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Abstract—Despite the technical success of existing assistive
technologies, for example, electric wheelchairs and scooters,
they are still far from effective enough in helping the blind
and elderly navigate to their destinations in a hassle-free
manner. Riders often face challenges in driving scooters in
some indoor and crowded places, especially on sidewalks with
numerous obstacles and other pedestrians. People with certain
disabilities, such as the blind, are often unable to drive their
scooters well enough. In this paper, we propose to improve the
safety and autonomy of the navigation by designing a cutting-
edge autonomous scooter, which allows people with mobility
challenges to navigate independently and safely in possibly
unfamiliar surroundings. We focus on the localization and
navigation challenges for the autonomous scooter where the
current location, maps, and nearby obstacles are unknown.
Solving these challenges will enable the scooter to both travel
within buildings and perform tight maneuvers in densely
crowds automatically.
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I. INTRODUCTION

An intelligent mapping system is essential to provide a
high-resolution understanding of the real physical world with
dynamic obstacle avoidance. A variety of sensing and map-
ping technologies have been proposed for the autonomous
navigation application scenarios, for example, Ultrasound-
based [1], Lidar-based [2], and vision-based approaches
[3]. Microsoft’s Kinect and Google’s Project Tango Tablet
Development Kit are two very famous vision-based devel-
opment platforms. Though these systems have many advan-
tages, they also have their downsides. Vision-based depth
information obtained from the region exposed to sunlight or
covered by high reflective materials (tiles and glass doors)
will not give an accurate measurement of depth. If the scene
is featureless, for example, white walls with uniform texture,
there will not be enough features detected for estimation of
visual odometry. The other situation when this can happen
is in a large environment where only a small area near the
camera has depth readings and the other area is too deep,
for example, in corridors and hallways. Self-driving cars
from Google and Uber heavily rely on the Velodyne Lidar
for their 3D mapping [2]. The personal mobility scooter
developed in [4] also utilizes this kind of Lidar. However,
the existing 3D Lidar devices are bulky and expensive at a
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minimum of $10,000 per unit, which is not suitable for small
and affordable mobility scooters (around $1000 each). The
performance of low-cost Lidar modules [5] can only achieve
the coverage of several meters and not efficient enough to
navigate a scooter through small scale places or avoid “on-
road” dynamic obstacles, therefore lacking convenience and
resilience.

In this paper, we propose to develop an intelligent au-
tonomous scooter that assists people with independent trans-
portation challenges towards their independent and dignified
lifestyle in previously unmapped surroundings. Existing Li-
dar and multi-camera devices used in outdoor self-driving
cars are too bulky and expensive for the scooter. The
small safety margin and highly dynamic pedestrian walking
patterns are more challenging than outdoor roads in terms of
mobility. We propose to design and implement a new hybrid
far-field and near-field mapping solution, targeting various
cases from near-field fine-grained resolution to long range
sparse coverage.

II. SYSTEM OVERVIEW
A. System Module Design for the Scooter

To achieve the automatic steering control of the scooter,
we need to install additional motors to control the steering
wheel, speed, and direction.

Steering Control. As shown in Fig. 1, we made a few
vendor-independent modifications in the mobility scooter to
automate the steering control. We used a linear actuator
(capable of 25 1b thrust with 4-inch movements) to push
and pull the steering rod to the desired steering angle. This
mechanism achieves better torque with simple installation
than the servo motor. However, a major disadvantage of
this mechanism is that the linear actuator has a higher error
in linear actuation when compared with the precision servo
motor. The same input to the linear actuator cannot promise
the same position of the scooter.

To improve the control accuracy, a Proportional Integral
Derivative (PID) controller has been used to actuate and
turn the steering to the desired angle step-by-step with
high degree accuracy. We utilize the Inertial Measure-
ment Unit (IMU) to measure the actual angle and drive
the linear actuator according to the angle differences. We
mount the MPU-9250 sensor on the steering rod in the
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x-y plane. The angle can be calculated via Angle
Atan(az/+/(ay x (ay +a.) x a)), where ay,a,,a. are
sensor readings from the accelerometer in x,y,z directions.
This mechanism ensures the scooter moving to the desired
direction and reduces the chances of under-steering or over-
steering. In the case of interruptions or road obstacles, for
example, when the wheels tend to turn because of uneven
road conditions, the PID and feedback loop would help the
actuator to pull the steering back to its original direction in
a short interval.

Speed/direction Control. The original mobility scooter
has a fuse to limit the current from the power supply in
order to maintain the legal speed limit of 5 mph. The
output analog voltage from the potentiometer controls the
speed. A similar control has been used for direction control:
a voltage beyond 2.5v drives the mobility scooter in the
reverse direction and a voltage below 2.5v drives it in the
forward direction. There is another internal fuse located on
the control circuit which limits the scooter from turning
on if the throttle is not at the zero position. Due to this
mechanism, we could not hack the controller by changing
the supply of the analog signal without bypassing the fuse.
Otherwise, the current of the control signal may likely
exceed the limit of the fuse and cause problems. We propose
to obtain the speed/direction control without breaking into
the internal circuits. Specifically, we use two 7.4v precision
servo motors (capable of delivering a maximum of 10N-
m torque) to control the potentiometer by rotating its head
without bypassing the fuse. This design can be applied to
other vendor’s mobility scooters with minimal changes.
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Figure 1. The steering mechanism, speed/direction control, and sensing
module of the autonomous scooter.

Computing Module. We utilize existing open source
computing boards, for example, the Nvidia Jetson TX2
module, Raspberry Pi, and Arduino. In this project, we make
external sensors directly connectable with the Nvidia Jetson
TX2. The Jetson TX2 runs Ubuntu 16.0.4 with ROS Kinetic.
Most of the programs run on ROS platform are written in
python or C.

To enable the open and easy development of the human
interface module, we utilize an Android tablet as the front-
end device. The Android tablet is connected to our hardware
unit via the USB interface or Bluetooth-low-energy (BLE)
interface. All the hardware commands and interactions will
be wrapped as the Android APIs. To promote the innovation,
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we will open the Android APIs to other developers who
want to program and develop new user applications for this
autonomous scooter.

Sensing Module. We propose to utilize the long range
eye safe laser ranging (up to 60 meters) to approximate
a human’s vision coverage and use stereo vision to help
recognize the fine-grained world around them. The sensing
module is shown in Fig. 1(c). Different from Lidar, laser
ranging only works for a single point coverage and suffers
under strong vibration by the motions. To achieve semi-
Lidar functionality, we leverage the gyros-based pose data to
compensate the laser motion in real time and create synthetic
mapping of simple environments with regular shapes and
deep hallways. Laser range finders are suitable for long
ranges with limited resolution. Stereo vision, on the other
hand, provides 3D structural data of nearby complex objects.
To achieve simultaneous fine-grained resolution and long
range coverage in the mapping of cluttered and complex
environments, we dynamically fuse the measurements from
the stereo vision camera system, the synthetic laser scanner,
and the Lidar.

III. INDOOR MAPPING AND LOCALIZATION
A. Simultaneous Localization and Mapping

The large body of related work concerned with the task
of mapping of the unknown environment is in the area of si-
multaneous localization and mapping (SLAM), which can be
partitioned into two major sensor-based approaches: Lidar-
based or vision-based. In terms of the SLAM algorithm,
there are three major categories: Extended Kalman Filters
(EKF) [6], Rao-Blackwellized particle filters (RBPF) [7],
and graph optimization approaches [8]. Recent advances
in incremental graph optimization allow for graph-based
SLAM for online calculation, for example, KartoSLAM
and Real-Time Appearance-Based Mapping (RTAB-MAP)
[8]. Compared with other SLAM approaches, graph-based
SLAM algorithms are usually more efficient, especially for
large-scale environments.

B. Hybrid 2D and 3D Map Fusion

We utilize RTAB-MAP and stereo vision to get the fine-
grained mapping of the 3D spatial world. However, in terms
of the accuracy and robustness of the distance measurement,
the stereo camera cannot compete with the laser ranger. John
Leonard from MIT has a very good presentation and states
“Elon Musk is Wrong: Why visual navigation of self-driving
cars is far from solved”. For example, Google’s self-driving
car utilizes the 3D Lidar to create the scene, while Tesla is
heavily focused on using vision-based approaches.

We propose to perform data fusion for the long range laser
and stereo vision. However, the location of the vision scene
feature (pP , where the upper script p means the screen’s
pixel space) is not in the same space and coordinate of
the ranging results of the laser (d"?, where np is the polar



coordinate of the navigation space). To facilitate the fusion
process, we will convert these two measurements into the
same navigation space (geodetic coordinate).

Based on the system’s geodesic location p” in the in-
door environment (n is for the navigation coordinate), we
can generate the location of the laser detection point via
the transformation function as py,,..,. = f,(d"?,p", GR),
where function £} () utilizes the laser range, the pose and
location of the system for the transformation. The G is the
gyroscope results when the laser ranging measurements are
taken. Since we utilize one laser beam to extend the range
of a low-cost Lidar, we need to use the motion and pose
information (GR) to synthesize the mapping results of the
laser over time, i.e., the synthetic laser mapping.

The visual feature point (p},) in the real physical world is
in the view angle (polar) coordinate of the navigation space.
The transformation process to the navigation coordinate is
Plision = fi(pL,, ™). The relation between pP, and p?, can
be constrained by the camera projection process as pP,
Prpy. with the following three steps: 1) map the p?, into
camera view space; 2) convert to the Canonical view volume,
i.e., NDC (Normalized Device Coordinate); and 3) map back
to the screen pixel coordinate as p?,. Overall, the translation
process can be modeled as

PP =K°D = T2T™D (1)
where K is the 3 x 3 modified camera intrinsic matrix in
the OpenGL screen coordinate, and D is the camera extrin-
sic matrix that describes the camera’s location coordinate
transformation including rotation and translation. Thus, the
intrinsic and extrinsic matrix combined as matrix P could
illustrate the full perspective model which describes the
relationship between a vision feature point and its projection
in the OpenGL screen frame.

With all the projection model (1) and transformation
functions f},() and f;} available, the laser measurement
and the vision mapping can be transformed into the same
navigation coordinate, i.e., fusing the pJ;;,, and P} ..,
The data fusion process will be based on the occupancy grid
mapping, where each grid represents the possibility that the
area is occupied, empty or unknown.

IV. SYSTEM EVALUATION

A. Steering Control

To improve the steering angle control accuracy, we utilize
the IMU to estimate the current pose of the steering rod,
then apply the PID controller to turn the steering to the
desired angle step-by-step. Fig. 2 demonstrates the angle
convergence of the PID controller. The final angle of the
steering rod is approaching to the desired angle in several
steps with small error and no over-steering.
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Figure 2. The angle convergence of the scooter steering rod.

B. Hybrid Near-field and Far-field 2D Mapping

The low-cost Lidar used in this project has a 360-degree
horizontal view with a short range of 7-meters. This short
coverage is not sufficient and reliable enough for an au-
tonomous scooter. To overcome the coverage problem, we
utilize the servo motor to drive the laser sensor and scan
the front space with 120-degree coverage. We proposed a
hybrid near-field and far-field mapping approach by fusing
the long-range laser sensor and Lidar results. This hybrid
mapping result is a synthetic 2D map with better coverage.
We implemented the ROS driver for our hybrid approach
and connected to the ROS rviz for the visualization.

1) Object mapping: To evaluate the effectiveness of our
solution in mapping the object, we conduct experiments in
Fig. 3 by detecting the obstacle at different distances (7-
meter and 10-meter). The white dots in the Fig. 3 represent
the Laser sensor mapping and the red dots represent the
Lidar map in the ROS rviz. The results show that the Lidar
can detect the object in 7-meter range, but missed the target
in 10-meter range. Using the hybrid Lidar and long range
laser result, we can detect the target in longer distance and
extend the coverage of the 2D mapping.

7 meter

Test scenario 10 meter

Figure 3. The object mapping experiment when the object is in 7 meter
and 10 meter, respectively.

2) Wall mapping: To evaluate the mapping results in an
indoor crowded environment, we conduct the experiment in
Fig. 4 to estimate the front wall. The laser sensor is facing to
the front and it can only detect the front wall; while the Lidar
sensor is 360 degree with wide coverage. Fig. 4 demonstrates
the aligned data from Lidar and Laser. The Lidar was able
to capture the shape of a wall with high precision. The Laser
missed few points of detection and the detected wall is not



in its original shape. The problem is caused by rotating the
servo motor. We have to use the motor to drive the laser to
scan the wall in different time period, which causes some
drift in terms of ranging accuracy. Thus, we can conclude
that Lidar achieves accurate mapping with short range; while
laser achieves long range detection with reduced accuracy
in terms of shape. By fusing these two results, our hybrid
solution can achieve better coverage with accurate shape
estimation.

The left wall

Test scenario Estimated 2D map

Figure 4. The indoor mapping results of the wall.

3) 2D Mapping: Fig. 5 shows the experimental results
of estimating the 2D indoor map with three pre-defined
obstacles. When comparing with the ground truth, our
estimated 2D map is very close to the ground truth and
all the obstacles have been detected with very accurate
position estimation. The location trace point shown in Fig. 5
demonstrate accurate location estimation of the scooter with
very small error gap when compared with the group truth.
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Figure 5.
estimation.

The comparison of the 2D mapping results and location trace

C. Hybrid 2D and 3D Mapping

(b) Point cloud

(a) Environment

Figure 6. The 3D mapping (point cloud) result of the indoor corridor.

Visual SLAM (vSLAM) builds a dense 3D model of the
scene as it moves through it and also creates a trajectory
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of the camera. Since 2005, a lot of research has been
conducted on vSLAM because it has the capability to extract
landmarks all over the scene and overcome the challenges
of the 2D Lidar. We utilize RTAB-Map, which is a Graph-
Based SLAM approach based on an incremental appearance-
based loop closure detector. RTAB-Map is constructed using
RGB images, depth data, and visual words. Fig. 6 shows our
vSLAM result in one indoor scenario.

V. CONCLUSION

While mobility scooters may help to improve the quality
of life of their users, operating them is still challenging in
many scenarios. In this paper, we designed an autonomous
system from the ground up to help people with mobility
challenges to better navigate, explore the physical world,
and connect with friends and family. We propose a novel
intelligent autonomous scooter with short-range vision-based
mapping and long range hybrid indoor mapping.
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