
An Edge Based Smart Parking Solution Using Camera Networks and Deep Learning

Harshitha Bura, Nathan Lin, Naveen Kumar, Sangram Malekar, Sushma Nagaraj, Kaikai Liu

Computer Engineering Department
San José State University (SJSU)

San José, CA, USA
Email: {harshitha.bura, nathan.lin, naveenkumar.bhuthakatanahalliramalingaiah,

sangram.malekar, sushma.nagaraj, kaikai.liu}@sjsu.edu

Abstract—The smart parking industry continues to evolve as
an increasing number of cities struggle with traffic congestion
and inadequate parking availability. For urban dwellers, few
things are more irritating than anxiously searching for a
parking space. Research results show that as much as 30% of
traffic is caused by drivers driving around looking for parking
spaces in congested city areas. There has been considerable
activity among researchers to develop smart technologies that
can help drivers find a parking spot with greater ease, not
only reducing traffic congestion but also the subsequent air
pollution. Many existing solutions deploy sensors in every
parking spot to address the automatic parking spot detection
problems. However, the device and deployment costs are very
high, especially for some large and old parking structures. A
wide variety of other technological innovations are beginning to
enable more adaptable systemsincluding license plate number
detection, smart parking meter, and vision-based parking spot
detection. In this paper, we propose to design a more adaptable
and affordable smart parking system via distributed cameras,
edge computing, data analytics, and advanced deep learning
algorithms. Specifically, we deploy cameras with zoom-lens and
motorized head to capture license plate numbers by tracking
the vehicles when they enter or leave the parking lot; cameras
with wide angle fish-eye lens will monitor the large parking
lot via our custom designed deep neural network. We further
optimize the algorithm and enable the real-time deep learning
inference in an edge device. Through the intelligent algorithm,
we can significantly reduce the cost of existing systems, while
achieving a more adaptable solution. For example, our system
can automatically detect when a car enters the parking space,
the location of the parking spot, and precisely charge the
parking fee and associate this with the license plate number.

Keywords-Deep learning, edge devices, smart cities, smart
parking.

I. INTRODUCTION

Smart parking solutions are one of the basic and foremost

requirements of smart cities [1]. According to [2], a motorist

spends an average of 17 hours per year searching for a place

to park his vehicle. This is the reason why the smart parking

industry is on the rise and coming up with new solutions

very often.

Many existing solutions use sensors at every parking spot

to identify whether the spot is vacant or not. Installing

sensors in every parking spot is a simple way to solve

the automatic parking spot detection problem [3], [4], [5].

However, the device and deployment costs are very high,

especially for some large and old parking structures. Another

major problem is the limited sensor data, e.g., empty or

not, without rich information like license plate number,

vehicle or motorcycle identification. To get rich information,

some solutions are deploying camera as the sensor in every

parking spot. This will enable many new smart services,

for example, users can use their license plate number to

find their vehicle. However, this kind of system requires a

robust network in the parking garage. Collecting all these

camera data requires a huge amount of bandwidth, which

poses significant challenges for the network infrastructure.

Autonomous vehicles are another solution to solve parking

problems [6]. But, the disadvantage [7] with them is that

people will get off the car at the destination and leave the

cars to find a parking spot on their own. In this case, if

the car doesn’t find a place to park it will end up circling

the neighborhood, blocking others and wasting fuel. Robotic

valet systems [8] can also be considered as a solution to this

problem but they will involve very expensive and complex

mechanical equipment. Some solutions using vision-based

techniques to cover large sparking spaces in order to lower

the sensor deployment cost [9], [10]. Deep learning based

solution [9], which is based on the VGGNet family, has

been proposed to solve the parking spot detection problem.

However, the computation in the solution [9] requires the

cloud for highly complex processing. Authors in [10] make

use of miniAlexNet and reduced the layers to only have

three convolutional layers each followed by a ReLu and

max-pooling layer. However, covering a large area via

computer vision means they lack features such as license

place recognition which has been proved to be very useful

in services like finding the vehicle online.

To balance the cost and service quality, we propose

to monitor the parking lot using a distributed network of

cameras, connected via a self-deployed WiFi mesh. One

camera can cover a large area instead of covering individual

parking spots. To enable smart services like finding the

vehicle location via license plate number, we perform contin-

uous vehicle tracking and feature extraction via the camera

network. Specifically, some of the cameras with zoom-lens

and motorized head can capture license plate numbers by

tracking the vehicles when they enter or leave the parking

17

2018 IEEE International Conference on Cognitive Computing

978-1-5386-7241-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCC.2018.00010

lot. Other cameras with wide angle fish-eye lens will cover

large parking spaces, and detect the parked parking lot via

artificial intelligence. Deep learning algorithms will be used

to identify occupied, vacant, and special parking spots, for

example, disabled parking signs, carpool signs. Through the

intelligent algorithm, we can significantly reduce the number

of sensors and cameras of existing systems, while achieving

a higher level of service quality. To further reduce the

computational complexity of the deep learning algorithms,

we propose a custom convolutional neural network that can

be run on top of edge devices in real time. When compared

with existing state-of-the-art approaches, our solution can

achieve the same level of detection accuracy with a lower

computational complexity. Along with the detected license

plate numbers of vehicles, our system performs data fusion

and object association from multiple cameras and enables

applications such as keeping track of the duration of a

vehicle’s stay in a particular parking spot. The overall system

will help motorists in navigating to a vacant spot with ease

and will also help in charging them based on the exact

amount of time the vehicle has been parked in the parking

lot.

II. PROBLEM STATEMENT / PROJECT ARCHITECTURE

The motivation for this project comes from the fact

that the quality of smart solutions available for parking

management is not on par with the smart solutions available

for other services required for smart cities such as waste

management, resource management and utilities manage-

ment. Transportation and parking being an important part

of everyday life, there is a dire need to come up with smart

and effective solutions. In this section we give a detailed

description of our proposed system.

A. Our proposed solution using a network of cameras

The block diagram for the proposed system using camera

networks is depicted in Fig. 1. The entire system consists

of (i) A network of ground cameras which are placed close

enough to the ground to capture license plate numbers of

vehicles, (ii) A network of top-view cameras whose view

when combined will cover the entire area of the parking lot,

(iii) Edge devices i.e., an Nvidia Jetson Tx2 and Raspberry

Pi, (iv) A cloud server and database which will be used

to hold information such as the occupancy status of all the

slots, license plate numbers of vehicles that are parked in the

lot along with entry and exit time-stamps for each vehicle,

(v) A web application which will display all the relevant and

necessary information. A detailed description of each block

of the system is given below.

1) Network of ground cameras: The ground cameras

need to be appropriately focused as they are responsible for

having a clear view of the license plate number of vehicles

that enter and leave the parking lot. We choose the low

cost Raspberry Pi (Rpi) camera and fit with a zoom lens

Parking Detection System

Gateway

Web server Client
Devices

Cameras Network

Top view Camera1

Top view Camera2

Ground level
Camera

AWS cloud service
NoSQL Database

MQTT
protocol

Web UI with
graphical dashboard

Figure 1. Block Diagram of our proposed solution using a network of
cameras

to achieve the required focus. The Rpi runs algorithms for

the license plate number recognition and vehicle tracking.

2) Network of top-view cameras: The top-view cameras

have a bird’s eye view of the entire parking lot. The view

of all these cameras when combined will cover the whole

parking lot. Rpi cameras have been selected for the top-

view as well but they are fit with wide-angle lenses. The

feed from these cameras is used to identify the occupancy

status of each slot, performing feature extraction from the

top-view and tracking vehicles until they are parked.

3) Edge Devices: The edge devices used in our system

are Raspberry Pi and Nvidia Jetson Tx2. Both the ground

cameras and top-view cameras are interfaced to an Rpi. The

Rpi interfaced with the ground camera runs OpenALPR [11]

to perform license plate number recognition. The Rpi also

extracts features of vehicles that enter the parking lot using

OpenCV and time-stamps their entry and exit times. All this

information is sent to the server.

The top view cameras are also interfaced to an Rpi which

is responsible for streaming its feed to Nvidia Jetson Tx2

via Wi-Fi mesh. The Jetson which receives the live feed

time-stamps the entry of a vehicle and extracts its features.

The time-stamp and features are compared to the entries in

the database and if they match with any entry, the license

plate number associated with that particular entry is used as

the tracking ID for the vehicle. The vehicle is tracked until

it comes to a halt in a parking slot. The newly occupied

slot number is then associated with the vehicle’s license

plate number. This helps in making record of a vehicle’s

location in the parking lot. Tracking is done with help of

a trained Tiny Yolo (based on Darknet framework) model

run on top of the Nvidia Jetson Tx2. Tiny Yolo is very

lite and is hence suitable for running on edge devices.

Slot classification continuously runs on Tx2 with the help

of a trained custom-designed neural network. The custom-

designed neural network has only one convolutional layer

and is very lite and is perfect for running on edge devices.

It has an accuracy that is comparable to the standard AlexNet

for small class numbers but is much faster.

18

4) Cloud server and database: The data generated from

the edge devices is sent to the cloud using MQTT protocol.

All the edge devices si registered to AWS IoT as “things”.

AWS IoT allows tracking of all the devices connected to

it. The IoT certificates and policies should be added to

the device. Once the device is connected to AWS, a rule

should be defined which will help in communicating with

the database. We are using dynamodb for storing the license

plate numbers, parking slot information and features of

vehicles. All the information is sent to the database in json

format. Once all the data is stored in the database, a flask

backend application will connect to the database and display

the information on the website.

5) Web Application: The web application will display all

the useful information such as the vacant and occupied slots

and will be integrated with Google maps to help users in

navigating to vacant spots. It will contain a feature which

will allow users to find out the exact location of their vehicle

by entering their license plate number along with a feature

which will allow users to pay their parking fare online.

The logical flow of the entire system explained till now is

represented in Fig. 2.

License Plate
Recognition and

Feature
Extraction of Car

using Ground
level Camera

Feature
Extraction of Car
using Top view

Camera

Car Detection and
Tracking using
License plate

Parking lot
occupancy

detection using
CNN

Web application

Figure 2. Logical flow of our proposed solution

B. Our proposed solution using a network of LIDARs

Indoor parking garages have a very low ceiling and hence

cameras installed on the top will not be able to cover a

large area. Thus, camera networks will not work for indoor

garages. To solve this problem, we utilize a low-cost LIDAR

sensor to assist the detection. A traditional sensor based

parking solution will require a sensor to be deployed under

each parking slot. But our proposed LIDAR based solution

will be able to cover 7 - 8 parking slots with only one

LIDAR. The block diagram of this system is shown in Fig. 3.

The LIDAR is interfaced to a Raspberry Pi and a slot is

classified as either occupied or empty based on the distance

readings from the LIDAR. The LIDAR system will be

combined with OpenALPR and a Raspberry Pi camera for

detecting the license plate number of vehicles.

Raspberry pi
camera

LIDAR

Raspberry pii

Figure 3. Block Diagram of our proposed solution using a network of
LIDARs

III. METHODS / SYSTEM DESIGN

A. Dataset

There is no AI (Artificial Intelligence) without IA (In-

formation Architecture) [12]. Having a good all-round data

set is very important for building good AI solutions. In our

proposed solution we have performed object detection as

well as object classification and hence two different types

of datasets are required. They are discussed in the section

below.

1) Dataset used for object classification: An open source

dataset is available for parking lots and it is given in [10] and

[13]. [13] called PKLot consisting of 12,417 images of park-

ing lots and 695,899 images of parking spaces segmented

and perspective transformed. [10] consists of a dataset which

is an extension to [13] and it is called CNRPark. CNRPark

adds about 12,000 images to the PKLot which were taken

in different weather conditions, which have not been per-

spective transformed and some are occluded. However, Both

of these datasets lack images of parking spots with special

signs such as disabled signs and car pool signs. Our dataset

collected in San Jose State University’s parking lot adds such

images to those two datasets.

While creating our dataset with annotated individual slots

from each frame of the video, an annotation mask has

been defined using a tool called LabelMe [14] developed

by MIT. After an entire frame has been segmented into

individual slots, the image of each slot undergoes perspective

transformation. With the help of perspective transformation

it can be ensured that the angle in which the image has

been taken will not effect the performance of the model. If

the model is trained with images before they are perspective

transformed, the model might fail while inferencing images

in angles different than that of the trained images. A perfor-

mance comparison of all the trained models can be found

in section V. A comparison of images before and after they

are perspective transformed can be found in Fig. 4. Out of

the created dataset 75% of images were used for training

the network model whereas 25% of the images were used

for validation.

19

Before Perspective transformation

After Perspective transformation

Figure 4. View of parking slots before and after perspective transformation

2) Dataset for object detection and tracking: The dataset

used for object tracking project was provided by Nvidia

in the AI city challenge 2017 [15]. It consisted of raw

images, without any annotations. So, the first step is to

label the objects in the images and prepare the dataset. We

utilize the annotation tool developed and provided by Nvidia.

After completing the annotation, 150,000 labeled images

extracted from eighty hours of traffic video was available.

These labeled images were then divided into training and

validation datasets. Next, the labels were converted into

formats compatible with the models that have been selected.

The YOLO model requires the images to be in Darknet

format. Finally after converting the images into Darknet

format, 59,482 training images and 19,272 validation images

of size 1920 x 1080 pixels were available for training.

B. Efficient Neural Network Model Design for Parking Lot
Occupancy Detection

Many existing vision-based vehicle and parking spot

detection services use modern machine learning techniques,

such as deep learning. However, the state-of-the-art results

by deep learning come at the price of an intensive use of

computing resources. For example, the leading deep learning

frameworks (e.g., TensorFlow) are expected to run on top of

high-end servers in datacenters. On the other end, there is

a proliferation of personal devices with possibly free CPU

cycles; this can enable services to run in users’ homes,

embedding machine learning operations.

Keeping in mind that our processing has to be performed

on the edge and should not require a GPU with high com-

putational capability, we have designed our custom network

to be very lite. Our model is based on the AlexNet neural

network. AlexNet has 5 convolution layers, 7 ReLu layers, 3

max pooling layers, 3 fully connected layers [16] and though

it is very accurate, it is slow for real time computation.

AlexNet was originally created for the ImageNet dataset

which consisted of 22,000 categories [16]. But since we re-

quire only two classes (occupied and empty) for identifying

vacant spots in a parking lot, such a deep convolution neural

network is not necessary. A neural network with a single

convolution layer will be sufficient for this application. This

will also help in reducing the time taken for the real time

inferencing. The network model created for this application

has 1 input layer, 1 convolution layer, 1 ReLu, 1 max pooling

and 3 fully connected layer. The construction of the custom

network model can be observed in Fig. 5.

Figure 5. Our Custom Designed Network Model

Our custom-designed model consists of one convolution

layer which performs the convolution operation over the

256x256 RGB input images.The weights in the convolution

layers are trained and updated in each learning iteration

using a back-propagation algorithm. It has a stride of 4

with receptive field or kernel of 11x11, giving the output

a dimension of 55x55 as calculated using equation (1)

Wout(i) = 1 + (
(Win(i)−R+ 2P)

S
) (1)

Where, R - Receptive field or Kernel, P - Padding, S - Stride.

The convolutional layer is followed by the ReLu layer with

sigmoid activation function to introduce non linearity in the

model as shown in (2)

f ′(x) =
d

dx
ln (1 + ex) =

1

1 + ex
(2)

ReLu layer is followed by a Max Pool layer which per-

forms down-sampling. The reduction of size leads to loss

of information. However, such a loss is beneficial for the

network for two reasons: 1) The decrease in size leads to

less computational overhead for the upcoming layers of the

network and it works against over-fitting; 2) At the end we

have a fully connected layer which connects the output of

previous layer and gives a 2 class output.

Our designed model has been trained using a custom

dataset as well as the CNRpark and PKLot datasets [10] in

DIGITS (Deep Learning GPU Training System by Nvidia).

C. YOLO model based on darknet framework

YOLO [17] is an object detection model that uses regres-

sion. Every input image to the model is split into grids and

each cell in a grid predicts some bounding boxes and gives a

confidence value which indicates how sure the model is that

the box contains an object. After this step the model knows

where the object is in that image but it does not know what

that object is. For knowing the class, each cell predicts a

20

class probability using the pre-trained weights. Finally the

box and class predictions are combined to identify the object.

D. License plate number recognition and vehicle tracking

OpenALPR is used for Optical Character Recognition. It

uses Tesseract OCR library. For the application at hand,

OpenALPR bindings have been used along with python

to recognize the characters in an image. OpenALPR can

recognize license plate at any position within the image

and Raspberry Pi is completely responsible for running

OpenALPR along with its python bindings.

The vehicles have to be tracked until they reach and settle

in a spot in order to identify the slot number each vehicle has

occupied. By doing this the location of a particular vehicle

can be shared with its owner in case he/she is unable to

locate the vehicle. This information will be secured and

information pertaining to each vehicle will be shared only

after entering a pass code which is created beforehand. This

feature is yet to be implemented.

E. The LIDAR based system

As menioned in Section II, for indoor parking lots, the

Raspberry Pi interfaced with a camera and a LIDAR has

been proposed. The LIDAR will be rotated in equal steps

using a stepper motor and the distance reading will help

in identifying if the slot is occupied or not. If the slot is

occupied, the camera will start capturing the license plate

number to make a note of that particular car’s position in

the parking lot. This information will then be sent to the web

application. Fig. 6 shows the hardware setup containing the

Raspberry Pi, LIDAR, stepper motor and camera. The slot

number will be identified by the the angular position of the

stepper motor.

Figure 6. Hardware setup for indoor parking lots

IV. RESULTS

A. Results of our custom model used for object classification

The trained models have been evaluated by using them to

inference videos which have been captured from different

parking lots in different angles and conditions. The effi-

ciency of a model can be measured in terms of its accuracy

and the time taken to classify a single image. The accuracy

of a model is given by the formula

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(3)

Where, tp - true positives, tn - true negatives, fp - false

positives and fn - false negatives. The three models trained

(standard AlexNet, AlexNet reduced to two convolution

layers and AlexNet reduced to one convolution layer) have

different accuracy and different inference time. The frames

extracted from a video and the output after inferencing the

entire frame are shown in the Fig. 7 and Fig. 8. Each figure

shows various parking lots with different view angles.

Figure 7. Input Image To The Model and The Output Image Indicating
the Vacant and Occupied Parking Slots at SJSU 20Min Parking lot .

Figure 8. Slot Occupancy detection results at Avalon on the
Alameda(above) and SJSU south garage(below) Parking lots

The total number of images for each class in the dataset

(CNRPark + PKLot + own data set) and total number of

images are given in Table I.

Dataset Empty Occupied

TraindB 49632 1266

valdB 12,400 949

Table I The total number of images, TraindB and ValdB in

the dataset.

Table II, III and IV represent the confusion matrices for

the three network models considering empty to be positive

and occupied to be negative.

21

Empty Occupied

Empty 12400(tp) 0(fn)

Occupied 5(fp) 944(tn)

Table II The confusion matrix for standard AlaxNet

Empty Occupied

Empty 12400(tp) 0(fn)

Occupied 40(fp) 909(tn)

Table III The confusion matrix for AlaxNet with two

convolutional layers

Empty Occupied

Empty 12400(tp) 0(fn)

Occupied 36(fp) 913(tn)

Table IV The confusion matrix for the custom designed

network model

A comparison of the accuracy and time taken for infer-

ence for the standard AlexNet, mAlexNet and the custom

designed network model are given in Table V and Table VI.

Network model
Accuracy in

percentage

Standard AlexNet 99.8584

AlexNet with two

convolution layers
99.70

Custom designed net-

work model(One con-

volution layer)

99.51

Table V Comparing accuracy of standard AlexNet,

mAlexNet and the custom designed network model on

25% of CNRPark, PKLot and our own data set combined

The miniAlexNet network model proposed in [10] in the

best case has a maximum accuracy of 98.125%. Hence our

proposed network model has a higher accuracy.

Network model
Time taken

for inference

Standard AlexNet 19.98ms

AlexNet with Two

convolution layers
13.54ms

Custom designed net-

work model(One con-

volution layer)

7.11ms

Table VI Comparing inference times of standard AlexNet,

mAlexNet and the custom designed network model on

25% of CNRPark, PKLot and our own data set combined.

The miniAlexNet proposed in [10] takes 15 seconds to

classify 50 slots. Our custom designed model takes 50 ×
7.11ms = 355.5ms to classify 50 slots.

B. Results of our YOLO model used for object detection

Our trained YOLO model has a mean average precision

(mAP) of 0.27. A graph containing Average precision and

F1-score for the Nvidia dataset is shown in Fig. 9. Also,

Fig. 10 shows the Bounding boxes drawn as a result of object

detection using Yolo model.

Figure 9. Average Precision and F1-score for the YOLO model on the
Nvidia dataset.

Figure 10. Object detection using YOLO model on SJSU Parking lot.

To test the car parking occupancy using LIDAR, we place

the LIDAR in fixed distances from the slots. The expected

distance that would be measured by the LIDAR for each slot

was calculated. By observing the average distance between

two vehicles parked in the lot, the angle the LIDAR must

be rotated in order to face the next slot has been calculated.

The performance of this system is evaluated by calculating

the number of cars that were correctly classified (i.e. the

distance measured by the LIDAR is equal to or less than

the expected distance when a slot is occupied).

Fig. 11 shows a graph of the expected distance value from

the LIDAR when each slot is occupied vs the actual reading

obtained from the LIDAR. Fig. 12 shows the accuracy of

the LIDAR system.

OpenALPR is evaluated by its accuracy, i.e the number

of licence plate number predictions which were correct in

the top 10 predictions and the top 1 prediction [18]. Table

VII consists of the benchmarks for OpenALPR [18]. Easy set

indicates a collection of license plates with a non-obstructive

22

Figure 11. A graph showing the expected LIDAR reading (blue bars) and
the actual LIDAR readings (orange bars) when each slot is occupied.

Figure 12. A graph showing the accuracy trend for each spot. blue -
number of attempts, orange - correct classifications

view and for which the camera angle is good. The hard

set consists of number plates in unexpected conditions,

resolutions and for which the camera view is not optimal.

Benchmark
State

Recogni-

tion

Top 10

(percent)

Top 1

(percent)

Easy Set 0 71.19 49.15

Hard Set 0 32.56 23.26
Table VII OpenALPR Benchmarks

Fig. 13 shows the license plate number of a car being

recognized with the help of OpenALPR and the result being

pushed to the web server with time stamp.

The web application shows the occupancy information for

each slot being updated in Google maps and this information

is also displayed in a separate table. This can be seen in

Fig. 14.

The Jetson Tx2 processes live videos that are being

transmitted to it from a raspberry pi. As of now there is a

transmission delay of about 10 seconds and since this project

is still in progress, efforts are being put into reducing this

delay.

V. RELATED WORKS

The state-of-the-art solutions available for smart parking

lots have been studied before deciding on our proposed

Figure 13. License plate number recognised and pushed to the web server

Figure 14. Vacant and occupied slots updated in the web application
integrated with Google maps

system. The products currently available in the market are

based on sensors and the working of these systems is

described in [9], [3] and [5].

Data is the most important aspect for deep learning and

artificial intelligence. Research has been performed towards

finding out the requirements for obtaining or generating

a good data set. According to [13], to make the data set

as generic as possible, data must be collected in every

conceivable condition and situation. Though the data set

provided in [10] and [13] is generic, it can still be improved.

Some projects for developing a similar application have been

implemented using standard techniques of computer vision

instead of deep learning and artificial intelligence. These

techniques have been discussed in [19] and gives an idea

on the drawbacks of this technique. Next, various network

models have been studied to decide on which model should

be used for this application. Most of the network models as

discussed in [16] and [20] are too large and do not perform

well for real time object classification. Hence, it has been

decided to create a model by modifying the existing models

such that it will perform well for real time classification. In

[10] a model has been developed for a similar application

and gives a brief description on what has been done by them

to modify a model and reduce its layers without effecting

the accuracy.

23

VI. CONCLUSIONS AND FUTURE WORK

We proposed a well rounded solution for solving park-

ing problems. Our solution overcomes the disadvantages

of currently existing non-vision based solutions and also

adds more useful features to vision based techniques such

as license plate detection and vehicle tracking. A custom

network model has been developed for identifying vacant

slots in parking lots. From the obtained results, we can

observe that there is a huge reduction in the inference time

for the custom network model (7.11ms) when compared to

the standard AlexNet (19.98ms) and mAlexNet (13.54ms).

Our reduction in inference time has been achieved with

little reduction in accuracy. The 0.034 percent reduction in

accuracy compared to the standard AlexNet is acceptable.

Our model has a higher accuracy and much faster than the

model presented in [10]. Our future work includes increasing

the speed and accuracy of the object detection model and

establishing a link between the ground cameras and top-view

cameras to achieve object tracking.

ACKNOWLEDGMENT

The work presented in this paper is funded by Cisco

Systems and National Science Foundation under Grant No.

CNS 1637371.

REFERENCES

[1] S. Kumar, “Smart city solutions smart park-
ing lots - internet of things — iot india,”
2018. [Online]. Available: https://electronicsofthings.com/
expert-opinion/smart-city-solutions-smart-parking-lots/

[2] 2018. [Online]. Available: https:
//www.usatoday.com/story/money/2017/07/12/
parking-pain-causes-financial-and-personal-strain/
467637001/

[3] R. Grodi, D. B. Rawat, and F. Rios-Gutierrez, “Smart parking:
Parking occupancy monitoring and visualization system for
smart cities,” in SoutheastCon 2016, March 2016, pp. 1–5.

[4] J. K. Suhr and H. G. Jung, “Sensor fusion-based vacant
parking slot detection and tracking,” IEEE Transactions on
Intelligent Transportation Systems, vol. 15, no. 1, pp. 21–36,
Feb 2014.

[5] H. Chaudhary, P. Bansal, and B. Valarmathi, “Advanced car
parking system using arduino,” in 2017 4th International
Conference on Advanced Computing and Communication
Systems (ICACCS), Jan 2017, pp. 1–5.

[6] K. W. Min and J. D. Choi, “Design and implementation of
autonomous vehicle valet parking system,” in 16th Interna-
tional IEEE Conference on Intelligent Transportation Systems
(ITSC 2013), Oct 2013, pp. 2082–2087.

[7] 2018. [Online]. Available: https:
//spectrum.ieee.org/transportation/self-driving/
the-big-problem-with-selfdriving-cars-is-people

[8] A. K. Nayak, H. C. Akash, and G. Prakash, “Robotic valet
parking system,” in 2013 Texas Instruments India Educators’
Conference, April 2013, pp. 311–315.

[9] S. Valipour, M. Siam, E. Stroulia, and M. Jagersand,
“Parking-stall vacancy indicator system, based on deep con-
volutional neural networks,” in 2016 IEEE 3rd World Forum
on Internet of Things (WF-IoT), Dec 2016, pp. 655–660.

[10] G. Amato, F. Carrara, F. Falchi, C. Gennaro, C. Meghini,
and C. Vairo, “Deep learning for decentralized parking
lot occupancy detection,” Expert Systems with Applications,
vol. 72, no. Supplement C, pp. 327 – 334, 2017.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S095741741630598X

[11] S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic
license plate recognition (alpr): A state-of-the-art review,”
IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 23, no. 2, pp. 311–325, Feb 2013.

[12] S. Earley, “There is no ai without ia,” IT Professional, vol. 18,
no. 3, pp. 58–64, May 2016.

[13] P. R. de Almeida, L. S. Oliveira, A. S. Britto, E. J.
Silva, and A. L. Koerich, “Pklot a robust dataset
for parking lot classification,” Expert Systems with
Applications, vol. 42, no. 11, pp. 4937 – 4949, 2015.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0957417415001086

[14] “LabelMe an open annotation tool,” http://labelme.csail.mit.
edu/Release3.0/, accessed:2018-02-19.

[15] 2018. [Online]. Available: http://smart-city-sjsu.net/
AICityChallenge/

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 1, ser.
NIPS’12. USA: Curran Associates Inc., 2012, pp. 1097–
1105. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2999134.2999257

[17] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object detection,”
CoRR, vol. abs/1506.02640, 2015. [Online]. Available:
http://arxiv.org/abs/1506.02640

[18] “OpenALPR Benchmarks,” http://www.openalpr.com/
benchmarks.html, accessed:2018-02-20.

[19] K. Hammoudi, M. Melkemi, H. Benhabiles, F. Dornaika,
S. Hamrioui, and J. Rodrigues, “Analyzing and managing
the slot occupancy of car parking by exploiting vision-based
urban surveillance networks,” in 2017 International Confer-
ence on Selected Topics in Mobile and Wireless Networking
(MoWNeT), May 2017, pp. 1–6.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” CoRR, vol. abs/1409.4842,
2014. [Online]. Available: http://arxiv.org/abs/1409.4842

24

