2018 IEEE International Conference on Cognitive Computing

An Edge Based Smart Parking Solution Using Camera Networks and Deep Learning

Harshitha Bura, Nathan Lin, Naveen Kumar, Sangram Malekar, Sushma Nagaraj, Kaikai Liu
Computer Engineering Department
San José State University (SJSU)
San José, CA, USA
Email: {harshitha.bura, nathan.lin, naveenkumar.bhuthakatanahalliramalingaiah,
sangram.malekar, sushma.nagaraj, kaikai.liu} @sjsu.edu

Abstract—The smart parking industry continues to evolve as
an increasing number of cities struggle with traffic congestion
and inadequate parking availability. For urban dwellers, few
things are more irritating than anxiously searching for a
parking space. Research results show that as much as 30% of
traffic is caused by drivers driving around looking for parking
spaces in congested city areas. There has been considerable
activity among researchers to develop smart technologies that
can help drivers find a parking spot with greater ease, not
only reducing traffic congestion but also the subsequent air
pollution. Many existing solutions deploy sensors in every
parking spot to address the automatic parking spot detection
problems. However, the device and deployment costs are very
high, especially for some large and old parking structures. A
wide variety of other technological innovations are beginning to
enable more adaptable systemsincluding license plate number
detection, smart parking meter, and vision-based parking spot
detection. In this paper, we propose to design a more adaptable
and affordable smart parking system via distributed cameras,
edge computing, data analytics, and advanced deep learning
algorithms. Specifically, we deploy cameras with zoom-lens and
motorized head to capture license plate numbers by tracking
the vehicles when they enter or leave the parking lot; cameras
with wide angle fish-eye lens will monitor the large parking
lot via our custom designed deep neural network. We further
optimize the algorithm and enable the real-time deep learning
inference in an edge device. Through the intelligent algorithm,
we can significantly reduce the cost of existing systems, while
achieving a more adaptable solution. For example, our system
can automatically detect when a car enters the parking space,
the location of the parking spot, and precisely charge the
parking fee and associate this with the license plate number.

Keywords-Deep learning, edge devices, smart cities, smart
parking.

I. INTRODUCTION

Smart parking solutions are one of the basic and foremost
requirements of smart cities [1]. According to [2], a motorist
spends an average of 17 hours per year searching for a place
to park his vehicle. This is the reason why the smart parking
industry is on the rise and coming up with new solutions
very often.

Many existing solutions use sensors at every parking spot
to identify whether the spot is vacant or not. Installing
sensors in every parking spot is a simple way to solve
the automatic parking spot detection problem [3], [4], [5].
However, the device and deployment costs are very high,

978-1-5386-7241-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCC.2018.00010

especially for some large and old parking structures. Another
major problem is the limited sensor data, e.g., empty or
not, without rich information like license plate number,
vehicle or motorcycle identification. To get rich information,
some solutions are deploying camera as the sensor in every
parking spot. This will enable many new smart services,
for example, users can use their license plate number to
find their vehicle. However, this kind of system requires a
robust network in the parking garage. Collecting all these
camera data requires a huge amount of bandwidth, which
poses significant challenges for the network infrastructure.
Autonomous vehicles are another solution to solve parking
problems [6]. But, the disadvantage [7] with them is that
people will get off the car at the destination and leave the
cars to find a parking spot on their own. In this case, if
the car doesn’t find a place to park it will end up circling
the neighborhood, blocking others and wasting fuel. Robotic
valet systems [8] can also be considered as a solution to this
problem but they will involve very expensive and complex
mechanical equipment. Some solutions using vision-based
techniques to cover large sparking spaces in order to lower
the sensor deployment cost [9], [10]. Deep learning based
solution [9], which is based on the VGGNet family, has
been proposed to solve the parking spot detection problem.
However, the computation in the solution [9] requires the
cloud for highly complex processing. Authors in [10] make
use of miniAlexNet and reduced the layers to only have
three convolutional layers each followed by a ReLu and
max-pooling layer. However, covering a large area via
computer vision means they lack features such as license
place recognition which has been proved to be very useful
in services like finding the vehicle online.

To balance the cost and service quality, we propose
to monitor the parking lot using a distributed network of
cameras, connected via a self-deployed WiFi mesh. One
camera can cover a large area instead of covering individual
parking spots. To enable smart services like finding the
vehicle location via license plate number, we perform contin-
uous vehicle tracking and feature extraction via the camera
network. Specifically, some of the cameras with zoom-lens
and motorized head can capture license plate numbers by
tracking the vehicles when they enter or leave the parking

IEEE
computer
® psoaety

lot. Other cameras with wide angle fish-eye lens will cover
large parking spaces, and detect the parked parking lot via
artificial intelligence. Deep learning algorithms will be used
to identify occupied, vacant, and special parking spots, for
example, disabled parking signs, carpool signs. Through the
intelligent algorithm, we can significantly reduce the number
of sensors and cameras of existing systems, while achieving
a higher level of service quality. To further reduce the
computational complexity of the deep learning algorithms,
we propose a custom convolutional neural network that can
be run on top of edge devices in real time. When compared
with existing state-of-the-art approaches, our solution can
achieve the same level of detection accuracy with a lower
computational complexity. Along with the detected license
plate numbers of vehicles, our system performs data fusion
and object association from multiple cameras and enables
applications such as keeping track of the duration of a
vehicle’s stay in a particular parking spot. The overall system
will help motorists in navigating to a vacant spot with ease
and will also help in charging them based on the exact
amount of time the vehicle has been parked in the parking
lot.

II. PROBLEM STATEMENT / PROJECT ARCHITECTURE

The motivation for this project comes from the fact
that the quality of smart solutions available for parking
management is not on par with the smart solutions available
for other services required for smart cities such as waste
management, resource management and utilities manage-
ment. Transportation and parking being an important part
of everyday life, there is a dire need to come up with smart
and effective solutions. In this section we give a detailed
description of our proposed system.

A. Our proposed solution using a network of cameras

The block diagram for the proposed system using camera
networks is depicted in Fig. 1. The entire system consists
of (i) A network of ground cameras which are placed close
enough to the ground to capture license plate numbers of
vehicles, (ii)) A network of top-view cameras whose view
when combined will cover the entire area of the parking lot,
(iii) Edge devices i.e., an Nvidia Jetson Tx2 and Raspberry
Pi, (iv) A cloud server and database which will be used
to hold information such as the occupancy status of all the
slots, license plate numbers of vehicles that are parked in the
lot along with entry and exit time-stamps for each vehicle,
(v) A web application which will display all the relevant and
necessary information. A detailed description of each block
of the system is given below.

1) Network of ground cameras: The ground cameras
need to be appropriately focused as they are responsible for
having a clear view of the license plate number of vehicles
that enter and leave the parking lot. We choose the low
cost Raspberry Pi (Rpi) camera and fit with a zoom lens

AWS cloud service
NoSQL Database

Cameras Networko

MQTT
protocol

s
? Samera,

Ground level

) [

Web UI with
graphical dashboard

Client
Devices

Figure 1.
cameras

Block Diagram of our proposed solution using a network of

to achieve the required focus. The Rpi runs algorithms for
the license plate number recognition and vehicle tracking.

2) Network of top-view cameras: The top-view cameras
have a bird’s eye view of the entire parking lot. The view
of all these cameras when combined will cover the whole
parking lot. Rpi cameras have been selected for the top-
view as well but they are fit with wide-angle lenses. The
feed from these cameras is used to identify the occupancy
status of each slot, performing feature extraction from the
top-view and tracking vehicles until they are parked.

3) Edge Devices: The edge devices used in our system
are Raspberry Pi and Nvidia Jetson Tx2. Both the ground
cameras and top-view cameras are interfaced to an Rpi. The
Rpi interfaced with the ground camera runs OpenALPR [11]
to perform license plate number recognition. The Rpi also
extracts features of vehicles that enter the parking lot using
OpenCV and time-stamps their entry and exit times. All this
information is sent to the server.

The top view cameras are also interfaced to an Rpi which
is responsible for streaming its feed to Nvidia Jetson Tx2
via Wi-Fi mesh. The Jetson which receives the live feed
time-stamps the entry of a vehicle and extracts its features.
The time-stamp and features are compared to the entries in
the database and if they match with any entry, the license
plate number associated with that particular entry is used as
the tracking ID for the vehicle. The vehicle is tracked until
it comes to a halt in a parking slot. The newly occupied
slot number is then associated with the vehicle’s license
plate number. This helps in making record of a vehicle’s
location in the parking lot. Tracking is done with help of
a trained Tiny Yolo (based on Darknet framework) model
run on top of the Nvidia Jetson Tx2. Tiny Yolo is very
lite and is hence suitable for running on edge devices.
Slot classification continuously runs on Tx2 with the help
of a trained custom-designed neural network. The custom-
designed neural network has only one convolutional layer
and is very lite and is perfect for running on edge devices.
It has an accuracy that is comparable to the standard AlexNet
for small class numbers but is much faster.

4) Cloud server and database: The data generated from
the edge devices is sent to the cloud using MQTT protocol.
All the edge devices si registered to AWS IoT as “things”.
AWS 10T allows tracking of all the devices connected to
it. The IoT certificates and policies should be added to
the device. Once the device is connected to AWS, a rule
should be defined which will help in communicating with
the database. We are using dynamodb for storing the license
plate numbers, parking slot information and features of
vehicles. All the information is sent to the database in json
format. Once all the data is stored in the database, a flask
backend application will connect to the database and display
the information on the website.

5) Web Application: The web application will display all
the useful information such as the vacant and occupied slots
and will be integrated with Google maps to help users in
navigating to vacant spots. It will contain a feature which
will allow users to find out the exact location of their vehicle
by entering their license plate number along with a feature
which will allow users to pay their parking fare online.
The logical flow of the entire system explained till now is
represented in Fig. 2.

License Plate
Recognition and
Feature
Extraction of Car
using Ground
level Camera

Feature
Extraction of Car
using Top view
Camera

amazon
Webservices

Car Detection and
Tracking using
License plate

Parking lot

Web application fo—

amazon detection using
‘Websenvioes CNN

Figure 2. Logical flow of our proposed solution

B. Our proposed solution using a network of LIDARs

Indoor parking garages have a very low ceiling and hence
cameras installed on the top will not be able to cover a
large area. Thus, camera networks will not work for indoor
garages. To solve this problem, we utilize a low-cost LIDAR
sensor to assist the detection. A traditional sensor based
parking solution will require a sensor to be deployed under
each parking slot. But our proposed LIDAR based solution
will be able to cover 7 - 8 parking slots with only one
LIDAR. The block diagram of this system is shown in Fig. 3.

The LIDAR is interfaced to a Raspberry Pi and a slot is
classified as either occupied or empty based on the distance
readings from the LIDAR. The LIDAR system will be
combined with OpenALPR and a Raspberry Pi camera for
detecting the license plate number of vehicles.

8 18] B8l (8

Raspberry pi
camera

LIDAR

Figure 3. Block Diagram of our proposed solution using a network of
LIDARs

ITI. METHODS / SYSTEM DESIGN
A. Dataset

There is no Al (Artificial Intelligence) without IA (In-
formation Architecture) [12]. Having a good all-round data
set is very important for building good Al solutions. In our
proposed solution we have performed object detection as
well as object classification and hence two different types
of datasets are required. They are discussed in the section
below.

1) Dataset used for object classification: An open source
dataset is available for parking lots and it is given in [10] and
[13]. [13] called PKLot consisting of 12,417 images of park-
ing lots and 695,899 images of parking spaces segmented
and perspective transformed. [10] consists of a dataset which
is an extension to [13] and it is called CNRPark. CNRPark
adds about 12,000 images to the PKLot which were taken
in different weather conditions, which have not been per-
spective transformed and some are occluded. However, Both
of these datasets lack images of parking spots with special
signs such as disabled signs and car pool signs. Our dataset
collected in San Jose State University’s parking lot adds such
images to those two datasets.

While creating our dataset with annotated individual slots
from each frame of the video, an annotation mask has
been defined using a tool called LabelMe [14] developed
by MIT. After an entire frame has been segmented into
individual slots, the image of each slot undergoes perspective
transformation. With the help of perspective transformation
it can be ensured that the angle in which the image has
been taken will not effect the performance of the model. If
the model is trained with images before they are perspective
transformed, the model might fail while inferencing images
in angles different than that of the trained images. A perfor-
mance comparison of all the trained models can be found
in section V. A comparison of images before and after they
are perspective transformed can be found in Fig. 4. Out of
the created dataset 75% of images were used for training
the network model whereas 25% of the images were used
for validation.

After Perspective transformation

Figure 4. View of parking slots before and after perspective transformation

2) Dataset for object detection and tracking: The dataset
used for object tracking project was provided by Nvidia
in the AI city challenge 2017 [15]. It consisted of raw
images, without any annotations. So, the first step is to
label the objects in the images and prepare the dataset. We
utilize the annotation tool developed and provided by Nvidia.
After completing the annotation, 150,000 labeled images
extracted from eighty hours of traffic video was available.
These labeled images were then divided into training and
validation datasets. Next, the labels were converted into
formats compatible with the models that have been selected.
The YOLO model requires the images to be in Darknet
format. Finally after converting the images into Darknet
format, 59,482 training images and 19,272 validation images
of size 1920 x 1080 pixels were available for training.

B. Efficient Neural Network Model Design for Parking Lot
Occupancy Detection

Many existing vision-based vehicle and parking spot
detection services use modern machine learning techniques,
such as deep learning. However, the state-of-the-art results
by deep learning come at the price of an intensive use of
computing resources. For example, the leading deep learning
frameworks (e.g., TensorFlow) are expected to run on top of
high-end servers in datacenters. On the other end, there is
a proliferation of personal devices with possibly free CPU
cycles; this can enable services to run in users’ homes,
embedding machine learning operations.

Keeping in mind that our processing has to be performed
on the edge and should not require a GPU with high com-
putational capability, we have designed our custom network
to be very lite. Our model is based on the AlexNet neural
network. AlexNet has 5 convolution layers, 7 ReLu layers, 3
max pooling layers, 3 fully connected layers [16] and though
it is very accurate, it is slow for real time computation.
AlexNet was originally created for the ImageNet dataset
which consisted of 22,000 categories [16]. But since we re-
quire only two classes (occupied and empty) for identifying
vacant spots in a parking lot, such a deep convolution neural
network is not necessary. A neural network with a single

20

convolution layer will be sufficient for this application. This
will also help in reducing the time taken for the real time
inferencing. The network model created for this application
has 1 input layer, 1 convolution layer, 1 ReLu, 1 max pooling
and 3 fully connected layer. The construction of the custom
network model can be observed in Fig. 5.

dense dense dense

Max classes

Pooling

Figure 5.

Our Custom Designed Network Model

Our custom-designed model consists of one convolution
layer which performs the convolution operation over the
256x256 RGB input images.The weights in the convolution
layers are trained and updated in each learning iteration
using a back-propagation algorithm. It has a stride of 4
with receptive field or kernel of 11x11, giving the output
a dimension of 55x55 as calculated using equation (1)
Wal=RE2P))
Where, R - Receptive field or Kernel, P - Padding, S - Stride.
The convolutional layer is followed by the ReLu layer with
sigmoid activation function to introduce non linearity in the
model as shown in (2)

Wout(i) = 1+ (

1
1+e®
ReLu layer is followed by a Max Pool layer which per-
forms down-sampling. The reduction of size leads to loss
of information. However, such a loss is beneficial for the
network for two reasons: 1) The decrease in size leads to
less computational overhead for the upcoming layers of the
network and it works against over-fitting; 2) At the end we
have a fully connected layer which connects the output of
previous layer and gives a 2 class output.

Our designed model has been trained using a custom
dataset as well as the CNRpark and PKLot datasets [10] in
DIGITS (Deep Learning GPU Training System by Nvidia).

f(z) = %ln(l +e%) = 2)

C. YOLO model based on darknet framework

YOLO [17] is an object detection model that uses regres-
sion. Every input image to the model is split into grids and
each cell in a grid predicts some bounding boxes and gives a
confidence value which indicates how sure the model is that
the box contains an object. After this step the model knows
where the object is in that image but it does not know what
that object is. For knowing the class, each cell predicts a

class probability using the pre-trained weights. Finally the
box and class predictions are combined to identify the object.

D. License plate number recognition and vehicle tracking

OpenALPR is used for Optical Character Recognition. It
uses Tesseract OCR library. For the application at hand,
OpenALPR bindings have been used along with python
to recognize the characters in an image. OpenALPR can
recognize license plate at any position within the image
and Raspberry Pi is completely responsible for running
OpenALPR along with its python bindings.

The vehicles have to be tracked until they reach and settle
in a spot in order to identify the slot number each vehicle has
occupied. By doing this the location of a particular vehicle
can be shared with its owner in case he/she is unable to
locate the vehicle. This information will be secured and
information pertaining to each vehicle will be shared only
after entering a pass code which is created beforehand. This
feature is yet to be implemented.

E. The LIDAR based system

As menioned in Section II, for indoor parking lots, the
Raspberry Pi interfaced with a camera and a LIDAR has
been proposed. The LIDAR will be rotated in equal steps
using a stepper motor and the distance reading will help
in identifying if the slot is occupied or not. If the slot is
occupied, the camera will start capturing the license plate
number to make a note of that particular car’s position in
the parking lot. This information will then be sent to the web
application. Fig. 6 shows the hardware setup containing the
Raspberry Pi, LIDAR, stepper motor and camera. The slot
number will be identified by the the angular position of the
stepper motor.

Figure 6. Hardware setup for indoor parking lots

IV. RESULTS
A. Results of our custom model used for object classification

The trained models have been evaluated by using them to
inference videos which have been captured from different
parking lots in different angles and conditions. The effi-
ciency of a model can be measured in terms of its accuracy

21

and the time taken to classify a single image. The accuracy
of a model is given by the formula

tp+1in
tp+itn+ fp+ fn
Where, tp - true positives, tn - true negatives, fp - false
positives and fn - false negatives. The three models trained
(standard AlexNet, AlexNet reduced to two convolution
layers and AlexNet reduced to one convolution layer) have
different accuracy and different inference time. The frames
extracted from a video and the output after inferencing the
entire frame are shown in the Fig. 7 and Fig. 8. Each figure
shows various parking lots with different view angles.

Accuracy =

3

Figure 7. Input Image To The Model and The Output Image Indicating
the Vacant and Occupied Parking Slots at SJSU 20Min Parking lot .

Figure 8. Slot Occupancy detection results at Avalon on the
Alameda(above) and SJISU south garage(below) Parking lots

The total number of images for each class in the dataset
(CNRPark + PKLot + own data set) and total number of
images are given in Table I.

Dataset Empty Occupied
TraindB 49632 1266
valdB 12,400 949

Table I The total number of images, TraindB and ValdB in
the dataset.

Table II, III and IV represent the confusion matrices for
the three network models considering empty to be positive
and occupied to be negative.

Empty Occupied
Empty 12400(tp) 0(fn)
Occupied 5(fp) 944(tn)

Table II The confusion matrix for standard AlaxNet

Empty Occupied
Empty 12400(tp) 0(fn)
Occupied 40(fp) 909(tn)

Table III The confusion matrix for AlaxNet with two
convolutional layers

Empty Occupied
Empty 12400(tp) 0(fn)
Occupied 36(fp) 913(tn)

Table IV The confusion matrix for the custom designed
network model

A comparison of the accuracy and time taken for infer-
ence for the standard AlexNet, mAlexNet and the custom
designed network model are given in Table V and Table VI.

Accuracy in
Network model

percentage
Standard AlexNet 99.8584
AleXNet' with two 99.70
convolution layers
Custom designed net-
work model(One con- | 99.51
volution layer)

Table V Comparing accuracy of standard AlexNet,
mAlexNet and the custom designed network model on
25% of CNRPark, PKLot and our own data set combined

The miniAlexNet network model proposed in [10] in the
best case has a maximum accuracy of 98.125%. Hence our
proposed network model has a higher accuracy.

Time taken
Network model for i

or inference
Standard AlexNet 19.98ms
AlexNet' with Two 13 54ms
convolution layers
Custom designed net-
work model(One con- | 7.11ms
volution layer)

Table VI Comparing inference times of standard AlexNet,
mAlexNet and the custom designed network model on
25% of CNRPark, PKLot and our own data set combined.

The miniAlexNet proposed in [10] takes 15 seconds to
classify 50 slots. Our custom designed model takes 50 x
7.11ms = 355.5ms to classify 50 slots.

22

B. Results of our YOLO model used for object detection

Our trained YOLO model has a mean average precision
(mAP) of 0.27. A graph containing Average precision and
Fl-score for the Nvidia dataset is shown in Fig. 9. Also,
Fig. 10 shows the Bounding boxes drawn as a result of object
detection using Yolo model.

—pp =

=F1-Score

Figure 9. Average Precision and Fl-score for the YOLO model on the
Nvidia dataset.

Figure 10. Object detection using YOLO model on SJSU Parking lot.

To test the car parking occupancy using LIDAR, we place
the LIDAR in fixed distances from the slots. The expected
distance that would be measured by the LIDAR for each slot
was calculated. By observing the average distance between
two vehicles parked in the lot, the angle the LIDAR must
be rotated in order to face the next slot has been calculated.
The performance of this system is evaluated by calculating
the number of cars that were correctly classified (i.e. the
distance measured by the LIDAR is equal to or less than
the expected distance when a slot is occupied).

Fig. 11 shows a graph of the expected distance value from
the LIDAR when each slot is occupied vs the actual reading
obtained from the LIDAR. Fig. 12 shows the accuracy of
the LIDAR system.

OpenALPR is evaluated by its accuracy, i.e the number
of licence plate number predictions which were correct in
the top 10 predictions and the top 1 prediction [18]. Table
VII consists of the benchmarks for OpenALPR [18]. Easy set
indicates a collection of license plates with a non-obstructive

Figure 11. A graph showing the expected LIDAR reading (blue bars) and
the actual LIDAR readings (orange bars) when each slot is occupied.

Ermpty Space Detection Accurcy

Figure 12. A graph showing the accuracy trend for each spot. blue -
number of attempts, orange - correct classifications

view and for which the camera angle is good. The hard
set consists of number plates in unexpected conditions,
resolutions and for which the camera view is not optimal.

Benchmark State . Top 10 | Top 1
Recogni- (percent) | (percent)
tion

Easy Set | 0 71.19 49.15

Hard Set | 0 32.56 23.26

Table VII OpenALPR Benchmarks

Fig. 13 shows the license plate number of a car being
recognized with the help of OpenALPR and the result being
pushed to the web server with time stamp.

The web application shows the occupancy information for
each slot being updated in Google maps and this information
is also displayed in a separate table. This can be seen in
Fig. 14.

The Jetson Tx2 processes live videos that are being
transmitted to it from a raspberry pi. As of now there is a
transmission delay of about 10 seconds and since this project
is still in progress, efforts are being put into reducing this
delay.

V. RELATED WORKS

The state-of-the-art solutions available for smart parking
lots have been studied before deciding on our proposed

12
6
5
2
(]
1 2 3 4 5 6 7

23

Plate License Info Entry Time

Figure 14. Vacant and occupied slots updated in the web application
integrated with Google maps

system. The products currently available in the market are
based on sensors and the working of these systems is
described in [9], [3] and [5].

Data is the most important aspect for deep learning and
artificial intelligence. Research has been performed towards
finding out the requirements for obtaining or generating
a good data set. According to [13], to make the data set
as generic as possible, data must be collected in every
conceivable condition and situation. Though the data set
provided in [10] and [13] is generic, it can still be improved.
Some projects for developing a similar application have been
implemented using standard techniques of computer vision
instead of deep learning and artificial intelligence. These
techniques have been discussed in [19] and gives an idea
on the drawbacks of this technique. Next, various network
models have been studied to decide on which model should
be used for this application. Most of the network models as
discussed in [16] and [20] are too large and do not perform
well for real time object classification. Hence, it has been
decided to create a model by modifying the existing models
such that it will perform well for real time classification. In
[10] a model has been developed for a similar application
and gives a brief description on what has been done by them
to modify a model and reduce its layers without effecting
the accuracy.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a well rounded solution for solving park-
ing problems. Our solution overcomes the disadvantages
of currently existing non-vision based solutions and also
adds more useful features to vision based techniques such
as license plate detection and vehicle tracking. A custom
network model has been developed for identifying vacant
slots in parking lots. From the obtained results, we can
observe that there is a huge reduction in the inference time
for the custom network model (7.11ms) when compared to
the standard AlexNet (19.98ms) and mAlexNet (13.54ms).
Our reduction in inference time has been achieved with
little reduction in accuracy. The 0.034 percent reduction in
accuracy compared to the standard AlexNet is acceptable.
Our model has a higher accuracy and much faster than the
model presented in [10]. Our future work includes increasing
the speed and accuracy of the object detection model and
establishing a link between the ground cameras and top-view
cameras to achieve object tracking.

ACKNOWLEDGMENT

The work presented in this paper is funded by Cisco
Systems and National Science Foundation under Grant No.
CNS 1637371.

REFERENCES
[11 S. Kumar, “Smart city solutions smart park-
ing lots - internet of things — ot india,”
2018. [Online]. Available: https://electronicsofthings.com/

expert-opinion/smart-city-solutions-smart-parking-lots/
[2] 2018. [Online]. Available:
/Iwww.usatoday.com/story/money/2017/07/12/
parking-pain-causes-financial-and-personal-strain/
467637001/

https:

[3] R. Grodi, D. B. Rawat, and F. Rios-Gutierrez, “Smart parking:
Parking occupancy monitoring and visualization system for
smart cities,” in SoutheastCon 2016, March 2016, pp. 1-5.
[4] J. K. Suhr and H. G. Jung, “Sensor fusion-based vacant
parking slot detection and tracking,” IEEE Transactions on
Intelligent Transportation Systems, vol. 15, no. 1, pp. 21-36,
Feb 2014.

[5] H. Chaudhary, P. Bansal, and B. Valarmathi, “Advanced car
parking system using arduino,” in 2017 4th International
Conference on Advanced Computing and Communication
Systems (ICACCS), Jan 2017, pp. 1-5.

[6] K. W. Min and J. D. Choi, “Design and implementation of
autonomous vehicle valet parking system,” in /6th Interna-
tional IEEE Conference on Intelligent Transportation Systems
(ITSC 2013), Oct 2013, pp. 2082-2087.

[7] 2018. [Online]. Available:
/Ispectrum.ieee.org/transportation/self-driving/
the-big-problem-with-selfdriving-cars-is-people

https:

24

(8]

(91

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

A. K. Nayak, H. C. Akash, and G. Prakash, “Robotic valet
parking system,” in 2013 Texas Instruments India Educators’
Conference, April 2013, pp. 311-315.

S. Valipour, M. Siam, E. Stroulia, and M. Jagersand,
“Parking-stall vacancy indicator system, based on deep con-
volutional neural networks,” in 2016 IEEE 3rd World Forum
on Internet of Things (WF-1oT), Dec 2016, pp. 655-660.

G. Amato, F. Carrara, F. Falchi, C. Gennaro, C. Meghini,
and C. Vairo, “Deep learning for decentralized parking
lot occupancy detection,” Expert Systems with Applications,
vol. 72, no. Supplement C, pp. 327 - 334, 2017.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S095741741630598X

S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic
license plate recognition (alpr): A state-of-the-art review,”
IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 23, no. 2, pp. 311-325, Feb 2013.

S. Earley, “There is no ai without ia,” IT Professional, vol. 18,
no. 3, pp. 58-64, May 2016.

P. R. de Almeida, L. S. Oliveira, A. S. Britto, E. J.
Silva, and A. L. Koerich, “Pklot a robust dataset
for parking lot classification,” Expert Systems with
Applications, vol. 42, no. 11, pp. 4937 — 4949, 2015.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0957417415001086

“LabelMe an open annotation tool,” http://labelme.csail.mit.
edu/Release3.0/, accessed:2018-02-19.

2018. [Online]. Available: http://smart-city-sjsu.net/
AlCityChallenge/
A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”
in Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 1, ser.
NIPS’12. USA: Curran Associates Inc., 2012, pp. 1097-
1105. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2999134.2999257

J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object detection,”
CoRR, vol. abs/1506.02640, 2015. [Online]. Available:
http://arxiv.org/abs/1506.02640

“OpenALPR Benchmarks,” http://www.openalpr.com/
benchmarks.html, accessed:2018-02-20.

K. Hammoudi, M. Melkemi, H. Benhabiles, F. Dornaika,
S. Hamrioui, and J. Rodrigues, “Analyzing and managing
the slot occupancy of car parking by exploiting vision-based
urban surveillance networks,” in 2017 International Confer-
ence on Selected Topics in Mobile and Wireless Networking
(MoWNeT), May 2017, pp. 1-6.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” CoRR, vol. abs/1409.4842,
2014. [Online]. Available: http://arxiv.org/abs/1409.4842

