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ABSTRACT

Ensuring that deployable mechanisms are sufficiently rigid
is a major challenge due to their large size relative to their mass.
This paper examines three basic types of stiffener that can be ap-
plied to light, origami-inspired structures to manage their stiff-
ness. These stiffeners are modeled analytically to enable predic-
tion and optimization of their behavior. The results obtained from
this analysis are compared to results from a finite-element anal-
ysis and experimental data. After verifying these models, the ad-
vantages and disadvantages of each stiffener type are considered.
This comparison will facilitate stiffener selection for future engi-
neering applications.

NOMENCLATURE

o Panel sector angles

Panel area

Distance of force in four-point test from outer edge

S IS

The crease whose angle is used to measure partial actuation
in the test prototype

Width of a panel cross-section

Foam thickness

Vertical coordinate of the section centroid
The area cost

B> as

+ The ratio between the deployed area and the area of one face
of a cube of equivalent volume
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J Ratio between the density of a foam and its constituent ma-
terial
d Width of the partially-actuated prototype
€4 The strain at the initiation of densification
E  Young’s Modulus
Ey  Young’s Modulus of the foam core surface
E; Young’s Modulus of the foam core center material
F Total force applied to test bending stiffness
f Parametric parameter i/w
v The fold angle at a crease
max  Maximum fraction of material removed from crease
min  Minimum fraction of material removed from crease
Height of the yielded stiffener
Area moment of inertia
Effective spring constant
The ratio of Ef/E;
Largest prototype dimension
Fold angle multiplier
Ratio between face and core material densities ps/p; for the
expanded stiffener
M  The ratio between the current mass and the initial mass
N  Safety factor
pe Density of the core
pys Density of the face material
ps Density of the material in the core
P Parameter describing the cost of a stiffener size
p Ratioof b/t

T =

SENSE ~=

Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 11/19/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Q First moment of the area

g Ratio C/t

R Ratio of I for the stiffened un-stiffened version

r  Unit-less ratio of w/¢

o,; Constant collapse stress for an elastic foam

S Maximum acceptable shear stress

s crease length

6 The tilt angle of the panel cross-section in a partially-
actuated vertex

T Thickness of the wall of a foam core panel

t Thickness of a panel cross-section

V  Shear force at a cross-section

w  Total width of a single yielded stiffener unit

& Unitless parameter describing size of a generic stiffener size
relative to a specific panel dimension

1 Introduction

The potential of origami to inspire the design of deploy-
able mechanisms has been discussed by various authors in recent
years [1-3]. Applications such as spacecraft antennas [4], optical
equipment [5] and solar collectors [6] represent just a few of the
possible roles that these devices can fill advantageously. How-
ever, the design of deployable mechanisms for these applications
is a significant challenge. One concern that applies specifically
to these large, light-weight structures is their ability to maintain
their designed shape under their loads. This designed deployed
shape could be specified by a number of factors. For an antenna,
the shape would be governed by the signal wavelength it was de-
signed to transmit or receive. The shape of a solar collector or
optical array also needs to be closely controlled to achieve their
function.

Nevertheless, controlling the shape of the array can be par-
ticularly challenging when dealing with origami panels deployed
over a large area. Origami-inspired mechanisms often consist of
a collection of thin panels connected with hinges that are folded
into a small package for transportation. When ready to deploy,
these folded mechanisms are generally deployed into a large,
relatively flat and thin configuration [7]. While the packing effi-
ciency is high, the resulting deployed configuration is vulnerable
to shape distortion because of its low bending stiffness.

In a space application, this distortion could be introduced
by a variety of factors, including the manufacturing tolerances
and materials used to construct the array [8]. Another important
factor is the load placed on the array by reaction wheels used
to control the spacecraft and other mechanisms such as cryo-
coolers [9, 10]. Thermal distortions can also influence the de-
ployed configuration of the structure [11]. These factors make it
essential to design deployable structures with enough stiffness to
resist applied loads and maintain their desired configuration.

This paper describes three methods of changing the deploy-
able geometry and adjusting the stiffness of a large, origami-

inspired deployed structure. Folding methods are used so that the
advantages of origami systems are retained and to maintain com-
patibility with the methods used to construct the origami system.
Procedures for assessing the potential change in stiffness pro-
duced by this method are examined. One method involves par-
tially folding the entire pattern in order to enhance stiffness. The
use of a rib that is yielded into place along a crease is also ex-
amined. Finally, the use of panels with expandable, foam cores
that increase stiffness is proposed. In all cases, the positioning
and proportions of the stiffeners are considered to facilitate the
optimal design of these components.

2 Background

Understanding the stiffness of a deployed structure is a
fundamental problem that has been investigated by several re-
searchers [12—14]. Tan and Pellegrino [15] extensively studied
the properties of a stiffener located at the edge of a flexible dish.
Their work investigated specific problems with this stiffener such
as flexibility, vibration and stiffness. Research on the use of stift-
eners at the hinge of a deployable solar array has also been con-
ducted by Jorgensen et al. [16] Their work focused on the dynam-
ics of the deployment process but still illustrated the use of such
stiffeners to obtain specific behavior in their deployable mecha-
nism.

Research performed by Schenk and Guest [17] specifically
focused on the modeling of stiffness in textured origami sheets.
The difference in the stiffness of these patterns in different modes
of deformation was considered to give insight into origami mech-
anism design. A similar analysis of the stiffness of different
modes of deformation was performed by Filipov et al. [18] while
specifically examining variations of origami zippers. Their re-
search highlighted the ability of these origami mechanisms to
provide both a compliant, deployable mode and a stiff load-
bearing mode.

Work has also been performed on characterizing origami tes-
sellations as a meta-material and computing its mechanical char-
acteristics. For example, Cheung et al. [19] discuss the possibil-
ity of using cellular origami tessellations to enable the construc-
tion of light, strong structures that can retain deployability. Their
work discusses both the kinematics and mechanics of the result-
ing structures and its capacity to resist loads as well as permit
motion. Similarly, Wonoto et al. [20] investigate the ability of
simple origami tessellations to support their own weight when
deployed. They also conduct an optimization of the geometry to
meet this structural need.

3 Methods for Managing Pattern Stiffness

When constructing an origami-inspired deployable mecha-
nism, many factors need to be considered before decisions about
its design can be made, including the inherent stiffness of the de-
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ployed pattern and its complexity. The complexity and usefulness
of additional stiffeners would also be a factor. In this section, dif-
ferent methods for managing the stiffness of an origami pattern
are discussed and their relative advantages and disadvantages are
listed to facilitate their design.

(@) (b)

FIGURE 1: (a) A flat pattern and a (b) partially folded version
used to enhance the panel stiffness

3.1 Partially Folded Patterns

The first method for managing pattern stiffness is partially
folding a pattern as shown in Figure 1. Making this alteration to
the pattern can be advantageous because it requires no modifica-
tion to the device design and so can be implemented at a low cost.
However, it may necessitate other changes if the original surface
was required to be perfectly flat. Nevertheless, if this partial fold-
ing is minimized, any negative side effects may reduce to accept-
able levels. To quantify how much folding is necessary to suf-
ficiently increase stiffness, the kinematics of individual origami
vertices must be modeled.

dihedral
angle

\Yz

(b)

FIGURE 2: (a) A flat vertex and a () partially folded version
(21]

It has been demonstrated [21] that the fourth-order origami
vertex shown in Figure 2a can be modeled using the fold-angle

multiplier

sin [l (o + az)]

_sin|3
. {%(0‘1 - 062)} v

sin

and the relationship between major and minor fold angles

1 1
tan (272> = {tan (2?’1> 2

Here, o and  are the sector angles of two panels not divided
by the minor crease line, and ¥, is the dihedral angle between the
panel containing o and . The dihedral angle 9> is the angle
between the panels containing ¢; and o,. The angles y; and p»
are defined as zero when the pattern is flat and 7 when it is fully
folded. Opposite dihedral angles are equal, or y; = 3 and 1, = V4.

If the folded angles ¥ and 7 are limited to small angles
where ¥ < 0.2 and tanx ~ x then we have

R UY 3

which demonstrates that at small dihedral angles, the major and
minor dihedral angles y; and 9 are related linearly. More gener-
ally, all the dihedral angles in a pattern composed of fourth-order
vertices are linearly related. This is important because it permits
the characterization of the area moment of inertia of any cross-
section perpendicular to the face of the origami model.

)

t

D

FIGURE 3: The tilted configuration of a panel in a partially
folded pattern

If a cut is made using a plane perpendicular to the face of
the origami, then the resulting cross-section will be composed of
a certain number of connected segments. These segments will be
approximately rectangular if the thickness of the panels is much
less than its length. If these segments are tilted at an angle 0, then
the area moment of inertia of the segment is given by

b
1= 1—; (12 cos® O + b?sin” 9) 4
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FIGURE 4: A concept for a yielded stiffener which is cut from
the panel

where b is the length of the segment, ¢ is its thickness and O
is its tilt angle as shown in Figure 3. The tilt angle is zero when
the segment is completely horizontal. If we make the substitution
b = pt, then we have

4
t
I= - (cos® @ 4 p*sin %) %)

where p is the ratio of the width (b) to the thickness (z). If we
find the ratio of a tilted segment’s area moment of inertia to its
inertia when flat, R, we find that this ratio is

R =cos>0 + p2 sin? 0 (6)

This relationship shows that for large values of p (i.e. the seg-
ment is very thin relative to its thickness), the increase in inertia
is large. The potential gains in / is illustrated by considering that
if the maximum tolerated actuation angle is 6 = 0.05 radians, a
width to thickness ratio of twenty (p = 20) would double the mo-
ment of inertia. If it were forty, the inertia ratio would quintuple.

3.2 Yielded Panel Stiffeners

Another possible mechanism for stiffening a panel is to add
a plate that can be yielded at its crease and deployed to enhance
stiffness. This concept is shown in Figure 4. Employing this type
of stiffener promises some important advantages. First, the stiff-
ener could be stamped out of the material and so would be rel-
atively simple to add to a design. Such a stiffener would also
automatically lock into place following deployment. While de-
ployment would be an issue due to the nature of the crease in the
stiffener, many options exist for driving the motion [22,23]. The
gains in stiffness will be significant as long as the panels in the
deployable are thin.

In this section, we will analyze a yielded stiffener and its
ability to enhance the bending stiffness of an origami panel. A
diagram of the cross-section of the stiffener in Figure 4 is shown
in Figure 5. With the given geometry, it is possible to calculate
the centroid of the section with respect to y. If the panels are as-
sumed to be thin, then the centroid for the cross-section in Figure
5 is located at

| w |
FIGURE 5: The yielded-stiffener cross-section

h2
c=— 7

o @)
respectively where #, t and w are described in Figure 5. Knowing
the centroid allows us to calculate the area moment of inertia of
the cross-section. This inertia is

1th* 1 1
I=-th— -+ _—w— —n 8
3 i TR™ R ®)

using the parameters shown in Figure 5. If this inertia is divided
by the area moment of inertia of the unmodified panel of width
w and thickness ¢, then we have

R:;:4r2f3—3r2f4+17f ©)
0

if we make the parametric substitutions f = h/w and r = w/r.
These equations will be accurate until buckling occurs.

3.2.1 Stiffener Crease Perforations Successfully
implementing this stiffener type requires some method of de-
ploying it and then locking it into place. One approach for ac-
complishing this is to perforate the crease about which the stiff-
ener bends. This would provide a predictable bend location as
well as a suitable restraining force once the stiffener is fully de-
ployed. An image of the suggested perforations are shown in Fig-
ure 6.

A side effect of this perforation is that it predisposes the stiff-
ener to failure in shear at the crease due to bending. The shear at
the crease line is given by

_Vo
T=-= (10)

where Q is derived for the specific geometry shown in Figure 4
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FIGURE 6: Perforations in the crease of the yielded stiffener

and is given by

— h)th?
Q:% (11)

This derivation is performed using the method described in [24].
Substituting these values for Q into Equation 10 yields

W (—w+2h)V
t (—4h3w+3h4 — 122 +t2wh)
Vr(=1+2f) f?

:6t2(—4r2f3+3r2f4—1+f) (13

T=6 (12)

where V is the shear load applied to the end of the beam. Since
this shear stress is the stress felt by the crease if it were fully
dense, it must be increased when material is removed. If the max-
imum tolerable shear stress is S, then the maximum fraction of
material that can be removed, H,,y, is given by

T
Hyax = 1—§ (14)

3.2.2 Material Removal to Permit Deployment
While H,,,, provides a maximum amount of material that can
be removed, the minimum of this quantity should also be deter-
mined (H,;,). Enough material should be removed so that the
stiffener is loaded elastically while the crease is loaded plasti-
cally during deployment. If the crease is loaded elastically with
a factor of safety NV, then the maximum tolerable moment, M,, is

_ oyst?
6N

M. 5)

where 0y, is the yield strength of the material and s is the crease
length. If material is removed from the cross-section and only a
fraction of the original cross-sectional area sz(1 — Hy;, ) remains,
then the plastic moment for the crease is

(1 mem)st2 p

My = == g, (16)
Equating these two moments and solving for H,,;,, yields
2
Hyin = 1= 3 a7

Therefore, if N = 2 then 2/3 of the crease material should be
removed. In this case, the crease will yield plastically while the
stiffener will have a factor of safety of two against yielding.

3.3 Expanded Stiffener

4 End

() (b)

FIGURE 7: The dimensions associated with (@) the expanded
stiffener and (b) its compressed state

A third option explored here for enhancing panel stiffness
involves using an expanded stiffener as shown in Figure 7. In
this device, the panel faces are made of a strong, dense mate-
rial and the core (orange) is made of a low-density foam. This
combination of materials has been shown to be very strong and
stiff [25] compared to its weight and has been used widely in a
variety of structures. However, the thickness of these sandwich
structures can still be too large to effectively employ in origami-
inspired mechanisms because of the large number of layers that
can be stacked in its folded form. This volume can be reduced if
the foam core can be compressed elastically in the stowed state
as shown in Figure 7b.

Two distinct cases of this method are described. In the first,
it is assumed that the weight of the expanded stiffener must equal
that of the panel being replaced. In this scenario, as the amount of
foam in the stiffener is increased, the thickness of the walls will
decrease. The second case will consist of a panel with walls that
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are half the thickness of the original panel. This problem varia-
tion is considered because the panel walls may already be at a
minimum thickness due to other constraints such as raw material
dimensions. Consequently, the weight of this panel variation will
increase as the amount of foam is increased. In both cases, the
area moment of inertia gain as well as other important character-
istics can be found.

For a foam-core sandwich panel with the dimensions shown
in Figure 7a, the panel rigidity, EI, modulus of elasticity of the
foam core, E,, and panel mass, m, are given by [19]

 EsbT? N E.bC3 N E/bT(C+T)?

El 3 B > (18)
2
pc)
E.=E/ % (19)
(5
m=bCLp.+2bLTpy (20)

where b is the panel width, T is the thickness of the sandwich
face, C is the thickness of the foam core, p, is the density of the
foam core, py is the density of the foam material, py is the density
of the face material, E is the Young’s Modulus of the face, E is
the modulus of the foam core and E; is the modulus of the core
material. If we use Equation (19) to eliminate E. in Equation (18)
and make the substitution & = p./p;, then the panel rigidity can
be expressed as

1 1 2
El= EbC352ES - EbCZEfT +bCEfT? + ngfT3 1)

The area moment of inertia can be found if we compare the sand-
wich panel to another made solely of the face material. E = Ey
in this case and the area moment of inertia is

_ bCY8’E, 26T

- 12Ef

1
+ 5bczT +bCT? + (22)

If the initial solid panel has a thickness of ¢, then its area moment
of inertia is

1
Iy = —bt> 23
=13 (23)

However, before a gain R can be calculated, a relationship
between T and ¢ must be found. If the mass of the initial panel
and the sandwich panel are equal, then we can use Equation (20)
to write the following relationship and solve for ¢.

m(b7L7Ca T) ‘CZO,TZ[/Z = Wl(b,L7 Cw7 T)
Cops+2T
t = M (24)
Pr

Dividing Equation (22) by Equation (23) and substituting Equa-
tion (24) to eliminate ¢ yields

P} <C3Esp3 +2E,T (3C*+6CT +4T2) pf)

R, — 25
E;p? (Cp.+2Tpy)3 @

n? (8/1 +8%¢> + 614 + lzzlq)
_ 26
RELEETIE @0

if we make the parametric substitutions 1 = ps/ps, A = Ey/E;,
0=p./psand g=C/T.

A similar derivation and result can be obtained if we con-
sider the case where a minimum panel thickness has already been
reached. If this minimum face panel thickness is half the initial
panel thickness 7, then T =7 /2 and the mass of this panel will be

my, = bL (Cp. +1py) 27)

The gain in area moment of inertia can be determined by making
these substitutions and dividing by .

1 { C3E,p? 6C* 12C
= — 4+ —+8 28
b=3 (EfT3pS2 gt (28)
1 (8%
=3 (f 1642+ 12q+8> (29)

3.3.1 Collapse Behavior An important requirement
for the expanded stiffener to function efficiently is for it to
compress substantially and to use significantly less space when
stowed. It must also be capable of undergoing this compression
without requiring too much force. A minimal amount of col-
lapse will diminish the potential benefits of implementing this
system and requiring excessive force to compress the core may
also cause problems for the storage and deployment mechanisms.
These two constraints of core compression can be modeled and
optimized to obtain a beneficial combination for a particular set
of stiffener materials and design parameters.

The load required to collapse the core can be found through
determining the collapse stress o,; shown in Figure 8. When this
stress is reached, open-cell foams will collapse with an approxi-
mately constant stress given by [26]

% = 0.038%(14 5/2)? (30)

s

and will enter the densification region at a strain of [27]

1)
fa=1-07 3D
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FIGURE 8: The stress-strain diagram of an elastic foam

Knowledge of this maximum collapse strain allows us to find C
for the stowed panel:

Cstowed = (1 — Scd)c =3.336C (32)

4 Experimental Results

Confidence in the theoretical relations for two stiffener types
was obtained through experiments and finite-element simula-
tions. Because of the unique geometry of each stiffener type,
multiple fixtures were needed. All finite element simulations
were performed on models constructed with shell elements in
ANSYS. Convergence studies were performed in each case to
verify that convergence had occurred.

4.1 Partially-Actuated Stiffener

Testing the stiffness of a partially-actuated pattern was ac-
complished by constructing the prototype shown in Figure 9 us-
ing the fixture shown in Figure 10. Prototype dimensions are
listed in Table 1. The material was sheet polypropylene and
the panels adjacent to crease B were tilted to the 6 value in
the table. It was constructed with small Nylon hinges used for
model aircraft stabilizers. The stiffness was measured by load-
ing the vertex as a cantilevered beam in the fixture shown in
Figure 10a. This fixture consisted of an upper (a) and lower (b)
grip, two supporting columns (c) and a base (d) that can be se-
cured to the workbench. The test specimen (1), Kistler 9212 load
cell/deflector (2) and test fixture (3) are shown in Figure 10b.

Using the cantilever setup shown, three tests of a partially-
actuated vertex were conducted. The actuation angle reported
in Table 1 should result in an increase in stiffness of R = 18.4
according to Equation 6. A similar value was found through
an finite element simulations shown in Figure 11. The vertex
was calculated to have a stiffness gain of R = 15.0. An ele-
ment size of 1.59 millimeters was used. The results from the
tests of the actuated models showed that the stiffness increased
by R = 15.8 £3.8. The confidence interval resulted from experi-
ments on multiple samples. This differs by 16.9 % from the an-
alytical results and 4.7% from the FEA result. Both results are

FIGURE 9: A fourth-order vertex that was partially actuated to
demonstrate the resulting increase in stiffness

(a) A schematic of the test fix- (b) An image of the test setup
ture

FIGURE 10: The test fixture used to measure the bending stiff-
ness of an origami pattern

also within the 95% confidence intervals of the R value, which
is reasonable considering the unmodeled flexibility of the frame,
nonlinearity in the material properties, and other variables.

Other important assumptions made by the analysis include
neglecting buckling in the panel. Such non-linear effects would
alter the slight actuation angles and significantly alter the stiff-
ness. Another assumption is that the hinges do not add significant
amounts of flexibility. When this is not correct, parasitic motion
at the hinges can alter the results.

This method can be attractive because the only requirement
for it to function is that the pattern cannot completely unfold.
Consequently, implementing it is relatively straightforward. A
combination of appropriate hard-stops and self-locking hinges
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FIGURE 11: A finite-element simulation of a partially-actuated
vertex

\F 1;
1 ]
= ]
| 1
FIGURE 12: The parameters and loads applied during a four-
point bend test

L

would be one method of ensuring the appropriate partially folded
final state.

4.2 Yielded Stiffener

The predictions of stiffness increase for Equation (9) were
confirmed experimentally using a four-point bend test illustrated
in Figure 12.

The prototypes tested in this fixture were made of
polypropylene sheets with properties shown in Table 2. For a
four-point test shown in Figure 12, the deflection of the panel

TABLE 1: Parameters used to define the partially-actuated proto-
type

Parameter Value  Units

E 1.5 GPa

0.42 none
L 63.5 cm
s 40.6 cm
d 15.2 cm
t 0.159 cm
0 0.0875 rad

is given by

Fx

Y 6EI

(x* 4 3a* —3La) (33)

where F is the force load at one of the two load teeth, E is
Young’s Modulus, I is the area moment of inertia of the panel
cross-section, x is the distance of a point from the outermost load
point in the test and a is shown in Figure 12. Solving this equa-
tion for 7 where k = F /y and x = a yields

ka(4a®> —3La)

I =
6F

(34)

Using Equation (34), the mean stiffness gain for three sam-
ples was calculated to be R, = 191 £ 16. The confidence inter-
val resulted from experiments on multiple samples. This value
compares favorably with the analytical prediction of R, = 198
from Equation (9). These results were supplemented by a finite-
element simulation shown in Figure 13. The element size was
3.28 millimeters. This simulation predicted a gain of R, = 232.
While there is an error of 17.0% between this value and the an-
alytical results, this difference may result from the unmodeled
effect of the crease used to deploy the stiffener. Any deviation of
the stiffener from vertical during the loading process could also
have influenced the results through a lateral torsional buckling
mode. The analytical and experimental results agree closely and
the FEA results are not widely different, building confidence in
the model for the yielded stiffener.

5 Comparison of Stiffeners
One important question that arises about these methods is
how they compare and what type of considerations will influence

TABLE 2: Parameters used to define the yielded stiffener proto-
type and test fixture

Parameter Value Units

E 1.5 GPa
v 0.42  none
t 0.159 cm
L 59.7 cm
w 10.8 cm
h 2.54 cm
a 15.2 cm
Copyright © 2018 ASME
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FIGURE 13: A finite-element simulation of the yielded stiffener

the selection of one method over another. Because the gain in the
moment area of inertia for each stiffener depends on several para-
metric variables, a good comparison can only be made if a range
of input values are considered. This can be done by graphing the
moment of inertia gain, R, versus a certain cost variable P. Both
R and P depend on the geometry and so are plotted parametri-
cally.

One potential cost for each stiffener is the deployment ra-
tio. Because each stiffener type either increases the volume of
the panels or diminishes the available panel area, their use will
decrease the final deployed area for a constant stored volume.
Because many applications for deployable mechanisms seek to
maximize deployed area, this may be an important design cost.
For this comparison, the deployment ratio is defined as

A — Adeployed
e 2/3

stowed

(35)

where Ay pioyeq 18 the area of a deployed pattern and Vi;gyeq 1S the
volume of the stored pattern. Because our objective is to compare
stiffeners, the percent change in deployment ratio between a sin-
gle, unit-square panel of thickness ¢ and its stiffened counterpart
will be defined as the area cost. The area cost can be written as

s
A A — A . Ad€p10y€d 7Adeployed

= (36)
Ar Adeployed

where A is the deployment ratio for the stiffened panel.

Another cost to consider is the increase in mass produced by
each stiffener. This cost is represented by M and is defined as the
percent change in panel mass between the stiffened and initial
versions. Both the initial and final panels must have equivalent
area.

5.1 Stiffener Area and Mass Costs

Before any effective comparison can be made, specific area
costs described in Equation (36) must be found for all three stiff-
eners. For a partially-actuated pattern, its viewable area can be
expressed as A = Apcos O where A is the real panel area and 0

is the angle between the panel angle and a line from the base of
the normal to the viewer. Because the stowed volume remains
unchanged between stowed and deployed states, the area cost for
partial actuation is given by

Apy =1—cosB 37

Similar area costs can be found for the yielded and expanded
stiffeners and are given by Equations (38) and (39).

Av=l g (38)
w

2/3
0.629961 (% +2)
Ap=1-— (39)
(1.6658¢ 1 1)2/3

The result for the expanded stiffener was found after determining
that the deployment ratios for the initial and stiffened version are

bL
0__
A= (bLt)2 7 (40)
and
0.629961bL
A = 41

" (bL(1.665C5 +T))%/3

A similar set of mass costs can be found for the three stiff-
eners. Because the panels are constrained to have constant area,
adding each stiffener will lead to increased mass. Partial actu-
ation will diminish the viewable area and so more panel area
will be required for increasing amounts of actuation. The yielded
stiffener will also diminish panel area and so will requre larger
panels and increased mass. Although the expanded stiffener does
not reduce the area, the constant wall case will increase the mass
through the addition of the core material.

For partial-actuation, the initial area A required to achieve a
constant viewable area A is given by A = Apcos 0. If we assume

TABLE 3: The equation number used for each parametric param-
eter (&), its cost variable (A or M) and stiffener type

A M &

Partially-actuated Eq.6 | Eq.6 | 0

Yielded stiffener Eq.9 | Eq.9 | f

Expanded stiffener | Eq. 26 | Eq.29 | ¢
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that area is proportional to mass, then this relation can be used to
determine the percent mass increase or mass cost for this design
as

m* —mO _ l—cos6

Mps = =
mO cos @

(42)

where M is the mass cost, m’ is the mass of a unit square panel
with stiffeners and m° is the mass without.
For the yielded stiffener shown in Figure 4, the mass cost is

My=—=f (43)

The mass cost for the expanded stiffener can be found if we
set the stiffened mass to Equation (20) where T = ¢/2 (half the
initial panel thickness) and the initial mass is found when 7' =
t/2 and C = 0. Computing the mass cost as described previously
gives

_ %4

Mrp =
E Zn

(44)

A comparison of these stiffeners can be made if we desig-
nate one variable in each equation as the independent variable &
and make all other values constant. The variable chosen as & for
each stiffener is shown in Table 3. This parametric variable & can
then be used to generate plots of the functions (R,(&),A(§)) and
(Ry(&),M(&)) for each stiffener. Plots of the stiffener area costs
A versus their gain R are shown for the three stiffeners in Figure
14. A similar plot of their performance versus their mass cost is
shown in Figure 15. In both plots, it can be seen that partial ac-
tuation demonstrates the largest increases in R for low costs in
mass and area. Similarly, the expanded stiffener performance is
the second best in both cases while the yielded stiffener is the
most costly.

6 Conclusion

Managing the stiffness of an origami-inspired mechanism
is an important capability to ensure that lightweight deployables
can adequately fulfill their functions. In this paper, three types
of deployable stiffeners to control pattern stiffness were investi-
gated. Analytical equations modeling the increase in moment of
inertia were derived for each stiffener type. The predictions of
these equations were later verified experimentally and through
finite-element simulations.

The equations expressing the increase in inertia were written
parametrically with respect to a characteristic variable £ and then
plotted against two specific design costs. This enabled a compari-
son of their performance. This particular comparison showed that

Area Cost (A)

0.10
0.08
0.06
0.04
0.02

20 40 60 80 100

—— Partially-Actuated Yielded Expanded

FIGURE 14: Plots of the parametric inertia gain R(&) and A(§)
with respect to the variable &.

Mass Cost (M)

0.10
0.08
0.06
0.04
0.02

f R
20 40 60 80 100

—— Partially-Actuated Yielded Expanded

FIGURE 15: Plots of the parametric inertia gain R(§) and M(§)
for the three stiffeners.

partial actuation is most efficient, followed by expanded stiffen-
ers. While this comparison only considered three stiffener types
and two costs, the method can be applied to other stiffeners and
costs to facilitate design selection. It is hoped that this research
will facilitate the design of origami-inspired deployables by pro-
viding the alternatives for designing stiff, deployed mechanisms.
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