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Abstract—Despite the technical success of existing assistive
technologies, for example, electric wheelchairs and scooters,
they are still far from effective enough in helping the blind
and elderly navigate to their destinations in a hassle-free
manner. Riders often face challenges in driving scooters in
some indoor and crowded places, especially on sidewalks with
numerous obstacles and other pedestrians. People with certain
disabilities, such as the blind, are often unable to drive their
scooters well enough. In this paper, we propose to improve the
safety and autonomy of the navigation by designing a cutting-
edge autonomous scooter, which allows people with mobility
challenges to navigate independently and safely in possibly
unfamiliar surroundings. We focus on the localization and
navigation challenges for the autonomous scooter where the
current location, maps, and nearby obstacles are unknown.
Solving these challenges will enable the scooter to both travel
within buildings and perform tight maneuvers in densely
crowds automatically.

Keywords-Autonomous system, Sensor fusion, Scooter,
SLAM

I. INTRODUCTION

An intelligent mapping system is essential to provide a

high-resolution understanding of the real physical world with

dynamic obstacle avoidance. A variety of sensing and map-

ping technologies have been proposed for the autonomous

navigation application scenarios, for example, Ultrasound-

based [1], Lidar-based [2], and vision-based approaches

[3]. Microsoft’s Kinect and Google’s Project Tango Tablet

Development Kit are two very famous vision-based devel-

opment platforms. Though these systems have many advan-

tages, they also have their downsides. Vision-based depth

information obtained from the region exposed to sunlight or

covered by high reflective materials (tiles and glass doors)

will not give an accurate measurement of depth. If the scene

is featureless, for example, white walls with uniform texture,

there will not be enough features detected for estimation of

visual odometry. The other situation when this can happen

is in a large environment where only a small area near the

camera has depth readings and the other area is too deep,

for example, in corridors and hallways. Self-driving cars

from Google and Uber heavily rely on the Velodyne Lidar

for their 3D mapping [2]. The personal mobility scooter

developed in [4] also utilizes this kind of Lidar. However,

the existing 3D Lidar devices are bulky and expensive at a

minimum of $10,000 per unit, which is not suitable for small

and affordable mobility scooters (around $1000 each). The

performance of low-cost Lidar modules [5] can only achieve

the coverage of several meters and not efficient enough to

navigate a scooter through small scale places or avoid “on-

road” dynamic obstacles, therefore lacking convenience and

resilience.

In this paper, we propose to develop an intelligent au-

tonomous scooter that assists people with independent trans-

portation challenges towards their independent and dignified

lifestyle in previously unmapped surroundings. Existing Li-

dar and multi-camera devices used in outdoor self-driving

cars are too bulky and expensive for the scooter. The

small safety margin and highly dynamic pedestrian walking

patterns are more challenging than outdoor roads in terms of

mobility. We propose to design and implement a new hybrid

far-field and near-field mapping solution, targeting various

cases from near-field fine-grained resolution to long range

sparse coverage.

II. SYSTEM OVERVIEW

A. System Module Design for the Scooter

To achieve the automatic steering control of the scooter,

we need to install additional motors to control the steering

wheel, speed, and direction.

Steering Control. As shown in Fig. 1, we made a few

vendor-independent modifications in the mobility scooter to

automate the steering control. We used a linear actuator

(capable of 25 lb thrust with 4-inch movements) to push

and pull the steering rod to the desired steering angle. This

mechanism achieves better torque with simple installation

than the servo motor. However, a major disadvantage of

this mechanism is that the linear actuator has a higher error

in linear actuation when compared with the precision servo

motor. The same input to the linear actuator cannot promise

the same position of the scooter.

To improve the control accuracy, a Proportional Integral

Derivative (PID) controller has been used to actuate and

turn the steering to the desired angle step-by-step with

high degree accuracy. We utilize the Inertial Measure-

ment Unit (IMU) to measure the actual angle and drive

the linear actuator according to the angle differences. We

mount the MPU-9250 sensor on the steering rod in the
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x-y plane. The angle can be calculated via Angle =
Atan(ax/

√
(ay × (ay + az)× az)), where ax, ay, az are

sensor readings from the accelerometer in x,y,z directions.

This mechanism ensures the scooter moving to the desired

direction and reduces the chances of under-steering or over-

steering. In the case of interruptions or road obstacles, for

example, when the wheels tend to turn because of uneven

road conditions, the PID and feedback loop would help the

actuator to pull the steering back to its original direction in

a short interval.

Speed/direction Control. The original mobility scooter

has a fuse to limit the current from the power supply in

order to maintain the legal speed limit of 5 mph. The

output analog voltage from the potentiometer controls the

speed. A similar control has been used for direction control:

a voltage beyond 2.5v drives the mobility scooter in the

reverse direction and a voltage below 2.5v drives it in the

forward direction. There is another internal fuse located on

the control circuit which limits the scooter from turning

on if the throttle is not at the zero position. Due to this

mechanism, we could not hack the controller by changing

the supply of the analog signal without bypassing the fuse.

Otherwise, the current of the control signal may likely

exceed the limit of the fuse and cause problems. We propose

to obtain the speed/direction control without breaking into

the internal circuits. Specifically, we use two 7.4v precision

servo motors (capable of delivering a maximum of 10N-

m torque) to control the potentiometer by rotating its head

without bypassing the fuse. This design can be applied to

other vendor’s mobility scooters with minimal changes.

Figure 1. The steering mechanism, speed/direction control, and sensing
module of the autonomous scooter.

Computing Module. We utilize existing open source

computing boards, for example, the Nvidia Jetson TX2

module, Raspberry Pi, and Arduino. In this project, we make

external sensors directly connectable with the Nvidia Jetson

TX2. The Jetson TX2 runs Ubuntu 16.0.4 with ROS Kinetic.

Most of the programs run on ROS platform are written in

python or C.

To enable the open and easy development of the human

interface module, we utilize an Android tablet as the front-

end device. The Android tablet is connected to our hardware

unit via the USB interface or Bluetooth-low-energy (BLE)

interface. All the hardware commands and interactions will

be wrapped as the Android APIs. To promote the innovation,

we will open the Android APIs to other developers who

want to program and develop new user applications for this

autonomous scooter.

Sensing Module. We propose to utilize the long range

eye safe laser ranging (up to 60 meters) to approximate

a human’s vision coverage and use stereo vision to help

recognize the fine-grained world around them. The sensing

module is shown in Fig. 1(c). Different from Lidar, laser

ranging only works for a single point coverage and suffers

under strong vibration by the motions. To achieve semi-

Lidar functionality, we leverage the gyros-based pose data to

compensate the laser motion in real time and create synthetic

mapping of simple environments with regular shapes and

deep hallways. Laser range finders are suitable for long

ranges with limited resolution. Stereo vision, on the other

hand, provides 3D structural data of nearby complex objects.

To achieve simultaneous fine-grained resolution and long

range coverage in the mapping of cluttered and complex

environments, we dynamically fuse the measurements from

the stereo vision camera system, the synthetic laser scanner,

and the Lidar.

III. INDOOR MAPPING AND LOCALIZATION

A. Simultaneous Localization and Mapping

The large body of related work concerned with the task

of mapping of the unknown environment is in the area of si-

multaneous localization and mapping (SLAM), which can be

partitioned into two major sensor-based approaches: Lidar-

based or vision-based. In terms of the SLAM algorithm,

there are three major categories: Extended Kalman Filters

(EKF) [6], Rao-Blackwellized particle filters (RBPF) [7],

and graph optimization approaches [8]. Recent advances

in incremental graph optimization allow for graph-based

SLAM for online calculation, for example, KartoSLAM

and Real-Time Appearance-Based Mapping (RTAB-MAP)

[8]. Compared with other SLAM approaches, graph-based

SLAM algorithms are usually more efficient, especially for

large-scale environments.

B. Hybrid 2D and 3D Map Fusion

We utilize RTAB-MAP and stereo vision to get the fine-

grained mapping of the 3D spatial world. However, in terms

of the accuracy and robustness of the distance measurement,

the stereo camera cannot compete with the laser ranger. John

Leonard from MIT has a very good presentation and states

“Elon Musk is Wrong: Why visual navigation of self-driving

cars is far from solved”. For example, Google’s self-driving

car utilizes the 3D Lidar to create the scene, while Tesla is

heavily focused on using vision-based approaches.

We propose to perform data fusion for the long range laser

and stereo vision. However, the location of the vision scene

feature (ρpm, where the upper script p means the screen’s

pixel space) is not in the same space and coordinate of

the ranging results of the laser (dnp, where np is the polar
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coordinate of the navigation space). To facilitate the fusion

process, we will convert these two measurements into the

same navigation space (geodetic coordinate).

Based on the system’s geodesic location pn in the in-

door environment (n is for the navigation coordinate), we

can generate the location of the laser detection point via

the transformation function as pn
laser = fn

np(d
np,pn, GR),

where function fn
np() utilizes the laser range, the pose and

location of the system for the transformation. The GR is the

gyroscope results when the laser ranging measurements are

taken. Since we utilize one laser beam to extend the range

of a low-cost Lidar, we need to use the motion and pose

information (GR) to synthesize the mapping results of the

laser over time, i.e., the synthetic laser mapping.

The visual feature point (ρvm) in the real physical world is

in the view angle (polar) coordinate of the navigation space.

The transformation process to the navigation coordinate is

pn
vision = fn

v (ρ
v
m,pn). The relation between ρpm and ρvm can

be constrained by the camera projection process as ρpm =
Pp

vρ
v
m with the following three steps: 1) map the ρvm into

camera view space; 2) convert to the Canonical view volume,

i.e., NDC (Normalized Device Coordinate); and 3) map back

to the screen pixel coordinate as ρpm. Overall, the translation

process can be modeled as

Pp
v = KGD = Tp

πT
π
vD (1)

where KG is the 3× 3 modified camera intrinsic matrix in

the OpenGL screen coordinate, and D is the camera extrin-

sic matrix that describes the camera’s location coordinate

transformation including rotation and translation. Thus, the

intrinsic and extrinsic matrix combined as matrix P could

illustrate the full perspective model which describes the

relationship between a vision feature point and its projection

in the OpenGL screen frame.

With all the projection model (1) and transformation

functions fn
np() and fn

v available, the laser measurement

and the vision mapping can be transformed into the same

navigation coordinate, i.e., fusing the pn
vision and pn

laser.

The data fusion process will be based on the occupancy grid

mapping, where each grid represents the possibility that the

area is occupied, empty or unknown.

IV. SYSTEM EVALUATION

A. Steering Control

To improve the steering angle control accuracy, we utilize

the IMU to estimate the current pose of the steering rod,

then apply the PID controller to turn the steering to the

desired angle step-by-step. Fig. 2 demonstrates the angle

convergence of the PID controller. The final angle of the

steering rod is approaching to the desired angle in several

steps with small error and no over-steering.

(a) Case 1 (b) Case 1

Figure 2. The angle convergence of the scooter steering rod.

B. Hybrid Near-field and Far-field 2D Mapping

The low-cost Lidar used in this project has a 360-degree

horizontal view with a short range of 7-meters. This short

coverage is not sufficient and reliable enough for an au-

tonomous scooter. To overcome the coverage problem, we

utilize the servo motor to drive the laser sensor and scan

the front space with 120-degree coverage. We proposed a

hybrid near-field and far-field mapping approach by fusing

the long-range laser sensor and Lidar results. This hybrid

mapping result is a synthetic 2D map with better coverage.

We implemented the ROS driver for our hybrid approach

and connected to the ROS rviz for the visualization.

1) Object mapping: To evaluate the effectiveness of our

solution in mapping the object, we conduct experiments in

Fig. 3 by detecting the obstacle at different distances (7-

meter and 10-meter). The white dots in the Fig. 3 represent

the Laser sensor mapping and the red dots represent the

Lidar map in the ROS rviz. The results show that the Lidar

can detect the object in 7-meter range, but missed the target

in 10-meter range. Using the hybrid Lidar and long range

laser result, we can detect the target in longer distance and

extend the coverage of the 2D mapping.

Figure 3. The object mapping experiment when the object is in 7 meter
and 10 meter, respectively.

2) Wall mapping: To evaluate the mapping results in an

indoor crowded environment, we conduct the experiment in

Fig. 4 to estimate the front wall. The laser sensor is facing to

the front and it can only detect the front wall; while the Lidar

sensor is 360 degree with wide coverage. Fig. 4 demonstrates

the aligned data from Lidar and Laser. The Lidar was able

to capture the shape of a wall with high precision. The Laser

missed few points of detection and the detected wall is not
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in its original shape. The problem is caused by rotating the

servo motor. We have to use the motor to drive the laser to

scan the wall in different time period, which causes some

drift in terms of ranging accuracy. Thus, we can conclude

that Lidar achieves accurate mapping with short range; while

laser achieves long range detection with reduced accuracy

in terms of shape. By fusing these two results, our hybrid

solution can achieve better coverage with accurate shape

estimation.

Figure 4. The indoor mapping results of the wall.

3) 2D Mapping: Fig. 5 shows the experimental results

of estimating the 2D indoor map with three pre-defined

obstacles. When comparing with the ground truth, our

estimated 2D map is very close to the ground truth and

all the obstacles have been detected with very accurate

position estimation. The location trace point shown in Fig. 5

demonstrate accurate location estimation of the scooter with

very small error gap when compared with the group truth.

Figure 5. The comparison of the 2D mapping results and location trace
estimation.

C. Hybrid 2D and 3D Mapping

(a) Environment (b) Point cloud

Figure 6. The 3D mapping (point cloud) result of the indoor corridor.

Visual SLAM (vSLAM) builds a dense 3D model of the

scene as it moves through it and also creates a trajectory

of the camera. Since 2005, a lot of research has been

conducted on vSLAM because it has the capability to extract

landmarks all over the scene and overcome the challenges

of the 2D Lidar. We utilize RTAB-Map, which is a Graph-

Based SLAM approach based on an incremental appearance-

based loop closure detector. RTAB-Map is constructed using

RGB images, depth data, and visual words. Fig. 6 shows our

vSLAM result in one indoor scenario.

V. CONCLUSION

While mobility scooters may help to improve the quality

of life of their users, operating them is still challenging in

many scenarios. In this paper, we designed an autonomous

system from the ground up to help people with mobility

challenges to better navigate, explore the physical world,

and connect with friends and family. We propose a novel

intelligent autonomous scooter with short-range vision-based

mapping and long range hybrid indoor mapping.
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