2018 IEEE 11th International Conference on Cloud Computing

OpenStack Network Acceleration Scheme for Datacenter Intelligent Applications

Linh (Paul) Phan, Kaikai Liu
Computer Engineering Department
San Jose State University (SJSU)
San Jose, CA, USA
Email: {linh.phan,kaikai.liu} @sjsu.edu

Abstract—Cloud virtualization and multi-tenant networking
provide Infrastructure as a Service (IaaS) providers a new
and innovative way to offer on-demand services to their
customers, such as easy provisioning of new applications and
better resource efficiency and scalability. However, existing
data-intensive intelligent applications require more powerful
processors, higher bandwidth and lower-latency networking
service. In order to boost the performance of computing
and networking services, as well as reduce the overhead
of software virtualization, we propose a new data center
network design based on OpenStack. Specifically, we map
the OpenStack networking services to the hardware switch
and utilize hardware-accelerated L2 switch and L3 routing
to solve the software limitations, as well as achieve software-
like scalability and flexibility. We design our prototype sys-
tem via the Arista Software-Defined-Networking (SDN) switch
and provide an automatic script which abstracts the service
layer that decouples OpenStack from the physical network
infrastructure, thereby providing vendor-independence. We
have evaluated the performance improvement in terms of
bandwidth, delay, and system resource utilization using various
tools and under various Quality-of-Service (QoS) constraints.
Our solution demonstrates improved cloud scaling and network
efficiency via only one touch point to control all vendors’
devices in the data center.

Keywords-OpenStack, Arista, EOS, Neutron, LinuxBridge,
Cloud Computing, Cloud Virtualization

I. INTRODUCTION

The internet today is data driven, with around 90 exabytes
of data flowing every month in the form of videos, images,
and other enriched content [1]. The demand for robust
virtualized data center architecture is rising. Small and large
businesses are accepting the cloud at a tremendous rate, with
around 175 billion dollars of revenue generated from public
cloud services in the year 2016 [2].

The current data center design has transformed to a
software defined network architecture with virtualization
forming the crux of all the newly commissioned data cen-
ters. Speed, performance, and availability are the essential
requirements of the network. It is critical to choose a robust
networking framework that satisfies all the requirements,
with minimal cost, fast deployment, easy management, and
scalability. However, the networking performance of the
existing cloud is not on the same caliber as that of traditional
high-performance computing (HPC), which typically uses
InfiniBand for the networking [3]. However, contemporary

2159-6190/18/$31.00 ©2018 IEEE
DOI 10.1109/CLOUD.2018.00146

962

HPC grids and clusters cannot adapt to dynamic workloads
or allocate resources to concurrent multi-tenant applications
[4], [5], [6]. Software defined networks paradigm helps solve
this problem by isolating layer 2/3 functionalities within
tenant networks by using OpenvSwitch (OVS) or Linux
bridges. Software switches form an integral part of any
virtualized computing setup. They provide network access
for Virtual machines [7]. The most popular virtual switch
implementation, OpenvSwitch (OVS), is heavily used in
cloud computing platforms like OpenStack. However, this
solution does not match performance levels of traditional
networking as obtained through dedicated network hardware.
This is due to the multiple dependencies of packet processing
in the software, which significantly hinders performance.
In this paper, we present a practical solution to accelerate
networking performance in the cloud for data-intensive ap-
plications. Our solution does not require additional network
hardware, e.g., InfiniBand or FPGA, nor does it rely on
changing existing cloud network infrastructure or software
interfaces. Specifically, we utilize the hardware-based packet
processing features in existing SDN-enabled switches and
integrate with the popular open-source cloud management
software, OpenStack Neutron. Through our framework and
software driver, any network changes in the OpenStack
dashboard are automatically mapped to the physical SDN
switch for hardware-based processing. Such integration truly
combines the benefits of software-defined networking and
hardware-accelerated processing. This provides a scalable
network architecture for multi-tenant data-intensive applica-
tions in the cloud and also facilitates network programmabil-
ity of OpenStack networking using APIs and the dashboard.

II. SYSTEM DESIGN

Building a private, public or hybrid OpenStack cloud
requires virtual and physical network infrastructure that is
programmable, agile and resilient. We propose to deliver
a highly scalable and automated cloud infrastructure for
an OpenStack environment via an automatic script. By
leveraging our proposed Enhanced Switch Offloading for
OpenStack Network (ESOO), customers will be able to dras-
tically speed up business services, mitigate operational com-
plexity, and reduce costs. The architecture of our proposed
“ESOOQO” is shown in Fig. 1. Our ESOO framework focuses

IEEE
computer
® psoaety

ESOO Framework

Hypervisor
Control

VM1
™ g
OpenStack Nova

DPDK+GPU pass
Hypervisor

I
}

1
Hll (DPDK:GPU Pass) I

1
: OpenStack |
. Orchestration |

1
1

I
I

I

1

Network QoS

OpensStack Nova

DPDK+GPU pass

Hypervisor
Server

Computing Computing TR
S— — [ttt il [
/ g/ N e : | Arista CVX | : |:
== Free JE Arista EOS Arista EOS [t 1
\L} | Arista Switch Avrista Switch |$:
[}

|_Hardware Switch _ _ _ _Hardware Switch _I ' _ _ _ _

Figure 1. System Overview.

on improving the OpenStack networking performance by
substituting the LB/OVS packet switching with hardware-
based switching. At the same time, this new setting will
not impact the flexibility of the network automation or
pose any compatibility issues. Our framework provides a
complete view of the network (topology) and its current
and consistent state to the underlying hardware switch.
When an OpenStack user performs any networking related
operation (create/update/delete/read on network, subnet and
port resources), the Neutron server receives the request,
passes the same to the configured plugin and makes the
appropriate change to the DB. Our ESOO also leverages the
Intel’s Data Plane Development Kit (DPDK) [8] to reduce
the computational overhead when accessing the network
interface card (NIC) through the Hypervisor. When the GPU
is available in the server and users’ application requires
GPU acceleration, our ESOO framework will setup the GPU
pass-through for this tenant automatically. By performing
hardware related configuration and setup automatically, users
can get the maximum performance out of the data center in
a transparent way.

III. OFFLOADING THE PACKET PROCESSING TO THE
HARDWARE SWITCH

The proposed ESOO framework substitutes the software-
based LB/OVS packet switching to hardware-based switch-
ing and thereby improves the performance of the OpenStack
network. With the integration of OpenStack Neutron and
SDN switch, the user-triggered changes to the network and
network elements in the OpenStack Dashboard (Horizon)
are translated into Neutron APIs and handled by neutron
plugins. Our ESOO bridges the neutron plugins and cor-
responding agents running in the hardware SDN switch.
This thin layer is compatible with the existing functions
in the OpenStack Neutron, and also supports external SDN
controllers (such as Open Daylight and RYU) through the
ML2 plugin.

A. OpenStack Orchestration on Switch Cluster

To interface the networking service (Neutron) of Open-
Stack to the hardware switch (using Arista’s 7050T), we

963

leverage the OpenStack Mechanism driver and communi-
cates with Arista’s CloudVision eXtension (CVX) over the
Command API (eAPI) [9], [10]. CVX is able to view the
entire switch cluster from Arista. Through eAPI, the CVX
can appropriately provisions VLANs on switch interfaces
so that the compute instances (OpenStack Nova) on the
compute nodes have end-to-end connectivity over tenant
networks.

Using a physical L3 switch to replace the networking
services that are handled by software in OpenStack, such
as vRouter for layer 3, and Linux Bridge or OVS for
virtual switching, offers customers more power, speed, per-
formance, and reliability, as well as scalability. For a small-
scale network, software switching and routing can handle
the workload with acceptable efficiency, which is perfect
for a lab or local cloud environment. However, as the
network scales up and traffic becomes heavy and intensive,
which is commonly seen in data centers or cloud IaaS
service providers, hardware networking devices will be more
reliable and are able to offer more power, faster speed, and
lower latency.

B. Cloud and Network Topology

We propose a prototype data center design with the
following four components: 1) Main Server: Runs core
OpenStack services, and works as the Horizon dashboard for
users to manage instances. The Main Server is also the con-
troller node, which is the central hub for all the commands
executed. The controller node hosts many OpenStack servers
such as Keystone for authentication, Glance for image
storage, neutron for networking, and a few others. This node
lets the user interact with the different supported APIs and
the dashboard. Many other components such as Database,
Object Storage, and Block Storage can be separated into
other autonomous nodes. 2) Arista Switch: Two 7050x
EOS switches are used as a Top of Rack (TOR) switches,
also as a router for different networks within OpenStack. 3)
Rack Servers: Two Dell R630 servers with high memory
and powerful processor are used as computing nodes for Al
applications. 4) CVX Server: One server is running VEOS
to work as the CVX-Server. The hardware switch works as
the CVX-Client. The CVX-Server is used as the middleware
for communicating between physical EOS switches and
OpenStack Neutron via EOS API (eAPI). The CVX Server
will get notified on new network creation from Neutron,
and distribute the information to CVX-Client. 5) Provider
host: one computing node (computer) as the gateway is used
to access the provider network for testing accessibility and
managing instances. The prototype system environment is
shown in Fig. 2.

A Neutron network controller node runs both the OVS
plugin and the ML2-based driver for our proposed ESOO.
Our ESOO can be interfaced with different vendors’ hard-
ware switches. The OpenStack ML2 interface makes the

Controller

Compute

o
Provider host

Figure 2. The system topology of our prototype private cloud.

Managemen
VLAN

Data VLAN

vendor-independent design feasible. In this paper, we utilize
Arista’s SDN switch as one example. Our OpenStack driver
uses Arista’s EOS API (eAPI) to communicate with Arista’s
Cloud Vision eXchange (CVX), which has the entire view
of all the connected Arista switches. In the case of failure,
CVX has the ability to resync its state. The server also
keeps a topology of available physical switches and hosts,
as well as OpenStack instances. Using CVX simplifies the
communication with the hardware switch. For example,
only one interface is needed for Arista’s switch or another
interface to connect to other vendors’ hardware without
connecting each switch individually. To reduce the overhead
when accessing the network interface card (NIC) and GPU
in the VM, we apply the Intel DPDK and GPU pass-through
in the hypervisor to setup the direct data path.

IV. EXPERIMENTAL EVALUATION
A. Throughput Evaluation

Fig. 3 shows the Layer-2 TCP and UDP throughput
results based on iPerf3. From these two Layer-2 throughput
results, we can see our proposed ESOO can reach from
7Gbps to almost 8Gbps for both TCP and UDP traffic.
With LinuxBridge/OVS setting in existing OpenStack, the
maximum throughput can only reach 4.96Gbps in Layer 2
switching. The throughput difference is due to our ESOO
setup having enough hardware power to efficiently perform
the packet switching, while the existing OpenStack network
setup has to process switching using software with limited
performance.

8
7
6
=5
ER
@3
2
1
0

Casel Case2 Case3 Cased CaseS Casel Case2 Case3 Cased Case5

Throughput (Gbps)
R MwE OO N
Throughput (Gbps)

MESOO-TCP M LB/OVS-TCP MESOO-UDP M LB/OVS-UDP

(a) TCP (b) UDP

Figure 3. The achieved L2 throughput of two different approaches based
on iPerf for the (a) TCP traffic and (b) UDP traffic via iPerf.

Fig. 4 shows the Layer-3 TCP and UDP throughput results
based on iPerf. OpenStack utilizes the vRouter for Layer-3

routing, which is very flexible for various software-defined
network topologies. However, the achieved maximum TCP
throughput is limited to 2-2.2 Gbps, and the achieved
maximum UDP throughput is limited to 4-4.3 Gbps due
to the software limit. In contrast, our hardware-accelerated
solution (ESOO) achieves around 7-8 Gbps throughput for
both the TCP and UDP traffic. Comparing the TCP and UDP
traffic, the TCP traffic has the delivery guarantee, hence the
results for TCP are more realistic comparing to the UDP
traffic. This is also why the UDP throughput is higher than
that of TCP; UDP traffic is only for testing the maximum
amount of bandwidth that an interface can handle.

Gbps)

10 10

8 8
6 6
S 4 4
8
A n
0 0
Cas

Casel Case2 Case3 Cased CaseS el Case2 Case3 Cased Case5

(

ghput
Throughput (Gbps)

Th

BESOO-TCP M LB/OVS-TCP HESOO-UDP M LB/OVS-UDP

(a) TCP (b) UDP

Figure 4. The achieved L3 throughput of two different approaches based
on nuttcp for the (a) TCP traffic and (b) UDP traffic via iPerf.

B. Quality of Service (QoS) Test

To evaluate the Quality of Service (QoS) and estimate
the impact of the QoS from other traffic, we have a more
complex topology with multiple nodes and different traffic
patterns. Our test topology includes 6 nodes as follows:
1) Client-1 and Client-2 are located in Net-1 with QoS
policy applied, and they send traffic to Server-1 and Server-
2, respectively; 2) The Server-1 is located outside the current
datacenter and can be accessed via the provider-network and
router “EOS-R2”; 3) The Server-2 is located in Net-2 and
connected with the client via the same router “EOS-R1”;
4) “Flooder” is located on Net-4 with two parallel 5Gbps
traffic to Server-1 and Hypervisor-1, respectively. We use
“Flooder” to model other network traffics that consume the
available bandwidth. To maintain the QoS policy, the Open-
Stack Neutron will have to dynamically allocate the network
bandwidth for all networks/instances. We utilize this process
to emulate a realistic datacenter network environment and
evaluate the effectiveness of our ESOO scheme under the
QoS scenario.

We apply one QoS policy on the Net-1 for both Client-1
and Client-2 in the same network. The QoS policy includes
2 rules: 1) a maximum bandwidth of 4Gbps and 2) a
minimum bandwidth of 2Gbps. When the QoS policy is
applied, the OpenStack Neutron ensures the network will
have at least 2Gbps for each ports/instance it connects to,
and will not exceed a maximum of 4Gbps. To evaluate the
dynamic performance impact of the QoS policy on Client-1
and Client-2, we designed a four-phase benchmark traffic

pattern with 30 seconds for each phase. For Client-1, traffic
phase 1 is 4 Gbps; phase 2 is 3 Gbps, phase 3 is 4 Gbps, and
phase 4 is 2 Gbps, i.e., a “4-3-4-2 Gbps” pattern. For Client-
1, the traffic phase 1 is 2 Gbps, phase 2 is 3 Gbps, phase 3 is
3 Gbps, and phase 4 is 4 Gbps, i.e., a “2-3-3-4 Gbps” pattern.
The flooder has two parallel links flooding 5Gbps traffic out
(10 Gbps in total). We performed the same test using both
the ESOO setup and OpenStack LinuxBridge/vRouter setup,
and compared the differences in performance.

(a) ESOO

(b) LB/vRouter

Figure 5. The CPU usage results of 3Gbps traffic on different machines for:
(a) our proposed ‘ESOQO’; (b) OpenStack’s LinuxBridge/vRouter setting.

For a maximum 10Gbps link between physical servers
and switches, the bandwidth is distributed among networks
and instances. Using our proposed ‘ESOO’ scheme, all
hosts under QoS policy are ensured the guaranteed 2Gbps
minimum bandwidth and 4Gbps maximum bandwidth as
shown in Fig. 5a. The OpenStack Neutron ensures the
QoS policy and no instance/network can occupy all the
bandwidth. The Neutron QoS scheme reduces the Flooders’
traffic bandwidth to ensure the QoS policy of Client-1 and
Client-2 under the maximum 10Gbps link constraint. The
QoS results of the LinuxBridge/vRouter setup are shown in
Fig. 5b. As the bandwidth results of Client-1 and Client-
2, it can be seen that the bandwidth under the QoS policy
cannot be guaranteed due to software limits. The available
bandwidth pool that shared among all network/instances is
less than 3Gbps. When the traffic in the network is higher
than the limit, the Service Level Agreement (SLA) cannot
be achieved and each instance within the QoS policy can
only have a 0.5 Gbps bandwidth.

V. CONCLUSION

The OpenStack network solution provides a number of
ways for administrators to orchestrate their cloud envi-
ronment. In this paper, we present a practical solution to
accelerate the networking performance of the OpenStack for
data-intensive intelligent applications. Our proposed ESOO
framework can help automatic provisioning multi-tenant
networks and fully exploit the capabilities of the existing
hardware (i.e., NIC, GPU, and SDN Switch) without re-
quiring additional hardware accelerators. Our experimental
results demonstrate that our solution can push the hardware
to its limits (i.e., 10Gbps network throughput) under various
topology. Our solution helps in orchestrating the private

965

cloud via a highly integrated three-step script while ensuring
performance, reliability, flexibility and scalability that are
required to accelerate data-intensive applications.

ACKNOWLEDGMENT

The work presented in this paper is funded by Arista
Networks, Inc. and National Science Foundation under Grant
No. CNS 1637371.

REFERENCES

[1] The zettabyte era trends and analysis. [Online]. Available:
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/vni-hyperconnectivity-
wp.html

[2] Facts and statistics about cloud computing. [Online]. Avail-

able: https://www.statista.com/topics/1695/cloud-computing/

[3] N. S. Islam, M. Rahman, J. Jose, R. Rajachandrasekar,

H. Wang, H. Subramoni, C. Murthy, and D. K. Panda, “High

performance rdma-based design of hdfs over infiniband,”

in Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis.

IEEE Computer Society Press, 2012, p. 35.

[4] L Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and

grid computing 360-degree compared,” in Grid Computing

Environments Workshop, 2008. GCE’0S. leee, 2008, pp. 1-

10.

[5] J.Jose, M. Li, X. Lu, K. C. Kandalla, M. D. Arnold, and D. K.

Panda, “Sr-iov support for virtualization on infiniband clus-

ters: Early experience,” in Cluster, Cloud and Grid Computing

(CCGrid), 2013 13th IEEE/ACM International Symposium

on. IEEE, 2013, pp. 385-392.

[6] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn,

“Case study for running hpc applications in public clouds,”

in Proceedings of the 19th ACM International Symposium on

High Performance Distributed Computing. ACM, 2010, pp.

395-401.

[7] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,

J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar et al.,

“The design and implementation of open vswitch.” in NSDI,

2015, pp. 117-130.

boosts
and

(8] Dpdk

mance,

packet
throughput.

processing,
[Online].

perfor-
Available:

https://www.intel.com/content/www/us/en/communications/data-

plane-development-kit.html

Research brief: Arista cloudvision:
ing switches as software. [Online].
https://www.arista.com/assets/data/pdf/Analysts/

[9]

manag-
Available:

[10] Arista - cloudvision cvx overview. [Online]. Available:

https://www.arista.com/en/cg-cv/cloudvision-cvx-overview

