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Abstract—One of the biggest challenges that Universities face
today is the safety of its people on campus from crimes like
mugging, battery and even shooting in or around the campus
area. Using SJSU campus as an example, over 50 alert cases of
burglaries, thefts, batteries, sexual assaults and other incidents
have been reported in and around the SJSU campus over the last
year. We have Bluelight emergency telephones placed all over the
campus, in all buildings, elevators and on the campus grounds.
These phones can be used to report emergency situations,
suspicious activities, request escorts etc. However, there is a huge
delay between the occurrence of incidents and the arrival of the
policeman at the site.

There is a critical need for a system that would allow the
authorities to locate victims and respond faster to these incidents.
To reduce the delay in reporting incidents and their occurrence
time, we have developed a mobile application that will let
users send alerts along with their real-time location to the
UPD directly from their mobile phones. However, finding the
position of a victim in a building is the most important challenge
we are facing. Many existing systems do not work in indoor
environment, and the state-of-the-art localization systems are
either inconvenience to use or inaccurate enough to pin-point
user’s locations inside the building. In this paper, we propose
a fine-grained location-aware smart campus security systems
that leverages hybrid localization approaches with minimum
deployment cost. Specifically, we effectively combines the Wi-Fi
fingerprinting localization approach with the Bluetooth beacon
based trilateration approach, and improves the location accuracy
to the meter-level with low cost.

Index Terms—Indoor localization, smart campus, location
alert, fingerprinting, trilateration

I. INTRODUCTION

Over the last year, more than 50 alert cases of burglaries,
thefts, batteries, sexual assaults and other such incidents have
been reported in and around the SJSU campus, with more than
twenty of these being reported in the last two months. This
has affected the reputation of SJSU adversely and questions
have been raised about the current security structure of our
university.

We have Bluelight emergency telephones placed all over
the campus, in all buildings, elevators and on the campus
grounds. You can find these telephones in all buildings below
blue colored light, in all elevators and on the campus grounds
as tall blue poles with blue lights on them. These phones
can be used to report emergency situations, suspicious activ-
ities, request escorts etc. The University Police Department
(UPD) also allows you to report non-emergency situations and
anonymous tips at phone number or email address provided
at their website. However, there is a huge delay between the
occurrence of incidents, the reporting time and the arrival of

the UPD at the site. By the time the officials reach the victims,
the suspects have already fled the scene without facing any
consequences.

To solve the problem of the delay in reporting the incidents
and the actual occurrence of incidents, we have decided to
develop a mobile application that will let users send alerts
along with their real-time location to the UPD directly from
their Android mobile phones. In the mean time, we can use
the mobile application to cover areas that without Bluelight
phones. When a user sends an alert message through our
app, the UPD will get the current location of the victims
phone along with previously stored information such as profile
picture, name, age, and others. The UPD will also be able to
monitor their real-time location on the web page and once the
issue is resolved, the tracking will be turned off. With this app,
we aim to significantly reduce delay in reporting incidents,
thus allowing the victims to receive timely assistance and cut
the crime rate in and around SJSU campus.

However, finding the position of a victim in a building
is the most important challenge we are facing. In the last
few years, Location Based Services (LBSs) [1] have seen a
boom in their demand. LBSs can range from services provided
within countries to services provided within a few meters of a
beacon. In this era of mobile phones, LBS has seen increasing
demands and has opened doors to new possibilities limited
only by your imagination. One of the major component of
LBS technology is the localization algorithm, which impacts
the performance, reliability of LBS systems and the battery life
of your mobile phone. Many existing systems do not work
in indoor environment, and the state-of-the-art localization
systems are either inconvenience to use or inaccurate enough
to pin-point user’s locations inside the building. Some of the
challenges with IPS are effects of obstacles on the signal
strength, movement of subject, interference [6] from other
sources of signal, and line of sight nature of many positioning
techniques.

One of the biggest motivation of our project was that
existing Wireless network is excellent and spread through-
out the campus. With the help of the wireless network,
we can implement an indoor positioning algorithm (in this
case, Fingerprinting) and find the real-time position of users
through their phones. In this paper, we propose a fine-grained
location-aware smart campus security systems that leverages
hybrid localization approaches with minimum deployment
cost. Specifically, we effectively combines the Wi-Fi finger-
printing localization approach with the Bluetooth beacon based



trilateration approach, and improves the location accuracy to
the meter-level with low cost. We compared our system with
three existing systems: Easy Floor Map, Redpin and FIND,
the result shows that our system achieves best accuracy with
no performance degradation over time.

II. SYSTEM OVERVIEW

A. System Design

Bluetooth + Wi-Fi Sniffer C
i D Rlert

Victim Mobile

e =m E

UPD  Web Application

Red pin server

‘ Fingerprinting Engine‘

i

ing database

(SVM Classification)

¢a

Architecture of Smart Campus Alert System Trilateration Database

Fig. 1. The system architecture.

Fig. 1 shows the architecture of our proposed Smart Cam-
pus Security Alert System, which mainly consists of Mobile
Application, cloud server, fingerprinting engine database and
trilateration engine, and the Web Application.

We have implemented several modules which perform dif-
ferent functions needed in an alert system. The servers are
deployed on the AWS platform to have independent access
from any location. Our system also contains a mobile appli-
cation and the web application which are deployed on mobile
and web platform.

The main parts of our architecture are fingerprint recording:
the fingerprints for all the location inside the campus buildings
are recording in the first phase. These fingerprints are stored in
the cloud database. These fingerprints are sent to the database
at constant intervals to create large set of values which will
be helpful to calculate the location.

Locating the user: As soon as the mobile user presses the
alert button. The mobile application will activate the Bluetooth
and the Wi-Fi scanner. These scanners will analyze and
record the all the signal strengths of the nearby access points
and will send these measurements to server. The server will
calculate the position of the user using these measurements
and will send this location to Mobile and the Web application
respectively

Web application: The web application serves the purpose
of receiving the notifications and alert from the mobile appli-
cation which is used by the victim to send the alert. It also
provides a clean user interface which shows the location of
the user along with the alert details and the user details. This
web application will inform the security officials about the
location of the victim and will constantly change as the user
moves through the area. This keeps the security officials aware
of the current position of the user.

Server and database: There are two cloud servers- Node
and Java. These are deployed on AWS cloud which makes the
servers accessible via the internet. With the help of this server
the fingerprints from any building can be recorded. Hence,
each individual inside the campus can send the fingerprints
as per their convenience. Therefore, the training model will
be constantly trained and this trained model will be used for
predicting the location of the user when the user sends the
alert.

B. Indoor Localization via Wi-Fi systems

Using Wi-Fi systems for indoor positioning has a number
of advantages. Some of these advantages are listed: Wi-Fi is
readily accessible in almost all buildings nowadays. However,
the advantages of Wi-Fi networks provide a cost-effective
solution for implementing LBS indoor environments [1]. No
additional hardware is required. No need to install further
software, Wi-Fi networks offer high scalability. Unlike GPS,
Wi-Fi signals can penetrate through obstacles, fingerprints for
target locations are available for most indoor positions. Despite
these advantages, there are a few drawbacks of using Wi-
Fi systems. For example, a lot of manual work is required
to acquire fingerprints of the entire area of coverage. The
presence of obstacles causes multi-path and the environmental
conditions (climate, etc.) all affects the signal strength. Other
Wi-Fi devices might lead to interference which further reduces
accuracy.

In Wi-Fi fingerprinting, we create a map of a selected area
based on the Received Signal Strength Index (RSSI) values of
available Wi-Fi access points. Depending on the requirement
of the fingerprinting algorithm, some filtering may need to be
applied to collect the fingerprint values of particular access
points only. These values are then stored in a special database
called Fingerprint Database. The mobile device is located by
taking measurements at a location and matching the fingerprint
with the values in the database [15]. There are two phases in
fingerprinting. In the first phase is an offline phase, i.e. there
are no database values yet and the system needs to be trained.
This phase is known as the training phase or calibration
phase. Radio maps are recorded in this phase and fingerprint
values of all access points are entered into the database. In
the second phase, the fingerprinting algorithm takes the user
input and produces an output after matching the input with the
database entries we obtained in the first phase. Fingerprinting
algorithms use usually use some pattern recognition techniques
such as K-nearest Neighbors (KNN), artificial neural networks,
Bayesian interference or support vector machine (SVM) [2].
The system may also use a combination of these algorithms to
improve accuracy. Fingerprinting may also be combined with
other techniques such as trilateration as shown in [3].

III. SYSTEM IMPLEMENTATION

We have added enhancements to the original Redpin server
[4]. This server is used to communicate with the database
engine and the SVM engine. We have kept the functionality
to communicate with the database for Wi-Fi readings. We



have added the functionality to add Bluetooth readings. The
readings sent by the scanner are to be added to the database.
The readings dataset is divided into individual readings and
then added to the Bluetooth readings table created in the
database.

Fingerprinting Engine. Whenever the fingerprinting engine
receives the values of the alert message it uses the SVM model
to predict the location of the user and the map. This data is then
forwarded to the trilateration engine for further calculation.
Fingerprinting engine also works to create a SVM model in
the training phase.

Node Server. Once the fingerprinting engine calculates the
room number it is sent back to this server. This server then
sends the data to the node server for further positioning and
display on UL

Fingerprint Database. The fingerprint database stores the
fingerprint measurements of the different locations that we
have mapped in the system. It will be used by the finger-
printing engine to match and retrieve the user location.

Trilateration Engine. We are achieving trilateration of a
user using Bluetooth devices fixed by us at various position.
With an increase in distance between the Bluetooth devices the
signal strength decreases. But this signal strength also depends
upon other environmental factors like solid obstacles, walls,
people etc. Each environment and device differs. We have used
Bluetooth devices as our nodes.

Trilateration Database. Trilateration database is used to
map the locations to the Bluetooth devices corresponding to
it. This table is used by the trilateration engine for local-
ization. When the trilateration engine receives the name of
the Bluetooth from this database it will filter out the rest of
the Bluetooth nodes found by the Bluetooth sniffer. This will
help the trilateration engine calculate the position better by
removing the unwanted Bluetooth nodes

Web UI The web Ul is used only by the authorities to see
the location of the user sending the alert. It displays the map
with the user location on it. The user position is also displayed
in the text format beside the map.

o
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Fig. 2. The developed system consists of the web part and mobile app part.
Fig. 2 shows the developed system consists of the web

part and mobile app part. Fig. 3 shows the architecture of
the classes of our implemented system.

Fig. 3. The architecture of the classes of our implemented system.

IV. INDOOR LOCALIZATION

The implementation for the Smart Campus Indoor posi-
tioning system covers the process setting the fingerprints to
the database which will help build the training model for
predicting the location of the mobile user. It also covers
the positioning using Bluetooth trilateration mechanism which
give more accurate position of the mobile user. It consists of
three major components Android application to record and
send the fingerprints to databases, Java Server to send the
data to database and calculate the location of user using
SVM classifier. Node server to perform trilateration to get the
approximate location of user. Web Application to show the
results of SVM classifier and Bluetooth trilateration on the
map. Fig. 4 shows the sequence diagram of our system.

Fig. 4. The sequence diagram.

First, the Sniffer (This is the scanner which is also referred
to as sniffer) will be initiated once the user wants to take
a reading. It will create a sniffer object and initialize the
variables. The sniffer will then start to scan the Bluetooth
and Wi-Fi access points. The main attributes it will scan
are their IDs, Names, and RSSI values. These values are
then sent through filters to clean out unwanted data. For
Wi-Fi only SJSU Premier Access points will be taken into
consideration. Other Wi-Fi will be removed from the sniffer
object. Similarly, for Bluetooth only the Bluetooth devices that
we have positioned will be kept in the sniffer object. Rest of
the Bluetooth device like phone and speakers nearby will be
removed from the sniffer object. Once the sniffer object is
cleaned the sniffer object will be sent to the Backend server.



Then either it will be added to the database for storage or to
the Fingerprinting engine to calculate the position.

1) Fingerprinting Implementation: The setting of finger-
print consists of sending the signal strengths of Bluetooth and
the Wi-Fi access points to the server. Both Wi-Fi and Bluetooth
service are registered and bind to the background service of the
mobile application. This keeps the Wi-Fi and Bluetooth service
running in the background such that even if the application is
minimized the data will be sent to the server at fixed interval.
The two sniffers will capture the signal strengths of all the
nearest Access Points and will send it to the server.

The two sniffers will capture the signal strengths of all
the nearest Access Points and will send it to the server. A
handler is set to handle the response and failure of the action
of adding the fingerprint to the data base. It will return the
success message if the fingerprint tis set successfully and will
execute On Failure method if the request does not succeed
in adding the fingerprints to the database. We have set several
finger prints across the floors of the SISU engineering building
to setup our fingerprint database. This make us to physically go
to the location which we want to set and take measurements.

While setting up the fingerprints we had to take care that
the fingerprints are not too near or far away from each other.
Therefore, most of the fingerprints we have taken are either
20 to 40 feet away or in a line of sight with each other. This
implementation gave us more correct readings than setting the
fingerprints too near to each other yet useful when locating
the user’s position. After sending all the location and the
fingerprints to the database, the fingerprinting engine will be
able to retrieve these values and then the SVM algorithm
would be able to create the train model. This model can be
used for predicting the location of the users for sending the
alert.

2) Support Vector Machine Implementation: The location
of the user is determined with the help of Support Vector
Machine algorithm [5] which predicts the location of the user
based on the data which is provided by the train model which
was generated during the fingerprinting. Libsvm 2.9 [5] is used
as a java library to classify the locations in the training model.
Libsvm has various tools for C-SVC classification, epsilon-
SVR regression and one-class SVM. SVM implementation can
be divided into two parts:

Training. All the fingerprints are pulled from the database
and are categorized into the numeric form such that each
location and their corresponding Access points will represent
distinct numeric value. Vertical blue line represents the id
of the location starting from vertically. Horizontal red line
represents the id of the Access points (Wi-Fi + Bluetooth)
starting horizontally. The fingerprint data is transformed to
SVM format before it is used for training the model.

Fig. 5 shows the fingerprinting training flow chart.

Prediction. With the help of the training model, it is
possible to predict the location of the user using the predict
function provided by the libsvm library. Test fingerprints are
recorded using the android Wi-Fi and Bluetooth scanner and
are passed to predict function as an input. The libsvm provides
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Fig. 5. The SVM training flowchart.

the functionality to predict the values of attributes based
on the previous set of attribute values. More the values are
recorded for the training model, more the accuracy given by
the prediction. The test data would be sent to SVM which will
contain the signal strengths of the various access point. Based
on this data, the prediction model will find out the name of
the given location. For best results of the prediction, the SVM
algorithm is tweaked by making few changes. Fig. 6 shows
the SVM prediction flow chart.
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Fig. 6. The SVM prediction flowchart.

A. Bluetooth Trilateration

Average signal strength attenuation. Fig. 7shows the
average signal strength column is plotted against the distance
column. It is seen that the averaged signal strength decreases
as the distance increases. These distances along with their
RSSI values were recorded in the line of sight. The averaged
values were more accurate as compared to normal RSSI values
(without averaging). The graph is plotted with 3 measurements
at each 10 feet distance. The distance of 60 feet was covered



which is more than the distance of the average size hall. The
average RSSI values recorded were more accurate the next
time the readings were taken.

To obtain the distances based on measured RSSI, distance
table was made based on the Bluetooth signal attenuation.
The average signal strength column shows the values of the
RSST averaged at a fixed position. We have measured the RSSI
values at intervals of 3 feet. From the average signal strength
graph, it can be concluded that as the distance increase by 10
feet each time the signal strength drops by -5 dm. For example,
if the frequency received from a node is between -45 dBm to
-52 dBm, the distance of that node from the mobile device is
approximately 3 feet. Similarly, if the averaged value of the
RSSI falls between -59 dBm to -68 dBm, the distance will be
15 feet approximately.
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Fig. 7. The average signal strength attenuation.

We are achieving trilateration of a user using Bluetooth
devices fixed by us at various positions. With an increase
in distance between the Bluetooth devices the signal strength
decreases. But this signal strength also depends upon other
environmental factors like solid obstacles, walls, people etc.
Each environment and device differs. In this project, we used
three Bluetooth nodes for trilateration. We placed these three
nodes in a room large enough for calculating the positions of
the mobile device in multiple positions. The Bluetooth nodes
transmit signal the mobile phone receives from each of them
and shows their respective RSSI value.

The trilateration engine calculates the distance of the user
from each of the Bluetooth node. show its position by plotting
circles of the calculated radius on the floor map of the building,
with the respective Bluetooth nodes being the center of the
circles. The intersection of all the circles gives the approximate
position of the mobile phone. Note that the calculated position
is an approximate value because the intersection of the circles
is not a pinpoint and larger than the size of the mobile phone.
Fig. 8 shows the localization database including fingerprinting
and trilateration.

V. PERFORMANCE EVALUATION

To evaluate the performance of our proposed system, we
compared the results of the four types of solutions. Each
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Fig. 8. The localization database including fingerprinting and trilateration.

solution takes input of a particular type of data set. Training
data was collected by each solution. The same location points
were selected as training data points for each solution in order
to get the fair comparison. Currently as we are testing on one
floor we have taken around 30 readings as training data on
the floor. The actual database covers two floors. The detailed
descriptions of different solutions are:

1) Solution 1: All Wi-Fi access points were taken into
consideration. SVM model was created on basis on
them. Examples of these systems are Redpin, Find, easy
floor map as open source projects.

2) Solution 2: Some low-fidelity access point has been
removed with only premier access points taken into
consideration. SVM model was created on basis of them.

3) Solution 3: Bluetooth RSSI readings were taken into
consideration. SVM model was built on basis of both
readings (Wi-Fi and Bluetooth).

4) Solution 4: Our proposed solution. We utilize model-
based trilateration to further improve the fingerprinting
performance.

There are three types of tests for IPS. One is for floor
level testing using fingerprinting. In this test, we will compare
solution 1 and solution 2. We have not considered solution
3 and solution 4 as we did not add Bluetooth nodes in this
test. The performance of solution 2, 3 and 4 should be the
same. The second test is room level testing in which we will
compare all four solutions. In this case we are testing all four
solutions to compare their accuracy at room level, i.e. to see
which one works best within a room. We have conducted the
room test in Engineering Building Room 331. The third test
compares solution 1, 2 and 3 with respect to their aging, i.e.
how much the accuracy deteriorates over time. For this test
we took measurements of solution 1, 2 and 3 at the same



test locations after 24 hours and then again after 7 days. We
calculated the average distance error of all three sniffers for
each day’s readings and compared them with respect to the
change in accuracy of each. We did not consider solution 4 in
this test because the solution 4 and solution 3 should have the
same deterioration performance.
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Fig. 9. The test locations in the third floor of our engineering building.

Fig. 9 shows the test locations in the third floor of our
engineering building. The red markers in the figure shows
the fingerprint locations, i.e., the training points. The Green
markers are the test points used to evaluate the accuracy of
different solutions.

When we need to test the accuracy within one room, we
deployed the Bluetooth node in Room 331. As shown in
Fig. 10, we selected multiple points at various locations in
the room as fingerprinting point and test point. This is the
same room where we are going to do the trilateration. The
green circles in Fig. 10 show the actual location of the device
of each test. For solution 4 we have taken multiple tests at
each location. The red dots show the location of the Wi-Fi
fingerprint. The black dots show the location of the Bluetooth
nodes in the room.

A. Floor Level Testing

Fig. 11 shows the location error (in feet distance) of the
multiple testing points for solution 1; Fig. 12 shows the
location error (in feet distance) of the multiple testing points
for solution 2. Fig. 13 shows the performance difference
between the solution 1 and solution 2 at the floor level. The
average distance error is calculated from the readings taken for
solution 1 and solution 2 as shown in Fig. 9. From the results,
we see that solution 2 gives less average error in distance when
compared with solution 1.

B. Room Level Comparison for all Solutions

We have tested all four solutions at room level with multiple
test locations as shown in Fig. 10. We are comparing two
aspects of these systems: the average distance error which
is the distance between the calculated distance and the actual
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Fig. 10. The test locations in Engineering Building Room 331.
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Fig. 11. The location error in distance (feet) for solution 1.

distance and the accuracy in terms of the displayed room of
the user. For example, if the user is in Room 331, the displayed
room should also be Room 331 for the result to be correct.

From Fig. 14, we can see that solution 4 (our proposed
solution) has a significantly low average distance error. It
provides more accurate position of the user on the map.

Fig. 15 shows solution 3 and solution 4 have 100 percent
accuracy when it comes to the room level accuracy. Solution 1
being poorest, and solution 2 is better but the accuracy is still
not acceptable. We can conclude that our proposed solution
(solution 4) has the best localization implementation as it has
a 100 percent accuracy and least average distance error.

C. Accuracy over long time period

The key problem for fingerprinting-based solutions is the
performance degradation over time as the radio signal fin-
gerprint changes over time. As shown in Fig. 16a, we are
comparing sniffers solution 2 and solution 3 for accuracy over
a period of time. We tested solutions at day 0, after 7 days
and again after 11 days. Day O is the day on which we took
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Fig. 12. The location error in distance (feet) for solution 2.

Solution 1 Solution 2
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Fig. 13. The floor-level location error comparison in distance (feet) for
solution 1 and 2.

the readings of the fingerprint. We can see that both solution 2
and 3 had the same results on Day 0, which were all correct.
However, after a week, solution 2 starts to show incorrect
results. It’s average distance error increases and accuracy
decreases. On the other hand, solution 3’s average distance
error and accuracy remain constant over a period of time.
This means that solution 3 produces reliable results, which
is a highly desirable property in any localization system.

We see that solution 3 has a constant distance error over a
period of time. On the other hand, solution 3’s average distance
error and accuracy remain constant over a period of time.

Solution 2 Solution 3 Solution 4

SOLUTIONS

Solution 1

rage Distance Error in Feet

Fig. 14. The room-level comparison of average location error comparison in
distance (feet) for all solutions.
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Fig. 15.
solutions.

The room-level comparison of localization percentages for all

Da
TIME PERIOD (DAYS)

(a) Figure 1

(b) Figure 2

Fig. 16. The performance degradation overtime: (a) accuracy in terms feet;
(b) accurate localization percentage.

This means that Sniffer 3 produces reliable results, which is
a highly desirable property in any localization system. This is
contributed by the added Bluetooth node as the reference node,
which can mitigate the performance degradation problem.
However, solution 2 has degraded over time and its average
distance error has increased.

From the above results, we can conclude that using a hybrid
system (in our case Fingerprinting plus Trilateration) results
in a more stable and reliable localization system.

VI. RELATED WORK

Redpin is an open-source, fingerprinting based indoor posi-
tioning system built specifically for mobile devices, and relies
mostly on the user community to enter the location values
rather than the conventional training and setup phases that
most of the other systems use. This is in order to reduce setup
time and allow users to use the application right away. Through
the fingerprinting algorithm, Redpin guarantees room-level
accuracy [6].

Redpin provides symbolic identifiers to determine the loca-
tion of a device. For example, Redpin will save the building
name and room number to identify a particular room (En-
gineering Building, Room 189) instead of using geological
co-ordinates. This allows Redpin to eliminate the training
and usage phases and adjust to changes - like downtime
of an access point or replacement of a router - with ease.
Disadvantages of Redpin- No support for positioning with
Bluetooth, Does not use trilateration. Redpin gives only room-
level accuracy. To track the real time position of the users
mobile device, trilateration can be used.



FIND is similar to Redpin and it also depends upon its
user community to insert data into the database. It also uses
the same algorithm of SVM as Redpin [6], [7]. Find uses
posteriors Nave-Bayes to calculate the location of the user.
It is a classification technique based on Bayes theorem with
an assumption of independence among predictors. It takes the
fingerprint and the parameter set. Using this fingerprint, it also
passes a parameter set which is the schema of the fingerprint.
This schema includes the data of the access point in the form
of key, value of pair.

Easy floor map is an indoor grid based localization model,
which locates the user location on the principle of cell grading
[8], [9], [10]. Similar to other indoor localization techniques
the Easy Floor Map contains two phases training and locating.
It records the Wi-Fi access points in the training phase and
grades the cell based on the similarity of the test data. In
learning mode, the map is loaded and the map is divided into
a grid of size 10 X 16. Each cell in the grid represents a
distinct specific location and is represented by a square. The
scan rate is set to scan the for the Wi-Fi access points at the
fixed interval. This scan rate could be set to maximum to get
more accurate results.

VII. CONCLUSION

With the help of this project, victims of incidents such as
theft, battery, etc. will be able to get timely help from the UPD.
This will help reduce crime in and around the SJSU campus
and also receive timely response for the victims. This applica-
tion can also be further used to as a positioning system in other
applications. From our observations of the positioning system,
we found out that using a hybrid localization system such as
ours (where we used Wi-Fi + Bluetooth for Fingerprinting
and Bluetooth for Trilateration) gives better localization results
than using just a single technique such as Fingerprinting or
Trilateration alone.
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