Edge Computing Framework for Distributed Smart
Applications

Kaikai Liu, Abhishek Gurudutt, Tejeshwar Kamaal, Chinmayi Divakara, Praveen Prabhakaran
Computer Engineering Department
San Jose State University (SJISU)
San Jose, CA, USA
Email: {kaikai.liu, abhishek.gurudutt, tejeshwarchandra.kamaal, chinmayi.divakara, praveen.prabhakaran}@sjsu.edu

Abstract—The rapid growth in technology and wide use of
internet has increased smart applications such as intelligent
transportation control system, and Internet of Things, which
heavily rely on an efficient and reliable connectivity network.
To overcome high bandwidth work load on the network, as well
as minimize latency for real-time applications, the computation
can be moved from the central cloud to a distributed edge cloud.
The edge computing benefits various smart applications that uses
distributed network for data analytics and services. Different
from the existing cloud management solutions, edge computing
needs to move cloud management services towards distributed
heterogeneous edge nodes for multi-tenant user applications.
However, existing cloud management services do not offer remote
deployment of multi-tenant user applications on the cloud of edge
nodes.

In this paper, we propose a practical edge cloud software
framework for deploying multi-tenant distributed smart appli-
cations. Having multiple distributed end nodes, auto discovery
of all active end nodes is required for deploying multi-tenant
user applications. However, existing cloud solutions require either
private network or fixed IP address, which is not achievable for
the distributed edge nodes. Most of the edge nodes connected
through the public internet without fixed IP, and some of them
even connect through IEEE 802.15 based sensor networks. We
propose to build a software platform to manage the distributed
edge nodes as well as support services to deploy and launch
isolated, multi-tenant user applications through a lightweight
container. We propose an architectural solution to remotely access
edge cloud management services through intermittent internet
connections. We open sourced our whole set of software solutions,
and analyzed the major performance metrics of the edge cloud
platform.

Edge Computing, Fog Computing,
Multi-tenant Applications

Internet-of-Things,

I. INTRODUCTION

As predicted by Cisco Internet Business Solutions Group,
by 2020, 50 billion devices will be connected to the Internet
[1]. Data produced by these devices will reach 500 zettabytes,
according to Cisco Global Cloud Index, by 2019. It is difficult
to provide such high bandwidth since the capacity of global
data centers will only reach 10.4 zettabytes by the year 2019
[2].

Edge computing is a technology that allows the computation
taking place at the vicinity of data being produced on dis-
tributed micro “data centers”. If the IoT-generated data is pro-
cessed, stored, analyzed, and operated close to, or at the edge
of network, the problem of high network bandwidth require-

ments for future IoT applications will be solved. Moreover, the
edge computing node acts as both consumer and producer,
which reduces the data processing pipeline and improves
the event response time. For future IoT applications, e.g.,
Smart City monitoring, traffic sensing, security enforcement,
fast response is really the key to ensure smart city service
qualities. However, to enable edge computing for smart city
applications, there are multiple challenges need to be solved,
for example, remote device programmability, naming, data
abstraction, service management, privacy, security, and other
optimization metrics. Programmability addresses the problem
of deploying an application compatible to heterogeneous end
node platforms. Naming conventions in Edge computing has
to be implemented for things identification, programming, data
communication, and addressing since multiple end nodes and
applications would be present. Data abstraction is required
since huge data would be generated, but only required data
should be filtered and also abstracting useful data from un-
reliable sources is a challenge. Service Management, is to
provide a framework to manage all the edge nodes from a
remote location. Privacy and Security, is a major concern for
smart home or smart health applications, which generates high
amount of sensitive data.

Several of the existing edge computing platform supports
either a single-user application cloudlet, application specific
cloudlet or a single service oriented cloudlet. The extension
of Openstack for cloudlet (Kiryong Ha, Mahadev Satya-
narayanan), Openstack++ provides multi-tenancy through VM
based computing resources. This solution of providing hy-
pervisor based computing resource to establish multi-tenancy
adds redundant software abstraction layer to give a non-
deterministic application. The sensors required by these ap-
plications talk to the edge device node over wireless WAN,
BLE, ZigBee etc. There can be many sensors that is required
by multitude applications connected to a single edge node and
each of these application can be maintained by third-party
vendors experimenting in that domain. For example, a single
edge node can be connected to a surveillance video sensor
to compute data for an intelligent surveillance application,
and the same device can also gather air quality data from
connected sensors to provide real-time data for a smart life
system. Abstracting the hardware edge node to multi-tenant
applications can help improve the device utilization, lower

the system deployment cost, and accelerate the real world
test and deployment of new applications. However, to support
multi-tenant isolated applications on an edge device node, an
edge cloud software platform with the following capabilities
is needed: 1) providing multiple virtual computing resources
to multiple applications; 2) supporting application isolation
for secure multi-tenancy; 3) creating a versatile runtime en-
vironment that supports variety of technologies and devices
from different vendors; 4) providing a remote dashboard of the
edge cloud that enables third party application vendors/users
to launch and manage applications remotely.

In this project, we propose a software framework to enable
the envisioned edge cloud platform with three key function-
alities: 1) supporting multi-tenant isolated user applications
via lightweight virtualization; 2) providing cloud dashboard
for remote programming and application management; 3)
featuring robust network connectivity that agnostic to net-
work mediums. The framework provides computing resources
through a lighter, more deterministic container based virtual-
ization (IaaS). The computing resource holds all the dependent
libraries, runtime environment required to run the isolated
application (PaaS). The edge cloud provides a solution offering
remote dynamic discovery that enables user to control and
manage applications remotely through a web application dash-
board (SaaS). Existing cloud solutions require either private
network or fixed IP address, which is not achievable for the
distributed edge nodes. Most of the edge nodes connected
through the public internet without fixed IP, and some of them
even connect through IEEE 802.15 based sensor networks.
We propose to utilize resilient messaging tunnel to manage
the distributed edge nodes that make it agnostic to network
mediums as well as supporting dynamic access with mobility
support.

II. SYSTEM OVERVIEW
A. System Design

Fog Computngiiade
i
carbe,
L
Router

ssssss

Fog Computing Node
2 Heat sensor deployed in
forest

Docker
Hub

Fig. 1. Edge Computing Architecture Diagram.

As shown in Fig. 1. The proposed edge cloud framework
consists two major parts: the cloud side and the edge node
side. The cloud side includes user dashboard for remote
management, message routing, and database. The edge node
part constitutes of messaging, device monitoring, virtualization
and container management.

1) Cloud Dashboard: As shown in Fig. 2, the cloud dash-
board contains three major parts: user interface, database, and
messaging services. These three components are interfaced by
the request handler module. The requests generated by users
in the user interface are queued by the handler module, then
stored to the database to maintain a copy.

User Interface. The user interface provides user friendly
web application which allows the user to easily create, deploy,
start, stop, and remove remote applications. The dashboard
serves as the centralized interface for the users to interact
with their own applications. For example, the user can check
the status of their application, control the settings, collect the
results, and debug the software. The dashboard can display the
collected data as a graph, monitor the computational resources,
aggregate the result files to download, and display the available
end edge nodes. For example, an authenticated user can login
to the dashboard and access his/her edge node. A user can also
deploy his/her application to the preferred edge node through
this dashboard.

Messaging Service. Messaging services has become an
important portion of Internet of Things. Messaging services
not only include communication between two nodes, but also
has to provide security and reliability. The messaging service
takes care of transmitting the message to the desired node
through the public internet for the services of device or end
node registration, heartbeat information, message transfer, and
application deployment. Device or end node registration with
the server is also a criterion for our project. The communica-
tion between the end node and server, remote configurations to
register the end nodes to server, and the secure communication,
is fulfilled with the help of our proposed messaging service.
We utilized the Web Application Messaging Protocol (WAMP)
to implement the message service and make it to support the
node mobility with dynamic IP.

Database. Database will be used to save information related
to user, container, location of the stored results and so on.
We utilize relational database to establish relationship between
different management entities. To achieve modularity, the
database is divided into 5 components, i.e., user, compute,
image, device and storage. A relationship is established be-
tween the modular DB tables to link the user to the resource
allocated to him/her on the edge cloud platform. The database
access on the cloud is done through a database service which
links the DB to other modules through REST APIs. This offers
portability and provides language/platform independent inter-
face and offers a loose coupling with other service modules.

2) Edge Node: Container Management. We utilize the
container as the lightweight virtualization technique for the
edge node. Containers is a software that is built with complete
file system which consists of system libraries, application
program and so on. It is lightweight when compared to virtual
machines and these run using same operating system kernel
and use less RAM. These features will enable the low-power
and low-cost edge node to support dense applications with less
cost.

{ Fie system

o]

Application
Server

HTML and CSS
Web Socket
Lib Messaging
HTML
| Request Tunnel
Handler Edge Node
| Request

Dashboard - Handler

USER1

UsER2 J

USER3 J

Fig. 2. The server architecture of the edge platform.

Containers provide a complete software package required to
run a user’s applications on the edge node by abstracting the
underlying operating system. There are different techniques
to manager the containers deployed on a machine such as
Swarm, Kubernetes, Fleet and so on. Swarm container man-
agement is technique is very effective when compared to other
techniques. It converts all the Docker hosts into one single
virtual host. All the nodes created on the edge device will
be controlled, scheduled, monitored and cleared using swarm
manager. Swarm manager will also help us to keep a check
on resource utilization.

In our system, containers are launched with applications
requested by each user. All dependent libraries to run the
application inside a container will be installed before executing
an application. Every user can deploy new container for each
application and later obtain the results. Once the execution
of an application is completed, then containers are deleted
automatically by the Docker daemon.

Messaging service. WAMP (Web Application Messaging
Protocol) is used in the end node to receive messages from
the server. Commands received from the server are forwarded
to container management. Messages such as heartbeat, status
and registration are transmitted to server.

Cloudlet

//7\/7”/”‘/ \\\ Vessaging e Servit Container Container
) i ervice
a Cloud A Tunnel Library @ @
k— N/ Messaging © | Request [
' Handler

) i
~ Service

Hub

Fig. 3. The architecture of the edge node platform.

III. CLOUD ORCHESTRATION FRAMEWORK FOR THE
REMOTE EDGE NODE

A. Resilient Network with High Mobility

Existing cloud solutions require either private network or
fixed IP address, which is not achievable for the distributed
edge nodes. Most of the edge nodes connected through the
public internet without fixed IP, and some of them even
connect through IEEE 802.15 based sensor networks. We
propose to build a software platform to manage the distributed
edge nodes through a lightweight messaging services. This
messaging service will enable us to contact any remote node

based on ID instead of fixed IP. We propose an architectural
solution to remotely access edge cloud management services
through intermittent internet connections, and close the con-
nection to save the power when necessary.

We utilize the WAMP, which is an open standard Websocket
protocol, to provides both remote procedure calls and publish-
subscribe messaging services. WAMP is mainly used for
distributed, multi-client (edge nodes in our use case scenario)
and server application. Autobahn framework and Crossbar are
used to host a server and for messaging routing. Autobahn
is an open-source implementation of WAMP and Websocket.
This provides libraries which can be used to create client
and server application. In this project, python version of
library is used. Crossbar is a WAMP router is configured
on the server to direct the messages to subscribed clients.
Crossbar, a networking platform for distributed and micro-
service application is used in our application to handle routing.

In a publish & subscribe (PubSub) approach, the server and
client are coupled through a router to Publish an ‘abstract’
topic to the Subscribed client. After transmission is complete,
the server and client are decoupled, by the router, also named
broker. Broker keeps a track of subscriptions. When an ‘event’
is published by a Publisher to a topic, the Broker looks up
the record maintained to determine on the list of Subscribers
subscribed on that topic, and then forward the information
(“event”) to all those Subscribers. This act of dispatching the
information to determined receivers is called routing.

B. Cloud Dashboard

In the cloud dashboard, user registration is the first step,
upon which the user can login to the user dashboard to
orchestrate the end nodes. Various commands such as start,
stop, create, and remove a container, upload and download a
file from a virtual space on the end node is provided for the
user.

Create Container API. Lightweight virtual spaces are
provided to users to deploy and execute applications. These
virtual spaces can be created by click of a button from a
user dashboard. Each container is given a unique name by
appending username along with the requested container name.
While creation of a new container, if the requested image is not
pre-installed on the device, then the image would be fetched
from the Docker hub and created. Any custom images can be
uploaded to Docker hub by the user and can be requested to
pull when required.

Start, Stop and Remove Container API. Each virtual
space can be orchestrated from the user dashboard. Few of
the commands provided to the user are start, stop, and remove.
Each of the command is transferred to end through server from
the user dashboard. Upon receiving the command, correspond-
ing API is executed. A negative response is transferred back
if the API fails, if not a positive response.

Device ID generation. When the end node application
is started, device name and MAC address of the device is
fetched. The same is concatenated in the form ’device name /
MAC address’. With the help of both device name and MAC

address, it is possible to keep each device ID unique, helping
to differentiate the message to be published according to the
device selected by user.

Location of device. The location of the device is fetched
based on the IP address to which it is connected. This helps
in classifying each device based on the location. Smart city
based applications can make use of this feature to segregate
each installed device.

Architecture of the device. The architecture of the end
node is fetched and is updated during the device registration.
Containers compatibility is based on the architecture, hence by
detecting the architecture, suitable containers can be listed to
the user for deployment. On successful login user can access
his/her dashboard. In the dashboard user can find his list of
containers created all the devices. The user can also control the
containers by clicking the container control buttons. The user
can also see the device information by selecting the device.

C. Server Side messaging service

. Handling Registration and Heartbeat. Every end node
which connects to the server is registered with a unique ID; to
help identify PubSub to/from a particular device. The unique
ID would be part of the topic used while subscribing. When
a user requests to perform actions on the end device, this
unique ID is used in the URI, to Publish the request to desired
end node. Periodic heartbeat message is transmitted to the
server from all the registered end node, to make sure the end
device is available for the user. The heartbeat message will
contain information about device ID. The very first heartbeat
is considered for device registration. The heartbeat consists of
device ID, location and architecture of the device; which are
updated to database upon registration. Upon heartbeat stop,
the corresponding device is removed from the database along
with the containers on the device and the CPU information.

Handle User Request. The requests from the user is
received through a REST API. The requests which is intended
to the end device are filtered. The filtered requests are then
checked for validity, to make sure all the required fields exist
in the request. With any field missing, a error message to the
user is transmitted. With this validity check on the server, the
failure of command execution on the end device is reduced and
also the response time to update the error to user is decreased.
Once the validity check is passed, URI is formed based on the
device ID and the request raised. Since device ID would be
unique for all the registered devices, the event is published to
the specific device as intended by the user.

IV. EDGE NODE VIRTUALIZATION
A. Edge Node

End node, upon boot up registers to the server with a
device name and transmits periodic heartbeat to indicate the
end node is alive. End node also transmits CPU information
and container status periodically to server. End node and user
information is maintained in a database. Client side contains
an edge node. An edge node can be any embedded device such
as Beaglebone Black, Raspberry Pi, Jetson TX1 and so on.

Docker engine is installed on the edge node which allows
the users to deploy their application by creating containers.
Docker provides numerous amounts of packages for develop-
ers to design and develop application programming interface
for creating, deleting, running an application and so on.
Edge node communicates with a WAMP agent to receive the
commands issued by users. The response from the edge node
is sent back to notify the user about the action taken by the
Docker. Every application creates a container which is isolated
from other containers running on the same Docker engine.
This isolation is provided by the Docker technology. Once
the Docker engine is installed on the end node. The Docker
daemon runs on boot up of the end node and continues to
run as long as the end node is not turned off. As soon as a
command is issued from the user, Docker receives a command
from the WAMP agent and performs the necessary action.

Heartbeat. Once the device boots up, the device checks for
an internet connection, and reboots to try reconnecting to the
internet. Once the internet connection is established, the device
forms a device name, detects its location and architecture,
and transmits periodically to server. The periodic heartbeat
indicates the end node is alive.

CPU info. The CPU info fetches the device name, memory
consumption, CPU usage, disk memory available, operating
system on end node, kernel version and is updated to the server
periodically.

Container Status. The status of the container is updated
periodically. The status message contains the container name,
status, device name to detect the device maintaining the
container, and image name. All the status message is updated
to database and is notified to user based on the username.

Registering and Heartbeat. Once the device boots up, a
registration message is transmitted to the server. Registration
message consists of device ID. The device ID would be unique
to each device. The device will subscribe to all the ‘events’
with a unique URI containing the device ID. After registering,
device would send a periodic heartbeat. Heartbeat would stop
when the device turns off, hence informing to unregister from
the server and also informs user about device being no more
available for usage. Device ID would be transmitted along with
the heartbeat.

CPU info and Container Status update. The CPU info
and container status are fetched periodically and the same is
updated to server. CPU information can be used to detect
the available system resources before deploying containers.
Container status can be redirected to inform the user about
the status of each container.

Handle Request. The subscribed ‘event’ receives the re-
quest from the server, containing information about container
control. The received request is then parsed to the format as
required by the Docker API. During ‘create’ request, each
container is renamed to the user’s demand. Container name
received through the request, is further formatted to fit in the
form ‘username-containerName’, by doing so, each container
created will have a unique name. Once the container is created,
a unique container ID returned by the Docker API is tagged

along with the container name for more clarity. The response
returned by the Docker API is transmitted to the server to
indicate the user and also the same in a database.

File Download. The application file is downloaded from
the user dashboard to the end node when user requests. The
user request, is validated on the server and then passed on
to respective end node. The received commands contain the
location of application file on the server which is used for
download.

V. EVALUATION

The performance evaluation is performed by deploying a
server on AWS and considering Beaglebone Black as the
end node. The following performance is impacted by the
network upload and download bandwidth. In our analysis the
upload bandwidth is observed to be 11.45 Mbps and download
bandwidth is observed to be 24.2 Mbps.

A. Launch Containers in the Edge Node

Performance for creating a remote container by down-
loading a new image from the cloud. Fig. 4 shows the
performance for creating a remote container by downloading a
new image from the cloud. This is the first step when the user
want to deploy their application to the remote edge node. The
user can select the type of the container image and push it the
edge node. The Fig. 4 represents the time required to pull an
image from Docker hub in the cloud and create a container in
the edge node from the downloaded image. For performance
analysis purpose, we considered different 5 images with size
ranging from 1.5kB to 350MB. The calculated time includes
the downloading time of the image and the time of creating
a container out of it. Network latency is assumed to be equal
during the course of evaluation.

To pull hello-world image, which is of 1.8kB in size from
Docker hub and create a container it took approximately 3.75
secs. Upon issuing the command, Docker daemon initials
looks for the image in the cache and if doesn’t find it
then will pull the latest image from the hub and creates a
container using this image. Similarly, the “training/postgres”
image consumes a time of just over a minute to pull and
deploy a container. When compared with the small size image,
there is an exponential increase in the time factor. The reason
behind this is that the Docker daemon requires more time to
create an image for large packages in additional to the linear
downloading time. Fig. 4 clearly suggests that, bigger image
sizes require more overhead time including downloading and
creating a container of that image.

Performance for creating a remote container via local
existing image. Fig. 5 represents the time required by the
Docker daemon to create a container using an image stored
in cache. When user requests to create container with a
specific image, the application passes the image name and the
container name to the Docker daemon. Docker daemon looks
through the cache to find out if the image is stored in it or
not. If the image is available, it will pull the existing image
from Docker hub and create the container. The performance

Time Taken (sec)

0 50 100 150 200 250 300 350 400
Container Size (Mb)

Fig. 4. The time taken to create container for new images with different size.

measured here is the comparison between the time taken to
create a docker container with the help of docker and the time
taken to processing all the commands received from the user.
To evaluate the performance, we downloaded 5 images with

Creating Container with existingimage

300 241.43 241.28

&

(sec

116,94 1167913231 132.08

10.01 9.88 l l I I

>
S

3]
88

0 9.98 986
0 0

Time Taken

5 N N
N & &
o & &

& &

Containers

®Qur Application ®Container Daemon

Fig. 5. The time taken to create container for existing images with different
size.

various sizes and applications. Our service layer consumed
approximately 10 milliseconds to create a container with the
“hello-world” image. Similarly, 241 milliseconds are required
to create a container using “training/postgres” image. The
reason behind the time difference is that the later creates
a database in a container which consumes more time when
compared with earlier one which only prints “hello world”.
System overhead and hardware independence. The total
time required to create the container depends on the image size
and type as well as the overhead time of our service layers
in our edge computing framework. We developed the service
layer using messaging-driven transparent APIs, and make it
independent to different hardware platforms. This flexibility
is very important in utilizing different hardware platforms
from different vendors to create a common edge computing
platform for multi-tenent applications. To analyze the system
overhead, we performed the container creation operation on
different platforms, i.e., Beaglebone Black, NVIDIA Jetson
TX1, and Intel desktop computer having the configuration of
Intel 15-3320M, clock speed of 2.6GHz, and 8 GB of physical
memory. It was observed that container creation time does
not differ much from different platforms. The difference of
about 0.15 milliseconds is the amount of time consumed by
our platform on the end node. This time is approximately equal
across platforms: Beaglebone Black (ARM CPU), Jetson TX1
(ARM CPU), and the computer with an Intel CPU (X86).
Container Density. The key feature of our proposed edge
computing platform lies in the multi-tenancy support. Specif-

ically, one edge node can launch multiple isolated containers
and support multiple developer groups simultaneously without
interference. The number of containers to be supported on an
edge device depends on the available computing resources and
the size of each container. We tested the following platforms:
1) the Beaglebone Black with total disk space of 4GB,
available disk space of 1.8GB; 2) NVIDIA Jetson TX1 with
total disk space of 16GB, available disk space of 4.6GB; 3)
Intel computer with total disk space of 256GB, available disk
space of 118GB. One Ubuntu image of 188MB was considered
for analysis. On Beaglebone Black, we observed that, with
the creation of 8 containers, the system was overloaded and
slowed down. Hence it is recommended to use light weight
containers with size of SMB to 40MB. On Jetson TX1, 15
containers were created and the system performance did not
degrade. There were no limitations on the computer since the
available disk space was much higher.

B. Upload Applications to the Edge Node

Our dashboard provides functions for users to upload their
applications to the remote containers in the edge node. The
applications can be the source code, complied executable file,
or jave compressed packages. To facilitate multiple application
file requirement, we utilize a common format (.tar) for all
applications. When users want to upload their applications
to the edge node, they need to prepare their application in
terms of the .tar format. Then, the web server will transfer the
application file uploaded by user to the edge node through
our messaging service layer by two steps: 1) transfer the
application file to the web server; 2) transfer the application
file from the web server to the edge node. The file size varied
from 4 KB to 15 MB. The performance analyzed here is in
comparison to theoretical values calculated by the formula “file
size x 8 / network bandwidth”. Overhead of 50% is added for
file size lesser than 1 MB and 10% for file size greater than
1IMB.

Transfer the application file to the web server. To
evaluate the performance of uploading an application file from
user dashboard to webserver, we perform time consumption
calculation based on a fixed network bandwidth (11.45Mbps
as the upload speed). The network bandwidth is assumed to
be constant over the course of evaluation.

The web server reads the compressed application file using
“multer” and uploads serially through a HTTP request. The
uploaded file is then moved to a unique storage space with
unique ID. When the file is too big, we will divide them into
several small compressed files, then these compressed files
will be transferred. The total time consumed includes the file
compression, division, and transfer. As shown in Fig. 6a, the
results show that the time consumed was almost linear with
increase in application files. The difference in time observed
is due to the time taken by our platform to process the data,
create a directory, upload the file and update the database.

Transfer the application file to the edge node. Application
file uploaded by user are to be transferred from user dashboard
to the remote node and install the application into the deployed

container. This section analyzes the performance by measuring
the time to transfer the application file from the server to edge
node. The fixed download bandwidth (24.2Mbps) is utilized
in the evaluation process. The network bandwidth is assumed
to be constant over the course of evaluation.

Our platform transfers the compressed application file by
reading chunk of data stored on the server and transmitting to
end node serially through a HTTP request. Received chunk of
data is stored on to a file locally on the end node. Several
compressed files were transferred from server to the edge
node, and the time consumed by each compressed files were
recorded. The file size varies from 4 KB to 15 MB. As shown
in , the time consumed was almost linear with respect to the
application size. The difference in time observed is due to the
time taken by our platform to fetch the data, assemble the
file, and load the application to the container. This analysis
was performed on the hardware of the Begalebone Black.

© 5.008
N 2.83

z

\\ =

1034061

12
10
8 3
6 476 =
353 s
0193 ggo3e 0808 *768 II
0 -——
0004 1 5 15
pp

App

Time Take (sec)
Take (sec)

0623

e (Mb) Appli Size (Mb)

(a) To the web server (b) To the edge node

Fig. 6. The time taken to transfer the application file: (a) to the web server;
(b) to the edge node.

To test the performance independence on different hardware
platforms, we conduct the evaluation of the time taken to
transfer the application file to the edge node in different
platforms: Begalebone Black, NVIDIA Jetson TX1 and a
computer having the configuration of Intel i5-3320M, 2.6GHz
clock, 8GB physical memory. As shown in Fig. 7, it was
observed that there was negligible amount of time difference
when performed in different platforms.

_——— Em

0.004 1 5 15

Application Size (Mb)

®Begalbone Mjetson Tx1 ™ Laptop M theoretical

Fig. 7. The time taken to transfer the application file to the edge node in
different hardware platforms.

C. Sending Command and Debugging the Edge Node

Sending command and getting response. The WAMP
messaging protocol was made use in our platform to commu-
nicate between server and end node, for example, transmitting
a command from user dashboard to end node and get the

response. WAMP protocol is an asynchronous communication
protocol, which is an added advantage to our platform. Our
platform made use of publish and subscribe feature of WAMP.
While transmitting a command from server to end node
or while transmitting a response from end node to server,
commands and response are noted to be in a string format.
The string size differs for various commands and response.
It was observed that the time taken to transfer a string of 56
characters (56 bytes), was around 1.68 milliseconds. Different
commands from the user was translated to a string which
constituted of different size, hence time consumed to transfer
a command from the server to end node varied from 1.68
milliseconds to 2.37 milliseconds. Similarly, a response from
end node to server was timed and it was observed that the
time consumed was in the range of 2.53 milliseconds to 2.84
milliseconds.

Getting the log file from the edge node. As user requests

4.437

3.168
- 1.823
1382
p 1245, 20
1
05 0289 l
0 -0
3 28

0.004 1 1
Log file Size (Mb)

- N W

Time Taken (sec)

®Our Platform M theoretical

Fig. 8. The time taken to transfer the log file from the edge node to the cloud
dashboard.

to fetch the log file for the debugging purpose, a command
from the cloud dashboard will be transferred to the end node,
and fetches the log result file from end node to the cloud
dashboard. The transfer of file from end node to webserver is
achieved with the help of HTTP protocol. The log file available
on the end node is read in the form of chunk and is transmitted
from end node to cloud dashboard. The received chunk is
copied onto a file on the server until the end of file. Different
sized result files were considered to measure time and the time
taken. Upload speed of 11.45Mbps is considered during the
evaluation. Fig. 8 shows the required time to fetch the log
file with respect to different file sizes. The difference in time
is due to the time taken by our platform to send a message
from webserver to end node, process the request, copy the
file from the container to the local path, locate the file and
then transfer to the cloud. This analysis measures the time
required for the complete procedure which constitutes of, send
a command from user dashboard, route the command to a
particular edge node, copy the file from container to the local
path on the edge node, transfer the file from to the server,
point to the messaging service lay to download and transfer
of file to the user dashboard.

D. Comparison of Our Platform with Other Solutions

As shown in Table I, when comparing with existing so-
lutions, for example, Stack4Things [3], [4], the advantage of
our solution includes multi-tenancy support in the remote edge

TABLE I
COMPARISON OF OUR PLATFORM WITH STACK4THINGS

Features Our Solution Stack4Things(Existing)
Multi-Tenancy Yes No

Target-Application | Any IoT Sensing.

Remote Access Yes Yes

node, compatible to various applications, and allow remote
access as well as remote debugging and data transfer.

The second type of the related solution is VPN-based
cloud solution. They utilize VPN-based solution to connect
various remote edge nodes (outside the data center) through
the public Internet. VPN-based solutions make it simple to
apply existing cloud solutions for the remote edge computing
platform. VPN based remote access mechanism is one of
commonly used approach to access a remote node on a private
network. For example, existing cloud solution requires private
network with fixed IP address to connect peer computing node.
Leveraging the VPN connection, the private network can be
expended to the network edge. It works by creating a secured
network connection over public network like the Internet. VPN
can connect multiple sites over large distance typical to a
WAN (Wide Area Network). Typically, all the users connected
to and authenticated by a single public VPN server which
again routes the user requests over the Internet to other VPN
server, distributed in various geographical sites where the edge
device is deployed. All the device deployed will be part of a
virtualized private network. However, this kind of solution has
multiple limitations: 1) does not support dynamic edge node
mobility; 2) high overhead in terms connecting remote edge
nodes; 3) not robust to link failure.

To compare our approach with VPN-based solutions, we
deploy OpenVPN server in the Amazon EC2 Server. The edge
devices connect to the VPN server to be a part of a single
private network accessible from the server. A Webserver to
upload and download a file is run on the server and client to
measure the upload and download throughput. As shown in
Fig. 9, our approach is 12.6% better than VPN for various
application sizes. The reason is that our approach is more
lightweight and flexible than VPN based solutions.

1 5 15

0.004

son N

Time Taken (Seconds)

Application Size (Mb)

B Our platform with VPN

Fig. 9. The performance comparision with VPN based approaches.

The summary of the difference is included in the Table II.
Our major advantages include lightweight connection, support
dynamic node access, flexible in terms of connection failure
and congested bandwidth.

TABLE II
PERFORMANCE COMPARISON WITH VPN-BASED APPROACH

Our Approach

VPN based remote access

Requires no network configuration.
Provides automatic registration of
device when deployed in any pri-
vate network.

Requires configuration of VPN
server running parallel with the
platform service on the server.

Gives a consistent latency for up-
load and download, independent of
the location of the device.

Latency is highly influenced by the
distance between the device and
the server.

Gives auto-reconnect when the de-
vice is deployed in unreliable net-

VPN server may or may not pro-
vide auto-connectivity

work
Requires limited bandwidth as it is
uses WAMP messaging

VPN connectivity relies on high
bandwidth as it channels the net-
work over the Internet

VI. RELATED WORK

The existing cloudlets can be classified based on the services
that is offered by them. These services are based on application
associated with the edge like IoT or it can even be special
services that is needed by the network like security policy,
content delivery etc. Some of the major players in the edge
cloud are companies like Cisco and Akamai [5], [6], [7], [8].
Akamai cloudlets provide vendor application that are designed
to solve specific business and operational challenges [9], [3].

Openstack [10], [11] is an open source cloud management
software platform that manages the underlying hardware in-
frastructure to provide computing, storage and networking
resources to third-party user applications. Though this platform
a user can own multiple virtual computing instances, each
configured for an application environment that runs indepen-
dent isolated applications. Openstack consists of interrelated
components each component offering its services through
RESTFul APIs. It provides a web user dashboard that connect
the services offered by components involved in computing,
storage and network management. Openstack can be extended
to cloudlet at network edge to provide robust services [12].

VII. CONCLUSION

This paper proposes an edge computing oriented platform
solution for developers to remotely orchestrate IoT devices
without caring about their physical location, or their net-
work configuration. Leveraging the minimal usage of network
bandwidth by asynchronous communication between server
and client, we enable developers to deploy applications in
a virtualized space, debug the remote application, analyze
their performance, and retrieve the results of the remote
applications. We utilize the Docker technology to provide a
lightweight virtual space in the form of containers. Containers
consume less memory when compared to a virtual machine,
which is an advantage due to the memory constraints in
embedded environment. These containers can communicate
over the network which allows us to remotely orchestrate it
through a dashboard. Our platform is useful in applications
that uses remote sensing and monitoring, having bandwidth
limitations and also in some applications where there is no
need for continuous connection to be established between

user and end node. We open sourced our solution through
Github namded “Edge-computing-embedded-platform”. In the
future research direction, we will further reduce the overhead
when deploying the applications. Specifically, we will enable
secure shell option to a specific container, which allows the
developer to have the fine grained control of the container. Our
platform current doesn’t provide this feature due to restricted
permissions to access port on end node. Also, to implement
this feature, port mapping mechanism in server has to be
added. We will also attach multiple sensors to the end node,
with each sensor can be shared by multiple containers. A
feature on the dashboard to display the sensor mapped to the
specific hardware and container will be provided.

ACKNOWLEDGMENT

The work presented in this paper is supported in part by
National Science Foundation under Grant No. CNS 1637371.

REFERENCES

[1] D. Evans, “The internet of things how the next evolution of the internet
is changing everything (april 2011),” White Paper by Cisco Internet
Business Solutions Group (IBSG), 2012.

[2] C. V. Networking, “Cisco global cloud index: Forecast and methodology
2014-2019 (white paper),” 2013.

[3] G. Merlino, D. Bruneo, S. Distefano, F. Longo, and A. Puliafito,
“Stack4things: integrating iot with openstack in a smart city context,”
in Smart Computing Workshops (SMARTCOMP Workshops), 2014 In-
ternational Conference on. IEEE, 2014, pp. 21-28.

[4] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito,
“Stack4things: An openstack-based framework for iot,” in Future Inter-
net of Things and Cloud (FiCloud), 2015 3rd International Conference
on. IEEE, 2015, pp. 204-211.

[5] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
“Fog computing: Principles, architectures, and applications,” arXiv
preprint arXiv:1601.02752, 2016.

[6] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 27-32,
2014.

[7]1 R. Mora, “Cisco iox: Making fog real for iot, blogs@ cisco-cisco blogs,
june 2015.”

[8] Z. Pang, L. Sun, Z. Wang, E. Tian, and S. Yang, “A survey of cloudlet

based mobile computing,” in Cloud Computing and Big Data (CCBD),

2015 International Conference on. 1EEE, 2015, pp. 268-275.

Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and

E. Benkhelifa, “The future of mobile cloud computing: integrating

cloudlets and mobile edge computing,” in Telecommunications (ICT),

2016 23rd International Conference on. 1EEE, 2016, pp. 1-5.

[10] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, 2012.

[11] A. Solano, R. Dormido, N. Duro, and J. M. Sanchez, “A self-
provisioning mechanism in openstack for iot devices,” Sensors, vol. 16,
no. 8, p. 1306, 2016.

[12] K. Ha and M. Satyanarayanan, “Openstack++ for cloudlet deployment,”
School of Computer Science Carnegie Mellon University Pittsburgh,
2015.

[9

—

