
OpenStack Network Acceleration Scheme for Datacenter Intelligent Applications

Linh (Paul) Phan, Kaikai Liu

Computer Engineering Department
San Jose State University (SJSU)

San Jose, CA, USA
Email: {linh.phan,kaikai.liu}@sjsu.edu

Abstract—Cloud virtualization and multi-tenant networking
provide Infrastructure as a Service (IaaS) providers a new
and innovative way to offer on-demand services to their
customers, such as easy provisioning of new applications and
better resource efficiency and scalability. However, existing
data-intensive intelligent applications require more powerful
processors, higher bandwidth and lower-latency networking
service. In order to boost the performance of computing
and networking services, as well as reduce the overhead
of software virtualization, we propose a new data center
network design based on OpenStack. Specifically, we map
the OpenStack networking services to the hardware switch
and utilize hardware-accelerated L2 switch and L3 routing
to solve the software limitations, as well as achieve software-
like scalability and flexibility. We design our prototype sys-
tem via the Arista Software-Defined-Networking (SDN) switch
and provide an automatic script which abstracts the service
layer that decouples OpenStack from the physical network
infrastructure, thereby providing vendor-independence. We
have evaluated the performance improvement in terms of
bandwidth, delay, and system resource utilization using various
tools and under various Quality-of-Service (QoS) constraints.
Our solution demonstrates improved cloud scaling and network
efficiency via only one touch point to control all vendors’
devices in the data center.

Keywords-OpenStack, Arista, EOS, Neutron, LinuxBridge,
Cloud Computing, Cloud Virtualization

I. INTRODUCTION

The internet today is data driven, with around 90 exabytes

of data flowing every month in the form of videos, images,

and other enriched content [1]. The demand for robust

virtualized data center architecture is rising. Small and large

businesses are accepting the cloud at a tremendous rate, with

around 175 billion dollars of revenue generated from public

cloud services in the year 2016 [2].
The current data center design has transformed to a

software defined network architecture with virtualization

forming the crux of all the newly commissioned data cen-

ters. Speed, performance, and availability are the essential

requirements of the network. It is critical to choose a robust

networking framework that satisfies all the requirements,

with minimal cost, fast deployment, easy management, and

scalability. However, the networking performance of the

existing cloud is not on the same caliber as that of traditional

high-performance computing (HPC), which typically uses

InfiniBand for the networking [3]. However, contemporary

HPC grids and clusters cannot adapt to dynamic workloads

or allocate resources to concurrent multi-tenant applications

[4], [5], [6]. Software defined networks paradigm helps solve

this problem by isolating layer 2/3 functionalities within

tenant networks by using OpenvSwitch (OVS) or Linux

bridges. Software switches form an integral part of any

virtualized computing setup. They provide network access

for Virtual machines [7]. The most popular virtual switch

implementation, OpenvSwitch (OVS), is heavily used in

cloud computing platforms like OpenStack. However, this

solution does not match performance levels of traditional

networking as obtained through dedicated network hardware.

This is due to the multiple dependencies of packet processing

in the software, which significantly hinders performance.

In this paper, we present a practical solution to accelerate

networking performance in the cloud for data-intensive ap-

plications. Our solution does not require additional network

hardware, e.g., InfiniBand or FPGA, nor does it rely on

changing existing cloud network infrastructure or software

interfaces. Specifically, we utilize the hardware-based packet

processing features in existing SDN-enabled switches and

integrate with the popular open-source cloud management

software, OpenStack Neutron. Through our framework and

software driver, any network changes in the OpenStack

dashboard are automatically mapped to the physical SDN

switch for hardware-based processing. Such integration truly

combines the benefits of software-defined networking and

hardware-accelerated processing. This provides a scalable

network architecture for multi-tenant data-intensive applica-

tions in the cloud and also facilitates network programmabil-

ity of OpenStack networking using APIs and the dashboard.

II. SYSTEM DESIGN

Building a private, public or hybrid OpenStack cloud

requires virtual and physical network infrastructure that is

programmable, agile and resilient. We propose to deliver

a highly scalable and automated cloud infrastructure for

an OpenStack environment via an automatic script. By

leveraging our proposed Enhanced Switch Offloading for

OpenStack Network (ESOO), customers will be able to dras-

tically speed up business services, mitigate operational com-

plexity, and reduce costs. The architecture of our proposed

“ESOO” is shown in Fig. 1. Our ESOO framework focuses

962

2018 IEEE 11th International Conference on Cloud Computing

2159-6190/18/$31.00 ©2018 IEEE
DOI 10.1109/CLOUD.2018.00146

Figure 1. System Overview.

on improving the OpenStack networking performance by

substituting the LB/OVS packet switching with hardware-

based switching. At the same time, this new setting will

not impact the flexibility of the network automation or

pose any compatibility issues. Our framework provides a

complete view of the network (topology) and its current

and consistent state to the underlying hardware switch.

When an OpenStack user performs any networking related

operation (create/update/delete/read on network, subnet and

port resources), the Neutron server receives the request,

passes the same to the configured plugin and makes the

appropriate change to the DB. Our ESOO also leverages the

Intel’s Data Plane Development Kit (DPDK) [8] to reduce

the computational overhead when accessing the network

interface card (NIC) through the Hypervisor. When the GPU

is available in the server and users’ application requires

GPU acceleration, our ESOO framework will setup the GPU

pass-through for this tenant automatically. By performing

hardware related configuration and setup automatically, users

can get the maximum performance out of the data center in

a transparent way.

III. OFFLOADING THE PACKET PROCESSING TO THE

HARDWARE SWITCH

The proposed ESOO framework substitutes the software-

based LB/OVS packet switching to hardware-based switch-

ing and thereby improves the performance of the OpenStack

network. With the integration of OpenStack Neutron and

SDN switch, the user-triggered changes to the network and

network elements in the OpenStack Dashboard (Horizon)

are translated into Neutron APIs and handled by neutron

plugins. Our ESOO bridges the neutron plugins and cor-

responding agents running in the hardware SDN switch.

This thin layer is compatible with the existing functions

in the OpenStack Neutron, and also supports external SDN

controllers (such as Open Daylight and RYU) through the

ML2 plugin.

A. OpenStack Orchestration on Switch Cluster

To interface the networking service (Neutron) of Open-

Stack to the hardware switch (using Arista’s 7050T), we

leverage the OpenStack Mechanism driver and communi-

cates with Arista’s CloudVision eXtension (CVX) over the

Command API (eAPI) [9], [10]. CVX is able to view the

entire switch cluster from Arista. Through eAPI, the CVX

can appropriately provisions VLANs on switch interfaces

so that the compute instances (OpenStack Nova) on the

compute nodes have end-to-end connectivity over tenant

networks.

Using a physical L3 switch to replace the networking

services that are handled by software in OpenStack, such

as vRouter for layer 3, and Linux Bridge or OVS for

virtual switching, offers customers more power, speed, per-

formance, and reliability, as well as scalability. For a small-

scale network, software switching and routing can handle

the workload with acceptable efficiency, which is perfect

for a lab or local cloud environment. However, as the

network scales up and traffic becomes heavy and intensive,

which is commonly seen in data centers or cloud IaaS

service providers, hardware networking devices will be more

reliable and are able to offer more power, faster speed, and

lower latency.

B. Cloud and Network Topology

We propose a prototype data center design with the

following four components: 1) Main Server: Runs core

OpenStack services, and works as the Horizon dashboard for

users to manage instances. The Main Server is also the con-

troller node, which is the central hub for all the commands

executed. The controller node hosts many OpenStack servers

such as Keystone for authentication, Glance for image

storage, neutron for networking, and a few others. This node

lets the user interact with the different supported APIs and

the dashboard. Many other components such as Database,

Object Storage, and Block Storage can be separated into

other autonomous nodes. 2) Arista Switch: Two 7050x

EOS switches are used as a Top of Rack (TOR) switches,

also as a router for different networks within OpenStack. 3)

Rack Servers: Two Dell R630 servers with high memory

and powerful processor are used as computing nodes for AI

applications. 4) CVX Server: One server is running vEOS

to work as the CVX-Server. The hardware switch works as

the CVX-Client. The CVX-Server is used as the middleware

for communicating between physical EOS switches and

OpenStack Neutron via EOS API (eAPI). The CVX Server

will get notified on new network creation from Neutron,

and distribute the information to CVX-Client. 5) Provider
host: one computing node (computer) as the gateway is used

to access the provider network for testing accessibility and

managing instances. The prototype system environment is

shown in Fig. 2.

A Neutron network controller node runs both the OVS

plugin and the ML2-based driver for our proposed ESOO.

Our ESOO can be interfaced with different vendors’ hard-

ware switches. The OpenStack ML2 interface makes the

963

Figure 2. The system topology of our prototype private cloud.

vendor-independent design feasible. In this paper, we utilize

Arista’s SDN switch as one example. Our OpenStack driver

uses Arista’s EOS API (eAPI) to communicate with Arista’s

Cloud Vision eXchange (CVX), which has the entire view

of all the connected Arista switches. In the case of failure,

CVX has the ability to resync its state. The server also

keeps a topology of available physical switches and hosts,

as well as OpenStack instances. Using CVX simplifies the

communication with the hardware switch. For example,

only one interface is needed for Arista’s switch or another

interface to connect to other vendors’ hardware without

connecting each switch individually. To reduce the overhead

when accessing the network interface card (NIC) and GPU

in the VM, we apply the Intel DPDK and GPU pass-through

in the hypervisor to setup the direct data path.

IV. EXPERIMENTAL EVALUATION

A. Throughput Evaluation

Fig. 3 shows the Layer-2 TCP and UDP throughput

results based on iPerf3. From these two Layer-2 throughput

results, we can see our proposed ESOO can reach from

7Gbps to almost 8Gbps for both TCP and UDP traffic.

With LinuxBridge/OVS setting in existing OpenStack, the

maximum throughput can only reach 4.96Gbps in Layer 2

switching. The throughput difference is due to our ESOO

setup having enough hardware power to efficiently perform

the packet switching, while the existing OpenStack network

setup has to process switching using software with limited

performance.

(a) TCP (b) UDP

Figure 3. The achieved L2 throughput of two different approaches based
on iPerf for the (a) TCP traffic and (b) UDP traffic via iPerf.

Fig. 4 shows the Layer-3 TCP and UDP throughput results

based on iPerf. OpenStack utilizes the vRouter for Layer-3

routing, which is very flexible for various software-defined

network topologies. However, the achieved maximum TCP

throughput is limited to 2-2.2 Gbps, and the achieved

maximum UDP throughput is limited to 4-4.3 Gbps due

to the software limit. In contrast, our hardware-accelerated

solution (ESOO) achieves around 7-8 Gbps throughput for

both the TCP and UDP traffic. Comparing the TCP and UDP

traffic, the TCP traffic has the delivery guarantee, hence the

results for TCP are more realistic comparing to the UDP

traffic. This is also why the UDP throughput is higher than

that of TCP; UDP traffic is only for testing the maximum

amount of bandwidth that an interface can handle.

(a) TCP (b) UDP

Figure 4. The achieved L3 throughput of two different approaches based
on nuttcp for the (a) TCP traffic and (b) UDP traffic via iPerf.

B. Quality of Service (QoS) Test

To evaluate the Quality of Service (QoS) and estimate

the impact of the QoS from other traffic, we have a more

complex topology with multiple nodes and different traffic

patterns. Our test topology includes 6 nodes as follows:

1) Client-1 and Client-2 are located in Net-1 with QoS

policy applied, and they send traffic to Server-1 and Server-

2, respectively; 2) The Server-1 is located outside the current

datacenter and can be accessed via the provider-network and

router “EOS-R2”; 3) The Server-2 is located in Net-2 and

connected with the client via the same router “EOS-R1”;

4) “Flooder” is located on Net-4 with two parallel 5Gbps

traffic to Server-1 and Hypervisor-1, respectively. We use

“Flooder” to model other network traffics that consume the

available bandwidth. To maintain the QoS policy, the Open-

Stack Neutron will have to dynamically allocate the network

bandwidth for all networks/instances. We utilize this process

to emulate a realistic datacenter network environment and

evaluate the effectiveness of our ESOO scheme under the

QoS scenario.

We apply one QoS policy on the Net-1 for both Client-1

and Client-2 in the same network. The QoS policy includes

2 rules: 1) a maximum bandwidth of 4Gbps and 2) a
minimum bandwidth of 2Gbps. When the QoS policy is

applied, the OpenStack Neutron ensures the network will

have at least 2Gbps for each ports/instance it connects to,

and will not exceed a maximum of 4Gbps. To evaluate the

dynamic performance impact of the QoS policy on Client-1

and Client-2, we designed a four-phase benchmark traffic

964

pattern with 30 seconds for each phase. For Client-1, traffic

phase 1 is 4 Gbps; phase 2 is 3 Gbps, phase 3 is 4 Gbps, and

phase 4 is 2 Gbps, i.e., a “4-3-4-2 Gbps” pattern. For Client-

1, the traffic phase 1 is 2 Gbps, phase 2 is 3 Gbps, phase 3 is

3 Gbps, and phase 4 is 4 Gbps, i.e., a “2-3-3-4 Gbps” pattern.

The flooder has two parallel links flooding 5Gbps traffic out

(10 Gbps in total). We performed the same test using both

the ESOO setup and OpenStack LinuxBridge/vRouter setup,

and compared the differences in performance.

(a) ESOO (b) LB/vRouter

Figure 5. The CPU usage results of 3Gbps traffic on different machines for:
(a) our proposed ‘ESOO’; (b) OpenStack’s LinuxBridge/vRouter setting.

For a maximum 10Gbps link between physical servers

and switches, the bandwidth is distributed among networks

and instances. Using our proposed ‘ESOO’ scheme, all

hosts under QoS policy are ensured the guaranteed 2Gbps

minimum bandwidth and 4Gbps maximum bandwidth as

shown in Fig. 5a. The OpenStack Neutron ensures the

QoS policy and no instance/network can occupy all the

bandwidth. The Neutron QoS scheme reduces the Flooders’

traffic bandwidth to ensure the QoS policy of Client-1 and

Client-2 under the maximum 10Gbps link constraint. The

QoS results of the LinuxBridge/vRouter setup are shown in

Fig. 5b. As the bandwidth results of Client-1 and Client-

2, it can be seen that the bandwidth under the QoS policy

cannot be guaranteed due to software limits. The available

bandwidth pool that shared among all network/instances is

less than 3Gbps. When the traffic in the network is higher

than the limit, the Service Level Agreement (SLA) cannot

be achieved and each instance within the QoS policy can

only have a 0.5 Gbps bandwidth.

V. CONCLUSION

The OpenStack network solution provides a number of

ways for administrators to orchestrate their cloud envi-

ronment. In this paper, we present a practical solution to

accelerate the networking performance of the OpenStack for

data-intensive intelligent applications. Our proposed ESOO

framework can help automatic provisioning multi-tenant

networks and fully exploit the capabilities of the existing

hardware (i.e., NIC, GPU, and SDN Switch) without re-

quiring additional hardware accelerators. Our experimental

results demonstrate that our solution can push the hardware

to its limits (i.e., 10Gbps network throughput) under various

topology. Our solution helps in orchestrating the private

cloud via a highly integrated three-step script while ensuring

performance, reliability, flexibility and scalability that are

required to accelerate data-intensive applications.

ACKNOWLEDGMENT

The work presented in this paper is funded by Arista

Networks, Inc. and National Science Foundation under Grant

No. CNS 1637371.

REFERENCES

[1] The zettabyte era trends and analysis. [Online]. Available:
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/vni-hyperconnectivity-
wp.html

[2] Facts and statistics about cloud computing. [Online]. Avail-
able: https://www.statista.com/topics/1695/cloud-computing/

[3] N. S. Islam, M. Rahman, J. Jose, R. Rajachandrasekar,
H. Wang, H. Subramoni, C. Murthy, and D. K. Panda, “High
performance rdma-based design of hdfs over infiniband,”
in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society Press, 2012, p. 35.

[4] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and
grid computing 360-degree compared,” in Grid Computing
Environments Workshop, 2008. GCE’08. Ieee, 2008, pp. 1–
10.

[5] J. Jose, M. Li, X. Lu, K. C. Kandalla, M. D. Arnold, and D. K.
Panda, “Sr-iov support for virtualization on infiniband clus-
ters: Early experience,” in Cluster, Cloud and Grid Computing
(CCGrid), 2013 13th IEEE/ACM International Symposium
on. IEEE, 2013, pp. 385–392.

[6] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn,
“Case study for running hpc applications in public clouds,”
in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing. ACM, 2010, pp.
395–401.

[7] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar et al.,
“The design and implementation of open vswitch.” in NSDI,
2015, pp. 117–130.

[8] Dpdk boosts packet processing, perfor-
mance, and throughput. [Online]. Available:
https://www.intel.com/content/www/us/en/communications/data-
plane-development-kit.html

[9] Research brief: Arista cloudvision: manag-
ing switches as software. [Online]. Available:
https://www.arista.com/assets/data/pdf/Analysts/

[10] Arista - cloudvision cvx overview. [Online]. Available:
https://www.arista.com/en/cg-cv/cloudvision-cvx-overview

965

