Multi-Tenant Network Acceleration Scheme for
OpenStack

Linh (Paul) Phan, Kaikai Liu
Computer Engineering Department
San Jose State University (SJISU)
San Jose, CA, USA
Email: {Linh.phan, kaikai.liu} @sjsu.edu

Abstract—Cloud virtualization and multi-tenant networking
provide Infrastructure as a Service (IaaS) provider a new
and innovative way to offer the on-demand services to their
customers, such as the easy provisioning of new applications and
the better resource efficiency and scalability. However, existing
data-intensive applications require more powerful processor and
computing power, as well as a high bandwidth, low latency and
consistent networking service. In order to boost the performance
of computing and networking services, as well as reduce the
overhead of the software virtualization, we propose a new
data center network design based on OpenStack, which is a
promising cloud operating system solution. Specifically, we map
the OpenStack networking services to the hardware switch, and
perform hardware-accelerated L2 switch and L3 routing to solve
the software limitations, as well as achieve the software-like
scalability and flexibility. We designed our prototype system
via the Arista Software-Defined-Networking (SDN) switch, and
evaluated the performance improvement in terms of the band-
width and delay using various tools. Our experimental results
demonstrate that our datacenter networking solution achieves
higher bandwidth, lower latency, and lower CPU utilization of
the host server.

Index Terms—OpenStack, Arista, EOS, Neutron, LinuxBridge,
Cloud Computing, Cloud Virtualization

I. INTRODUCTION

The internet today is data driven with around 90 Exabyte
of data flowing on the internet every month in the form of
videos, images and other enriched content [1]. The demand for
robust virtualized data center architecture is rising, small and
large businesses are accepting cloud at a tremendous rate with
around 175 billion dollars of revenue generated from public
cloud services in the year 2016 [2].

Infrastructure as a Service (IaaS) is an instant computing
infrastructure, provisioned and managed over the Internet.
Quickly scale up and down with demand, and pay only
for what users need, cloud computing is becoming a more
efficient, low-cost, flexible and scalable service for companies
and always in high demand. For networking, speed, perfor-
mance, and availability are the essential requirements, hence
it is critical to choose a robust cloud computing software
that satisfies all the requirements, with minimal cost, fast
deployment, easy management and scalability. Among variety
choices on the market, OpenStack provides a solid set of
software tools for building and managing cloud computing
platforms for public and private cloud, with scalability and
flexibility.

As the network grows and network traffic requires more
processing power, faster speed and lower latency, software
cannot handle much workload due to their limits and con-
straints. Therefore, it is essential to replace or enhance Open-
Stack vanilla software with alternative solutions, by taking
advantages of its flexibility. In order to utilize the virtual-
ized resources and improve the network performance, many
researchers have proposed solutions to accelerate the network.
Authors in [3], [4] propose to utilize the Mellanox FDR Infini-
Band interconnect and Altera FPGA to accelerate the network
and integrates with OpenStack. These approaches improve the
speed at the cost of additional expensive hardware. In the
mean time, using additional network devices also changes
the existing cloud network topology and has the compatibility
issues for normal applications.

In this paper, we present a practical solution to accelerate
the networking performance in the cloud for data-intensive
applications. Our solution does not need additional network
hardware, e.g., InfiniBand or FPGA, and does not need to
change existing cloud network infrastructure and software
interface. Specifically, we utilize the hardware-based packet
processing features in existing SDN-enabled switches, and in-
tegrate with the popular open-source Cloud management soft-
ware, OpenStack Neutron. Through our framework and soft-
ware drive, any network changes in the OpenStack dashboard
will be automatically mapped to the physical SDN switch for
hardware-based processing. Such integration will truly mix
the benefits of software defined networking and hardware-
accelerated processing together. It provides a scalable network
architecture for multi-tenant data-intensive applications in the
Cloud, and also facilitates the network programmability of
OpenStack networking using APIs and dashboard.

II. METHODOLOGY

The benefits of using a physical L3 switch to replace the net-
working services that are handled by software in OpenStack,
such as vRouter for layer 3, and Linux Bridge or OpenVSwitch
for virtual switching, is to offer to the customers more power,
speed, performance, reliability as well as scalability. For
a small scale network, software switching and routing can
handle the workload with acceptable efficiency, which are
perfect for a lab or local cloud environment. However, as
the network scales up and traffic is more heavy and more

intensive, which are commonly seen in data center or cloud
TaaS service provider, hardware networking devices will be
more reliable, and are able to offer more power, faster speed
and lower latency.

Controller
N N CVX-Server
(eutron \
Layer 2
OpenStack
Service

ML2 Plugin

_ Y,

Layer 3

CVX Client

Fig. 1. Neutron ML2 Plugin - CVX Overview.

OpenStack Neutron networking service offers Modular
Layer 2 (ML2) plugin, which is a framework that allows
vendors to implement their own driver to work along with
OpenStack layer 2-3 services. Arista EOS has extensive inte-
gration with the OpenStack Neutron project, giving customers
a powerful network platform on which to run OpenStack
deployments. By leveraging the Arista ML2 driver and Layer
3 service plugin, operators can automatically provision tenant
networks across the physical infrastructure.

The Arista ML2 mechanism driver enables Neutron to au-
tomate VLAN provisioning on Arista switches, through Arista
CloudVision Exchange (CVX). As shown in Fig. 1, CVX
Server communicates with OpenStack Neutron on Controller
node, and manages corresponding VLAN on the EOS switches
as well as keep a network topology of available physical
switches. Through LLDP, the switches are aware of what
compute nodes are connected.

Tenant 1
| Tenant 2

Compute-1

Compute-2 Compute-3

Fig. 2. Arista EOS - Compute Nodes Overview.

As VM instances are created on compute nodes, the Ether-
net trunk port between the ToR and compute node is automat-
ically configured to allow the required VLANs. As shown in
Fig. 2, the Arista ML2 mechanism driver provisions VLANs
in parallel with the virtual switch driver, that configures
the VLANs on the virtual switch on the hypervisor host,

and provides tight integration between network and compute
provisioning.

The Arista L3 service plugin replaces the existing Neutron
layer 3 service plugin. While Layer 2 need CVX to communi-
cate with Neutron, L3 service plugin directly creates switched
virtual interfaces (SVIs) on TOR switches when a virtual
router is created in Neutron. Once configured, the hardware
switch becomes the default gateway for the VMs, and all
routing can be done in hardware on the switch, instead of
in software at the Neutron network node.

III. IMPLEMENTATION

A Lab environment has been setup for testing and verifica-
tion. The setup includes two core components:

Main Server: runs core OpenStack services, and works as
the gateway for users to access via Horizon Web interface for
instances management.

Arista L3 Switch: a 7050x EOS switch is used as a Top
of Rack switch, also as a router for different network within
OpenStack. In addition to the core components, there will be
additional components that are used for testing, which are
optional, including:

Rack Server: a server with high memory and strong
processor, which can be used as an extra compute node for
bigger test cases.

Provider host: a computer that lays on the provider net-
work, for testing accessibility and managing instances.

B. Topology and Setup An OpenStack Newton environment
has already built on top of the Server with KVM Hypervisor,
The Servers and all Virtual Machines are running Ubuntu
16.04.2, including OpenStack core nodes as following:

Controller node: manage services such as Identity with
Keystone, Images with Glance, Compute with Nova and
Networking with Neutron. Controller node will also run the
web based GUI Horizon for users and admin to connect and
manage their instances as well as network.

Compute node: utilized for computing service, whom re-
sources such as memory and processor will be shared between
instances.

Controller Node and Compute Nodes are installed based
on the documentations on OpenStack official website, with
all the configuration and installation steps are written into an
executable scripts for quick deployment under 1 hour.

openstack

Fig. 3. Network Layout Overview.

Beside OpenStack core nodes, theres also a VM running
vEOS as a virtual switch to work as CVX-Server. Fig. 3 shows

the network layout of our experiment. All VMs is bridged
to the physical host ethernet port, which are connected to a
physical Arista EOS L3 switch, which will be used as CVX-
Client for managing L2 and L3 service of OpenStack.

The CVX-Server will be used as the middleware for com-
municating between physical EOS switches and OpenStack
Neutron via EOS API (eAPI). The CVX Server will get noti-
fied on new network creation from Neutron, and distribute the
information to CVX-Client. The server also keeps a topology
of available physical switches and hosts, as well as OpenStack
instances.

IV. EXPERIMENTAL EVALUATION

Fig. 4. The experimental environment.

The experimental environment is shown in Fig. 4. Neutron
network controller node runs both OVS plugin and the Arista
driver. Arista driver uses EOS API (eAPI) to communicate
with Cloud Vision eXchange (CVX), which has the entire
view of the Openstack cloud and communicates with the
launched VMs in the compute node. The figure also has two
provider networks, tenant 1 and tenant 2 with VLAN 1 and
VLAN 2 automatically configured on the switch. OVS plugin
conveys the VLAN choices to the Arista Driver via Cloud
Vision Exchange. The Arista driver keeps CVX/Arista switch
updated with the termination or relaunching on the VMs on
other compute nodes or when the new provider networks are
created which in turn updates VLANSs created on the switch
interfaces. In case of failure, CVX has the ability resync its
state.

A. Test Scenario

In order to verify, a topology has been setup with test

scenario: one tenant - two network - one router.

o When an internal network is created through either CLI
or the web GUI Horizon, a new network is confirmed to
be seen on CVX-Server and a Dynamic VLAN is created
on EOS switch.

o When a virtual router is added, it is directly created on
EOS switch as a SVI, and the IP is the default gateway
of the private network it connects to.

B. Performance Test

Performance test will be performed in order to compare
Layer 2 and Layer 3 differences when using OpenStack with
vanilla networking service and with Arista EOS ML2 plugin.

o Layer 3 testing will be performed between instances that

lays in different network, and traffic has to go through
vRouter.

o Layer 2 testing will be performed between two instances
on the same network, but each on a different compute
hypervisor to force traffic to go through the Switch as
Layer 2 service

Each test will be performed 5 times, then calculate the average
for result statistic.

C. Result

Several performance tests were performed using various
tools to generate bidirectional traffic from a host (client) lays in
the internal network, to another server in the DMZ subnet. The
test will focus on the differences in bandwidth and delay in
both Layer 2 and Layer 3 when using software and hardware
as networking services. The test will use three networking
measurement tools:

o iPerf3: a tool that can generate TCP and UDP traffic for

bandwidth measurement

o nuttcp: a tool that can be used for bandwidth and de-

lay/RTT measurement with TCP/UDP traffic

o mytraceroute(mtr): an advance version of traceroute for

delay/RTT measurement.

Bandwidth — TCP— Layer 2 Bandwidth— TCP - Layer 3

(a) L2 (b) L3
Fig. 5. Bandwidth result for TCP traffic of: (a) L2; (b) L3.

For TCP Protocol as shown in Fig. 5, EOS shows a
performance boost about 100-150Mbps for both Layer 2 and
Layer 3 traffic. For setup with EOS, the bandwidth can reach
671Mbps for layer 2 and 424.4Mbps for layer 3 in average. For
setup with OpenStack vanilla vRouter and LinuxBridge, the
bandwidth can reach 591.97Mbps for layer 2 and 289Mbps for
layer 3. Hence, for TCP traffic, EOS setup definitely increases
the bandwidth performance.

Bandwidth - UDP - Layer 2

= a0
w0
s00
Eu 652
00 14
06
20 OSSN |
b l . . . -
iperts o ety ey

(a) L2 (b) L3
Fig. 6. Bandwidth result for UDP traffic of: (a) L2; (b) L3.

Bandwidth— UDP - Layer 3

For UDP traffic of Fig. 6, the tools focus on flooding the
packets out, hence resulting in high packet loss. For layer 2 and
layer 3, EOS setup shows almost triple bandwidth performance
compared to LinuxBridge/vRouter setup. This is because EOS
setup has the hardware power to do packet routing, while

vanilla setup has to process routing with software which has
limited performance.

RTT - Round Time Trip

24
2.2
21 212
nuttep

Fig. 7. RTT results for TCP traffic.

3

25

2

il

2
1
E1s i3
& 11
1
05

224
7
MTR nuttcp

The round time trip (RTT) are also calculated using both
tools mytraceroute and nuttcp as shown in Fig. 7. EOS and
Linux Bridge shows similar result with less than 1 millisecond
different for both layer 2 and layer 3.

CPU Utilization — EOS — LinuxBridge/vRouter

Fig. 8. CPU utilization - EOS vs. Vanilla Setup.

RAM Utilization — EOS - LinuxBridge/vRouter

S/ /\

Fig. 9. Memory utilization - EOS vs. Vanilla Setup.

The CPU and RAM utilization statistics for EOS and Vanilla
Setup with Linux Bridge/vRouter are shown in Fig. 8 and
Fig. 9. Both are measured for hypervisor machines, with all
NICs set to promiscuous mode to pass all traffic it receives
to the CPU rather than passing only the frames that the
controller is intended to receive. The statistics is monitored
with hypervisors idle in second 0-5, and iperf3 script executed
for layer 2 in second 5-15, follow by layer 3 in second 15-25,
and idle for second 25-30.

For layer 2, because this is a small scale test with two VMs
in separated compute hypervisors, the Linux Bridge shows
better CPU utilization than EOS. This is because in EOS setup,
when traffic has to travel between two instances that in two
different compute hypervisor, the packets are forced to travel
through EOS switch, hence the hypervisor need to processes
the same amount of traffic twice, inbound and outbound.
Meanwhile, in LinuxBridge setup, traffic only needs to be
processed once within the hypervisor, and will cost less CPU
once the cache is updated. They both use a similar amount of

RAM, with EOS costs less RAM since packets does not need
to be processed locally.

For layer 3, the CPU utilization for EOS setup is better than
vanilla vRouter setup. In vRouter setup, when there is a router
involve, this will need extra process power on the controller
with networking service, while in EOS setup, all traffic will
be passed to the switch and processed by the switch hardware.
Therefore, EOS setup also consume less RAM than vRouter
setup because the packets will be processed and stored in the
switch memory rather than in the hypervisor memory.

The results and statistics above prove that Arista Switch
setup has better performance with faster speed and lower
latency than using Linux Bridge, as well as having less
overhead on CPU and RAM utilization. This is very important
when the network scales up, because one or few controller
node will not be enough to process a huge amount of traffic.
Hence, the results can be concluded that, using hardware
devices has better efficiency and performance in routing and
forwarding between instances, and using the design, datacenter
can improve their cloud service for accelerating data intensive
applications.

V. CONCLUSION

The Arista OpenStack solution provides a number of ways
for administrators to orchestrate their Arista switches. The
ML2 plugin automates the provisioning of VLANSs on Arista
switches, and with the Arista layer 3 service plugin, a hard-
ware switch can serve as the routing gateway. The ability to
orchestrate the physical network devices provisioning within
the OpenStack solution is a significant achievement for the
market.

Improving the efficiency and performance in datacenter and
cloud service provider is always an important factor, which
can be done by achieving software flexibility and hardware-
based efficient in routing and forwarding. The design of
combining OpenStack Neutron and hardware layer 3 switches
can eliminate the limits and constraints of software, while
ensuring performance, reliability, flexibility and scalability,
which are required to accelerate data intensive applications.

ACKNOWLEDGMENT

This work is funded by Arista Network. The author is deeply
grateful for the research opportunities, as well as the funding
support and technical guidance from Arista throughout the
project process.

REFERENCES
[1] The zettabyte era trends and analysis. [Online].
Available: http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

[2] Facts and statistics about cloud computing. [Online]. Available:
https://www.statista.com/topics/1695/cloud-computing/

[3] P. Rad, R. V. Boppana, P. Lama, G. Berman, and M. Jamshidi, “Low-
latency software defined network for high performance clouds,” in System
of Systems Engineering Conference (SoSE), 2015 10th. 1EEE, 2015, pp.
486-491.

[4] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and
X. Hu, “Openanfv: Accelerating network function virtualization with
a consolidated framework in openstack,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 4, pp. 353-354, 2015.

