mean of the

scale factors determined from gamma rays and betas (Table I). The energy

loss to defect formation fDF is determined from Eq. (4).

Detector f (%) v2� p-value fsur (%) fDF (%)

T3Z1 5.526 0.10 1.3 0.08 �0.756 0.06 6.226 0.11

T3Z3 6.676 0.11 1.1 0.31 0.856 0.08 5.876 0.13
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We investigated the effects of varying the thickness of the

germanium oxide layer on top of the detectors. We estimated

the thickness to be 0:9860:02ð Þ nm, and varying the thickness

by 1r did not change our results at the precision given.

In this analysis, we make the assumption that all recoils

are 206Pb events. However, there are some events where

sputtered silicon atoms from the source wafers might con-

tribute to the total event energy. Considering the incident

energies and formation of defects for both Si and Pb ions

shifts our best-fit result by less than one percent of the value

obtained with the Pb-only assumption.

Nevertheless, the defect energy loss parameters for the

two detectors are not quite statistically consistent (cf. fDF in

Table II). This inconsistency may represent a true physical dif-

ference due to differences in crystal properties between the

two detectors. It may also be a result of an operational differ-

ence. The 206Pb recoils used in this analysis were incident on

opposite faces of the two detectors (i.e., top vs. bottom), which

were biased with opposite polarities and thus resulted in collec-

tion of predominantly positive or negative charge carriers by

the ionization electrodes. A corresponding difference in charge

collection efficiency (electrons vs. electron-holes) for 206Pb

recoils relative to surface-event gamma rays and betas may

explain the apparent inconsistency between the two detectors.

The ability of SuperCDMS iZIP detectors to differentiate

event types was leveraged to find the Wigner energy follow-

ing 206Pb implantation on Ge. We used this result with TRIM

simulations to determine an average displacement threshold

energy of 19:7þ0:6
�0:5

� �
eV for germanium. This value will play

a critical role in understanding the sensitivity of future experi-

ments designed to measure nuclear recoils (e.g., from dark

matter interactions) in Ge detectors, especially as instruments

move toward lower energy thresholds and better resolution.

Our results also provide another important, empirically deter-

mined value from which the Stillinger-Weber potential36 or

others could be fit. Future detectors with thresholds on the

order of the displacement threshold energy could confirm this

result more directly with low-energy neutron calibrations.
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