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Abstract

At any given time, only a subset of microbial community members are active in
their environment. The others are in a state of dormancy with strongly reduced
metabolic rates. It is of interest to distinguish active and inactive microbial cells and taxa
to understand their functional contributions to ecosystem processes, and to understand
shifts in microbial activity in response to change. Of the methods used to assess
microbial activity-dormancy dynamics, 16S rRNA:rDNA amplicons (“16S ratios”) and
active cell staining with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) are two of the
most common, yet each method has limitations. Given that in situ activity-dormancy
dynamics are only proxied by laboratory methods, further study is needed to assess the
level of agreement and potential complementarity of these methods. We conducted two
experiments investigating microbial activity in plant-associated soils. First, we treated
corn field soil with phytohormones to simulate plant-soil stress signaling, and second,
we used rhizosphere soil from common bean plants exposed to drought or nutrient
enrichment. Overall, the 16S ratio and CTC methods exhibited similar patterns of
relative activity across treatments when treatment effects were large, and the instances
in which they differed could be attributed to changes in community size (e.g., cell death
or growth). Therefore, regardless of the method used to assess activity, we recommend
quantifying community size to inform ecological interpretation. Our results suggest that
the 16S ratio and CTC methods report comparable patterns of activity that can be

applied to observe ecological dynamics over time, space, or experimental treatment.

Importance
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Although the majority of microorganisms in natural ecosystems are dormant,
relatively little is known about the dynamics of the active and dormant microbial pools
through both space and time. The limited knowledge of microbial activity-dormancy
dynamics is in part due to uncertainty in the methods currently used to quantify active
taxa. Here, we directly compared two of the most common methods (16S ratios and
active cell staining) for estimating microbial activity in plant-associated soil, and found
that they were largely in agreement in the overarching patterns. Our results suggest that
16S ratios and active cell staining provide complementary information for measuring
and interpreting microbial activity-dormancy dynamics in soils. They also support that
16S rRNA:rDNA ratios have comparative value and offer a high-throughput,
sequencing-based option for understanding relative changes in microbiome activity, as

long as this method is coupled with quantification of community size.

Keywords: 16S rRNA, 5-cyano-2,3-ditolyl tetrazolium chloride, dormancy, phantom

taxa
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Introduction

Microbial activity plays a major role in processes that support life on Earth (1),
influencing global carbon and nutrient cycling (2, 3), atmospheric composition (4), and
ecosystem productivity (5). Given these global-scale functions, it is perhaps surprising
that active microbes (those that are growing or reproducing, or that respond relatively
quickly to substrate input) represent a small proportion of the total microbial community
(reviewed in (6)). In diverse ecosystems, the majority of the microbial community is
dormant, characterized by strongly reduced metabolic rates and slow response to
substrate input (6, 7). Although dormancy initiation and resuscitation have ecological
and evolutionary consequences (7-9) with implications for ecosystem function (10, 11),
we know little about the dynamics of active and dormant microbial pools through space
and time. Investigations of the causes and consequences of microbial activity-dormancy
dynamics are needed to better understand community structural and functional
resilience, and to better predict responses to global change (12).

The limited knowledge of microbial activity-dormancy dynamics is in part due to
uncertainty in the methods currently used to quantify active taxa (6). One of the most
common approaches is the use of 16S ribosomal rRNA sequencing. Given the relatively
short half-life of ribosomal RNA, the presence of 16S ribosomal transcripts (hereafter
“rRNA”) is generally assumed to indicate recent metabolic activity, and numerous
studies have used rRNA to characterize active communities (reviewed in (13)). Pairing
both 16S ribosomal (rRNA) and 16S ribosomal gene (rDNA) sequencing allows for
calculation of 16S rRNA:rDNA ratios (hereafter “16S ratios”), which attempts to

normalize rRNA levels by the abundance of that taxon in the community and quantify its
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relative level of activity (9, 11, 14, 15). Taxa with 16S ratios greater than a given
threshold are considered ‘active’; most studies use a threshold of 1.0. (6, 9, 16).
However, using an arbitrary threshold to distinguish active from dormant taxa may be
problematic in diverse communities (13, 17), given that rRNA content or RNA:DNA
ratios and growth rate are not always correlated (18—22). Another challenge is the
occurrence of ‘phantom taxa’: taxa that are detected in rRNA but not rDNA sequences
(23), leading to a zero-denominator (and thus undefined) 16S ratio. Phantom taxa are
unexpected, since the presence of rRNA necessitates template rDNA,; yet nearly 30% of
the OTUs detected in a recent study of atmospheric samples were phantoms (23).
Although these considerations have led researchers to suggest that 16S ratios may be
best interpreted as ‘potential microbial activity’, 16S ratios have nevertheless been used
to inform microbial activity-dormancy dynamics in a broad range of ecosystems (11, 14,
15, 23).

In addition to 16S RNA/DNA sequencing, a variety of other methods are currently
used for distinguishing active microbes. These include staining with tetrazolium salts
((24) and references therein), stable isotope probing to quantify uptake of substrates or
water (25), and meta-transcriptomics to determine changes in functional gene
transcripts following experimental perturbation (26). Of these methods, active cell
staining, primarily with the activity stain 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), is
a common approach because it is economical and executable without specialized
equipment. Respiring cells convert CTC to an insoluble red fluorescent formazan
product that can be visualized by fluorescence microscopy (27). In addition, CTC

staining can be coupled with a DNA stain to compare active and total cell counts in a
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microbial community, allowing for determination of percent activity (15, 28). Numerous
culture-dependent studies have shown that the CTC method is effective in
discriminating between active and inactive microbes (29-32) and between growth
phases (29, 30) and can track resuscitation following starvation (32). The CTC method
also can reveal subtle changes in activity while quantifying changes in the total number
of cells (active plus inactive) to provide context for interpreting the activity dynamics. For
example, in Pseudomonas fluorescens (32), only ~10% of cells were active after
starvation in phosphate-buffered saline. However, the number of CTC-positive cells
increased after a 5 h incubation with yeast extract, without a corresponding increase in
total cell number (32). This apparent resuscitation of cells from CTC-negative to CTC-
positive after nutrient addition showed that CTC staining is capable of discriminating
between active (high metabolic activity) and dormant (low metabolic activity) cells even
when doubling is not observed. Nevertheless, CTC can be toxic to some bacterial
species (24, 33), and not all actively respiring strains are able to take up the stain
efficiently (24, 28), potentially leading CTC staining to underestimate the true proportion
of active cells (34). Variability in the staining protocol (e.g., duration and concentration
of stain) also can have consequences for comparing percent activity across different
studies (29). Despite these limitations, CTC staining remains a popular method for
analyses of microbial activity in a broad range of environmental samples (7, 15, 28).
Although the 16S ratio method and the CTC staining method are both commonly
used in investigations of microbial activity, little work has been done to assess their level
of agreement. One of the few studies using both methods to assess microbial activity

found that the active portion of the community was between 1.5- and 5-fold higher when
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using 16S ratios versus CTC staining in microcosms of estuarine water samples (15).
One potential reason is not only that the two methods present different biases as
described above, but that they measure two different things: the 16S ratio method is
used to assess whether a particular taxon is active, while the CTC staining method is
used to assess whether a given cell is active. Importantly, there are situations in which
we might expect the proportion of active taxa and the proportion of active cells to differ,
such as communities in which rare taxa are disproportionately active compared to
abundant taxa (15, 23, 35). Another potential discrepancy between the 16S ratio and
the CTC staining method is their respective definitions of ‘active’ versus ‘inactive’, since
RNA and DNA levels do not always correlate with respiration rates (36). Although these
two methods may not always produce similar values of microbial activity, both can
inform on fundamental and complementary aspects of microbial communities.

Here, our objectives were to explore factors underlying the calculation and
interpretation of 16S ratios, and to compare estimates of activity of microbial
communities using 16S ratios and CTC-based cell staining. We conducted two
experiments analyzing microbial activity in plant-associated soil. Given that plant-
associated soils are highly dynamic systems in which plants can influence microbial
community structure and function (37, 38), we considered plant-associated soil to be
particularly relevant for analyses of microbial activity. First, we conducted a microcosm
experiment using corn-associated soil, and treated the soil with phytohormones to
assess the impacts of common plant stress signals on soil microbial activity. Second,
we grew bean plants under either drought or nutrient-enriched conditions to more

directly assess the impacts of plant stress on soil microbial activity. Specifically, we
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asked: 1) for 16S ratio-based studies, what is the extent of phantom taxa, and how does
the handling of these taxa influence estimates of microbial activity and patterns across
treatments? 2) How does the threshold for quantifying ‘active’ taxa influence patterns
across treatments? 3) How does 16S rRNA operon copy number impact the distribution
of 16S ratios within and across phyla? 4) Do 16S ratio and CTC methods produce

similar estimates and/or patterns of microbial activity across diverse soil treatments?

Results and Discussion

We conducted two experiments in plant-associated soils under a variety of
treatment conditions. In the first experiment, we collected soil from a long-term
agricultural research field in which corn (Zea mays L.) had been planted for eight
consecutive years. In the laboratory, we exposed the soil to several pre-treatments:
‘pre-dry’ (soil was sampled before any treatments were initiated), ‘post-dry’ (soil was
dried for three days and then sampled), and ‘post-water’ (soil was partially re-wetted,
allowed to acclimate for six days, and then sampled). Next, soil replicates were treated
with either abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), or
salicylic acid (SA), or water as a control, and sampled after 24 hours. Thus, the corn
experiment was designed to assess the impacts of several different abiotic/biotic
stresses including soil drying and re-wetting, as well as the application of common plant
stress phytohormones that can be exuded by plant roots under a variety of stress
conditions (39). In the second experiment, we grew common bean (Phaseolus vulgaris
L. cv. Red Hawk) in agricultural field soil in a controlled-environment growth chamber.

Replicate plants were exposed to either drought (water-withholding), nutrient
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enrichment (additional fertilizer), or control conditions, then rhizosphere soils were
sampled after five weeks. Thus, this experiment was designed to more directly assess
the impacts of plant stress on analyses of soil microbial activity in plant-associated soil.
Overall, we anticipated that the differential treatments within and across experiments, as
well as the presence of actively growing plants continuously providing carbon to the soil
microbial communities in the bean but not the corn soil study, would inform on the broad

applicability of the 16S and CTC staining methods for comparing microbial activity.

Detection and treatment of ‘phantom taxa’

A necessary prerequisite for assessing microbial activity from 16S ratios is
determining how to handle ‘phantom taxa’: OTUs that are detected in the RNA but not
the DNA community of a given sample (23). Phantom taxa can occur for both biological
and methodological reasons, such as sampling stochasticity of the “rare biosphere”
when rare taxa exhibit disproportionately high activity (23). In addition, different methods
of RNA versus DNA extraction, or biases such as the reverse transcription of RNA (but
not DNA) could contribute (40). Finally, heterogeneity between the soil aliquots used for
RNA versus DNA extraction could lead to different community profiles in the two
extractions, and therefore lead to phantom taxa (in the present study, soil was mixed
prior to DNA/RNA extractions to reduce this bias). Regardless of the mechanism of their
occurrence, phantom taxa cannot be avoided when using 16S ratios.

Phantom taxa are problematic because they produce undefined 16S RNA:DNA
ratios due to a denominator of zero, and, without care, could be automatically deleted

from the dataset. Therefore, we assessed the prevalence of phantom taxa (taxa with
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RNA reads > 0 and DNA reads = 0 in a given sample) in both the corn and bean soill
datasets. We also assessed the prevalence of ‘singleton’ phantom taxa (taxa with RNA
reads = 1 and DNA reads = 0 in a given sample), given that such taxa are particularly
ambiguous in terms of activity. We repeated these analyses across a range of
sequencing depths, given that sampling stochasticity can play a role in driving the
occurrence of phantom taxa (23). Across a range of subsampling levels, we found that
phantom taxa comprised 6-62% of the total OTUs in the corn soil dataset, and 17-41%
of the total OTUs in the bean soil dataset (Fig. S1A and B, Fig. S2A and B). Similarly,
‘singleton’ phantom taxa were fairly common (1-38% and 4-27% of the total OTUs in the
corn and bean soil datasets, respectively) (Fig. S1C and D, Fig. S2C and D). The
reader should note that the sample size for each treatment generally decreased as
sequencing depth increased because samples were excluded when their total read
count was less than a given sequencing depth.

Given the prevalence of phantom taxa, our next aim was to establish how to
handle phantom taxa for calculation of 16S ratios. We compared four different methods
for calculating 16S ratios in the presence of phantom taxa, referred to here as Methods
1, 2, 3, and 4 for simplicity (Fig. 1). In both the corn and the bean soil datasets, all four
methods for calculating 16S ratios produced similar patterns across treatments (Fig. 2A
and B). In corn soil, percent activity decreased from the pre-dry to the post-dry
treatment, then increased from the post-dry to the post-water treatment (Fig. 2A). In
addition, although increasing the threshold 16S ratio for defining taxa as ‘active’
generally reduced the magnitude of treatment effects on microbial activity, the large

impact of the post-water treatment was apparent even at a threshold of five. Similar
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analyses have been performed in in other studies (11), which suggest that even
conservative ratio thresholds provide access to observing consistent ecological
patterns. On the other hand, although percent activity in the bean experiment was
generally higher in the control than the drought or nutrient treatments across Methods 1-
4, the magnitude of this difference decreased as threshold increased (Fig. 2B).
Differences among treatments disappeared when compared at a threshold 16S ratio of
five, indicating a relatively narrow window for capturing differences in microbial activity
in the bean experiment. A recent review suggests that most studies use a threshold 16S
ratio between 0.5-2 to determine active taxa (6), indicating that a threshold of five may

simply provide an overly-conservative view of activity in microbial communities.

Weak relationship between 16S ratio and number of ribosomal operons in genomes
One consideration of using 16S ratios to estimate the proportion of active taxa
community is the variability in copy numbers of the 16S rRNA operon across genomes
of different taxa. 16S rRNA operon copy numbers can affect patterns of beta diversity in
community structure (41) and can vary substantially between lineages (42). For
example, lineages with many 16S operons (e.g. Firmicutes) may have lower 16S ratios
because their abundance is overestimated by redundant reads in 16S rDNA data. To
address this, we examined the relationship between the 16S ratio and the average
number of ribosomal operons within phyla for all detected OTUs (Fig. 3). Although 16S
ratios and average 16S rRNA operon count at the phylum level were correlated in both
corn (r =-0.069, p < 0.0001) (Fig. 3A) and bean (r =-0.017, p = 0.0001) (Fig. 3B) sail,

these correlations were weak, to the point of being inconsequential for the interpretation
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of overarching patterns at the community level. In addition, across all operon counts,
16S ratios had similar ranges (Fig. 3). Recent work has advised against correcting for
16S rRNA operon counts in 16S rRNA gene surveys of microbial community structure,
especially in taxa that are divergent from cultured representatives (41). Our results
additionally suggest that accounting for 16S operon number will likely have little effect

on activity estimates in 16S ratio analyses.

CTC staining and 16S RNA:DNA capture complementary patterns of activity across
treatments

Our final aim was to assess the level of agreement between the 16S ratio and
the CTC method (Fig. 4). Across all treatments and between both methods, estimates of
percent activity (i.e., between 10 and 60% of cells/taxa active) are similar to values
reported in the literature for soil (7). Though, as expected for the reasons discussed in
the introduction, the two methods did not agree in their absolute values of percent
activity, their overarching patterns across treatments were largely consistent,
suggesting that either method is appropriate for assessing overarching patterns in
community activity (e.g., across time, space, or experimental treatments). The CTC
method consistently resulted in higher estimates of activity than the 16S ratio method.

In bean rhizosphere soil, the CTC method and the 16S ratio method produced
identical patterns of percent activity across treatments (Fig. 4B and D). Using both
methods, the drought and the nutrient addition treatments exhibited lower percent
activity compared to the control treatment, although the magnitude of this difference

was less using the 16S ratio method than the CTC method. In corn-associated soil, both
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the CTC staining method and the 16S ratio method revealed similar patterns in
response to corn soil drying and wetting: percent activity declined from the ‘pre-dry’ to
the ‘post-dry’ treatment, and increased in response to the ‘post-water’ treatment.
Together with the bean rhizosphere experiment, these results suggest that both
methods are consistent in detecting relative activity changes when there are large
treatment effects.

In the corn soil, there were method differences in activity relative to the “post-
water” and control treatments (Fig. 4A and C). Using the CTC method, percent activity
increased in response to phytohormones compared to the ‘post-water’ treatment, but
did not change in response to the ‘control’ treatment (i.e., water alone) (Fig. 4A). Using
the 16S ratio method, percent activity decreased in response to phytohormones as well
as in the water control, compared to the ‘post-water’ treatment (Fig. 4C). For these
subtle activity changes observed post-water in the corn-associated soil, the differences
between the 16S ratio and CTC methods could be explained by the shifts in community
sizes across treatments. Though CTC percent activity did not change post-water to
control, raw cell counts measured by Syto24 aid in interpretation. CTC counts (i.e., the
number of active cells) and Syto24 counts (i.e., the total number of cells regardless of
activity) both decreased to a similar extent from the ‘post-water’ to the ‘control’
treatment (20.3% decrease versus 19.7% decrease, respectively) (Fig. S3A and C),
resulting in no change in percent activity despite the decrease in community size. The
drop in the proportion of active OTUs by the 16S ratio but not the proportion of cells by
CTC from post-water to control is likely due to cell death and resultant changes in

community size that is not accounted for when using 16S ratios (and could be
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exacerbated by the contributions of DNA from recently dead cells to the denominator).
Similarly, CTC counts were slightly lower in the phytohormone treatments compared to
the control (average difference of 2.9%), but Syto24 counts were much lower in the
phytohormone treatments compared to the control (average difference of 14.0%) (Fig.
S3A and C), which explains the increased percent CTC activity in phytohormones
versus control. However, despite the decrease in community size (i.e. cell death)
between phytohormones and control (Fig. S3C), percent activity using the 16S ratio
method did not differ between phytohormones and control, potentially highlighting the
different metrics reported by the CTC (percent of cells that are active) and the 16S ratio
methods (percent of taxa that are active). Overall, there is immense value added by
measuring changes community size when interpreting changes in activity, regardless of
the method applied. Future studies using the 16S ratio method for assessing activity
dynamics should consider using cell counting or an equivalent method for
approximating community size (e.g. gQPCR) coupled with propidium monoazide
treatment to block amplification of DNA from dead/dying cells (e.g. (43)).

Intense disturbances can result in cell death, and for these events it is expected
that changes in percent activity could mirror changes in microbial community size (total
number of cells). Examples of such disturbances include those in present study
(desiccation and phytohormone exposure), antibiotic treatment, oxygen depletion,
exposure to predators or phage, and irradiation. There are also disturbances that may
be expected to stress cells and alter phenotypes, but not to cull a significant proportion

of the community. Therefore, the ecological context is of paramount importance for
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interpreting activity dynamics, and measurements of community size can inform as to

the outcomes of disturbance in situations that have unclear expectations a priori.

Considerations of the 16S ratio and CTC staining methods

An important consideration of this work is that both the 16S ratio and CTC
methods have distinct biases that can influence percent activity estimates. A number of
issues have been highlighted for analysis of activity with 16S ratios (13, 17, 44, 45),
including the presence of dead cells and extracellular DNA, variations in sequencing
depth, and molecular methodology (PCR biases). Another issue is the inconsistent
relationships between rRNA and growth rate described above, and the finding that
cellular rRNA can actually increase in the transition from the vegetative to dormant state
for some taxa (46). Although CTC staining avoids many of these assumptions, it has its
own unique biases. For example, CTC staining in the present study excluded obligate
anaerobes, potentially underestimating percent activity. In addition, CTC staining
assumes that all (or a representative subsample) of the cells are extracted from the sail,
an assumption that may or may not be true (47). Finally, because extraction and CTC
staining can last for up to 24 hours, artefacts such as cell death or changes in
respiration rates could occur. Numerous methods exist to estimate microbial activity in
soil, each with a unique set of advantages and limitations (reviewed in (6)).

Another consideration of our analysis is the inability of the methods used here to
account for extracellular DNA and dead cells in soil. Extracellular DNA (48, 49) and
necromass (50) are common, and can cause 16S ratios to underestimate percent

activity (44). Similarly, although our flow cytometry size gating likely excludes
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extracellular DNA by removing particles < 1 ym, intact dead cells would be included in
the ‘total cell count’ calculated by Syto24 staining, thereby underestimating percent
activity. Although our study was not designed to allow determination of extracellular
DNA or dead cell abundance, we note that plant-associated soils are generally
assumed to be areas of high metabolic activity. Thus, we might expect relic nucleic
acids or dead cells to turn over quickly, limiting their confounding effects in the present
study. Our data support the rapid turnover of dead cells, given that the control (water)
and phytohormone treatments in the corn soil experiment, which lasted only 24 hours,
led to significant decreases in total cell counts (Fig. S3C). It should also be noted that,
in the corn soil experiment, soils were frozen prior to activity analyses, potentially
increasing the number of dead cells and artificially reducing percent activity. We
suggest this impact was minimal, given that percent activity was relatively high
compared to previous estimates in soil (7). Nevertheless, we suggest that combining the
16S ratio and CTC/Syto24 approach with a stain specific to extracellular DNA and
dead/dying cells, such as propidium iodide, would clarify the impact of these pools (51).
As described above, the dynamic range of the CTC method is expected to be
high: over 90% of cells have been reported as CTC-positive in pure cultures in
exponential growth phase (31), while less than 10% are CTC-positive when dormancy is
induced by overnight starvation conditions (32). Our findings suggest that the CTC
staining method is potentially more sensitive than the 16S ratio method and may be
more appropriate for detecting subtle activity changes. For example, the CTC staining
method detected larger shifts in percent activity than the 16S ratio method in response

to the drying (46.1% decrease versus 8.8% decrease, respectively) and re-wetting
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368 treatments (43.8% increase versus 27.3% increase, respectively) in corn-associated soil
369 (Fig. 4A and C), and in response to the drought (23.1% decrease versus 5.8%

370 decrease, respectively) and nutrient addition treatments (27.6% decrease versus 5.5%
371  decrease, respectively) in bean soil (Fig. 4B and D). Similarly, the CTC method

372 detected significantly higher percent activity in all phytohormone treatments relative to
373  the control, while the 16S ratio method did not detect a difference between the control
374  and phytohormone treatments (Fig. 4A and C). On the other hand, the 16S ratio method
375 detected a much larger difference from the post-water to the control (i.e., water added)
376  treatment (16.0% decrease versus 0.3% decrease, respectively) (Fig. 4A and C).

377  Altogether, these shifts in percent activity across treatments are in the range of those
378 reported in the literature. For example, a study using the CTC staining method to

379  assess microbial communities on sandstone found that percent activity values dropped
380 from 60% to 20% after two days of drying at low relative humidity (30), similar to the
381  shiftin CTC staining in response to soil drying in the present study (Fig. 4A). However,
382 further study is needed to assess the lower limit of detection of the two methods for
383 diverse taxa and inform on their ability to capture more subtle changes in percent

384  activity.

385

386  Conclusions

387 Overall, our results provide insight into the estimation of microbial activity using
388 two common methods: 16S ratios and CTC staining. Although phantom taxa were

389 common, patterns in percent activity across treatments were largely unaffected by the

390 method used to account for such taxa. We also found that 16S ratios were only weakly
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correlated with ribosomal operon number, suggesting that accounting for operon
number has little effect on activity estimates in 16S ratio analyses. Lastly, both the 16S
ratio and CTC methods exhibited similar patterns of percent activity across treatments,
and the instances in which they differed can largely be explained by changes in
community size. We conclude that quantification of community size is essential for
interpreting activity dynamics. Coupled with quantification of community size, the two

methods provide comparable assessments of relative changes in microbial activity.

Materials and Methods

We conducted two separate experiments (‘corn-associated soil’ and ‘bean
rhizosphere soil’), with varying stress treatments in each experiment. For clarity, we first
present the methods specific to each experiment, and then present the methods shared

between experiments.

Corn-associated soil: experimental design, sample collection, and preparation for
sequencing

In the first experiment, topsoil was collected on August 21, 2017 from the AGR-
Corn treatment of the Great Lakes Bioenergy Resource Center Scale-Up Experiment
located near the Kellogg Biological Station, Hickory Corners, MI. Corn has been planted
annually at that site since 2010. Replicate soil cores (to a depth of 10 cm) were
collected < 30 cm from the stalk of corn plants (corn roots were present in the cores)

using a 2.5 cm diameter steel corer, transported to the laboratory on ice, sieved and

18



414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

homogenized. Three replicate soil aliquots were weighed, dried for 72 hours at 70°C,
then re-weighed to determine soil percent moisture (mean 8.6% * 0.3% standard
deviation), and the remaining soil was stored at 4°C until use. Soil composition was
56.1% sand, 26.9% silt, and 17% clay as assessed by standard protocols of the
Michigan State University Soil and Plant Nutrient Laboratory.

Broadly, the experimental design consisted of several pre-treatments: ‘pre-dry’
(soil was sampled before any treatments were initiated), ‘post-dry’ (soil was dried and
then sampled), and ‘post-water’ (soil was partially re-wetted and then sampled), before
exposing soils to one of five treatments: application of the phytohormones abscisic acid
(ABA), indole-3-acetic acid (IAA), jasmonic acid (JA) or salicylic acid (SA), or water
control. On April 2, 2018, five replicates (30 g each) of the sieved and homogenized soil
was retrieved from 4°C storage and frozen at -80°C for DNA/RNA extractions (i.e., the
‘pre-dry’ treatment). The remaining soil was dried for 72 hours at 45°C, at which point
another five replicates (30 g each) were stored at -80°C (i.e., the ‘post-dry’ treatment).
The remaining dried soil was split into 50 mL conical tubes (30 g of dry soil each), and
each tube received water to achieve 4.3% percent soil moisture (half of the initial 8.6%
percent soil moisture). This initial wetting step was included to isolate potential
responses to phytohormones from the known response to moisture ((10) and references
therein). Tubes were vigorously mixed and any clumps broken up with a sterile pipet.
Tubes were incubated at room temperature for six days, then five replicates were frozen
at -80°C (i.e., the ‘post-water’ treatment). The remaining tubes were then randomly
assigned to one of five treatments: I1AA, JA, ABA, SA, or water control. Five replicate

tubes received 1.12 mL of the appropriate 0.22 um filter-sterilized phytohormone
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dissolved in water at a concentration of 1 mM, while the control tubes received filter-
sterilized water alone. Thus, these treatments restored all tubes to the initial 8.6%
percent soil moisture. Tubes were vigorously mixed and clumps broken up with a sterile
pipet. After 24 hours, the soil samples were frozen at -80°C.

DNA was extracted from ~0.23 g soil samples using the Qiagen PowerSoil kit
following the manufacturers recommendations, while RNA was extracted from a
protocol modified from (11, 52). Briefly, up to 0.5 g of soil was added to 200 uL of
autoclaved PBL buffer (5 mM Naz-EDTA, 0.1% w/v sodium docecyl sulfate, and 5 mM
Tris-HCI; pH ~3), vortexed for 1 minute, then 1 mL of phenol:chloroform:isoamyl alcohol
(25:24:1 viviv, pH 8) was added. Samples were vortexed for 15 min, then centrifuged
for 5 min at 20,000 x g. The upper (i.e., aqueous) layer was collected, added to 1 mL
isopropanol, and vortexed. Samples were centrifuged for 15 min at 20,000 x g, and the
supernatant was carefully removed. Tubes were air dried for 15 minutes, then
resuspended in 50 pL of sterile water. Resuspended RNA extracts were cleaned using

the OneStep PCR Inhibitor Removal kit (Zymo Research, Irvine, CA).

Bean rhizosphere soil: experimental design, sample collection, and preparation for
sequencing

In the second experiment, we planted 24 one-gallon pots with the common bean,
Phaseolus vulgaris L. (var. Red Hawk), in local Michigan field soil in a controlled-
environment growth chamber (BioChambers FXC-19). Soil composition was 73.7%
sand, 14.9% silt, and 11.4% clay. Plants received 16 h light and 8 h dark photoperiod,

with a daytime temperature of 29°C and a nighttime temperature of 20°C. Eight replicate
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plants received ample water throughout the course of the experiment and served as
controls. Eight additional replicates received ample water with the addition of nutrients
(half-strength Hoagland solution; (53)) and an additional eight replicates were subjected
to continuous drought, receiving 66% less water than control pots throughout the
experiment. Plants were grown to the R8 stage (~5 weeks) before harvesting
rhizosphere soils. Rhizosphere soil was collected in sterile Whirl-Pak bags by uprooting
the plants and shaking loose soil from the root system. Any remaining soil adhering to
the roots was considered rhizosphere soil. Two rhizosphere soil samples (5 g each) per
plant were collected and immediately processed for active and total cell counts (see
further detail below), while the remaining rhizosphere soil was frozen at -80°C for
RNA/DNA extraction. For each plant, DNA was extracted from ~0.3 g of rhizosphere soll
using the DNeasy Powersoil kit (Qiagen, Carlsbad, CA, USA, while RNA was extracted
from ~2.3 g of rhizosphere soil using the RNeasy Powersoil kit, following manufacturer’s

instructions.

Corn and bean soil: microbial cell extraction and active and total cell counts

For both corn and bean soils, microbial cells were extracted following a protocol
adapted from (54), and stained for determination of active and total cell counts. Briefly,
soil subsamples (10 g per sample in the corn soil experiment, and two technical
replicates of 5 g each in the bean soil experiment) was mixed with 100 ml of chilled
sterile phosphate buffered saline containing 0.5% Tween-20 (PBST). Soil samples were
homogenized in a Waring blender (Conair Corporation, East Windsor Township, NJ,

USA) three times for one minute and kept on ice between each blending cycle. Soil
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slurries were centrifuged at 1,000 x g for 15 minutes and the supernatant was set aside.
The pelleted soil was resuspended in 100 ml PBST and blended for an additional
minute and re-centrifuged. The supernatants were pooled and centrifuged at 10,000 x g
for 30 min. The supernatant was aspirated and the pellet was resuspended in sterile
Milli-Q water (20 mL in the corn soil experiment, and 10 mL in the bean soil
experiment). Cells were stained for percent activity determination using the BacLight
RedoxSensor CTC Vitality kit (ThermoFisher Scientific, Waltham, MA, USA). Briefly,
one milliliter of cells was stained with 0.38 ul of the DNA stain Syto24 and 5 mM of the
activity stain 5-cyano-2,3-ditolyl tetrazolium chloride (CTC; active community) for 24
hours. Stained cells were fixed with 100 pl of 37% formaldehyde and cell counts were
measured on a BD C6 Accuri Flow Cytometer (Franklin Lakes, NJ, USA), defining a cell
as a fluorescence event greater than 103 on a 490/515 nm filter for Syto24 and 450/630
nm filter for CTC. Following recommendations by the Michigan State University Flow
Cytometry Core, we gated measurements by side scatter values <500 which removed
particles <1 ym from our measurements.

We calculated the percentage of active cells by dividing CTC counts by Syto24
counts. For each sample in the corn soil experiment, we used a single 10 g sample of
soil for microbial cell extraction that was then split into two technical replicates for
staining: these two replicates per sample were averaged prior to subsequent analyses
to avoid pseudoreplication. For each plant in the bean experiment, we used two
replicate 5 g soil samples to give two technical replicate microbial cell extractions. Each
of these was then split into three technical replicates for staining. These six replicates

per plant were averaged prior to subsequent analyses to avoid pseudoreplication.
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Corn and bean soil: 16S rRNA gene amplicon sequencing

For both the corn and bean soil experiments, we first verified no DNA
contamination in the RNA samples using PCR with 16S primers (55, 56) followed by gel
electrophoresis. Next, 3 pl of RNA from each RNA sample was reverse transcribed
using the SuperScript RT Il kit (Invitrogen) following the protocol for random hexamers.
Nucleic acid concentrations were measured with the Qubit broad-range DNA assay kit
(ThermoFisher, Waltham, MA, USA). DNA and cDNA from the bean experiment were
diluted to 5ng ul! (but were left undiluted in the corn soil experiment) prior to submitting
for sequencing at the Michigan State Genomics Core. cDNA and DNA from both the
corn and bean soil experiments were sequenced by the Michigan State University
Genomics Core using the dual-indexed primer pair 515F and 806R (56). Samples were
prepared for sequencing by the MSU Genomics Core including PCR amplification and
library preparation using the lllumina TruSeq Nano DNA Library Preparation Kit. Paired-
end, 250bp reads were generated on an lllumina MiSeq and the Genomics Core
provided standard lllumina quality control, adaptor and barcode trimming, and sample

demultiplexing.

Corn and bean soil: bioinformatic and statistical analyses

The corn and bean soil sequencing datasets were analyzed separately. For each
dataset, raw reads were merged, quality filtered, dereplicated, and clustered into 97%
identity operational taxonomic units (OTUs) using the UPARSE pipeline (57).

Taxonomic annotations for OTU representative sequences were assigned in the mothur
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(58) environment using the SILVA rRNA database release 132 (59). OTUs with
unassigned taxonomy at the phylum level, and OTUs annotated as mitochondria,
chloroplasts, or Eukaryota, were removed. All subsequent analyses were performed in
R (version 3.5.0; (60)), with ecological statistics performed using phyloseq (version
1.24.0 (61)). Data were visualized using a combination of the R packages ggplot2
(version 2.2.1; (62)), reshape2 (version 1.4.3; (63)), ggpubr (version 0.1.6; (64)), and
gridExtra (version 2.3; (65)), and dplyr (version 0.7.5; (66)) was used for data
summaries.

First, we examined the prevalence of ‘phantom taxa’ (i.e. OTUs with detectable
RNA reads but no detectable DNA reads; (23)) in the corn and bean soil datasets. We
calculated the average percent of OTUs that are phantom taxa in each treatment, as
well as the average percent of OTUs with a single RNA read and no detectable DNA
reads in each treatment. We conducted these analyses across a range of subsampling
levels (using a step-size of 5000 reads per sample) to examine the influence of
sequencing depth on the prevalence of phantom taxa, and used the loess smoothing
function (67) to generate best fit lines and confidence intervals. Given the relatively low
impact of subsampling level on the occurrence of phantom taxa, all subsequent
analyses were conducted on samples rarefied to the minimum sampling depth in each
dataset (22,556 reads per sample for corn soil, and 37,815 reads per sample for bean
soil).

Given the prevalence and persistence (i.e., their high collective contributions
regardless of sampling effort) of phantom taxa in our sequencing datasets, we next

compared four different methods for calculating 16S ratios in the presence of phantom
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taxa. See Fig. 2 for a detailed illustration of the four methods, referred to here as
Methods 1, 2, 3, and 4 for simplicity. In Method 1, each phantom taxon in each sample
is set to a 16S ratio of 100 to designate such taxa as ‘active’ regardless of the threshold
16S ratio activity level chosen, since most studies choose a threshold ratio less than 10
to designate taxa as ‘active’ (6, 9, 11). In addition, Method 1 sets each taxon in each
sample with no detectable reads (those with zero reads in both the RNA and the DNA
datasets) to a value of zero, thereby eliminating undefined 16S ratios which arise due to
a denominator of zero. In Method 2, every instance in which zero DNA reads are
detected for a given OTU in a given sample is changed to a value of one to eliminate
zeros in the denominator. In Method 3, previously used by (11), a value of one is added
to every OTU in every sample in the DNA dataset. This method is meant to eliminate
zeros in the denominator (as with Method 2), but also to treat every entry in the DNA
dataset exactly the same. In Method 4, previously used by (14), a value of one is added
to every OTU in every sample in both the RNA and the DNA datasets. As with Methods
2 and 3, this method is meant to eliminate zeros in the denominator, but also to treat
every entry in the entire dataset (both RNA and DNA reads) exactly the same. We
compared the resulting percent activity of the OTUs after using Methods 1-4 in both the
corn and bean soil datasets, using threshold 16S ratios of 1, 2, and 5 for determination
of ‘active’ versus ‘inactive’ OTUs. Given that Methods 1-4 captured similar patterns in
percent activity across treatments, we conducted all subsequent analyses using the

recently published Method 3 (11) to calculate 16S ratios.
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Next, we examined the relationship between the average number of 16S
ribosomal operons per genome for each phylum, obtained from the Ribosomal RNA
Database (version 5.4; (42, 68, 69)), and the observed 16S ratios in the present study.

Finally, we compared estimates and across-treatment patterns of microbial
activity using the 16S ratio (threshold > 1) method to calculate the percentage of active
taxa, versus using the cell staining method (CTC counts divided by Syto24 counts) to
calculate the percentage of active cells. We also examined both active (CTC) and total
(Syto24) counts across treatments to explore the influence these two values have on
the percentage of active cells as calculated by the CTC/Syto24 ratio. Differences among
treatments were assessed using ANOVA followed by a Tukey post-hoc test for multiple
comparisons. All bioinformatic workflows and custom scripts are available on GitHub

(https://github.com/ShadelLab/PAPER_Bowsher_mSystems_2019_16sRatio_CTCstain)

Accession number(s).
Corn and bean soil sequencing data were submitted to the NCBI Sequence Read
Archive under BioProject accession numbers PRJNA490178 and PRINA454289,

respectively.
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Figure Legends

Fig 1 Conceptual diagram depicting the impacts of four distinct methods for calculating
16S rRNA:rDNA ratios in the presence of ‘phantom taxa’ (i.e., OTUs in a given sample
with 16S RNA reads but zero 16S DNA reads, producing an undefined 16S ratio due to
a zero denominator). The input OTU table for a given sample along with 16S ratios is
shown on the left, while the resulting OTU tables and 16S ratios are depicted on the
right (changes are shaded blue). Four different sequencing scenarios in a hypothetical
sample are considered: OTU1, in which the number of RNA reads is much larger than
the number of DNA reads but both are present; OTUZ2, in which the number of RNA and
DNA reads are both low but present; OTU3, in which the number of RNA reads is one
and the number of DNA reads is zero; and OTU4, in which the number of both RNA and

DNA reads is zero.

Fig 2 Comparison of the proportion of taxa that are active (i.e. percentage of total OTUs
with 16S rRNA:rDNA ratio greater than a given threshold) in soil associated with corn
(A) and bean (B) following each of four methods for calculating 16S ratios. See Figure 1
for depiction of the four methods for calculating 16S ratios and main text for description

of treatment conditions.

Fig 3 16S rRNA:rDNA ratio as a function of the average 16S operon copy number for
the presented phyla detected in (A) corn rhizosphere and (B) bean-associated soil, as

determined by the Ribosomal Copy Number Database (rrnDB). Data points represent
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every occurrence (i.e. within and across all samples) for a given phylum. Only phyla
with representatives in the rrnDB are shown. Note that phylum Spirochaetes was

present only in corn-associated soil.

Fig 4 Proportion of active taxa/cells as determined by CTC/Syto24 staining (A, B) or 16s
rRNA:rDNA ratios (C, D) in soil associated with corn (A, C) and bean (B, D). Taxa in (C,
D) are defined as active with a 16S rRNA:rDNA ratio > 1. See main text for description

of treatment conditions.

Fig S1 Prevalence of taxa with 16S RNA reads but zero 16S DNA reads (A, B) (i.e.
‘phantom taxa), or a single 16S RNA read and zero 16S DNA reads (C, D) in soill
associated with corn (A,C) and bean (B,D) as a function of sequencing subsampling
level. Shown are best fit lines using the loess smoothing function (see Supplementary
Figure S2 for same plots but including individual data points). Gray shading around the

smoothing lines are 95% confidence intervals.

Fig S2 Prevalence of taxa with 16S RNA reads but zero 16S DNA reads (A, B) (i.e.
‘phantom taxa), or a single 16S RNA read and zero 16S DNA reads (C, D) in soll
associated with corn (A,C) and bean (B,D) as a function of sequencing subsampling
level. Points indicate individual samples, with best fit lines using the loess smoothing
function. Gray shading around the smoothing lines are 95% confidence intervals. See
Supplementary Figure S1 for same plots but including only smoothing lines and

confidence intervals.
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Fig S3 Flow cytometer counts (i.e., number of cells counted) per gram of soil extracted

following staining with CTC (A, B) and Syto24 (C, D).
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When RNA>0 and DNA=0, set 16s Ratio to 100.
When RNA=0 and DNA=0, set 16s Ratio to 0.

Method 1 (This work)

OTU# | 16SrRNAreads | 16SrDNAreads | 16SRatio
1 25 3 8.33
2 2 1 2
3 1 0 undefined
4 0 0 undefined

Method 4 (Denef et al. 2016)

Add 1 to every RNA and DNA entry.

Method 2 (This work)

Add 1 to every DNA entry of 0.

Method 3 (Kearns et al. 2016)

Add 1 to every DNA entry.

OoTU# 16SrRNA reads 16SrDNA reads 16SRatio

1 25 3 8.33

2 2 1 2

3 1 0 100

4 0 0 0
OoTU# 16SrRNA reads 16SrDNA reads 16S Ratio

1 25 3 8.33

2 2 1 2

3 1 1 1

4 0 1 0
OoTU# 16SrRNA reads 16SrDNA reads 165 Ratio

1 25 4 6.25

2 2 2 1

3 1 1 1

4 0 1 0
OoTU# 165 rRNA reads 165 rDNA reads 165 Ratio

1 26 4 6.5

2 B 2 i3

3 2 1 2

4 1 1 1
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