
Real-time Traffic Pattern Collection and Analysis
Model for Intelligent Traffic Intersection

Unnikrishnan Kizhakkemadam Sreekumar, Revathy Devaraj, Qi Li, Kaikai Liu
Computer Engineering Department

San Jose State University (SJSU)

San Jose, CA, USA

Email: {unnikrishnan.kizhakkemadamsreekumar, revathy.devaraj, qi.li, kaikai.liu}@sjsu.edu

Abstract—The traffic congestion hits most big cities in the
world - threatening long delays and serious reductions in air
quality. City and local government officials continue to face
challenges in optimizing crowd flow, synchronizing traffic and
mitigating threats or dangerous situations. One of the ma-
jor challenges faced by city planners and traffic engineers is
developing a robust traffic controller that eliminates traffic
congestion and imbalanced traffic flow at intersections. Ensuring
that traffic moves smoothly and minimizing the waiting time
in intersections requires automated vehicle detection techniques
for controlling the traffic light automatically, which are still
challenging problems.

In this paper, we propose an intelligent traffic pattern col-
lection and analysis model, named TPCAM, based on traffic
cameras to help in smooth vehicular movement on junctions
and set to reduce the traffic congestion. Our traffic detection
and pattern analysis model aims at detecting and calculating
the traffic flux of vehicles and pedestrians at intersections in
real-time. Our system can utilize one camera to capture all the
traffic flows in one intersection instead of multiple cameras, which
will reduce the infrastructure requirement and potential for easy
deployment. We propose a new deep learning model based on
YOLOv2 and adapt the model for the traffic detection scenarios.
To reduce the network burdens and eliminate the deployment of
network backbone at the intersections, we propose to process the
traffic video data at the network edge without transmitting the
big data back to the cloud. To improve the processing frame rate
at the edge, we further propose deep object tracking algorithm
leveraging adaptive multi-modal models and make it robust to
object occlusions and varying lighting conditions. Based on the
deep learning based detection and tracking, we can achieve
pseudo-30FPS via adaptive key frame selection.

Index Terms—traffic surveillance, real-time traffic data, edge
devices, deep learning, multiple object tracking.

I. INTRODUCTION

With 180,000 people moving into cities every day, rapid

urbanization places a significant strain on transportation in-

frastructure and traffic management for most cities. Santa

Clara in Silicon Valley has the second longest commute in

the nation, by some estimates. At present, the traffic signals

are controlled with fixed timers. The commuters on the red

signals have to stop compulsorily, whether there is traffic or

no traffic. Real-time, robust and reliable traffic surveillance

and analytics are urgent requirements to improve urban traffic

control systems. Many intelligent systems have been proposed

to take steps such as optimizing timings at traffic signals

in order to achieve the best possible flow [1]. For example,

the virtual loop cameras have been proposed to constantly

read the density of traffic at the intersections and adjust the

green/red light duration accordingly to ensure there is more

of red light on directions which have lesser vehicular density

and more of green for routes having a greater number of

vehicles. AGT and Cisco’s Smart Intersection system lever-

ages Internet-of-Things (IoT) edge analytics to improve road

safety and traffic management. Siemens Intelligent Traffic

portfolio is made up of the ACS Lite and TACTICS 3

systems. CMU with Pittsburgh is developing smart artificial-

intelligence-fueled traffic signals that adapt to changing traffic

conditions on the fly. Their startup Surtrac is commercializing

the technology. MIT’s SENSEable City Lab even developed a

solution for traffic light-free intersections based on vehicle-

to-vehicle (V2V) communications. Their simulation results

demonstrated the efficiency over the traditional traffic light

systems. Existing solutions to intelligent transportation sys-

tems include sensor-based approaches [2], for example, radar,

infrared, and inductive loop detectors. However, sensor-based

approaches only work for vehicle counting and not suitable

for detecting vehicle types, colors, passengers, moving traces,

and pedestrians.

While there are significant research efforts in techniques

used to collect traffic data, right from using on-road sensors

to floating vehicle data, there exists no real-time standalone

system that integrates the process of traffic data collection

and analysis to an Intelligent traffic controller. To address these

problems, we propose an edge intelligent system that aggregate

data at intersections to support various traffic detection, robust

object and traffic flow tracking, optimize traffic flow, ensure

pedestrian safety, and potential to integrate with existing traffic

control and management systems. Specially, we propose a new

deep learning model to perform object detection for various

type of vehicles, train buses, and pedestrians. We propose

algorithms and advanced video analytics technologies based

on deep learning results to automatically detect and track

the vehicles and pedestrians flows. To reduce the network

burdens and eliminate the deployment of network backbone

at the intersections, we propose to process the traffic video

data at the network edge without transmitting the big data

back to the cloud. However, the achievable frame rate on the

most advanced embedded systems (NVIDIA Jetson TX2) is

only 3 FPS, which is too low to capture the full moving

140

2018 IEEE International Conference on Edge Computing

978-1-5386-7238-9/18/$31.00 ©2018 IEEE
DOI 10.1109/EDGE.2018.00028

trace of the vehicles. To improve the frame rate, we further

propose deep object tracking algorithm leveraging adaptive
multi-modal models and make it robust to object occlusions

and varying lighting conditions. Based on the deep learning

based detection and tracking, we can achieve pseudo-30FPS

via adaptive key frame selection.

II. SYSTEM DESIGN

Our camera feed module will take the input from existing

CCTV cameras or other off-the-shelf cameras. We perform

video transcoding to ensure our processing module get the

right format of the video frame. For example, the CCTV

camera deployed in the Manhattan, New York utilized the

asf format. Using open source video transcoding codecs, we

can read from any video format and convert them into the

mp4 format with H.264 coding. Our camera feed module

also continuously supplies video frames with frame-based flow

control to the following computing modules. For example, a

30 fps camera generates thirty frames in one second. Many

computing modules cannot process the frames at the rate of

30 fps. To ensure the real-time performance, our camera feed

module will automatically adjust the frame rate (fd) to feed

the computing module. To capture the whole object movement

within the CCTV camera view and do not miss the target,

we need to achieve a minimum frame rate (fmin) for the

field of view of the camera. To estimate the fmin, we can

divide the intersection into basic grids, for example, we can

use the lane width (12 feet) as the size of the square grid.

With an average of 10 lanes on each side of the intersection,

we assume that the intersection field of view shall be 240 feet

wide. Assuming an average vehicle speed of 50mph (miles per

hour) at intersections and we need to capture all lane-entries

and lane-exits, we found out that a vehicle/object of interest

can cross 73 feet in one second when the field of view is 240

feet. As shown in the Fig. 1, one second moving is equivalent

to six grids and thus we can capture fmin = 6 frames in one

second to effectively track vehicles.

Fig. 1. Grid division of a standard traffic intersection field of view.

To get the lane information, we mark the intersection view

and group multiple lanes into a single route via polygonal

drawn covering the lane zone. Each route is a pair of lanes

since our intelligent traffic model only needs to get appropriate

traffic flux over specific route instead of detailed lanes.

III. OBJECT DETECTION AND CLASSIFICATION MODULE

A. State-of-the-Art Models

To achieve faster, rather than more accurate solutions of

object detection, researchers have turned their attention to

regression-based models that can generate proposals from

convolutional features by simple rules, such as YOLO and

YOLOv2 [3]. Google also opened TensorFlow-based object

detection APIs recently and includes the implementation of

several popular models, for example, SSD with MobileNet,

SSD with Inception V2, R-FCN with Resnet 101, Faster

RCNN with Resnet 101 [4], and Faster RCNN with Incep-

tion Resnet v2. According to a recent work discussing the

speed/accuracy comparisons and trade-offs for modern object

detectors [5], the choice and the justification of a proper

choice of the object detection approach is crucial for different

applications.

B. Reinforced YOLOv2

We needed a real-time object detection model that shall give

precise results. Among existing models we computed the Av-

erage Precision (AP) score [6] to evaluate these models in the

intelligent traffic scenarios, including TensorFlow, DIGITS,

Caffe, and Darknet. For example, we got AP score of 0.63

for Faster-RCNN and 0.71 for YOLOv2 for one particular

classifier, namely car.

Based on darknet, we added additional software layers to

support object tracking and traffic flow analytics. To further

improve the accuracy of YOLOv2 for traffic detection sce-

narios, we trained the existing pre-trained YOLOv2 model

based on the multi-resolutions of NVIDIA AI City dataset

[1], which contains 3 subset of traffic videos taken from 3

different locations including (1) a Silicon Valley intersection,

(2) a Virginia Beach intersection, and (3) Lincoln, Nebraska

with different video resolutions. The videos are recorded under

diverse environmental and lighting conditions, ranging from

day and night. About 150, 000 key frames extracted from

80 hours videos are manually annotated with bounding boxes

around the objects of interest with corresponding labels. The

labels for the datasets are: Car, SUV, SmallTruck, Medi-

umTruck, LargeTruck, Pedestrian, Bus, Van, Group of People,

Bicycle, Motorcycle, TrafficSignal-Green, TrafficSignal-Red,

TrafficSignal-Yellow.

To further improve the accuracy, we utilized our developed

annotation and evaluation tool to evaluate the initial object

detection results. We added one UI interface that allows the

user to view the visualization results, and adjust the bounding

box if the automatic detection results are not correct. Our

annotation and evaluation tool will record these error frames.

When all error frames are identified, we will use this set of data

to reinforce the training of the new YOLOv2 model. Through

this approach, we can improve the accuracy gradually. The

objection detection results are shown in Fig. 2 under different

traffic scenarios.

141

Fig. 2. Object detection results under different scenarios.

C. Overall Multialgorithmic Tracking Procedure

Algorithm 1 shows our multi-algorithmic tracking procedure

for various scenarios. BBD is Bounding Box Detected, BBT

is Bounding Box Tracked, TAlgo is the desired tracking

algorithm to use, Frame0 is the old frame which is the base

for tracking, FrameCurrent is the current frame on which we

shall track objects detected in frame 0, and MLV is the Motion

Level Value.

Algorithm 1: Multialgorithmic tracking procedure

Data: Previous Frame in the video pipeline FramePrev
and Current frameFrameCurrent

Result: Tracked bounding boxes, BBT List in

FrameCurrent
gridV ector=sca5(FramePrev, FrameCurrent);
BBD=BBD List of FramePrev;

OcclusionRectangles=findOcclusionsBySegmentation();

while BBD is non NULL do
BBD(MLV)=calculateMLV(gridV ector, BBD);

if FutureObjectPoint(x, y)=Kalman() is within
OcclusionRectangles then

if occlusionPercent(OcclusionRectangles,
BBD, FutureObjectPoint(x, y)) > 80 then

TAlgo=MIL tracker;

else
TAlgo=TPCAM OptF low Tracker;

else
if BBD(MLV) > CONFIG THRESHOLD
then

TAlgo=BOOSTING;

else
TAlgo=TPCAM OptF low Tracker;

BBT=track(BBD, FrameCurrent, TAlgo);

addToList(BBT , BBT List);
BBD=BBD(next);

return BBT List;

D. Error Detection and Failure Recovery

Another major challenge of the tracking is to recover from

the error. We need to estimate whether the tracking methodol-

ogy correctly tracked a target or not. Median Flow tracker [7]

demonstrates a novel idea to detect tracking failure scenarios,

while most of the other trackers fail to detect failure.Based

on the existing solutions of Median Flow tracker, we further

employ an effective tracking failure detection algorithm based

on object detector output. We utilize the IoU (Intersection

over Union) mapping mechanism to evaluate the difference

between the tracked bounding box (BB) and the detected BB.

We utilize IoU to give our optical flow based tracker the ability

to quickly detect tracking failures than any other models in

real-world scenarios when subsequent frames being tracked

have limited motion of objects. We also add this methodology

as a post-processing step to the tracked BB’s generated from

other object tracking models to further improve the accuracy.

The post-processing process of detecting tracking failures is

described in tracking-failure detect algorithm, where matching

IoU for best fit shall calculate the best and valid Intersection

over Union IoU and check for an appropriate mapping between

tracked and detected bounding boxes in the FrameCurrent.
Final object annotation involves the object ID assignment.

In order to assign a unique object ID for the tracked objects,

the detection and tracker are run on the same frame and the

objects are matched by computing Intersection over Union

(IoU) between the two resultant bounding boxes and selecting

the matches with the best IoU value, which is the value closest

to 1.0. Such a closed mapping allows us to identify undetected

tracking failures. Furthermore, the learnt information helps us

to preserve the undetected objects which were successfully

tracked.

E. Achieving Pseudo-30 FPS

To achieve the real-time performance, i.e., capable to pro-

cess 30 FPS, we propose to utilize our tracking results to

perform dynamic frame selection that process a minimum

number of images and achieve pseudo-30 FPS. We propose

using the multi-algorithmic approach discussed in the section

?? to use an intelligent combination of tracking algorithms

driven by a self-adapting algorithm selection technique. This

novel approach uses a simple scene change filter between the

desired image frames. Depending on the scene change filter

decision on whether there was substantial object movement

between the frames, we employ Median Flow and Optical

Flow techniques or KCF and TLD. Again, within these two

branches, depending on whether there is any minor/major

occlusion of the target object, we employ optical flow based

methods appropriately. The order in which tracking algorithms

are used by the branches depends on its ability to detect

tracking failure and performance. The optical flow tracking

mechanism we use here is equipped with tracking failure

detection which is superior to other models.

IV. EVALUATION

A. Evaluation Metrics and Object Detection Results

While the obtained results show us the mAP score obtained

by Faster RCNN is higher than YOLO, but considering the

real-time requirement of the proposed system, we utilize

YOLO-based object detection models. The comparison results

142

TABLE I
THE COMPARISON OF THE MOTA SCORE

MOTA MOTP MOTAL
adaptive frame selection 30.1 74.2 33.5

No skipping 33.0 74.4 36.0

are shown in Fig. 3 with a detailed list of the precision-recall

curves for different object categories.

Fig. 3. Results of evaluation for different object categories.

B. The Performance Comparison via Two Different Datasets

To illustrate the robustness of our proposed TPCAM ap-

proach, we utilized two datasets (NVIDIA dataset and China

dataset) to compare different algorithm in different cases.

C. The MOTA Score of Object Tracking

To evaluate our tracking method, we utilize the MOT score

as the performance metric and follow the standard tracking

evaluation procedure in the MOT 2015 benchmark [9]. Our

achieved MOTA score is 33, which is already in the top tier of

the MOTA leading board (most top algorithm’s MOTA score

is around 30).

D. Real-time Performance

In order to achieve real-time traffic detection and tracking at

the network edge (run on NVIDIA TX2). We propose adaptive
frame selection approaches to achieve pseudo-30 FPS. Table.

I shows MOTA score of 33.0 for our tracker without skipping

frames, where we achieved an average of 9.6 fps on a desktop

with Intel i7 and NVIDIA 1080 GTX GPU. Whereas by

skipping frames via adaptive frame selection, we can achieve

pseudo-30 FPS. The MOT score comparison is shown in

Table. I, where we got MOTA = 30.1. The comparison of

the FPS is shown in Fig. 4, and we got average FPS = 33.65

when performing adaptive frame selection. With only a small

performance drop (δMOTA = 3.55), we can achieve real-

time traffic detection and analytics via edge devices (NVIDIA

TX2).

V. CONCLUSION

In this paper, we proposed a real-time object detection and

tracking approach, named TPCAM. It can achieve precise

object tracking with an adaptive multi-algorithm approach.

The precision achieved is superior to the existing models. This

Fig. 4. Results of real-time frame rate.

approach can be easily deployed on an edge device like the

NVIDIA TX2, where we could use the available processing

power to adequately process the traffic video in pseudo-30 FPS

via adaptive frame selection. Our detection and analytic results

of vehicle and pedestrian flows will help optimize timings at

traffic signals and ensure “safe time” to facilitate movement

of pedestrians. In the future, our system can also catch the

offenders flouting the traffic norms like jumping the signals,

over-speeding, cross lanes, driving without helmet and seat-

belt etc.

ACKNOWLEDGMENT

The work presented in this paper is funded by Cisco

Systems and National Science Foundation under Grant No.

CNS 1637371.

REFERENCES

[1] M. Naphade, D. C. Anastasiu, A. Sharma, V. Jagrlamudi, H. Jeon, K. Liu,
M.-C. Chang, S. Lyu, and Z. Gao, “The nvidia ai city challenge,” in 2017
IEEE SmartWorld Congress, ser. SmartWorld’17. Piscataway, NJ, USA:
IEEE, 2017.

[2] M. Alam, J. Ferreira, and J. Fonseca, “Introduction to intelligent trans-
portation systems,” in Intelligent Transportation Systems. Springer, 2016,
pp. 1–17.

[3] J. Redmon and A. Farhadi, “YOLO9000 better, faster,
stronger,” CoRR, vol. abs/1612.08242, 2016. [Online]. Available:
http://arxiv.org/abs/1612.08242

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[5] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs for
modern convolutional object detectors,” arXiv preprint arXiv:1611.10012,
2016.

[6] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International journal
of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[7] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-backward error:
Automatic detection of tracking failures,” in 2010 20th International
Conference on Pattern Recognition, Aug 2010, pp. 2756–2759.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[9] L. Leal-Taixé, A. Milan, I. D. Reid, S. Roth, and K. Schindler,
“Motchallenge 2015: Towards a benchmark for multi-target
tracking,” CoRR, vol. abs/1504.01942, 2015. [Online]. Available:
http://arxiv.org/abs/1504.01942

143

