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Abstract 24 

At any given time, only a subset of microbial community members are active in 25 

their environment. The others are in a state of dormancy with strongly reduced 26 

metabolic rates. It is of interest to distinguish active and inactive microbial cells and taxa 27 

to understand their functional contributions to ecosystem processes, and to understand 28 

shifts in microbial activity in response to change. Of the methods used to assess 29 

microbial activity-dormancy dynamics, 16S rRNA:rDNA amplicons (“16S ratios”) and 30 

active cell staining with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) are two of the 31 

most common, yet each method has limitations. Given that in situ activity-dormancy 32 

dynamics are only proxied by laboratory methods, further study is needed to assess the 33 

level of agreement and potential complementarity of these methods. We conducted two 34 

experiments investigating microbial activity in plant-associated soils. First, we treated 35 

corn field soil with phytohormones to simulate plant-soil stress signaling, and second, 36 

we used rhizosphere soil from common bean plants exposed to drought or nutrient 37 

enrichment. Overall, the 16S ratio and CTC methods exhibited similar patterns of 38 

relative activity across treatments when treatment effects were large, and the instances 39 

in which they differed could be attributed to changes in community size (e.g., cell death 40 

or growth). Therefore, regardless of the method used to assess activity, we recommend 41 

quantifying community size to inform ecological interpretation. Our results suggest that 42 

the 16S ratio and CTC methods report comparable patterns of activity that can be 43 

applied to observe ecological dynamics over time, space, or experimental treatment.   44 

 45 

Importance 46 
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Although the majority of microorganisms in natural ecosystems are dormant, 47 

relatively little is known about the dynamics of the active and dormant microbial pools 48 

through both space and time. The limited knowledge of microbial activity-dormancy 49 

dynamics is in part due to uncertainty in the methods currently used to quantify active 50 

taxa. Here, we directly compared two of the most common methods (16S ratios and 51 

active cell staining) for estimating microbial activity in plant-associated soil, and found 52 

that they were largely in agreement in the overarching patterns. Our results suggest that 53 

16S ratios and active cell staining provide complementary information for measuring 54 

and interpreting microbial activity-dormancy dynamics in soils.  They also support that 55 

16S rRNA:rDNA ratios have comparative value and offer a high-throughput, 56 

sequencing-based option for understanding relative changes in microbiome activity, as 57 

long as this method is coupled with quantification of community size.  58 

 59 
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Introduction 70 

Microbial activity plays a major role in processes that support life on Earth (1), 71 

influencing global carbon and nutrient cycling (2, 3), atmospheric composition (4), and 72 

ecosystem productivity (5). Given these global-scale functions, it is perhaps surprising 73 

that active microbes (those that are growing or reproducing, or that respond relatively 74 

quickly to substrate input) represent a small proportion of the total microbial community 75 

(reviewed in (6)). In diverse ecosystems, the majority of the microbial community is 76 

dormant, characterized by strongly reduced metabolic rates and slow response to 77 

substrate input (6, 7). Although dormancy initiation and resuscitation have ecological 78 

and evolutionary consequences (7–9) with implications for ecosystem function (10, 11), 79 

we know little about the dynamics of active and dormant microbial pools through space 80 

and time. Investigations of the causes and consequences of microbial activity-dormancy 81 

dynamics are needed to better understand community structural and functional 82 

resilience, and to better predict responses to global change (12).  83 

The limited knowledge of microbial activity-dormancy dynamics is in part due to 84 

uncertainty in the methods currently used to quantify active taxa (6). One of the most 85 

common approaches is the use of 16S ribosomal rRNA sequencing. Given the relatively 86 

short half-life of ribosomal RNA, the presence of 16S ribosomal transcripts (hereafter 87 

“rRNA”) is generally assumed to indicate recent metabolic activity, and numerous 88 

studies have used rRNA to characterize active communities (reviewed in (13)). Pairing 89 

both 16S ribosomal (rRNA) and 16S ribosomal gene (rDNA) sequencing allows for 90 

calculation of 16S rRNA:rDNA ratios (hereafter “16S ratios”), which attempts to 91 

normalize rRNA levels by the abundance of that taxon in the community and quantify its 92 
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relative level of activity (9, 11, 14, 15). Taxa with 16S ratios greater than a given 93 

threshold are considered ‘active’; most studies use a threshold of 1.0. (6, 9, 16). 94 

However, using an arbitrary threshold to distinguish active from dormant taxa may be 95 

problematic in diverse communities (13, 17), given that rRNA content or RNA:DNA 96 

ratios and growth rate are not always correlated (18–22). Another challenge is the 97 

occurrence of ‘phantom taxa’: taxa that are detected in rRNA but not rDNA sequences 98 

(23), leading to a zero-denominator (and thus undefined) 16S ratio. Phantom taxa are 99 

unexpected, since the presence of rRNA necessitates template rDNA; yet nearly 30% of 100 

the OTUs detected in a recent study of atmospheric samples were phantoms (23). 101 

Although these considerations have led researchers to suggest that 16S ratios may be 102 

best interpreted as ‘potential microbial activity’, 16S ratios have nevertheless been used 103 

to inform microbial activity-dormancy dynamics in a broad range of ecosystems (11, 14, 104 

15, 23). 105 

In addition to 16S RNA/DNA sequencing, a variety of other methods are currently 106 

used for distinguishing active microbes. These include staining with tetrazolium salts 107 

((24) and references therein), stable isotope probing to quantify uptake of substrates or 108 

water (25), and meta-transcriptomics to determine changes in functional gene 109 

transcripts following experimental perturbation (26). Of these methods, active cell 110 

staining, primarily with the activity stain 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), is 111 

a common approach because it is economical and executable without specialized 112 

equipment. Respiring cells convert CTC to an insoluble red fluorescent formazan 113 

product that can be visualized by fluorescence microscopy (27). In addition, CTC 114 

staining can be coupled with a DNA stain to compare active and total cell counts in a 115 
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microbial community, allowing for determination of percent activity (15, 28). Numerous 116 

culture-dependent studies have shown that the CTC method is effective in 117 

discriminating between active and inactive microbes (29–32) and between growth 118 

phases (29, 30) and can track resuscitation following starvation (32). The CTC method 119 

also can reveal subtle changes in activity while quantifying changes in the total number 120 

of cells (active plus inactive) to provide context for interpreting the activity dynamics. For 121 

example, in Pseudomonas fluorescens (32), only ~10% of cells were active after 122 

starvation in phosphate-buffered saline. However, the number of CTC-positive cells 123 

increased after a 5 h incubation with yeast extract, without a corresponding increase in 124 

total cell number (32). This apparent resuscitation of cells from CTC-negative to CTC-125 

positive after nutrient addition showed that CTC staining is capable of discriminating 126 

between active (high metabolic activity) and dormant (low metabolic activity) cells even 127 

when doubling is not observed. Nevertheless, CTC can be toxic to some bacterial 128 

species (24, 33), and not all actively respiring strains are able to take up the stain 129 

efficiently (24, 28), potentially leading CTC staining to underestimate the true proportion 130 

of active cells (34). Variability in the staining protocol (e.g., duration and concentration 131 

of stain) also can have consequences for comparing percent activity across different 132 

studies (29). Despite these limitations, CTC staining remains a popular method for 133 

analyses of microbial activity in a broad range of environmental samples (7, 15, 28).  134 

Although the 16S ratio method and the CTC staining method are both commonly 135 

used in investigations of microbial activity, little work has been done to assess their level 136 

of agreement. One of the few studies using both methods to assess microbial activity 137 

found that the active portion of the community was between 1.5- and 5-fold higher when 138 
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using 16S ratios versus CTC staining in microcosms of estuarine water samples (15). 139 

One potential reason is not only that the two methods present different biases as 140 

described above, but that they measure two different things: the 16S ratio method is 141 

used to assess whether a particular taxon is active, while the CTC staining method is 142 

used to assess whether a given cell is active. Importantly, there are situations in which 143 

we might expect the proportion of active taxa and the proportion of active cells to differ, 144 

such as communities in which rare taxa are disproportionately active compared to 145 

abundant taxa (15, 23, 35). Another potential discrepancy between the 16S ratio and 146 

the CTC staining method is their respective definitions of ‘active’ versus ‘inactive’, since 147 

RNA and DNA levels do not always correlate with respiration rates (36). Although these 148 

two methods may not always produce similar values of microbial activity, both can 149 

inform on fundamental and complementary aspects of microbial communities. 150 

Here, our objectives were to explore factors underlying the calculation and 151 

interpretation of 16S ratios, and to compare estimates of activity of microbial 152 

communities using 16S ratios and CTC-based cell staining. We conducted two 153 

experiments analyzing microbial activity in plant-associated soil. Given that plant-154 

associated soils are highly dynamic systems in which plants can influence microbial 155 

community structure and function (37, 38), we considered plant-associated soil to be 156 

particularly relevant for analyses of microbial activity. First, we conducted a microcosm 157 

experiment using corn-associated soil, and treated the soil with phytohormones to 158 

assess the impacts of common plant stress signals on soil microbial activity. Second, 159 

we grew bean plants under either drought or nutrient-enriched conditions to more 160 

directly assess the impacts of plant stress on soil microbial activity. Specifically, we 161 
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asked: 1) for 16S ratio-based studies, what is the extent of phantom taxa, and how does 162 

the handling of these taxa influence estimates of microbial activity and patterns across 163 

treatments? 2) How does the threshold for quantifying ‘active’ taxa influence patterns 164 

across treatments? 3) How does 16S rRNA operon copy number impact the distribution 165 

of 16S ratios within and across phyla? 4) Do 16S ratio and CTC methods produce 166 

similar estimates and/or patterns of microbial activity across diverse soil treatments?  167 

  168 

Results and Discussion 169 

We conducted two experiments in plant-associated soils under a variety of 170 

treatment conditions. In the first experiment, we collected soil from a long-term 171 

agricultural research field in which corn (Zea mays L.) had been planted for eight 172 

consecutive years. In the laboratory, we exposed the soil to several pre-treatments: 173 

‘pre-dry’ (soil was sampled before any treatments were initiated), ‘post-dry’ (soil was 174 

dried for three days and then sampled), and ‘post-water’ (soil was partially re-wetted, 175 

allowed to acclimate for six days, and then sampled). Next, soil replicates were treated 176 

with either abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), or 177 

salicylic acid (SA), or water as a control, and sampled after 24 hours. Thus, the corn 178 

experiment was designed to assess the impacts of several different abiotic/biotic 179 

stresses including soil drying and re-wetting, as well as the application of common plant 180 

stress phytohormones that can be exuded by plant roots under a variety of stress 181 

conditions (39). In the second experiment, we grew common bean (Phaseolus vulgaris 182 

L. cv. Red Hawk) in agricultural field soil in a controlled-environment growth chamber. 183 

Replicate plants were exposed to either drought (water-withholding), nutrient 184 
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enrichment (additional fertilizer), or control conditions, then rhizosphere soils were 185 

sampled after five weeks. Thus, this experiment was designed to more directly assess 186 

the impacts of plant stress on analyses of soil microbial activity in plant-associated soil. 187 

Overall, we anticipated that the differential treatments within and across experiments, as 188 

well as the presence of actively growing plants continuously providing carbon to the soil 189 

microbial communities in the bean but not the corn soil study, would inform on the broad 190 

applicability of the 16S and CTC staining methods for comparing microbial activity. 191 

 192 

Detection and treatment of ‘phantom taxa’  193 

A necessary prerequisite for assessing microbial activity from 16S ratios is 194 

determining how to handle ‘phantom taxa’: OTUs that are detected in the RNA but not 195 

the DNA community of a given sample (23). Phantom taxa can occur for both biological 196 

and methodological reasons, such as sampling stochasticity of the “rare biosphere” 197 

when rare taxa exhibit disproportionately high activity (23). In addition, different methods 198 

of RNA versus DNA extraction, or biases such as the reverse transcription of RNA (but 199 

not DNA) could contribute (40). Finally, heterogeneity between the soil aliquots used for 200 

RNA versus DNA extraction could lead to different community profiles in the two 201 

extractions, and therefore lead to phantom taxa (in the present study, soil was mixed 202 

prior to DNA/RNA extractions to reduce this bias). Regardless of the mechanism of their 203 

occurrence, phantom taxa cannot be avoided when using 16S ratios. 204 

Phantom taxa are problematic because they produce undefined 16S RNA:DNA 205 

ratios due to a denominator of zero, and, without care, could be automatically deleted 206 

from the dataset. Therefore, we assessed the prevalence of phantom taxa (taxa with 207 
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RNA reads > 0 and DNA reads = 0 in a given sample) in both the corn and bean soil 208 

datasets. We also assessed the prevalence of ‘singleton’ phantom taxa (taxa with RNA 209 

reads = 1 and DNA reads = 0 in a given sample), given that such taxa are particularly 210 

ambiguous in terms of activity. We repeated these analyses across a range of 211 

sequencing depths, given that sampling stochasticity can play a role in driving the 212 

occurrence of phantom taxa (23). Across a range of subsampling levels, we found that 213 

phantom taxa comprised 6-62% of the total OTUs in the corn soil dataset, and 17-41% 214 

of the total OTUs in the bean soil dataset (Fig. S1A and B, Fig. S2A and B). Similarly, 215 

‘singleton’ phantom taxa were fairly common (1-38% and 4-27% of the total OTUs in the 216 

corn and bean soil datasets, respectively) (Fig. S1C and D, Fig. S2C and D). The 217 

reader should note that the sample size for each treatment generally decreased as 218 

sequencing depth increased because samples were excluded when their total read 219 

count was less than a given sequencing depth.  220 

Given the prevalence of phantom taxa, our next aim was to establish how to 221 

handle phantom taxa for calculation of 16S ratios. We compared four different methods 222 

for calculating 16S ratios in the presence of phantom taxa, referred to here as Methods 223 

1, 2, 3, and 4 for simplicity (Fig. 1). In both the corn and the bean soil datasets, all four 224 

methods for calculating 16S ratios produced similar patterns across treatments (Fig. 2A 225 

and B). In corn soil, percent activity decreased from the pre-dry to the post-dry 226 

treatment, then increased from the post-dry to the post-water treatment (Fig. 2A). In 227 

addition, although increasing the threshold 16S ratio for defining taxa as ‘active’ 228 

generally reduced the magnitude of treatment effects on microbial activity, the large 229 

impact of the post-water treatment was apparent even at a threshold of five. Similar 230 
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analyses have been performed in in other studies (11), which suggest that even 231 

conservative ratio thresholds provide access to observing consistent ecological 232 

patterns. On the other hand, although percent activity in the bean experiment was 233 

generally higher in the control than the drought or nutrient treatments across Methods 1-234 

4, the magnitude of this difference decreased as threshold increased (Fig. 2B). 235 

Differences among treatments disappeared when compared at a threshold 16S ratio of 236 

five, indicating a relatively narrow window for capturing differences in microbial activity 237 

in the bean experiment. A recent review suggests that most studies use a threshold 16S 238 

ratio between 0.5-2 to determine active taxa (6), indicating that a threshold of five may 239 

simply provide an overly-conservative view of activity in microbial communities. 240 

 241 

Weak relationship between 16S ratio and number of ribosomal operons in genomes  242 

One consideration of using 16S ratios to estimate the proportion of active taxa 243 

community is the variability in copy numbers of the 16S rRNA operon across genomes 244 

of different taxa. 16S rRNA operon copy numbers can affect patterns of beta diversity in 245 

community structure (41) and can vary substantially between lineages (42). For 246 

example, lineages with many 16S operons (e.g. Firmicutes) may have lower 16S ratios 247 

because their abundance is overestimated by redundant reads in 16S rDNA data. To 248 

address this, we examined the relationship between the 16S ratio and the average 249 

number of ribosomal operons within phyla for all detected OTUs (Fig. 3). Although 16S 250 

ratios and average 16S rRNA operon count at the phylum level were correlated in both 251 

corn (r = -0.069, p < 0.0001) (Fig. 3A) and bean (r = -0.017, p = 0.0001) (Fig. 3B) soil, 252 

these correlations were weak, to the point of being inconsequential for the interpretation 253 
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of overarching patterns at the community level. In addition, across all operon counts, 254 

16S ratios had similar ranges (Fig. 3). Recent work has advised against correcting for 255 

16S rRNA operon counts in 16S rRNA gene surveys of microbial community structure, 256 

especially in taxa that are divergent from cultured representatives (41). Our results 257 

additionally suggest that accounting for 16S operon number will likely have little effect 258 

on activity estimates in 16S ratio analyses. 259 

 260 

CTC staining and 16S RNA:DNA capture complementary patterns of activity across 261 

treatments  262 

Our final aim was to assess the level of agreement between the 16S ratio and 263 

the CTC method (Fig. 4). Across all treatments and between both methods, estimates of 264 

percent activity (i.e., between 10 and 60% of cells/taxa active) are similar to values 265 

reported in the literature for soil (7). Though, as expected for the reasons discussed in 266 

the introduction, the two methods did not agree in their absolute values of percent 267 

activity, their overarching patterns across treatments were largely consistent, 268 

suggesting that either method is appropriate for assessing overarching patterns in 269 

community activity (e.g., across time, space, or experimental treatments). The CTC 270 

method consistently resulted in higher estimates of activity than the 16S ratio method. 271 

In bean rhizosphere soil, the CTC method and the 16S ratio method produced 272 

identical patterns of percent activity across treatments (Fig. 4B and D). Using both 273 

methods, the drought and the nutrient addition treatments exhibited lower percent 274 

activity compared to the control treatment, although the magnitude of this difference 275 

was less using the 16S ratio method than the CTC method. In corn-associated soil, both 276 
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the CTC staining method and the 16S ratio method revealed similar patterns in 277 

response to corn soil drying and wetting: percent activity declined from the ‘pre-dry’ to 278 

the ‘post-dry’ treatment, and increased in response to the ‘post-water’ treatment. 279 

Together with the bean rhizosphere experiment, these results suggest that both 280 

methods are consistent in detecting relative activity changes when there are large 281 

treatment effects.  282 

In the corn soil, there were method differences in activity relative to the “post-283 

water” and control treatments (Fig. 4A and C). Using the CTC method, percent activity 284 

increased in response to phytohormones compared to the ‘post-water’ treatment, but 285 

did not change in response to the ‘control’ treatment (i.e., water alone) (Fig. 4A). Using 286 

the 16S ratio method, percent activity decreased in response to phytohormones as well 287 

as in the water control, compared to the ‘post-water’ treatment (Fig. 4C). For these 288 

subtle activity changes observed post-water in the corn-associated soil, the differences 289 

between the 16S ratio and CTC methods could be explained by the shifts in community 290 

sizes across treatments. Though CTC percent activity did not change post-water to 291 

control, raw cell counts measured by Syto24 aid in interpretation. CTC counts (i.e., the 292 

number of active cells) and Syto24 counts (i.e., the total number of cells regardless of 293 

activity) both decreased to a similar extent from the ‘post-water’ to the ‘control’ 294 

treatment (20.3% decrease versus 19.7% decrease, respectively) (Fig. S3A and C), 295 

resulting in no change in percent activity despite the decrease in community size. The 296 

drop in the proportion of active OTUs by the 16S ratio but not the proportion of cells by 297 

CTC from post-water to control is likely due to cell death and resultant changes in 298 

community size that is not accounted for when using 16S ratios (and could be 299 
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exacerbated by the contributions of DNA from recently dead cells to the denominator). 300 

Similarly, CTC counts were slightly lower in the phytohormone treatments compared to 301 

the control (average difference of 2.9%), but Syto24 counts were much lower in the 302 

phytohormone treatments compared to the control (average difference of 14.0%) (Fig. 303 

S3A and C), which explains the increased percent CTC activity in phytohormones 304 

versus control. However, despite the decrease in community size (i.e. cell death) 305 

between phytohormones and control (Fig. S3C), percent activity using the 16S ratio 306 

method did not differ between phytohormones and control, potentially highlighting the 307 

different metrics reported by the CTC (percent of cells that are active) and the 16S ratio 308 

methods (percent of taxa that are active). Overall, there is immense value added by 309 

measuring changes community size when interpreting changes in activity, regardless of 310 

the method applied. Future studies using the 16S ratio method for assessing activity 311 

dynamics should consider using cell counting or an equivalent method for 312 

approximating community size (e.g. qPCR) coupled with propidium monoazide 313 

treatment to block amplification of DNA from dead/dying cells (e.g. (43)). 314 

Intense disturbances can result in cell death, and for these events it is expected 315 

that changes in percent activity could mirror changes in microbial community size (total 316 

number of cells). Examples of such disturbances include those in present study 317 

(desiccation and phytohormone exposure), antibiotic treatment, oxygen depletion, 318 

exposure to predators or phage, and irradiation. There are also disturbances that may 319 

be expected to stress cells and alter phenotypes, but not to cull a significant proportion 320 

of the community. Therefore, the ecological context is of paramount importance for 321 
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interpreting activity dynamics, and measurements of community size can inform as to 322 

the outcomes of disturbance in situations that have unclear expectations a priori.  323 

 324 

Considerations of the 16S ratio and CTC staining methods 325 

         An important consideration of this work is that both the 16S ratio and CTC 326 

methods have distinct biases that can influence percent activity estimates. A number of 327 

issues have been highlighted for analysis of activity with 16S ratios (13, 17, 44, 45), 328 

including the presence of dead cells and extracellular DNA, variations in sequencing 329 

depth, and molecular methodology (PCR biases). Another issue is the inconsistent 330 

relationships between rRNA and growth rate described above, and the finding that 331 

cellular rRNA can actually increase in the transition from the vegetative to dormant state 332 

for some taxa (46). Although CTC staining avoids many of these assumptions, it has its 333 

own unique biases. For example, CTC staining in the present study excluded obligate 334 

anaerobes, potentially underestimating percent activity. In addition, CTC staining 335 

assumes that all (or a representative subsample) of the cells are extracted from the soil, 336 

an assumption that may or may not be true (47). Finally, because extraction and CTC 337 

staining can last for up to 24 hours, artefacts such as cell death or changes in 338 

respiration rates could occur. Numerous methods exist to estimate microbial activity in 339 

soil, each with a unique set of advantages and limitations (reviewed in (6)). 340 

Another consideration of our analysis is the inability of the methods used here to 341 

account for extracellular DNA and dead cells in soil. Extracellular DNA (48, 49) and 342 

necromass (50) are common, and can cause 16S ratios to underestimate percent 343 

activity (44). Similarly, although our flow cytometry size gating likely excludes 344 
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extracellular DNA by removing particles < 1 µm, intact dead cells would be included in 345 

the ‘total cell count’ calculated by Syto24 staining, thereby underestimating percent 346 

activity. Although our study was not designed to allow determination of extracellular 347 

DNA or dead cell abundance, we note that plant-associated soils are generally 348 

assumed to be areas of high metabolic activity. Thus, we might expect relic nucleic 349 

acids or dead cells to turn over quickly, limiting their confounding effects in the present 350 

study. Our data support the rapid turnover of dead cells, given that the control (water) 351 

and phytohormone treatments in the corn soil experiment, which lasted only 24 hours, 352 

led to significant decreases in total cell counts (Fig. S3C). It should also be noted that, 353 

in the corn soil experiment, soils were frozen prior to activity analyses, potentially 354 

increasing the number of dead cells and artificially reducing percent activity. We 355 

suggest this impact was minimal, given that percent activity was relatively high 356 

compared to previous estimates in soil (7). Nevertheless, we suggest that combining the 357 

16S ratio and CTC/Syto24 approach with a stain specific to extracellular DNA and 358 

dead/dying cells, such as propidium iodide, would clarify the impact of these pools (51). 359 

As described above, the dynamic range of the CTC method is expected to be 360 

high: over 90% of cells have been reported as CTC-positive in pure cultures in 361 

exponential growth phase (31), while less than 10% are CTC-positive when dormancy is 362 

induced by overnight starvation conditions (32). Our findings suggest that the CTC 363 

staining method is potentially more sensitive than the 16S ratio method and may be 364 

more appropriate for detecting subtle activity changes. For example, the CTC staining 365 

method detected larger shifts in percent activity than the 16S ratio method in response 366 

to the drying (46.1% decrease versus 8.8% decrease, respectively) and re-wetting 367 
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treatments (43.8% increase versus 27.3% increase, respectively) in corn-associated soil 368 

(Fig. 4A and C), and in response to the drought (23.1% decrease versus 5.8% 369 

decrease, respectively) and nutrient addition treatments (27.6% decrease versus 5.5% 370 

decrease, respectively) in bean soil (Fig. 4B and D). Similarly, the CTC method 371 

detected significantly higher percent activity in all phytohormone treatments relative to 372 

the control, while the 16S ratio method did not detect a difference between the control 373 

and phytohormone treatments (Fig. 4A and C). On the other hand, the 16S ratio method 374 

detected a much larger difference from the post-water to the control (i.e., water added) 375 

treatment (16.0% decrease versus 0.3% decrease, respectively) (Fig. 4A and C). 376 

Altogether, these shifts in percent activity across treatments are in the range of those 377 

reported in the literature. For example, a study using the CTC staining method to 378 

assess microbial communities on sandstone found that percent activity values dropped 379 

from 60% to 20% after two days of drying at low relative humidity (30), similar to the 380 

shift in CTC staining in response to soil drying in the present study (Fig. 4A). However, 381 

further study is needed to assess the lower limit of detection of the two methods for 382 

diverse taxa and inform on their ability to capture more subtle changes in percent 383 

activity. 384 

 385 

Conclusions 386 

Overall, our results provide insight into the estimation of microbial activity using 387 

two common methods: 16S ratios and CTC staining. Although phantom taxa were 388 

common, patterns in percent activity across treatments were largely unaffected by the 389 

method used to account for such taxa. We also found that 16S ratios were only weakly 390 
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correlated with ribosomal operon number, suggesting that accounting for operon 391 

number has little effect on activity estimates in 16S ratio analyses. Lastly, both the 16S 392 

ratio and CTC methods exhibited similar patterns of percent activity across treatments, 393 

and the instances in which they differed can largely be explained by changes in 394 

community size. We conclude that quantification of community size is essential for 395 

interpreting activity dynamics. Coupled with quantification of community size, the two 396 

methods provide comparable assessments of relative changes in microbial activity.    397 

 398 

  399 

Materials and Methods 400 

We conducted two separate experiments (‘corn-associated soil’ and ‘bean 401 

rhizosphere soil’), with varying stress treatments in each experiment. For clarity, we first 402 

present the methods specific to each experiment, and then present the methods shared 403 

between experiments. 404 

 405 

Corn-associated soil:  experimental design, sample collection, and preparation for 406 

sequencing 407 

In the first experiment, topsoil was collected on August 21, 2017 from the AGR-408 

Corn treatment of the Great Lakes Bioenergy Resource Center Scale-Up Experiment 409 

located near the Kellogg Biological Station, Hickory Corners, MI. Corn has been planted 410 

annually at that site since 2010. Replicate soil cores (to a depth of 10 cm) were 411 

collected < 30 cm from the stalk of corn plants (corn roots were present in the cores) 412 

using a 2.5 cm diameter steel corer, transported to the laboratory on ice, sieved and 413 
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homogenized. Three replicate soil aliquots were weighed, dried for 72 hours at 70oC, 414 

then re-weighed to determine soil percent moisture (mean 8.6% ± 0.3% standard 415 

deviation), and the remaining soil was stored at 4oC until use. Soil composition was 416 

56.1% sand, 26.9% silt, and 17% clay as assessed by standard protocols of the 417 

Michigan State University Soil and Plant Nutrient Laboratory. 418 

Broadly, the experimental design consisted of several pre-treatments: ‘pre-dry’ 419 

(soil was sampled before any treatments were initiated), ‘post-dry’ (soil was dried and 420 

then sampled), and ‘post-water’ (soil was partially re-wetted and then sampled), before 421 

exposing soils to one of five treatments: application of the phytohormones abscisic acid 422 

(ABA), indole-3-acetic acid (IAA), jasmonic acid (JA) or salicylic acid (SA), or water 423 

control. On April 2, 2018, five replicates (30 g each) of the sieved and homogenized soil 424 

was retrieved from 4oC storage and frozen at -80oC for DNA/RNA extractions (i.e., the 425 

‘pre-dry’ treatment). The remaining soil was dried for 72 hours at 45oC, at which point 426 

another five replicates (30 g each) were stored at -80oC (i.e., the ‘post-dry’ treatment). 427 

The remaining dried soil was split into 50 mL conical tubes (30 g of dry soil each), and 428 

each tube received water to achieve 4.3% percent soil moisture (half of the initial 8.6% 429 

percent soil moisture). This initial wetting step was included to isolate potential 430 

responses to phytohormones from the known response to moisture ((10) and references 431 

therein). Tubes were vigorously mixed and any clumps broken up with a sterile pipet. 432 

Tubes were incubated at room temperature for six days, then five replicates were frozen 433 

at -80oC (i.e., the ‘post-water’ treatment). The remaining tubes were then randomly 434 

assigned to one of five treatments: IAA, JA, ABA, SA, or water control. Five replicate 435 

tubes received 1.12 mL of the appropriate 0.22 µm filter-sterilized phytohormone 436 
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dissolved in water at a concentration of 1 mM, while the control tubes received filter-437 

sterilized water alone. Thus, these treatments restored all tubes to the initial 8.6% 438 

percent soil moisture. Tubes were vigorously mixed and clumps broken up with a sterile 439 

pipet. After 24 hours, the soil samples were frozen at -80oC. 440 

DNA was extracted from ~0.23 g soil samples using the Qiagen PowerSoil kit 441 

following the manufacturers recommendations, while RNA was extracted from a 442 

protocol modified from (11, 52). Briefly, up to 0.5 g of soil was added to 200 µL of 443 

autoclaved PBL buffer (5 mM Na2-EDTA, 0.1% w/v sodium docecyl sulfate, and 5 mM 444 

Tris-HCl; pH ~3), vortexed for 1 minute, then 1 mL of phenol:chloroform:isoamyl alcohol 445 

(25:24:1 v/v/v, pH 8) was added. Samples were vortexed for 15 min, then centrifuged 446 

for 5 min at 20,000 x g. The upper (i.e., aqueous) layer was collected, added to 1 mL 447 

isopropanol, and vortexed. Samples were centrifuged for 15 min at 20,000 x g, and the 448 

supernatant was carefully removed. Tubes were air dried for 15 minutes, then 449 

resuspended in 50 µL of sterile water. Resuspended RNA extracts were cleaned using 450 

the OneStep PCR Inhibitor Removal kit (Zymo Research, Irvine, CA).  451 

 452 

Bean rhizosphere soil:  experimental design, sample collection, and preparation for 453 

sequencing 454 

In the second experiment, we planted 24 one-gallon pots with the common bean, 455 

Phaseolus vulgaris L. (var. Red Hawk), in local Michigan field soil in a controlled-456 

environment growth chamber (BioChambers FXC-19). Soil composition was 73.7% 457 

sand, 14.9% silt, and 11.4% clay. Plants received 16 h light and 8 h dark photoperiod, 458 

with a daytime temperature of 29°C and a nighttime temperature of 20°C. Eight replicate 459 
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plants received ample water throughout the course of the experiment and served as 460 

controls. Eight additional replicates received ample water with the addition of nutrients 461 

(half-strength Hoagland solution; (53)) and an additional eight replicates were subjected 462 

to continuous drought, receiving 66% less water than control pots throughout the 463 

experiment. Plants were grown to the R8 stage (~5 weeks) before harvesting 464 

rhizosphere soils. Rhizosphere soil was collected in sterile Whirl-Pak bags by uprooting 465 

the plants and shaking loose soil from the root system. Any remaining soil adhering to 466 

the roots was considered rhizosphere soil. Two rhizosphere soil samples (5 g each) per 467 

plant were collected and immediately processed for active and total cell counts (see 468 

further detail below), while the remaining rhizosphere soil was frozen at -80oC for 469 

RNA/DNA extraction. For each plant, DNA was extracted from ~0.3 g of rhizosphere soil 470 

using the DNeasy Powersoil kit (Qiagen, Carlsbad, CA, USA, while RNA was extracted 471 

from ~2.3 g of rhizosphere soil using the RNeasy Powersoil kit, following manufacturer’s 472 

instructions.  473 

 474 

Corn and bean soil: microbial cell extraction and active and total cell counts 475 

For both corn and bean soils, microbial cells were extracted following a protocol 476 

adapted from (54), and stained for determination of active and total cell counts. Briefly, 477 

soil subsamples (10 g per sample in the corn soil experiment, and two technical 478 

replicates of 5 g each in the bean soil experiment) was mixed with 100 ml of chilled 479 

sterile phosphate buffered saline containing 0.5% Tween-20 (PBST). Soil samples were 480 

homogenized in a Waring blender (Conair Corporation, East Windsor Township, NJ, 481 

USA) three times for one minute and kept on ice between each blending cycle. Soil 482 
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slurries were centrifuged at 1,000 x g for 15 minutes and the supernatant was set aside. 483 

The pelleted soil was resuspended in 100 ml PBST and blended for an additional 484 

minute and re-centrifuged. The supernatants were pooled and centrifuged at 10,000 x g 485 

for 30 min. The supernatant was aspirated and the pellet was resuspended in sterile 486 

Milli-Q water (20 mL in the corn soil experiment, and 10 mL in the bean soil 487 

experiment). Cells were stained for percent activity determination using the BacLight 488 

RedoxSensor CTC Vitality kit (ThermoFisher Scientific, Waltham, MA, USA). Briefly, 489 

one milliliter of cells was stained with 0.38 µl of the DNA stain Syto24 and 5 mM of the 490 

activity stain 5-cyano-2,3-ditolyl tetrazolium chloride (CTC; active community) for 24 491 

hours. Stained cells were fixed with 100 µl of 37% formaldehyde and cell counts were 492 

measured on a BD C6 Accuri Flow Cytometer (Franklin Lakes, NJ, USA), defining a cell 493 

as a fluorescence event greater than 103 on a 490/515 nm filter for Syto24 and 450/630 494 

nm filter for CTC. Following recommendations by the Michigan State University Flow 495 

Cytometry Core, we gated measurements by side scatter values <500 which removed 496 

particles <1 µm from our measurements.  497 

We calculated the percentage of active cells by dividing CTC counts by Syto24 498 

counts. For each sample in the corn soil experiment, we used a single 10 g sample of 499 

soil for microbial cell extraction that was then split into two technical replicates for 500 

staining: these two replicates per sample were averaged prior to subsequent analyses 501 

to avoid pseudoreplication. For each plant in the bean experiment, we used two 502 

replicate 5 g soil samples to give two technical replicate microbial cell extractions. Each 503 

of these was then split into three technical replicates for staining. These six replicates 504 

per plant were averaged prior to subsequent analyses to avoid pseudoreplication. 505 
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 506 

Corn and bean soil: 16S rRNA gene amplicon sequencing 507 

 For both the corn and bean soil experiments, we first verified no DNA 508 

contamination in the RNA samples using PCR with 16S primers (55, 56) followed by gel 509 

electrophoresis. Next, 3 µl of RNA from each RNA sample was reverse transcribed 510 

using the SuperScript RT III kit (Invitrogen) following the protocol for random hexamers. 511 

Nucleic acid concentrations were measured with the Qubit broad-range DNA assay kit 512 

(ThermoFisher, Waltham, MA, USA). DNA and cDNA from the bean experiment were 513 

diluted to 5ng ul-1 (but were left undiluted in the corn soil experiment) prior to submitting 514 

for sequencing at the Michigan State Genomics Core. cDNA and DNA from both the 515 

corn and bean soil experiments were sequenced by the Michigan State University 516 

Genomics Core using the dual-indexed primer pair 515F and 806R (56). Samples were 517 

prepared for sequencing by the MSU Genomics Core including PCR amplification and 518 

library preparation using the Illumina TruSeq Nano DNA Library Preparation Kit. Paired-519 

end, 250bp reads were generated on an Illumina MiSeq and the Genomics Core 520 

provided standard Illumina quality control, adaptor and barcode trimming, and sample 521 

demultiplexing.  522 

 523 

Corn and bean soil: bioinformatic and statistical analyses 524 

The corn and bean soil sequencing datasets were analyzed separately. For each 525 

dataset, raw reads were merged, quality filtered, dereplicated, and clustered into 97% 526 

identity operational taxonomic units (OTUs) using the UPARSE pipeline (57). 527 

Taxonomic annotations for OTU representative sequences were assigned in the mothur 528 
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(58) environment using the SILVA rRNA database release 132 (59). OTUs with 529 

unassigned taxonomy at the phylum level, and OTUs annotated as mitochondria, 530 

chloroplasts, or Eukaryota, were removed. All subsequent analyses were performed in 531 

R (version 3.5.0; (60)), with ecological statistics performed using phyloseq (version 532 

1.24.0 (61)). Data were visualized using a combination of the R packages ggplot2 533 

(version 2.2.1; (62)), reshape2 (version 1.4.3; (63)), ggpubr (version 0.1.6; (64)), and 534 

gridExtra (version 2.3; (65)), and dplyr (version 0.7.5; (66)) was used for data 535 

summaries.  536 

First, we examined the prevalence of ‘phantom taxa’ (i.e. OTUs with detectable 537 

RNA reads but no detectable DNA reads; (23)) in the corn and bean soil datasets. We 538 

calculated the average percent of OTUs that are phantom taxa in each treatment, as 539 

well as the average percent of OTUs with a single RNA read and no detectable DNA 540 

reads in each treatment. We conducted these analyses across a range of subsampling 541 

levels (using a step-size of 5000 reads per sample) to examine the influence of 542 

sequencing depth on the prevalence of phantom taxa, and used the loess smoothing 543 

function (67) to generate best fit lines and confidence intervals. Given the relatively low 544 

impact of subsampling level on the occurrence of phantom taxa, all subsequent 545 

analyses were conducted on samples rarefied to the minimum sampling depth in each 546 

dataset (22,556 reads per sample for corn soil, and 37,815 reads per sample for bean 547 

soil). 548 

 Given the prevalence and persistence (i.e., their high collective contributions 549 

regardless of sampling effort) of phantom taxa in our sequencing datasets, we next 550 

compared four different methods for calculating 16S ratios in the presence of phantom 551 
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taxa. See Fig. 2 for a detailed illustration of the four methods, referred to here as 552 

Methods 1, 2, 3, and 4 for simplicity. In Method 1, each phantom taxon in each sample 553 

is set to a 16S ratio of 100 to designate such taxa as ‘active’ regardless of the threshold 554 

16S ratio activity level chosen, since most studies choose a threshold ratio less than 10 555 

to designate taxa as ‘active’ (6, 9, 11). In addition, Method 1 sets each taxon in each 556 

sample with no detectable reads (those with zero reads in both the RNA and the DNA 557 

datasets) to a value of zero, thereby eliminating undefined 16S ratios which arise due to 558 

a denominator of zero. In Method 2, every instance in which zero DNA reads are 559 

detected for a given OTU in a given sample is changed to a value of one to eliminate 560 

zeros in the denominator. In Method 3, previously used by (11), a value of one is added 561 

to every OTU in every sample in the DNA dataset. This method is meant to eliminate 562 

zeros in the denominator (as with Method 2), but also to treat every entry in the DNA 563 

dataset exactly the same. In Method 4, previously used by (14), a value of one is added 564 

to every OTU in every sample in both the RNA and the DNA datasets. As with Methods 565 

2 and 3, this method is meant to eliminate zeros in the denominator, but also to treat 566 

every entry in the entire dataset (both RNA and DNA reads) exactly the same. We 567 

compared the resulting percent activity of the OTUs after using Methods 1-4 in both the 568 

corn and bean soil datasets, using threshold 16S ratios of 1, 2, and 5 for determination 569 

of ‘active’ versus ‘inactive’ OTUs. Given that Methods 1-4 captured similar patterns in 570 

percent activity across treatments, we conducted all subsequent analyses using the 571 

recently published Method 3 (11) to calculate 16S ratios. 572 
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 Next, we examined the relationship between the average number of 16S 573 

ribosomal operons per genome for each phylum, obtained from the Ribosomal RNA 574 

Database (version 5.4; (42, 68, 69)), and the observed 16S ratios in the present study.  575 

 Finally, we compared estimates and across-treatment patterns of microbial 576 

activity using the 16S ratio (threshold > 1) method to calculate the percentage of active 577 

taxa, versus using the cell staining method (CTC counts divided by Syto24 counts) to 578 

calculate the percentage of active cells. We also examined both active (CTC) and total 579 

(Syto24) counts across treatments to explore the influence these two values have on 580 

the percentage of active cells as calculated by the CTC/Syto24 ratio. Differences among 581 

treatments were assessed using ANOVA followed by a Tukey post-hoc test for multiple 582 

comparisons. All bioinformatic workflows and custom scripts are available on GitHub 583 

(https://github.com/ShadeLab/PAPER_Bowsher_mSystems_2019_16sRatio_CTCstain)584 

. 585 

 586 

Accession number(s).  587 

Corn and bean soil sequencing data were submitted to the NCBI Sequence Read 588 

Archive under BioProject accession numbers PRJNA490178 and PRJNA454289, 589 
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Figure Legends 803 

 804 

Fig 1 Conceptual diagram depicting the impacts of four distinct methods for calculating 805 

16S rRNA:rDNA ratios in the presence of ‘phantom taxa’ (i.e., OTUs in a given sample 806 

with 16S RNA reads but zero 16S DNA reads, producing an undefined 16S ratio due to 807 

a zero denominator). The input OTU table for a given sample along with 16S ratios is 808 

shown on the left, while the resulting OTU tables and 16S ratios are depicted on the 809 

right (changes are shaded blue). Four different sequencing scenarios in a hypothetical 810 

sample are considered: OTU1, in which the number of RNA reads is much larger than 811 

the number of DNA reads but both are present; OTU2, in which the number of RNA and 812 

DNA reads are both low but present; OTU3, in which the number of RNA reads is one 813 

and the number of DNA reads is zero; and OTU4, in which the number of both RNA and 814 

DNA reads is zero.  815 

 816 

Fig 2 Comparison of the proportion of taxa that are active (i.e. percentage of total OTUs 817 

with 16S rRNA:rDNA ratio greater than a given threshold) in soil associated with corn 818 

(A) and bean (B) following each of four methods for calculating 16S ratios. See Figure 1 819 

for depiction of the four methods for calculating 16S ratios and main text for description 820 

of treatment conditions. 821 

 822 

Fig 3 16S rRNA:rDNA ratio as a function of the average 16S operon copy number for 823 

the presented phyla detected in (A) corn rhizosphere and (B) bean-associated soil, as 824 

determined by the Ribosomal Copy Number Database (rrnDB). Data points represent 825 
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every occurrence (i.e. within and across all samples) for a given phylum. Only phyla 826 

with representatives in the rrnDB are shown. Note that phylum Spirochaetes was 827 

present only in corn-associated soil. 828 

 829 

Fig 4 Proportion of active taxa/cells as determined by CTC/Syto24 staining (A, B) or 16s 830 

rRNA:rDNA ratios (C, D) in soil associated with corn (A, C) and bean (B, D).  Taxa in (C, 831 

D) are defined as active with a 16S rRNA:rDNA ratio > 1. See main text for description 832 

of treatment conditions. 833 

 834 

Fig S1 Prevalence of taxa with 16S RNA reads but zero 16S DNA reads (A, B) (i.e. 835 

‘phantom taxa), or a single 16S RNA read and zero 16S DNA reads (C, D) in soil 836 

associated with corn (A,C) and bean (B,D) as a function of sequencing subsampling 837 

level. Shown are best fit lines using the loess smoothing function (see Supplementary 838 

Figure S2 for same plots but including individual data points). Gray shading around the 839 

smoothing lines are 95% confidence intervals. 840 

 841 

Fig S2 Prevalence of taxa with 16S RNA reads but zero 16S DNA reads (A, B) (i.e. 842 

‘phantom taxa), or a single 16S RNA read and zero 16S DNA reads (C, D) in soil 843 

associated with corn (A,C) and bean (B,D) as a function of sequencing subsampling 844 

level. Points indicate individual samples, with best fit lines using the loess smoothing 845 

function. Gray shading around the smoothing lines are 95% confidence intervals. See 846 

Supplementary Figure S1 for same plots but including only smoothing lines and 847 

confidence intervals. 848 
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 849 

Fig S3 Flow cytometer counts (i.e., number of cells counted) per gram of soil extracted 850 

following staining with CTC (A, B) and Syto24 (C, D). 851 

 852 
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