

1 16S rRNA:rRNA gene ratios and cell activity staining reveal consistent patterns of
2 microbial activity in plant-associated soil

3

4 Alan W. Bowsher,^{a,b} Patrick J. Kearns,^{a,b*} Ashley Shade^{a,b,c,#}

5

6 ^aDepartment of Microbiology and Molecular Genetics, Michigan State University, East
7 Lansing, Michigan, USA

8 ^bPlant Resilience Institute, Michigan State University, East Lansing, Michigan, USA

9 ^cProgram in Ecology, Evolution, and Behavior, Michigan State University, East Lansing,
10 Michigan, USA and the DOE Great Lakes Bioenergy Research Center, Michigan State
11 University, East Lansing, Michigan, USA

12

13 Running Head: Comparing 16S ratios and active cell staining in soil

14

15 #Address correspondence to Dr. Ashley Shade, shadeash@msu.edu.

16 *Present address: Department of Biology, Tufts University, Medford, Massachusetts,
17 USA

18

19 **Abstract word count:** 249

20

21 **Article word count:** 4066 (excluding Materials and Methods, References, and figure
22 legends)

23

24 **Abstract**

25 At any given time, only a subset of microbial community members are active in
26 their environment. The others are in a state of dormancy with strongly reduced
27 metabolic rates. It is of interest to distinguish active and inactive microbial cells and taxa
28 to understand their functional contributions to ecosystem processes, and to understand
29 shifts in microbial activity in response to change. Of the methods used to assess
30 microbial activity-dormancy dynamics, 16S rRNA:rDNA amplicons (“16S ratios”) and
31 active cell staining with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) are two of the
32 most common, yet each method has limitations. Given that *in situ* activity-dormancy
33 dynamics are only proxied by laboratory methods, further study is needed to assess the
34 level of agreement and potential complementarity of these methods. We conducted two
35 experiments investigating microbial activity in plant-associated soils. First, we treated
36 corn field soil with phytohormones to simulate plant-soil stress signaling, and second,
37 we used rhizosphere soil from common bean plants exposed to drought or nutrient
38 enrichment. Overall, the 16S ratio and CTC methods exhibited similar patterns of
39 relative activity across treatments when treatment effects were large, and the instances
40 in which they differed could be attributed to changes in community size (e.g., cell death
41 or growth). Therefore, regardless of the method used to assess activity, we recommend
42 quantifying community size to inform ecological interpretation. Our results suggest that
43 the 16S ratio and CTC methods report comparable patterns of activity that can be
44 applied to observe ecological dynamics over time, space, or experimental treatment.

45

46 **Importance**

47 Although the majority of microorganisms in natural ecosystems are dormant,
48 relatively little is known about the dynamics of the active and dormant microbial pools
49 through both space and time. The limited knowledge of microbial activity-dormancy
50 dynamics is in part due to uncertainty in the methods currently used to quantify active
51 taxa. Here, we directly compared two of the most common methods (16S ratios and
52 active cell staining) for estimating microbial activity in plant-associated soil, and found
53 that they were largely in agreement in the overarching patterns. Our results suggest that
54 16S ratios and active cell staining provide complementary information for measuring
55 and interpreting microbial activity-dormancy dynamics in soils. They also support that
56 16S rRNA:rDNA ratios have comparative value and offer a high-throughput,
57 sequencing-based option for understanding relative changes in microbiome activity, as
58 long as this method is coupled with quantification of community size.

59

60 **Keywords:** 16S rRNA, 5-cyano-2,3-ditolyl tetrazolium chloride, dormancy, phantom
61 taxa

62

63

64

65

66

67

68

69

70 **Introduction**

71 Microbial activity plays a major role in processes that support life on Earth (1),
72 influencing global carbon and nutrient cycling (2, 3), atmospheric composition (4), and
73 ecosystem productivity (5). Given these global-scale functions, it is perhaps surprising
74 that active microbes (those that are growing or reproducing, or that respond relatively
75 quickly to substrate input) represent a small proportion of the total microbial community
76 (reviewed in (6)). In diverse ecosystems, the majority of the microbial community is
77 dormant, characterized by strongly reduced metabolic rates and slow response to
78 substrate input (6, 7). Although dormancy initiation and resuscitation have ecological
79 and evolutionary consequences (7–9) with implications for ecosystem function (10, 11),
80 we know little about the dynamics of active and dormant microbial pools through space
81 and time. Investigations of the causes and consequences of microbial activity-dormancy
82 dynamics are needed to better understand community structural and functional
83 resilience, and to better predict responses to global change (12).

84 The limited knowledge of microbial activity-dormancy dynamics is in part due to
85 uncertainty in the methods currently used to quantify active taxa (6). One of the most
86 common approaches is the use of 16S ribosomal rRNA sequencing. Given the relatively
87 short half-life of ribosomal RNA, the presence of 16S ribosomal transcripts (hereafter
88 “rRNA”) is generally assumed to indicate recent metabolic activity, and numerous
89 studies have used rRNA to characterize active communities (reviewed in (13)). Pairing
90 both 16S ribosomal (rRNA) and 16S ribosomal gene (rDNA) sequencing allows for
91 calculation of 16S rRNA:rDNA ratios (hereafter “16S ratios”), which attempts to
92 normalize rRNA levels by the abundance of that taxon in the community and quantify its

93 relative level of activity (9, 11, 14, 15). Taxa with 16S ratios greater than a given
94 threshold are considered ‘active’; most studies use a threshold of 1.0. (6, 9, 16).
95 However, using an arbitrary threshold to distinguish active from dormant taxa may be
96 problematic in diverse communities (13, 17), given that rRNA content or RNA:DNA
97 ratios and growth rate are not always correlated (18–22). Another challenge is the
98 occurrence of ‘phantom taxa’: taxa that are detected in rRNA but not rDNA sequences
99 (23), leading to a zero-denominator (and thus undefined) 16S ratio. Phantom taxa are
100 unexpected, since the presence of rRNA necessitates template rDNA; yet nearly 30% of
101 the OTUs detected in a recent study of atmospheric samples were phantoms (23).
102 Although these considerations have led researchers to suggest that 16S ratios may be
103 best interpreted as ‘potential microbial activity’, 16S ratios have nevertheless been used
104 to inform microbial activity-dormancy dynamics in a broad range of ecosystems (11, 14,
105 15, 23).

106 In addition to 16S RNA/DNA sequencing, a variety of other methods are currently
107 used for distinguishing active microbes. These include staining with tetrazolium salts
108 ((24) and references therein), stable isotope probing to quantify uptake of substrates or
109 water (25), and meta-transcriptomics to determine changes in functional gene
110 transcripts following experimental perturbation (26). Of these methods, active cell
111 staining, primarily with the activity stain 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), is
112 a common approach because it is economical and executable without specialized
113 equipment. Respiring cells convert CTC to an insoluble red fluorescent formazan
114 product that can be visualized by fluorescence microscopy (27). In addition, CTC
115 staining can be coupled with a DNA stain to compare active and total cell counts in a

116 microbial community, allowing for determination of percent activity (15, 28). Numerous
117 culture-dependent studies have shown that the CTC method is effective in
118 discriminating between active and inactive microbes (29–32) and between growth
119 phases (29, 30) and can track resuscitation following starvation (32). The CTC method
120 also can reveal subtle changes in activity while quantifying changes in the total number
121 of cells (active plus inactive) to provide context for interpreting the activity dynamics. For
122 example, in *Pseudomonas fluorescens* (32), only ~10% of cells were active after
123 starvation in phosphate-buffered saline. However, the number of CTC-positive cells
124 increased after a 5 h incubation with yeast extract, without a corresponding increase in
125 total cell number (32). This apparent resuscitation of cells from CTC-negative to CTC-
126 positive after nutrient addition showed that CTC staining is capable of discriminating
127 between active (high metabolic activity) and dormant (low metabolic activity) cells even
128 when doubling is not observed. Nevertheless, CTC can be toxic to some bacterial
129 species (24, 33), and not all actively respiring strains are able to take up the stain
130 efficiently (24, 28), potentially leading CTC staining to underestimate the true proportion
131 of active cells (34). Variability in the staining protocol (e.g., duration and concentration
132 of stain) also can have consequences for comparing percent activity across different
133 studies (29). Despite these limitations, CTC staining remains a popular method for
134 analyses of microbial activity in a broad range of environmental samples (7, 15, 28).

135 Although the 16S ratio method and the CTC staining method are both commonly
136 used in investigations of microbial activity, little work has been done to assess their level
137 of agreement. One of the few studies using both methods to assess microbial activity
138 found that the active portion of the community was between 1.5- and 5-fold higher when

139 using 16S ratios versus CTC staining in microcosms of estuarine water samples (15).
140 One potential reason is not only that the two methods present different biases as
141 described above, but that they measure two different things: the 16S ratio method is
142 used to assess whether a particular taxon is active, while the CTC staining method is
143 used to assess whether a given cell is active. Importantly, there are situations in which
144 we might expect the proportion of active taxa and the proportion of active cells to differ,
145 such as communities in which rare taxa are disproportionately active compared to
146 abundant taxa (15, 23, 35). Another potential discrepancy between the 16S ratio and
147 the CTC staining method is their respective definitions of 'active' versus 'inactive', since
148 RNA and DNA levels do not always correlate with respiration rates (36). Although these
149 two methods may not always produce similar values of microbial activity, both can
150 inform on fundamental and complementary aspects of microbial communities.

151 Here, our objectives were to explore factors underlying the calculation and
152 interpretation of 16S ratios, and to compare estimates of activity of microbial
153 communities using 16S ratios and CTC-based cell staining. We conducted two
154 experiments analyzing microbial activity in plant-associated soil. Given that plant-
155 associated soils are highly dynamic systems in which plants can influence microbial
156 community structure and function (37, 38), we considered plant-associated soil to be
157 particularly relevant for analyses of microbial activity. First, we conducted a microcosm
158 experiment using corn-associated soil, and treated the soil with phytohormones to
159 assess the impacts of common plant stress signals on soil microbial activity. Second,
160 we grew bean plants under either drought or nutrient-enriched conditions to more
161 directly assess the impacts of plant stress on soil microbial activity. Specifically, we

162 asked: 1) for 16S ratio-based studies, what is the extent of phantom taxa, and how does
163 the handling of these taxa influence estimates of microbial activity and patterns across
164 treatments? 2) How does the threshold for quantifying 'active' taxa influence patterns
165 across treatments? 3) How does 16S rRNA operon copy number impact the distribution
166 of 16S ratios within and across phyla? 4) Do 16S ratio and CTC methods produce
167 similar estimates and/or patterns of microbial activity across diverse soil treatments?

168

169 **Results and Discussion**

170 We conducted two experiments in plant-associated soils under a variety of
171 treatment conditions. In the first experiment, we collected soil from a long-term
172 agricultural research field in which corn (*Zea mays* L.) had been planted for eight
173 consecutive years. In the laboratory, we exposed the soil to several pre-treatments:
174 'pre-dry' (soil was sampled before any treatments were initiated), 'post-dry' (soil was
175 dried for three days and then sampled), and 'post-water' (soil was partially re-wetted,
176 allowed to acclimate for six days, and then sampled). Next, soil replicates were treated
177 with either abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), or
178 salicylic acid (SA), or water as a control, and sampled after 24 hours. Thus, the corn
179 experiment was designed to assess the impacts of several different abiotic/biotic
180 stresses including soil drying and re-wetting, as well as the application of common plant
181 stress phytohormones that can be exuded by plant roots under a variety of stress
182 conditions (39). In the second experiment, we grew common bean (*Phaseolus vulgaris*
183 L. cv. Red Hawk) in agricultural field soil in a controlled-environment growth chamber.
184 Replicate plants were exposed to either drought (water-withholding), nutrient

185 enrichment (additional fertilizer), or control conditions, then rhizosphere soils were
186 sampled after five weeks. Thus, this experiment was designed to more directly assess
187 the impacts of plant stress on analyses of soil microbial activity in plant-associated soil.
188 Overall, we anticipated that the differential treatments within and across experiments, as
189 well as the presence of actively growing plants continuously providing carbon to the soil
190 microbial communities in the bean but not the corn soil study, would inform on the broad
191 applicability of the 16S and CTC staining methods for comparing microbial activity.

192

193 *Detection and treatment of ‘phantom taxa’*

194 A necessary prerequisite for assessing microbial activity from 16S ratios is
195 determining how to handle ‘phantom taxa’: OTUs that are detected in the RNA but not
196 the DNA community of a given sample (23). Phantom taxa can occur for both biological
197 and methodological reasons, such as sampling stochasticity of the “rare biosphere”
198 when rare taxa exhibit disproportionately high activity (23). In addition, different methods
199 of RNA versus DNA extraction, or biases such as the reverse transcription of RNA (but
200 not DNA) could contribute (40). Finally, heterogeneity between the soil aliquots used for
201 RNA versus DNA extraction could lead to different community profiles in the two
202 extractions, and therefore lead to phantom taxa (in the present study, soil was mixed
203 prior to DNA/RNA extractions to reduce this bias). Regardless of the mechanism of their
204 occurrence, phantom taxa cannot be avoided when using 16S ratios.

205 Phantom taxa are problematic because they produce undefined 16S RNA:DNA
206 ratios due to a denominator of zero, and, without care, could be automatically deleted
207 from the dataset. Therefore, we assessed the prevalence of phantom taxa (taxa with

208 RNA reads > 0 and DNA reads = 0 in a given sample) in both the corn and bean soil
209 datasets. We also assessed the prevalence of 'singleton' phantom taxa (taxa with RNA
210 reads = 1 and DNA reads = 0 in a given sample), given that such taxa are particularly
211 ambiguous in terms of activity. We repeated these analyses across a range of
212 sequencing depths, given that sampling stochasticity can play a role in driving the
213 occurrence of phantom taxa (23). Across a range of subsampling levels, we found that
214 phantom taxa comprised 6-62% of the total OTUs in the corn soil dataset, and 17-41%
215 of the total OTUs in the bean soil dataset (Fig. S1A and B, Fig. S2A and B). Similarly,
216 'singleton' phantom taxa were fairly common (1-38% and 4-27% of the total OTUs in the
217 corn and bean soil datasets, respectively) (Fig. S1C and D, Fig. S2C and D). The
218 reader should note that the sample size for each treatment generally decreased as
219 sequencing depth increased because samples were excluded when their total read
220 count was less than a given sequencing depth.

221 Given the prevalence of phantom taxa, our next aim was to establish how to
222 handle phantom taxa for calculation of 16S ratios. We compared four different methods
223 for calculating 16S ratios in the presence of phantom taxa, referred to here as Methods
224 1, 2, 3, and 4 for simplicity (Fig. 1). In both the corn and the bean soil datasets, all four
225 methods for calculating 16S ratios produced similar patterns across treatments (Fig. 2A
226 and B). In corn soil, percent activity decreased from the pre-dry to the post-dry
227 treatment, then increased from the post-dry to the post-water treatment (Fig. 2A). In
228 addition, although increasing the threshold 16S ratio for defining taxa as 'active'
229 generally reduced the magnitude of treatment effects on microbial activity, the large
230 impact of the post-water treatment was apparent even at a threshold of five. Similar

231 analyses have been performed in other studies (11), which suggest that even
232 conservative ratio thresholds provide access to observing consistent ecological
233 patterns. On the other hand, although percent activity in the bean experiment was
234 generally higher in the control than the drought or nutrient treatments across Methods 1-
235 4, the magnitude of this difference decreased as threshold increased (Fig. 2B).
236 Differences among treatments disappeared when compared at a threshold 16S ratio of
237 five, indicating a relatively narrow window for capturing differences in microbial activity
238 in the bean experiment. A recent review suggests that most studies use a threshold 16S
239 ratio between 0.5-2 to determine active taxa (6), indicating that a threshold of five may
240 simply provide an overly-conservative view of activity in microbial communities.

241

242 *Weak relationship between 16S ratio and number of ribosomal operons in genomes*

243 One consideration of using 16S ratios to estimate the proportion of active taxa
244 community is the variability in copy numbers of the 16S rRNA operon across genomes
245 of different taxa. 16S rRNA operon copy numbers can affect patterns of beta diversity in
246 community structure (41) and can vary substantially between lineages (42). For
247 example, lineages with many 16S operons (e.g. Firmicutes) may have lower 16S ratios
248 because their abundance is overestimated by redundant reads in 16S rDNA data. To
249 address this, we examined the relationship between the 16S ratio and the average
250 number of ribosomal operons within phyla for all detected OTUs (Fig. 3). Although 16S
251 ratios and average 16S rRNA operon count at the phylum level were correlated in both
252 corn ($r = -0.069, p < 0.0001$) (Fig. 3A) and bean ($r = -0.017, p = 0.0001$) (Fig. 3B) soil,
253 these correlations were weak, to the point of being inconsequential for the interpretation

254 of overarching patterns at the community level. In addition, across all operon counts,
255 16S ratios had similar ranges (Fig. 3). Recent work has advised against correcting for
256 16S rRNA operon counts in 16S rRNA gene surveys of microbial community structure,
257 especially in taxa that are divergent from cultured representatives (41). Our results
258 additionally suggest that accounting for 16S operon number will likely have little effect
259 on activity estimates in 16S ratio analyses.

260

261 *CTC staining and 16S RNA:DNA capture complementary patterns of activity across*
262 *treatments*

263 Our final aim was to assess the level of agreement between the 16S ratio and
264 the CTC method (Fig. 4). Across all treatments and between both methods, estimates of
265 percent activity (i.e., between 10 and 60% of cells/taxa active) are similar to values
266 reported in the literature for soil (7). Though, as expected for the reasons discussed in
267 the introduction, the two methods did not agree in their absolute values of percent
268 activity, their overarching patterns across treatments were largely consistent,
269 suggesting that either method is appropriate for assessing overarching patterns in
270 community activity (e.g., across time, space, or experimental treatments). The CTC
271 method consistently resulted in higher estimates of activity than the 16S ratio method.

272 In bean rhizosphere soil, the CTC method and the 16S ratio method produced
273 identical patterns of percent activity across treatments (Fig. 4B and D). Using both
274 methods, the drought and the nutrient addition treatments exhibited lower percent
275 activity compared to the control treatment, although the magnitude of this difference
276 was less using the 16S ratio method than the CTC method. In corn-associated soil, both

277 the CTC staining method and the 16S ratio method revealed similar patterns in
278 response to corn soil drying and wetting: percent activity declined from the ‘pre-dry’ to
279 the ‘post-dry’ treatment, and increased in response to the ‘post-water’ treatment.
280 Together with the bean rhizosphere experiment, these results suggest that both
281 methods are consistent in detecting relative activity changes when there are large
282 treatment effects.

283 In the corn soil, there were method differences in activity relative to the “post-
284 water” and control treatments (Fig. 4A and C). Using the CTC method, percent activity
285 increased in response to phytohormones compared to the ‘post-water’ treatment, but
286 did not change in response to the ‘control’ treatment (i.e., water alone) (Fig. 4A). Using
287 the 16S ratio method, percent activity decreased in response to phytohormones as well
288 as in the water control, compared to the ‘post-water’ treatment (Fig. 4C). For these
289 subtle activity changes observed post-water in the corn-associated soil, the differences
290 between the 16S ratio and CTC methods could be explained by the shifts in community
291 sizes across treatments. Though CTC percent activity did not change post-water to
292 control, raw cell counts measured by Syto24 aid in interpretation. CTC counts (i.e., the
293 number of active cells) and Syto24 counts (i.e., the total number of cells regardless of
294 activity) both decreased to a similar extent from the ‘post-water’ to the ‘control’
295 treatment (20.3% decrease versus 19.7% decrease, respectively) (Fig. S3A and C),
296 resulting in no change in percent activity despite the decrease in community size. The
297 drop in the proportion of active OTUs by the 16S ratio but not the proportion of cells by
298 CTC from post-water to control is likely due to cell death and resultant changes in
299 community size that is not accounted for when using 16S ratios (and could be

300 exacerbated by the contributions of DNA from recently dead cells to the denominator).
301 Similarly, CTC counts were slightly lower in the phytohormone treatments compared to
302 the control (average difference of 2.9%), but Syto24 counts were much lower in the
303 phytohormone treatments compared to the control (average difference of 14.0%) (Fig.
304 S3A and C), which explains the increased percent CTC activity in phytohormones
305 versus control. However, despite the decrease in community size (i.e. cell death)
306 between phytohormones and control (Fig. S3C), percent activity using the 16S ratio
307 method did not differ between phytohormones and control, potentially highlighting the
308 different metrics reported by the CTC (percent of cells that are active) and the 16S ratio
309 methods (percent of taxa that are active). Overall, there is immense value added by
310 measuring changes community size when interpreting changes in activity, regardless of
311 the method applied. Future studies using the 16S ratio method for assessing activity
312 dynamics should consider using cell counting or an equivalent method for
313 approximating community size (e.g. qPCR) coupled with propidium monoazide
314 treatment to block amplification of DNA from dead/dying cells (e.g. (43)).

315 Intense disturbances can result in cell death, and for these events it is expected
316 that changes in percent activity could mirror changes in microbial community size (total
317 number of cells). Examples of such disturbances include those in present study
318 (desiccation and phytohormone exposure), antibiotic treatment, oxygen depletion,
319 exposure to predators or phage, and irradiation. There are also disturbances that may
320 be expected to stress cells and alter phenotypes, but not to cull a significant proportion
321 of the community. Therefore, the ecological context is of paramount importance for

322 interpreting activity dynamics, and measurements of community size can inform as to
323 the outcomes of disturbance in situations that have unclear expectations *a priori*.

324

325 *Considerations of the 16S ratio and CTC staining methods*

326 An important consideration of this work is that both the 16S ratio and CTC
327 methods have distinct biases that can influence percent activity estimates. A number of
328 issues have been highlighted for analysis of activity with 16S ratios (13, 17, 44, 45),
329 including the presence of dead cells and extracellular DNA, variations in sequencing
330 depth, and molecular methodology (PCR biases). Another issue is the inconsistent
331 relationships between rRNA and growth rate described above, and the finding that
332 cellular rRNA can actually increase in the transition from the vegetative to dormant state
333 for some taxa (46). Although CTC staining avoids many of these assumptions, it has its
334 own unique biases. For example, CTC staining in the present study excluded obligate
335 anaerobes, potentially underestimating percent activity. In addition, CTC staining
336 assumes that all (or a representative subsample) of the cells are extracted from the soil,
337 an assumption that may or may not be true (47). Finally, because extraction and CTC
338 staining can last for up to 24 hours, artefacts such as cell death or changes in
339 respiration rates could occur. Numerous methods exist to estimate microbial activity in
340 soil, each with a unique set of advantages and limitations (reviewed in (6)).

341 Another consideration of our analysis is the inability of the methods used here to
342 account for extracellular DNA and dead cells in soil. Extracellular DNA (48, 49) and
343 necromass (50) are common, and can cause 16S ratios to underestimate percent
344 activity (44). Similarly, although our flow cytometry size gating likely excludes

345 extracellular DNA by removing particles < 1 μ m, intact dead cells would be included in
346 the 'total cell count' calculated by Syto24 staining, thereby underestimating percent
347 activity. Although our study was not designed to allow determination of extracellular
348 DNA or dead cell abundance, we note that plant-associated soils are generally
349 assumed to be areas of high metabolic activity. Thus, we might expect relic nucleic
350 acids or dead cells to turn over quickly, limiting their confounding effects in the present
351 study. Our data support the rapid turnover of dead cells, given that the control (water)
352 and phytohormone treatments in the corn soil experiment, which lasted only 24 hours,
353 led to significant decreases in total cell counts (Fig. S3C). It should also be noted that,
354 in the corn soil experiment, soils were frozen prior to activity analyses, potentially
355 increasing the number of dead cells and artificially reducing percent activity. We
356 suggest this impact was minimal, given that percent activity was relatively high
357 compared to previous estimates in soil (7). Nevertheless, we suggest that combining the
358 16S ratio and CTC/Syto24 approach with a stain specific to extracellular DNA and
359 dead/dying cells, such as propidium iodide, would clarify the impact of these pools (51).

360 As described above, the dynamic range of the CTC method is expected to be
361 high: over 90% of cells have been reported as CTC-positive in pure cultures in
362 exponential growth phase (31), while less than 10% are CTC-positive when dormancy is
363 induced by overnight starvation conditions (32). Our findings suggest that the CTC
364 staining method is potentially more sensitive than the 16S ratio method and may be
365 more appropriate for detecting subtle activity changes. For example, the CTC staining
366 method detected larger shifts in percent activity than the 16S ratio method in response
367 to the drying (46.1% decrease versus 8.8% decrease, respectively) and re-wetting

368 treatments (43.8% increase versus 27.3% increase, respectively) in corn-associated soil
369 (Fig. 4A and C), and in response to the drought (23.1% decrease versus 5.8%
370 decrease, respectively) and nutrient addition treatments (27.6% decrease versus 5.5%
371 decrease, respectively) in bean soil (Fig. 4B and D). Similarly, the CTC method
372 detected significantly higher percent activity in all phytohormone treatments relative to
373 the control, while the 16S ratio method did not detect a difference between the control
374 and phytohormone treatments (Fig. 4A and C). On the other hand, the 16S ratio method
375 detected a much larger difference from the post-water to the control (i.e., water added)
376 treatment (16.0% decrease versus 0.3% decrease, respectively) (Fig. 4A and C).
377 Altogether, these shifts in percent activity across treatments are in the range of those
378 reported in the literature. For example, a study using the CTC staining method to
379 assess microbial communities on sandstone found that percent activity values dropped
380 from 60% to 20% after two days of drying at low relative humidity (30), similar to the
381 shift in CTC staining in response to soil drying in the present study (Fig. 4A). However,
382 further study is needed to assess the lower limit of detection of the two methods for
383 diverse taxa and inform on their ability to capture more subtle changes in percent
384 activity.

385

386 *Conclusions*

387 Overall, our results provide insight into the estimation of microbial activity using
388 two common methods: 16S ratios and CTC staining. Although phantom taxa were
389 common, patterns in percent activity across treatments were largely unaffected by the
390 method used to account for such taxa. We also found that 16S ratios were only weakly

391 correlated with ribosomal operon number, suggesting that accounting for operon
392 number has little effect on activity estimates in 16S ratio analyses. Lastly, both the 16S
393 ratio and CTC methods exhibited similar patterns of percent activity across treatments,
394 and the instances in which they differed can largely be explained by changes in
395 community size. We conclude that quantification of community size is essential for
396 interpreting activity dynamics. Coupled with quantification of community size, the two
397 methods provide comparable assessments of relative changes in microbial activity.

398

399

400 **Materials and Methods**

401 We conducted two separate experiments ('corn-associated soil' and 'bean
402 rhizosphere soil'), with varying stress treatments in each experiment. For clarity, we first
403 present the methods specific to each experiment, and then present the methods shared
404 between experiments.

405

406 *Corn-associated soil: experimental design, sample collection, and preparation for
407 sequencing*

408 In the first experiment, topsoil was collected on August 21, 2017 from the AGR-
409 Corn treatment of the Great Lakes Bioenergy Resource Center Scale-Up Experiment
410 located near the Kellogg Biological Station, Hickory Corners, MI. Corn has been planted
411 annually at that site since 2010. Replicate soil cores (to a depth of 10 cm) were
412 collected < 30 cm from the stalk of corn plants (corn roots were present in the cores)
413 using a 2.5 cm diameter steel corer, transported to the laboratory on ice, sieved and

414 homogenized. Three replicate soil aliquots were weighed, dried for 72 hours at 70°C,
415 then re-weighed to determine soil percent moisture (mean 8.6% \pm 0.3% standard
416 deviation), and the remaining soil was stored at 4°C until use. Soil composition was
417 56.1% sand, 26.9% silt, and 17% clay as assessed by standard protocols of the
418 Michigan State University Soil and Plant Nutrient Laboratory.

419 Broadly, the experimental design consisted of several pre-treatments: 'pre-dry'
420 (soil was sampled before any treatments were initiated), 'post-dry' (soil was dried and
421 then sampled), and 'post-water' (soil was partially re-wetted and then sampled), before
422 exposing soils to one of five treatments: application of the phytohormones abscisic acid
423 (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA) or salicylic acid (SA), or water
424 control. On April 2, 2018, five replicates (30 g each) of the sieved and homogenized soil
425 was retrieved from 4°C storage and frozen at -80°C for DNA/RNA extractions (i.e., the
426 'pre-dry' treatment). The remaining soil was dried for 72 hours at 45°C, at which point
427 another five replicates (30 g each) were stored at -80°C (i.e., the 'post-dry' treatment).
428 The remaining dried soil was split into 50 mL conical tubes (30 g of dry soil each), and
429 each tube received water to achieve 4.3% percent soil moisture (half of the initial 8.6%
430 percent soil moisture). This initial wetting step was included to isolate potential
431 responses to phytohormones from the known response to moisture ((10) and references
432 therein). Tubes were vigorously mixed and any clumps broken up with a sterile pipet.
433 Tubes were incubated at room temperature for six days, then five replicates were frozen
434 at -80°C (i.e., the 'post-water' treatment). The remaining tubes were then randomly
435 assigned to one of five treatments: IAA, JA, ABA, SA, or water control. Five replicate
436 tubes received 1.12 mL of the appropriate 0.22 μ m filter-sterilized phytohormone

437 dissolved in water at a concentration of 1 mM, while the control tubes received filter-
438 sterilized water alone. Thus, these treatments restored all tubes to the initial 8.6%
439 percent soil moisture. Tubes were vigorously mixed and clumps broken up with a sterile
440 pipet. After 24 hours, the soil samples were frozen at -80°C.

441 DNA was extracted from ~0.23 g soil samples using the Qiagen PowerSoil kit
442 following the manufacturers recommendations, while RNA was extracted from a
443 protocol modified from (11, 52). Briefly, up to 0.5 g of soil was added to 200 µL of
444 autoclaved PBL buffer (5 mM Na₂-EDTA, 0.1% w/v sodium docecy1 sulfate, and 5 mM
445 Tris-HCl; pH ~3), vortexed for 1 minute, then 1 mL of phenol:chloroform:isoamyl alcohol
446 (25:24:1 v/v/v, pH 8) was added. Samples were vortexed for 15 min, then centrifuged
447 for 5 min at 20,000 x g. The upper (i.e., aqueous) layer was collected, added to 1 mL
448 isopropanol, and vortexed. Samples were centrifuged for 15 min at 20,000 x g, and the
449 supernatant was carefully removed. Tubes were air dried for 15 minutes, then
450 resuspended in 50 µL of sterile water. Resuspended RNA extracts were cleaned using
451 the OneStep PCR Inhibitor Removal kit (Zymo Research, Irvine, CA).

452

453 *Bean rhizosphere soil: experimental design, sample collection, and preparation for*
454 *sequencing*

455 In the second experiment, we planted 24 one-gallon pots with the common bean,
456 *Phaseolus vulgaris* L. (var. Red Hawk), in local Michigan field soil in a controlled-
457 environment growth chamber (BioChambers FXC-19). Soil composition was 73.7%
458 sand, 14.9% silt, and 11.4% clay. Plants received 16 h light and 8 h dark photoperiod,
459 with a daytime temperature of 29°C and a nighttime temperature of 20°C. Eight replicate

460 plants received ample water throughout the course of the experiment and served as
461 controls. Eight additional replicates received ample water with the addition of nutrients
462 (half-strength Hoagland solution; (53)) and an additional eight replicates were subjected
463 to continuous drought, receiving 66% less water than control pots throughout the
464 experiment. Plants were grown to the R8 stage (~5 weeks) before harvesting
465 rhizosphere soils. Rhizosphere soil was collected in sterile Whirl-Pak bags by uprooting
466 the plants and shaking loose soil from the root system. Any remaining soil adhering to
467 the roots was considered rhizosphere soil. Two rhizosphere soil samples (5 g each) per
468 plant were collected and immediately processed for active and total cell counts (see
469 further detail below), while the remaining rhizosphere soil was frozen at -80°C for
470 RNA/DNA extraction. For each plant, DNA was extracted from ~0.3 g of rhizosphere soil
471 using the DNeasy Powersoil kit (Qiagen, Carlsbad, CA, USA, while RNA was extracted
472 from ~2.3 g of rhizosphere soil using the RNeasy Powersoil kit, following manufacturer's
473 instructions.

474

475 *Corn and bean soil: microbial cell extraction and active and total cell counts*

476 For both corn and bean soils, microbial cells were extracted following a protocol
477 adapted from (54), and stained for determination of active and total cell counts. Briefly,
478 soil subsamples (10 g per sample in the corn soil experiment, and two technical
479 replicates of 5 g each in the bean soil experiment) was mixed with 100 ml of chilled
480 sterile phosphate buffered saline containing 0.5% Tween-20 (PBST). Soil samples were
481 homogenized in a Waring blender (Conair Corporation, East Windsor Township, NJ,
482 USA) three times for one minute and kept on ice between each blending cycle. Soil

483 slurries were centrifuged at 1,000 $\times g$ for 15 minutes and the supernatant was set aside.
484 The pelleted soil was resuspended in 100 ml PBST and blended for an additional
485 minute and re-centrifuged. The supernatants were pooled and centrifuged at 10,000 $\times g$
486 for 30 min. The supernatant was aspirated and the pellet was resuspended in sterile
487 Milli-Q water (20 mL in the corn soil experiment, and 10 mL in the bean soil
488 experiment). Cells were stained for percent activity determination using the BacLight
489 RedoxSensor CTC Vitality kit (ThermoFisher Scientific, Waltham, MA, USA). Briefly,
490 one milliliter of cells was stained with 0.38 μ l of the DNA stain Syto24 and 5 mM of the
491 activity stain 5-cyano-2,3-ditolyl tetrazolium chloride (CTC; active community) for 24
492 hours. Stained cells were fixed with 100 μ l of 37% formaldehyde and cell counts were
493 measured on a BD C6 Accuri Flow Cytometer (Franklin Lakes, NJ, USA), defining a cell
494 as a fluorescence event greater than 10^3 on a 490/515 nm filter for Syto24 and 450/630
495 nm filter for CTC. Following recommendations by the Michigan State University Flow
496 Cytometry Core, we gated measurements by side scatter values <500 which removed
497 particles $<1 \mu\text{m}$ from our measurements.

498 We calculated the percentage of active cells by dividing CTC counts by Syto24
499 counts. For each sample in the corn soil experiment, we used a single 10 g sample of
500 soil for microbial cell extraction that was then split into two technical replicates for
501 staining: these two replicates per sample were averaged prior to subsequent analyses
502 to avoid pseudoreplication. For each plant in the bean experiment, we used two
503 replicate 5 g soil samples to give two technical replicate microbial cell extractions. Each
504 of these was then split into three technical replicates for staining. These six replicates
505 per plant were averaged prior to subsequent analyses to avoid pseudoreplication.

506

507 *Corn and bean soil: 16S rRNA gene amplicon sequencing*

508 For both the corn and bean soil experiments, we first verified no DNA
509 contamination in the RNA samples using PCR with 16S primers (55, 56) followed by gel
510 electrophoresis. Next, 3 μ l of RNA from each RNA sample was reverse transcribed
511 using the SuperScript RT III kit (Invitrogen) following the protocol for random hexamers.
512 Nucleic acid concentrations were measured with the Qubit broad-range DNA assay kit
513 (ThermoFisher, Waltham, MA, USA). DNA and cDNA from the bean experiment were
514 diluted to 5ng μ l $^{-1}$ (but were left undiluted in the corn soil experiment) prior to submitting
515 for sequencing at the Michigan State Genomics Core. cDNA and DNA from both the
516 corn and bean soil experiments were sequenced by the Michigan State University
517 Genomics Core using the dual-indexed primer pair 515F and 806R (56). Samples were
518 prepared for sequencing by the MSU Genomics Core including PCR amplification and
519 library preparation using the Illumina TruSeq Nano DNA Library Preparation Kit. Paired-
520 end, 250bp reads were generated on an Illumina MiSeq and the Genomics Core
521 provided standard Illumina quality control, adaptor and barcode trimming, and sample
522 demultiplexing.

523

524 *Corn and bean soil: bioinformatic and statistical analyses*

525 The corn and bean soil sequencing datasets were analyzed separately. For each
526 dataset, raw reads were merged, quality filtered, dereplicated, and clustered into 97%
527 identity operational taxonomic units (OTUs) using the UPARSE pipeline (57).
528 Taxonomic annotations for OTU representative sequences were assigned in the mothur

529 (58) environment using the SILVA rRNA database release 132 (59). OTUs with
530 unassigned taxonomy at the phylum level, and OTUs annotated as mitochondria,
531 chloroplasts, or Eukaryota, were removed. All subsequent analyses were performed in
532 R (version 3.5.0; (60)), with ecological statistics performed using phyloseq (version
533 1.24.0 (61)). Data were visualized using a combination of the R packages ggplot2
534 (version 2.2.1; (62)), reshape2 (version 1.4.3; (63)), ggpubr (version 0.1.6; (64)), and
535 gridExtra (version 2.3; (65)), and dplyr (version 0.7.5; (66)) was used for data
536 summaries.

537 First, we examined the prevalence of 'phantom taxa' (i.e. OTUs with detectable
538 RNA reads but no detectable DNA reads; (23)) in the corn and bean soil datasets. We
539 calculated the average percent of OTUs that are phantom taxa in each treatment, as
540 well as the average percent of OTUs with a single RNA read and no detectable DNA
541 reads in each treatment. We conducted these analyses across a range of subsampling
542 levels (using a step-size of 5000 reads per sample) to examine the influence of
543 sequencing depth on the prevalence of phantom taxa, and used the loess smoothing
544 function (67) to generate best fit lines and confidence intervals. Given the relatively low
545 impact of subsampling level on the occurrence of phantom taxa, all subsequent
546 analyses were conducted on samples rarefied to the minimum sampling depth in each
547 dataset (22,556 reads per sample for corn soil, and 37,815 reads per sample for bean
548 soil).

549 Given the prevalence and persistence (i.e., their high collective contributions
550 regardless of sampling effort) of phantom taxa in our sequencing datasets, we next
551 compared four different methods for calculating 16S ratios in the presence of phantom

552 taxa. See Fig. 2 for a detailed illustration of the four methods, referred to here as
553 Methods 1, 2, 3, and 4 for simplicity. In Method 1, each phantom taxon in each sample
554 is set to a 16S ratio of 100 to designate such taxa as ‘active’ regardless of the threshold
555 16S ratio activity level chosen, since most studies choose a threshold ratio less than 10
556 to designate taxa as ‘active’ (6, 9, 11). In addition, Method 1 sets each taxon in each
557 sample with no detectable reads (those with zero reads in both the RNA and the DNA
558 datasets) to a value of zero, thereby eliminating undefined 16S ratios which arise due to
559 a denominator of zero. In Method 2, every instance in which zero DNA reads are
560 detected for a given OTU in a given sample is changed to a value of one to eliminate
561 zeros in the denominator. In Method 3, previously used by (11), a value of one is added
562 to every OTU in every sample in the DNA dataset. This method is meant to eliminate
563 zeros in the denominator (as with Method 2), but also to treat every entry in the DNA
564 dataset exactly the same. In Method 4, previously used by (14), a value of one is added
565 to every OTU in every sample in both the RNA and the DNA datasets. As with Methods
566 2 and 3, this method is meant to eliminate zeros in the denominator, but also to treat
567 every entry in the entire dataset (both RNA and DNA reads) exactly the same. We
568 compared the resulting percent activity of the OTUs after using Methods 1-4 in both the
569 corn and bean soil datasets, using threshold 16S ratios of 1, 2, and 5 for determination
570 of ‘active’ versus ‘inactive’ OTUs. Given that Methods 1-4 captured similar patterns in
571 percent activity across treatments, we conducted all subsequent analyses using the
572 recently published Method 3 (11) to calculate 16S ratios.

573 Next, we examined the relationship between the average number of 16S
574 ribosomal operons per genome for each phylum, obtained from the Ribosomal RNA
575 Database (version 5.4; (42, 68, 69)), and the observed 16S ratios in the present study.

576 Finally, we compared estimates and across-treatment patterns of microbial
577 activity using the 16S ratio (threshold > 1) method to calculate the percentage of active
578 taxa, versus using the cell staining method (CTC counts divided by Syto24 counts) to
579 calculate the percentage of active cells. We also examined both active (CTC) and total
580 (Syto24) counts across treatments to explore the influence these two values have on
581 the percentage of active cells as calculated by the CTC/Syto24 ratio. Differences among
582 treatments were assessed using ANOVA followed by a Tukey post-hoc test for multiple
583 comparisons. All bioinformatic workflows and custom scripts are available on GitHub
584 (https://github.com/ShadeLab/PAPER_Bowsher_mSystems_2019_16sRatio_CTCstain)
585 .

586

587 *Accession number(s).*

588 Corn and bean soil sequencing data were submitted to the NCBI Sequence Read
589 Archive under BioProject accession numbers PRJNA490178 and PRJNA454289,
590 respectively.

591

592 **Acknowledgements**

593 We would like to thank Jackson Sorensen, John Chodkowski, and Louis King for
594 assistance and troubleshooting of flow cytometry methods and the Sheng Yang He lab
595 for use of their flow cytometer.

596

597 **Funding**

598 This work was supported in part by the Michigan State University Plant Resilience
599 Institute, the National Science Foundation under grants DEB #1655425, DEB #
600 #1749544, and MCB # #1817377, the USDA National Institute of Food and Agriculture,
601 and Michigan State University through computational resources provided by the Institute
602 for Cyber-Enabled Research. In addition, support for this research was provided by the
603 U.S. Department of Energy, Office of Science, Office of Biological and Environmental
604 Research (Awards DE-SC0018409 and DE-FC02-07ER64494), by the National Science
605 Foundation Long-term Ecological Research Program (DEB 1637653) at the Kellogg
606 Biological Station, and by Michigan State University AgBioResearch.

607

608 **Author Contribution**

609 PJK and AS designed the experiments and PJK performed them. AB, PJK, and AS
610 analyzed the data. AB wrote the paper, and all authors contributed to revisions.

611

612 **Conflict of interest statement**

613 The authors declare no conflict of interest.

614

615 **References**

- 616 1. Falkowski PG, Fenchel T, Delong EF. 2011. The microbial engines that drive
617 Earth's biogeochemical cycles. *Science* (80-) 320:1034–1039.
- 618 2. Arrigo KR. 2005. Marine microorganisms and global nutrient cycles. *Nature*

619 437:349–356.

620 3. Bardgett RD, Freeman C, Ostle NJ. 2008. Microbial contributions to climate
621 change through carbon cycle feedbacks. *ISME J* 2:805–814.

622 4. Singh BK, Bardgett RD, Smith P, Reay DS. 2010. Microorganisms and climate
623 change: terrestrial feedbacks and mitigation options. *Nat Rev Microbiol* 8:779–
624 790.

625 5. van der Heijden MGA, Bardgett RD, van Straalen NM. 2008. The unseen majority:
626 soil microbes as drivers of plant diversity and productivity in terrestrial
627 ecosystems. *Ecol Lett* 11:296–310.

628 6. Blagodatskaya E, Kuzyakov Y. 2013. Active microorganisms in soil: Critical
629 review of estimation criteria and approaches. *Soil Biol Biochem* 67:192–211.

630 7. Lennon JT, Jones SE. 2011. Microbial seed banks: The ecological and
631 evolutionary implications of dormancy. *Nat Rev Microbiol* 9:119–130.

632 8. Shoemaker WR, Lennon JT. 2018. Evolution with a seed bank: The population
633 genetic consequences of microbial dormancy. *Evol Appl* 11:60–75.

634 9. Jones SE, Lennon JT. 2010. Dormancy contributes to the maintenance of
635 microbial diversity. *Proc Natl Acad Sci* 107:5881–5886.

636 10. Aanderud ZT, Jones SE, Fierer N, Lennon JT. 2015. Resuscitation of the rare
637 biosphere contributes to pulses of ecosystem activity. *Front Microbiol* 6:1–11.

638 11. Kearns PJ, Angell JH, Howard EM, Deegan LA, Stanley RHR, Bowen JL. 2016.
639 Nutrient enrichment induces dormancy and decreases diversity of active bacteria
640 in salt marsh sediments. *Nat Commun* 7:1–9.

641 12. Wang G, Mayes MA, Gu L, Schadt CW. 2014. Representation of dormant and

642 active microbial dynamics for ecosystem modeling. *PLoS One* 9.

643 13. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. 2013. Evaluating rRNA as an
644 indicator of microbial activity in environmental communities: limitations and uses.
645 *ISME J* 7:2061–2068.

646 14. Denef VJ, Fujimoto M, Berry MA, Schmidt ML. 2016. Seasonal succession leads
647 to habitat-dependent differentiation in ribosomal RNA:DNA ratios among
648 freshwater lake bacteria. *Front Microbiol* 7:1–13.

649 15. Franklin RB, Luria C, Ozaki LS, Bukaveckas PA. 2013. Community composition
650 and activity state of estuarine bacterioplankton assessed using differential
651 staining and metagenomic analysis of 16S rDNA and rRNA. *Aquat Microb Ecol*
652 69:247–261.

653 16. Aanderud ZT, Vert JC, Lennon JT, Magnusson TW, Breakwell DP, Harker AR.
654 2016. Bacterial dormancy is more prevalent in freshwater than hypersaline lakes.
655 *Front Microbiol* 7:1–13.

656 17. Steven B, Hesse C, Soghigian J, Gallegos-Graves LV, Dunbar J. 2017. Simulated
657 rRNA/DNA ratios show potential to misclassify active populations as dormant.
658 *Appl Environ Microbiol* 83:1–11.

659 18. Schaechter M, Maaloe O, Kjeldgaard NO. 1958. Dependency on medium and
660 temperature of cell size and chemical composition during balanced growth of
661 *Salmonella typhimurium*. *J Gen Microbiol* 19:592–606.

662 19. Kemp PF, Lee S, LaRoche J. 1993. Estimating the growth rate of slowly growing
663 marine bacteria from RNA content. *Appl Environ Microbiol* 59:2594–2601.

664 20. Rosset R, Julien J, Monier R. 1966. Ribonucleic acid composition of bacteria as a

665 function of growth rate. *J Mol Biol* 18:308–320.

666 21. Lepp PW, Schmidt TM. 1998. Nucleic acid content of *Synechococcus* spp. during
667 growth in continuous light and light/dark cycles. *Arch Microbiol* 170:201–207.

668 22. Binder BJ, Liu YC. 1998. Growth rate regulation of rRNA content of a marine
669 *Synechococcus* (cyanobacterium) strain. *Appl Environ Microbiol* 64:3346–3351.

670 23. Klein AM, Bohannan BJM, Jaffe DA, Levin DA, Green JL. 2016. Molecular
671 evidence for metabolically active bacteria in the atmosphere. *Front Microbiol* 7:1–
672 11.

673 24. Hatzinger PB, Palmer P, Smith RL, Penarrieta CT, Yoshinari T. 2003. Applicability
674 of tetrazolium salts for the measurement of respiratory activity and viability of
675 groundwater bacteria. *J Microbiol Methods* 52:47–58.

676 25. Coyotzi S, Pratscher J, Murrell JC, Neufeld JD. 2016. Targeted metagenomics of
677 active microbial populations with stable-isotope probing. *Curr Opin Biotechnol*
678 41:1–8.

679 26. Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan LK, Meng J, Durham
680 BP, Shen C, Varaljay VA, Smith CB, Yager PL, Hopkinson BM. 2013. Sizing up
681 metatranscriptomics. *ISME J* 7:237–243.

682 27. Stellmach J. 1984. Fluorescent redox dyes I. Production of fluorescent formazan
683 by unstimulated and phorbol ester- or digitonin-stimulated Ehrlich ascites tumor
684 cells. *Histochemistry* 80:137–143.

685 28. Yamaguchi N, Nasu M. 1997. Flow cytometric analysis of bacterial respiratory and
686 enzymatic activity in the natural aquatic environment. *J Appl Microbiol* 83:43–52.

687 29. Creach V, Baudoux A-C, Bertru G, Le Rouzic B. 2003. Direct estimate of active

688 bacteria: CTC use and limitations. *J Microbiol Methods* 52:19–28.

689 30. Bartosch S, Mansch R, Knotzsch K, Bock E. 2003. CTC staining and counting of
690 actively respiring bacteria in natural stone using confocal laser scanning
691 microscopy. *J Microbiol Methods* 52:75–84.

692 31. Rezaeinejad S, Ivanov V. 2011. Heterogeneity of *Escherichia coli* population by
693 respiratory activity and membrane potential of cells during growth and long-term
694 starvation. *Microbiol Res* 166:129–135.

695 32. Maraha N, Backman A, Jansson JK. 2004. Monitoring physiological status of
696 GFP-tagged *Pseudomonas fluorescens* SBW25 under different nutrient conditions
697 and in soil by flow cytometry. *FEMS Microbiol Ecol* 51:123–132.

698 33. Ullrich S, Karrasch B, Hoppe H-G, Jeskulke K, Mehren M. 1996. Toxic effects on
699 bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride.
700 *Appl Environ Microbiol* 62:4587–4593.

701 34. Servais P, Agogué H, Courties C, Joux F, Lebaron P. 2001. Are the actively
702 respiring cells (CTC+) those responsible for bacterial production in aquatic
703 environments? *FEMS Microbiol Ecol* 35:171–179.

704 35. Wilhelm L, Besemer K, Fasching C, Urich T, Singer GA, Quince C, Battin TJ.
705 2014. Rare but active taxa contribute to community dynamics of benthic biofilms
706 in glacier-fed streams. *Environ Microbiol* 16:2514–2524.

707 36. Sobek JM, Charba JF, Foust WN. 1966. Endogenous metabolism of *Azotobacter*
708 *agilis*. *J Bacteriol* 92:687–695.

709 37. Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ. 2008. Influence of plant
710 developmental stage on microbial community structure and activity in the

711 rhizosphere of three field crops. *FEMS Microbiol Ecol* 65:193–201.

712 38. Berg G, Smalla K. 2009. Plant species and soil type cooperatively shape the
713 structure and function of microbial communities in the rhizosphere. *FEMS*
714 *Microbiol Ecol* 68:1–13.

715 39. Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. 2017. Citrus plants
716 exude proline and phytohormones under abiotic stress conditions. *Plant Cell Rep*
717 36:1971–1984.

718 40. Zhen H, Krumins V, Fennell DE, Mainelis G. 2015. Development of a dual-
719 internal-reference technique to improve accuracy when determining bacterial 16S
720 rRNA:16S rRNA gene ratio with application to *Escherichia coli* liquid and aerosol
721 samples. *J Microbiol Methods* 117:113–121.

722 41. Louca S, Doebeli M, Parfrey LW. 2018. Correcting for 16S rRNA gene copy
723 numbers in microbiome surveys remains an unsolved problem. *Microbiome* 6:1–
724 12.

725 42. Lee ZMP, Bussema C, Schmidt TM. 2009. rrnDB: Documenting the number of
726 rRNA and tRNA genes in bacteria and archaea. *Nucleic Acids Res* 37:489–493.

727 43. Taskin B, Gozen AG, Duran M. 2011. Selective quantification of viable
728 *Escherichia coli* bacteria in biosolids by quantitative PCR with propidium
729 monoazide modification. *Appl Environ Microbiol* 77:4329–4335.

730 44. Dlott G, Maul JE, Buyer J, Yarwood S. 2015. Microbial rRNA:RDNA gene ratios
731 may be unexpectedly low due to extracellular DNA preservation in soils. *J*
732 *Microbiol Methods* 115:112–120.

733 45. Papp K, Hungate BA, Schwartz E. 2018. Comparison of microbial ribosomal RNA

734 synthesis and growth through quantitative stable isotope probing with H218O.

735 Appl Environ Microbiol 84:AEM.02441-17.

736 46. Sukenik A, Kaplan-Levy RN, Welch JM, Post AF. 2012. Massive multiplication of

737 genome and ribosomes in dormant cells (akinetes) of *Aphanizomenon*

738 *ovalisporum* (Cyanobacteria). ISME J 6:670–679.

739 47. Holmsgaard PN, Norman A, Hede SC, Poulsen PHB, Al-Soud WA, Hansen LH,

740 Sørensen SJ. 2011. Bias in bacterial diversity as a result of Nycodenz extraction

741 from bulk soil. Soil Biol Biochem 43:2152–2159.

742 48. Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. 2016. Relic

743 DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat

744 Microbiol 2:1–6.

745 49. Levy-Booth DJ, Campbell RG, Gulden RH, Hart MM, Powell JR, Klironomos JN,

746 Pauls KP, Swanton CJ, Trevors JT, Dunfield KE. 2007. Cycling of extracellular

747 DNA in the soil environment. Soil Biol Biochem 39:2977–2991.

748 50. Kallenbach CM, Grandy AS, Frey SD, Diefendorf AF. 2015. Microbial physiology

749 and necromass regulate agricultural soil carbon accumulation. Soil Biol Biochem

750 91:279–290.

751 51. Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA, Dahlhausen K, Ganz

752 HH, Hartmann EM, Hsu T, Justice NB, Paulino-Lima IG, Luongo JC,

753 Lymeropoulou DS, Gomez-Silvan C, Rothschild-Mancinelli B, Balk M,

754 Huttenhower C, Nocker A, Vaishampayan P, Rothschild LJ. 2017. Schrödinger's

755 microbes: Tools for distinguishing the living from the dead in microbial

756 ecosystems. Microbiome 5:86.

757 52. Mettel C, Kim Y, Shrestha PM, Liesack W. 2010. Extraction of mRNA from soil.
758 Appl Environ Microbiol 76:5995–6000.

759 53. Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants
760 without soil. California Agricultural Experiment Station, Circular 347.

761 54. Portillo MC, Leff JW, Lauber CL, Fierer N. 2013. Cell size distributions of soil
762 bacterial and archaeal taxa. Appl Environ Microbiol 79:7610–7617.

763 55. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A,
764 Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R. 2015.
765 Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed
766 spacer marker gene primers for microbial community surveys. mSystems 1:1–10.

767 56. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013.
768 Development of a dual-index sequencing strategy and curation pipeline for
769 analyzing amplicon sequence data on the MiSeq Illumina sequencing platform.
770 Appl Environ Microbiol 79:5112–5120.

771 57. Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial
772 amplicon reads. Nat Methods 10:996–1000.

773 58. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB,
774 Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger
775 GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source , platform-
776 independent , community-supported software for describing and comparing
777 microbial communities. Appl Environ Microbiol 75:7537–7541.

778 59. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J,
779 Glockner FO. 2013. The SILVA ribosomal RNA gene database project: improved

780 data processing and web-based tools. *Nucleic Acids Res* 41:590–596.

781 60. R Core Team. 2018. R: a language and environment for statistical computing. R
782 Foundation for Statistical Computing, Vienna, Austria.

783 61. McMurdie PJ, Holmes S. 2013. phyloseq: An R package for reproducible
784 interactive analysis and graphics of microbiome census data. *PLoS One* 8.

785 62. Wickham H. 2009. *ggplot2: Elegant graphics for data analysis*. Springer-Verlag,
786 New York.

787 63. Wickham H. 2007. Reshaping data with the reshape package. *J Stat Softw* 21.

788 64. Kassambara A. 2017. *ggpubr: “ggplot2” based publication ready plots*. R package
789 version 0.1.6.

790 65. Auguie B. 2017. *gridExtra: miscellaneous functions for “grid” graphics*. R package
791 version 2.3.

792 66. Wickham H, Francois R, Henry L, Muller K. 2018. *dplyr: a grammar of data
793 manipulation*. R package version 0.7.5.

794 67. Cleveland WS. 1979. Robust locally weighted regression and smoothing
795 scatterplots. *J Am Stat Assoc* 74:829–836.

796 68. Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt T. 2015. *rrnDB: improved
797 tools for interpreting rRNA gene abundance in bacteria and archaea and a new
798 foundation for future development*. *Nucleic Acids Res* 43:593–598.

799 69. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. 2001. *rrndb: the ribosomal
800 RNA operon copy number database*. *Nucleic Acids Res* 29:181–184.

801

802

803 **Figure Legends**

804

805 **Fig 1** Conceptual diagram depicting the impacts of four distinct methods for calculating
806 16S rRNA:rDNA ratios in the presence of 'phantom taxa' (i.e., OTUs in a given sample
807 with 16S RNA reads but zero 16S DNA reads, producing an undefined 16S ratio due to
808 a zero denominator). The input OTU table for a given sample along with 16S ratios is
809 shown on the left, while the resulting OTU tables and 16S ratios are depicted on the
810 right (changes are shaded blue). Four different sequencing scenarios in a hypothetical
811 sample are considered: OTU1, in which the number of RNA reads is much larger than
812 the number of DNA reads but both are present; OTU2, in which the number of RNA and
813 DNA reads are both low but present; OTU3, in which the number of RNA reads is one
814 and the number of DNA reads is zero; and OTU4, in which the number of both RNA and
815 DNA reads is zero.

816

817 **Fig 2** Comparison of the proportion of taxa that are active (i.e. percentage of total OTUs
818 with 16S rRNA:rDNA ratio greater than a given threshold) in soil associated with corn
819 (A) and bean (B) following each of four methods for calculating 16S ratios. See Figure 1
820 for depiction of the four methods for calculating 16S ratios and main text for description
821 of treatment conditions.

822

823 **Fig 3** 16S rRNA:rDNA ratio as a function of the average 16S operon copy number for
824 the presented phyla detected in (A) corn rhizosphere and (B) bean-associated soil, as
825 determined by the Ribosomal Copy Number Database (rrnDB). Data points represent

826 every occurrence (i.e. within and across all samples) for a given phylum. Only phyla
827 with representatives in the rrnDB are shown. Note that phylum Spirochaetes was
828 present only in corn-associated soil.

829

830 **Fig 4** Proportion of active taxa/cells as determined by CTC/Syto24 staining (A, B) or 16s
831 rRNA:rDNA ratios (C, D) in soil associated with corn (A, C) and bean (B, D). Taxa in (C,
832 D) are defined as active with a 16S rRNA:rDNA ratio > 1. See main text for description
833 of treatment conditions.

834

835 **Fig S1** Prevalence of taxa with 16S RNA reads but zero 16S DNA reads (A, B) (i.e.
836 'phantom taxa), or a single 16S RNA read and zero 16S DNA reads (C, D) in soil
837 associated with corn (A,C) and bean (B,D) as a function of sequencing subsampling
838 level. Shown are best fit lines using the loess smoothing function (see Supplementary
839 Figure S2 for same plots but including individual data points). Gray shading around the
840 smoothing lines are 95% confidence intervals.

841

842 **Fig S2** Prevalence of taxa with 16S RNA reads but zero 16S DNA reads (A, B) (i.e.
843 'phantom taxa), or a single 16S RNA read and zero 16S DNA reads (C, D) in soil
844 associated with corn (A,C) and bean (B,D) as a function of sequencing subsampling
845 level. Points indicate individual samples, with best fit lines using the loess smoothing
846 function. Gray shading around the smoothing lines are 95% confidence intervals. See
847 Supplementary Figure S1 for same plots but including only smoothing lines and
848 confidence intervals.

849

850 **Fig S3** Flow cytometer counts (i.e., number of cells counted) per gram of soil extracted
851 following staining with CTC (A, B) and Syto24 (C, D).

852

OTU#	16S rRNA reads	16S rDNA reads	16S Ratio
1	25	3	8.33
2	2	1	2
3	1	0	undefined
4	0	0	undefined

Method 1 (This work)

When RNA>0 and DNA=0, set 16s Ratio to 100.
When RNA=0 and DNA=0, set 16s Ratio to 0.

OTU#	16S rRNA reads	16S rDNA reads	16S Ratio
1	25	3	8.33
2	2	1	2
3	1	0	100
4	0	0	0

Method 2 (This work)

Add 1 to every DNA entry of 0.

OTU#	16S rRNA reads	16S rDNA reads	16S Ratio
1	25	3	8.33
2	2	1	2
3	1	1	1
4	0	1	0

Method 3 (Kearns et al. 2016)

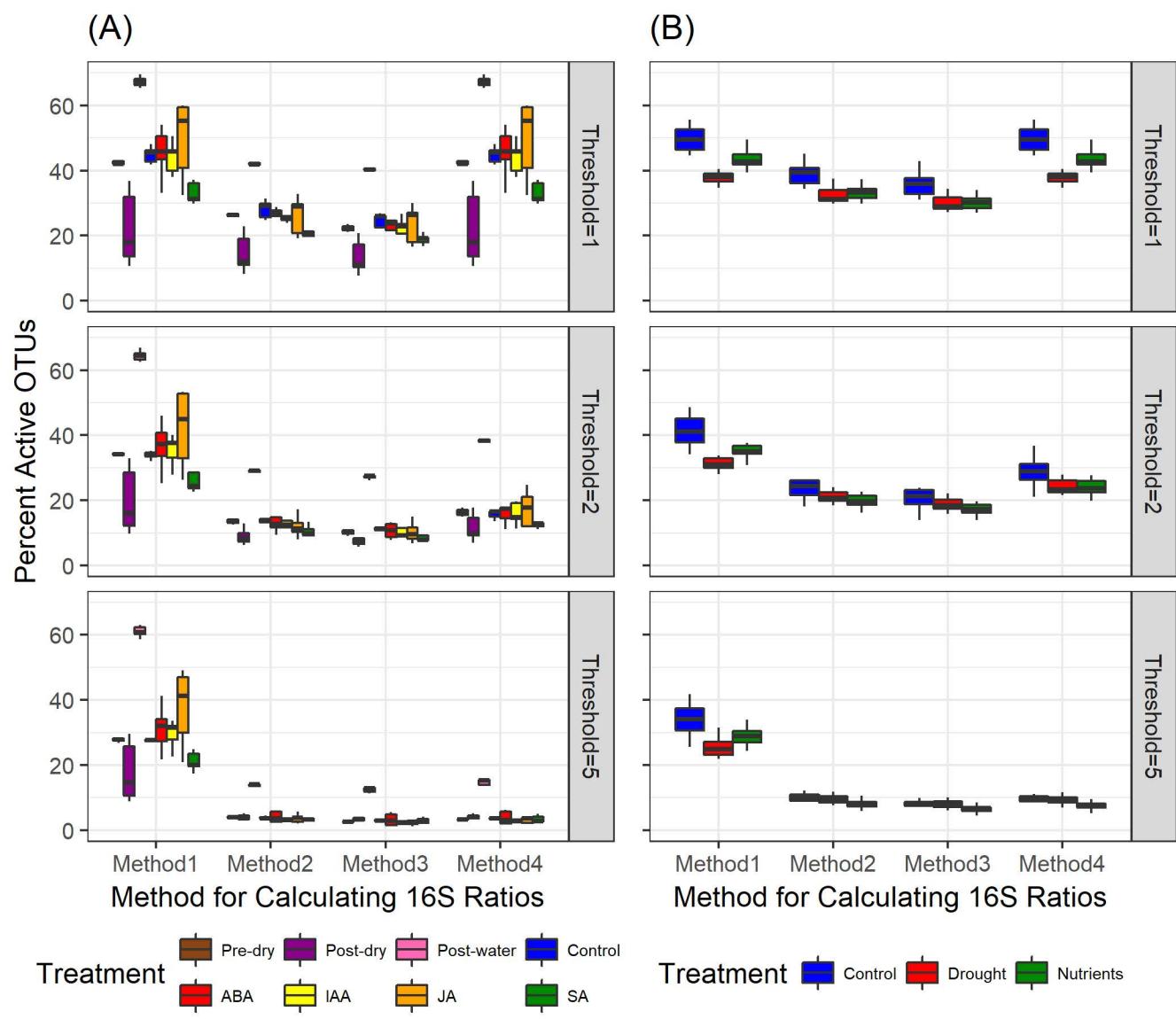
Add 1 to every DNA entry.

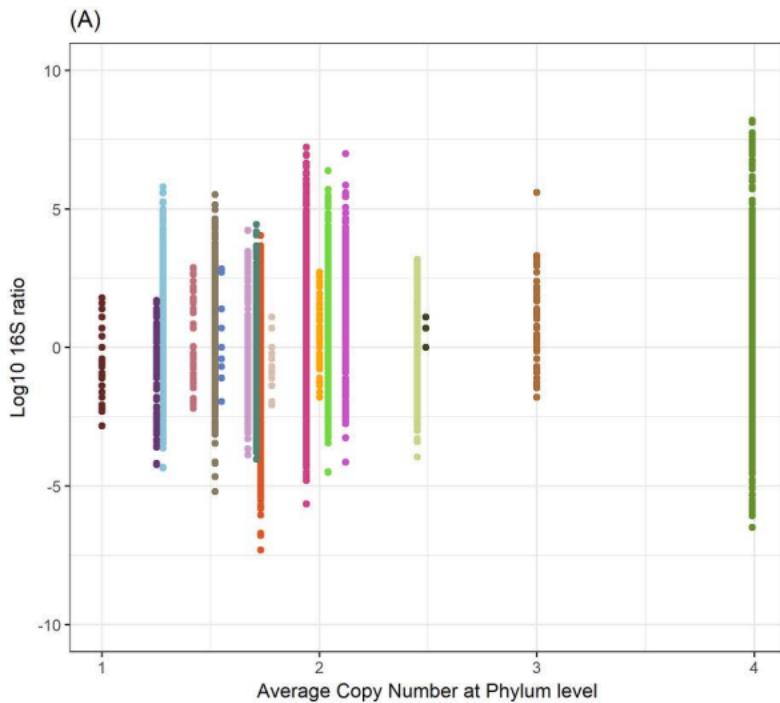
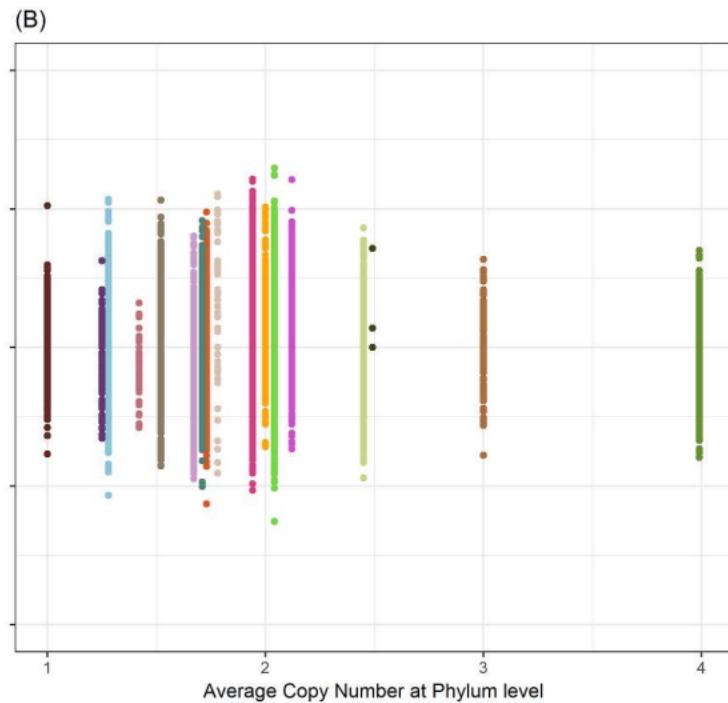
OTU#	16S rRNA reads	16S rDNA reads	16S Ratio
1	25	4	6.25
2	2	2	1
3	1	1	1
4	0	1	0

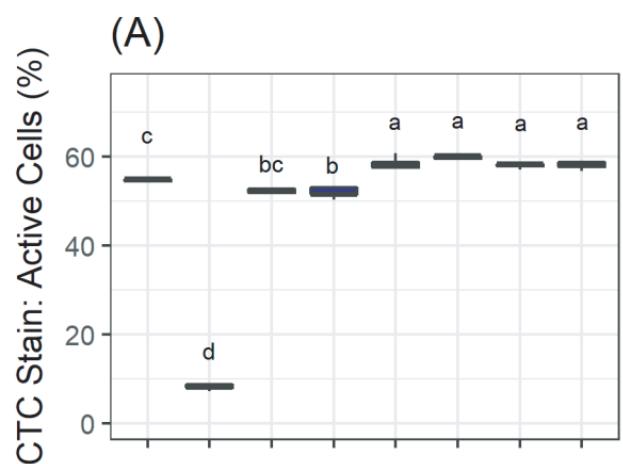
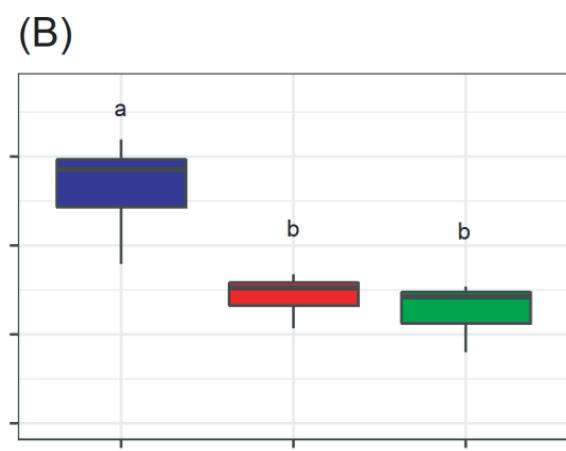
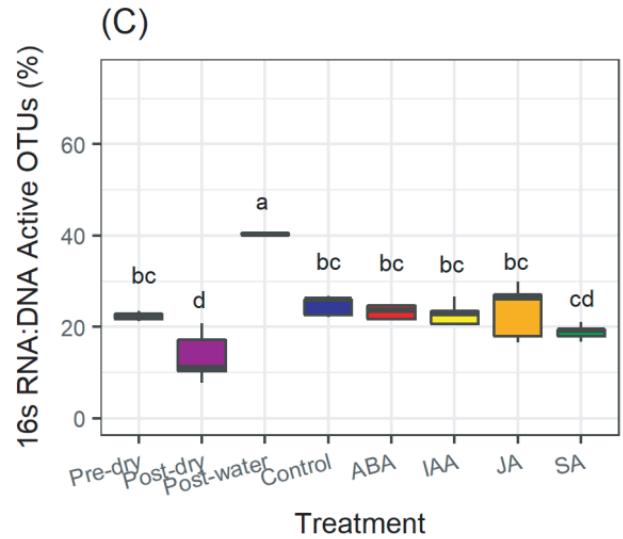
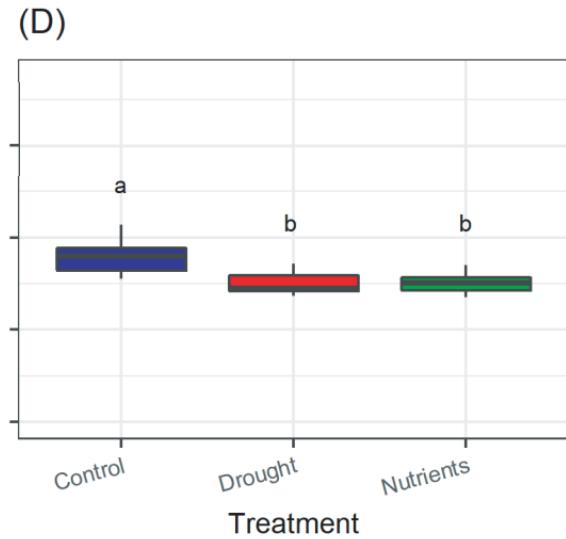
Method 4 (Denef et al. 2016)

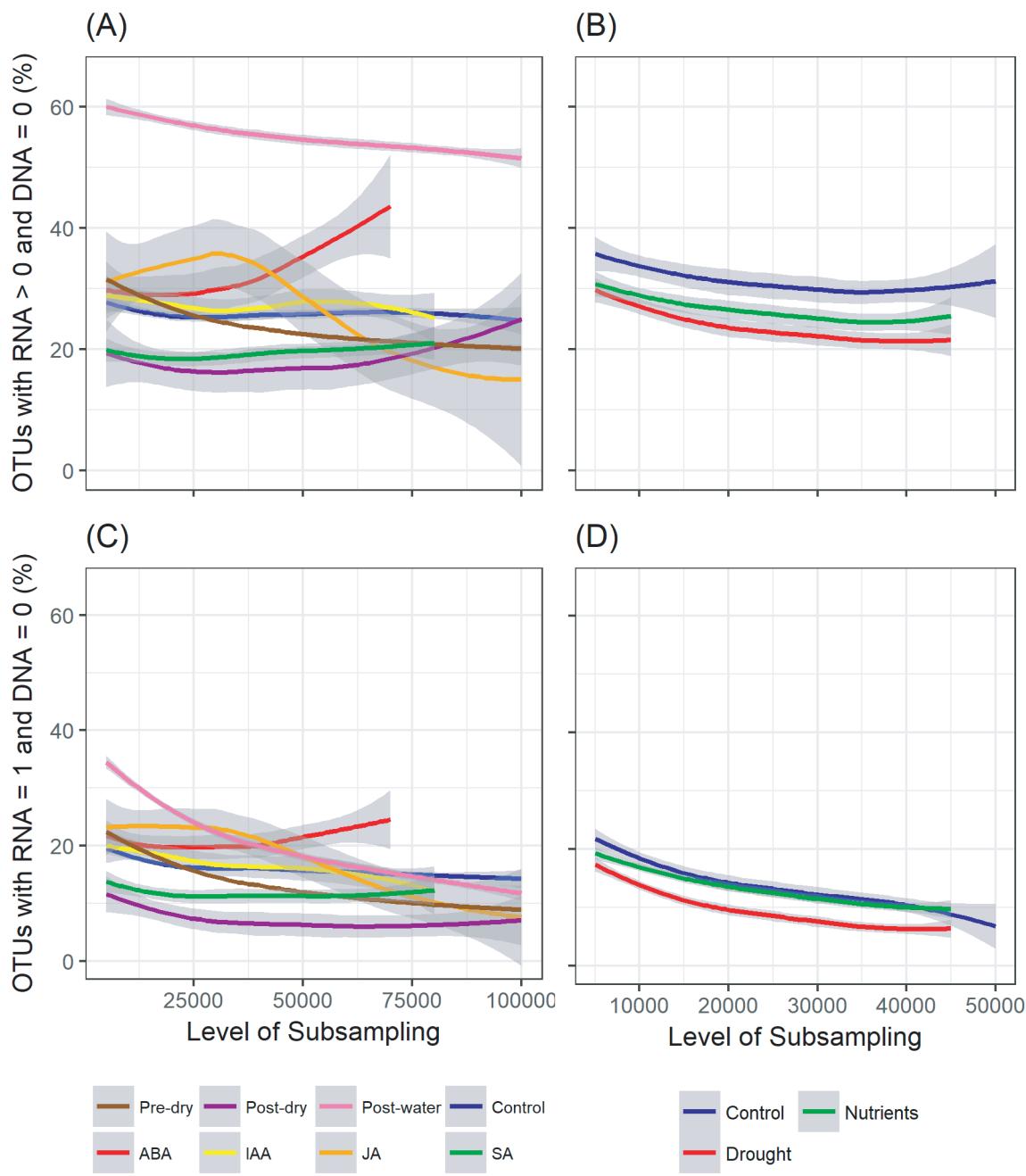
Add 1 to every RNA and DNA entry.

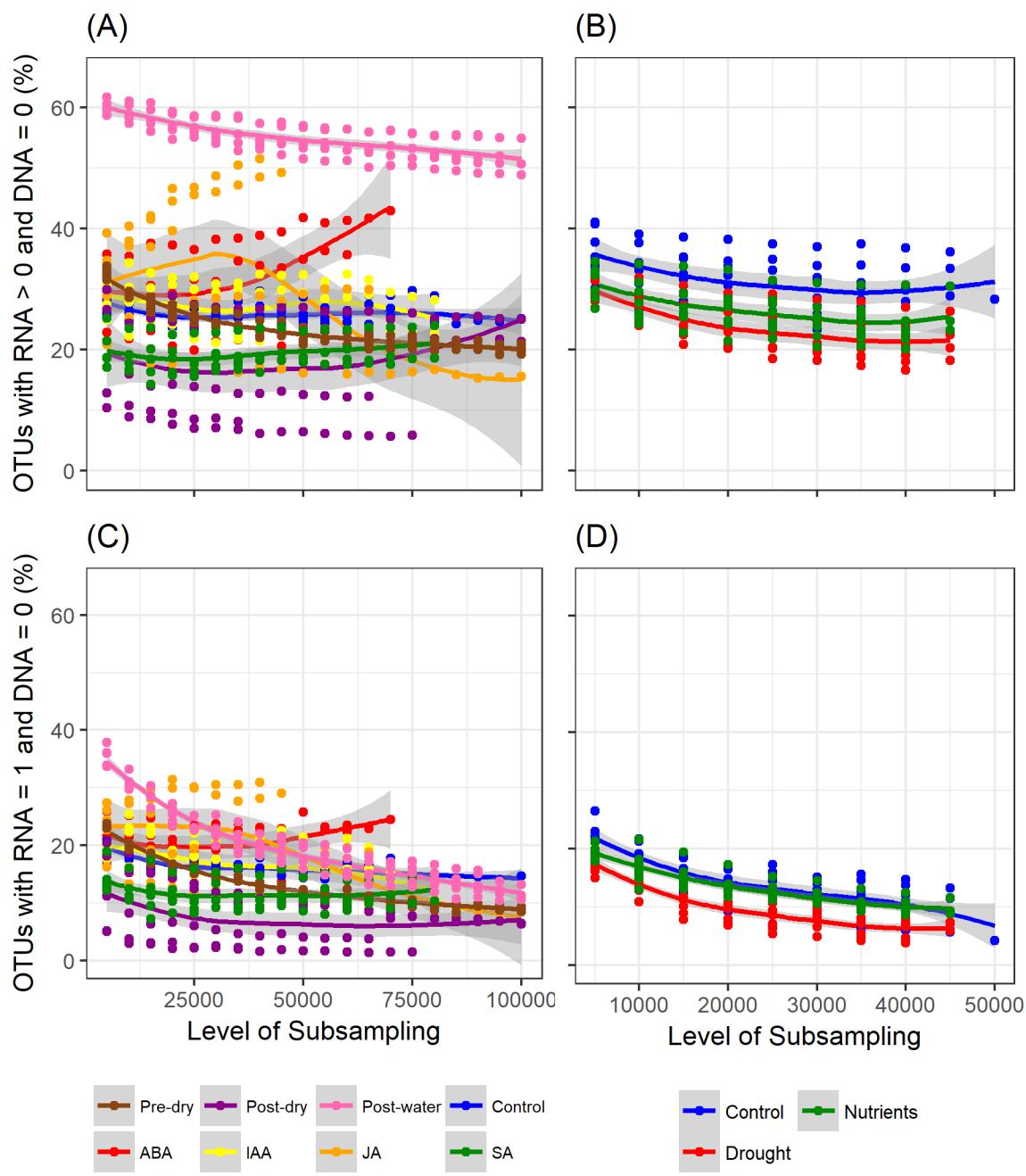
OTU#	16S rRNA reads	16S rDNA reads	16S Ratio
1	26	4	6.5
2	3	2	1.5
3	2	1	2
4	1	1	1



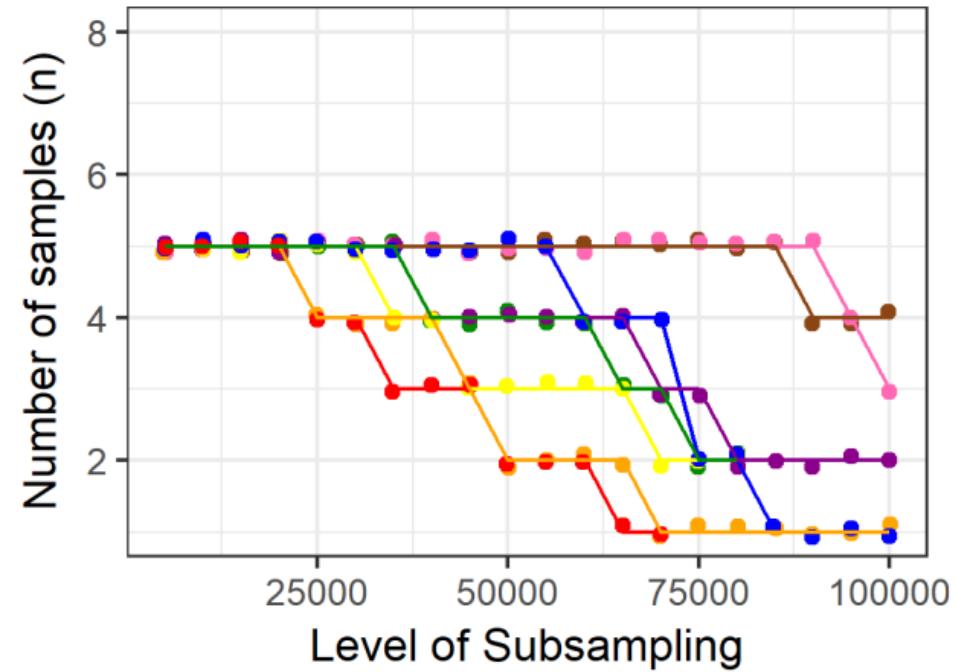




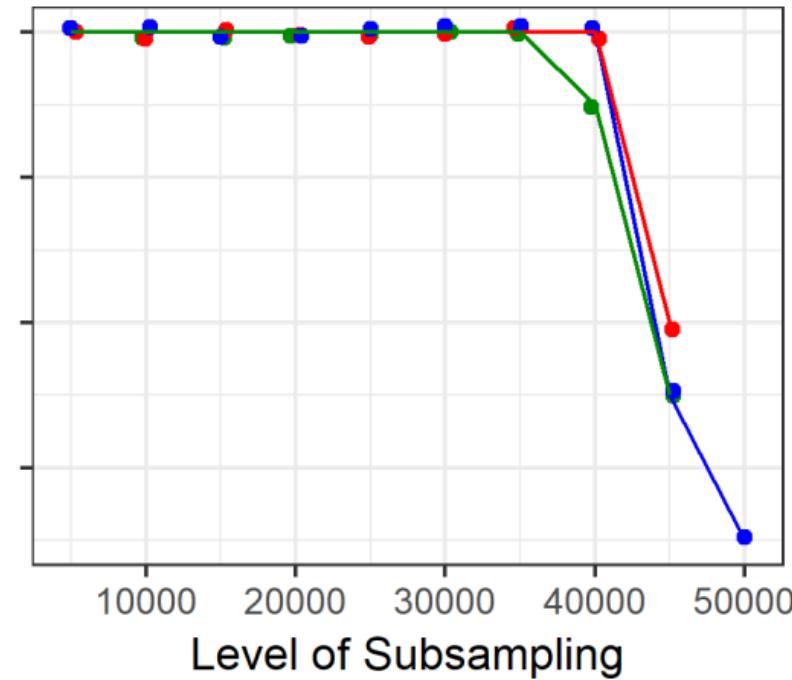




(A)



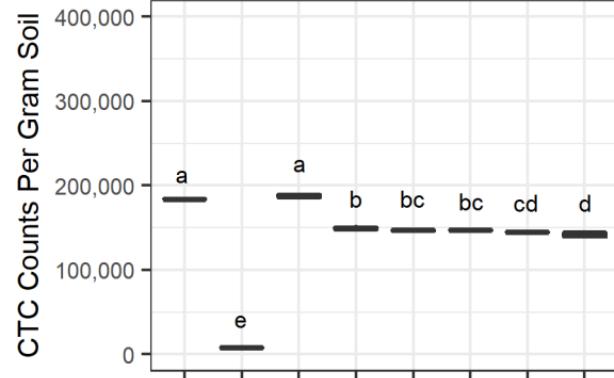
(B)



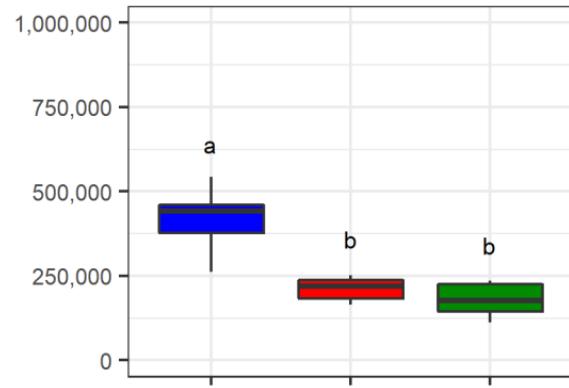
—●— Pre-dry —●— Post-dry —●— Post-water —●— Control
 —●— ABA —●— IAA —●— JA —●— SA

—●— Control —●— Nutrients
 —●— Drought

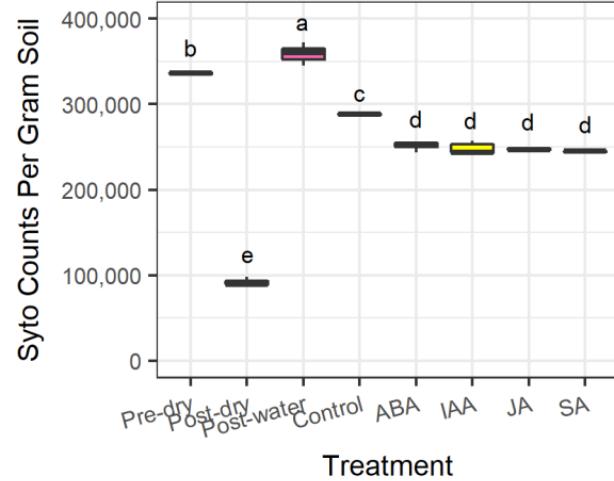
(A)



(B)



(C)



(D)

