
Edge Computing Embedded Platform
with Container Migration

Labhesh Deshpande, Kaikai Liu
Computer Engineering Department
San Jose State University (SJSU)

San Jose, CA, USA
Email: {labhesh.deshpande, kaikai.liu}@sjsu.edu

Abstract—In a world where the number of smart cities is
growing exponentially, there is a myriad of IoT devices which are
generating immense data, 24x7. Centralized cloud data centers
responsible for handling this huge data are being rapidly replaced
with distributed edge nodes which move the computation closer to
the users to provide low latencies for real-time applications. The
proposed enhancements capitalizes on this design and proposes
an effective way to achieve fault tolerance in the system. The
concept of docker container migration is used to provide a near-
zero downtime system on a distributed edge cloud architecture.
An intuitively simple and visually attractive dashboard design is
also being presented in this paper to remotely access the edge
cloud management services.

Edge Computing, Fog Computing, Internet-of-Things,
Multi-tenant Applications

I. INTRODUCTION

According to Cisco Global Cloud Index, by 2019, the data
produced by people, machines, and devices will reach 500
zettabytes. It is difficult to provide such high bandwidth since
the global data center IP traffic will only reach 10.4 zettabytes
by the year 2019 [2]. There is a need of a system, that can
proactively provide computing services for these IoT devices
based on needs. Edge computing is a technology that allows
the computation on micro-base station, present on the edge of
the network and update the results over the network, which
consequently, solves the problem of high network bandwidth
requirement and as well response time. The edge computing
platform uses docker containers to provide the required isola-
tion of application by separating its execution from external
stimuli and also achieve multi-tenancy by the reuse of the
applications from different containers using virtualization. We
are proposing a service migration architecture in the existing
platform[3] to harness the capabilities of the edge nodes to
their fullest and reduce the downtimes of the system as a whole
by increasing Fault tolerance. Docker container migration is
the addition that is being proposed to ensure that the system
doesnt stop in a case where a container stops responding
due to overloading or in a case it completely fails. Docker
container migration basically checkpoints a live container, at
one location, and then that container along with all its data
is restored it at some another location. Users are echoed a
connection interrupted message during the live migration and
get their data back in the same state after the migration.
This gives a much better experience to users as compared

to receiving a complete loss of connection to the server and
reconnecting to the server. Enhancing the Edge Computing
Embedded platform using docker migration will take into
account the same steps of the live migration and migrate
live containers. After assessing the accessibility of the present
architecture of the system there was a need to restructure the
UI design of the system, the improved UI design proposed in
the further sections of the paper show its perks in terms of
accessibility of the system.

II. MOTIVATION

There are two main design goals for this system, namely,
1) There is a need to build a highly scalable, abstracted

execution environment that supports multi-tenancy. The
spike in the use of IoT devices and the growing number
of smart cities pushes the developers to steer their
designs to efficiently support multiple spikes in the
amount of data reaching the servers. A mutli-tenant
architecture proves to be the backbone of a successful
system in a smart world.

2) To create an easy to use interface to facilitate the interac-
tion of the users with the underlying mesh of edge nodes.
A cognitive design of the user interface has statistically
proven to increase user efficiency and coming from a
Human-Computer interaction point of view, provides
intuitive base for a strong sense of directness in the use
of a system[1].

III. CHALLENGES

After careful consideration of the current infrastructure and
research in the field of IoT devices and building a smarter city,
the following areas were identified that needs to be addressed
immediately.

1) Eradicate downtime and provide dynamic adaption, mi-
grating live docker containers between edge nodes in
a network poses a significant challenge in terms the
amount of rerouting of the information from IoT devices
to the containers and the inter-container communication.

2) Requirement of a Fault Tolerant architecture: IoT de-
vices are in a constant state of sending data to the cloud
servers. This makes the servers a hot spot and cause
the server to crash or act less efficaciously. In such a
case the users can face significant downtime and loss



of data. A number of architectures have been developed
for handling such a scenario like the Raft Consensus
Algorithm, the well-known Paxos Algorithm, etc.

3) Dynamic Environment- There is always an assumption
made that the environment in which the end nodes are
deployed will be stable and will withstand all kinds of
adversities. In reality, there are numerous factors that
affect the functioning of the edge nodes, they may be a
victim of a cyber-attack or any change in the network
topology in the deployed area. A resilient and scalable
infrastructure is required to withstand unforeseen adver-
sities.

4) Unbalanced cluster load- The overloading of the cluster
nodes can cause the re-balance process to make specific
application pattern implementation which narrows the
choice of workloads that can be hosted in the cluster.
This challenge can be tackled using docker container
migration.

5) Un-cluttered User interface- The amount of data that is
being processed at the edge nodes is huge and presenting
this data on the dashboard in an organized way without
distracting the user with cluttered, confusing data poses
a unique challenge in this project. Displaying data
using interactive charts with such huge data is another
challenge in this edge cloud solution.

IV. SYSTEM ARCHITECTURE

The extension of Openstack for cloudlet (Kiryong Ha, Ma-
hadev Satyanarayanan), Openstack++ provides multi-tenancy
through VM based computing resources. This solution of pro-
viding hypervisor based computing resource to establish multi-
tenancy adds redundant software abstraction layer to give a
non-deterministic application. This project, aims to bring a
solution to provide an architecture of a robust platform for the
edge cloud that offers multi-tenant, isolated user applications.
The Platform provides computing resource through a lighter,
more deterministic container based virtualization (IaaS). The
computing resource holds all the dependent libraries, runtime
environment required to run the isolated application (PaaS).
The edge cloud provides a solution offering remote dynamic
discovery that enables user to control and manage applications
remotely through a web application dashboard (SaaS). A light
container based migration scheme is proposed to achieve high
availability and near zero downtimes.

A. Server/Cloud

Amazon Web Service (AWS), is used to host a virtual
instance of an Ubuntu machine, which is the server that acts
as a message router, a database and hosts the dashboard. Refer
Fig.1.

B. Edge Node

Client side contains an edge node. An edge node can be any
embedded device such as Beaglebone Black, Raspberry Pi,
Jetson TX1 and so on. Docker engine is installed on the edge
node which allows the users to deploy their application by

EdDocker
Container	

1

Docker
Container	

2

Edge Node 1, Region 1

Ed
Migrated	
Docker

Container	1

Docker
Container	

2

Edge Node 2, Region 2

Docker
Container	

2

Server

Re-balancer

Request	
Handler

Checkpoint using HTTP 
request Restore using HTTP 

reponse

Fig. 1. System overview and Container migration overview

creating containers. Edge node communicates with a WAMP
agent to receive the commands issued by users. The response
from the edge node is sent back to notify the user about the
action taken by the Docker.

C. Dashboard(Work in progress)

The user interface of an application will often make or
break it. Although the functionality that an application pro-
vides to users is important, the way in which it provides
that functionality is just as important. An application that is
difficult to use wont be used. It wont matter how technically
superior your software is or what functionality it provides, if
your users dont like it they simply wont use it. A cognitive
design approach is used for building a rich user interface.
Dashboard-ing of the project plays an important part while
considering the impact of the system on the end user. A box
layout is being used for the dashboard development, with focus
on streaming live application and container data on the main
dashboard screen, providing real-time access to the application
and container data. Constantine and Lockwood have described
a collection of principles for improving the quality of user
interface design. The user interface design for this project
tries to satisfy all these principles and provides an easy web
interface for accessing the edge cloud management services.

Fig. 2. Dashboard overview

1) UI Design principles:
1) The structure principle- The design of the dashboard

has been arranged, on a clear, consistent model that is
apparent and recognizable to users, putting related things
together and separating unrelated things, differentiating
dissimilar things and making similar things resemble one
another. Tabbing is done in the dashboard to achieve this



principle, the tasks related to the applications, containers
and devices are separated into different tabs, which takes
care of just one single type of task.

2) The simplicity principle- The design is simple and
articulate in a visual aspect, providing good shortcuts
that are meaningfully related to longer procedures. The
left hand column providing access to all the major tasks
on the dashboard is a feature fulfilling this principle.

3) The visibility principle- The design ensures keeping all
needed options for a given task visible without distract-
ing the user with extraneous or redundant information.
Tasks like container or application management are
simplified by making use of collapsible internal tabs
which ensure that only one operation is active and visible
to the user at any given time. If the user has to create a
new container then he has to click on the create container
tab which will open up while other tabs like start, stop,
delete stay collapsed and dont confuse the user with
overwhelming information.

4) The feedback principle- The design keeps users in-
formed of actions or interpretations, changes of state or
condition, and errors or exceptions that are relevant and
of interest to the user through clear, concise notifications
on the dashboard. The map feature included in the create
container tab fulfills this principle, when a user enters
a location for the container, the map gets updated with
the present location giving user instantaneous feedback
on his actions.

5) The reuse principle- The use of the same color scheme
makes user co-relate different features of the dashboard,
which in turn are reused for similar tasks panned across
different tabs. This scheme of reusing internal compo-
nents and maintaining consistency makes the user re-
member less things on the dashboard and act intuitively
with the design.

2) Flow of UI components: The flow of the UI components
of the system is depicted in this section using the images
from the working model of the User Interface handling live
application data.

1) The Login module, authenticating the user to enter the
system. After authentication, the user will be redirected
to the main dashboard screen.

Fig. 3. Login

2) The main dashboard Screen hosting all the tabs for
directing all the operations on the system along with
Real time CPU utilization vs. Application number chart
on the main dashboard screen. Refer Fig.3 and Fig.4.

Fig. 4. Main Dashboard Screen

Fig. 5. Live chart of CPU utilization vs.Time

3) The container management tab, dictating all the opera-
tions on the containers of the particular user. Refer Fig.5
and Fig.6.

Fig. 6. Container management tab

4) The devices tab, handles all the operations on the devices
for the particular user. Refer Fig.7.

D. Container Management

Containers provide a complete software package required
to run a users applications on the edge node by abstracting
the underlying operating system. Containers are launched with
applications requested by each user. All dependent libraries to
run the application inside a container will be installed before
executing an application. Every user can deploy new container
for each application and later obtain the results. Once the



Fig. 7. Container management tab

Fig. 8. Device management tab

execution of an application is completed, then containers are
deleted automatically by the Docker daemon.

V. CONTAINER MIGRATION(WORK IN PROGRESS)

Live container migration refers to the process of migrat-
ing containers between different hosts or clouds without
disconnecting the client. The memory file system, network
connections running on a hardware is transferred from one
machine to another preserving the state without downtimes.
The pre-copy container migration scheme is being proposed
to be used for container migration. In this the platform turns
track of the source node and copies this memory in parallel on
destination node. After that, it freezes the container, gets the
rest of the state, migrates it to a destination node, restores and
unfreezes it. Container migration module proposes to increase
the availability of data by migrating live containers between
different hosts when one of the host fails or is overburdened
with requests. Load balancing on unbalanced cluster nodes is
also handled using container migration. We propose a two-step

Fig. 9. Container Live Migration[4]

process to achieve container migration,
1) Using MQTT Protocol for Container Orchestration:

MQTT or Messaging Queue Telemetry Transport is a
light weighted and simple protocol. It is considered ideal
for IoT as it takes only 80 bytes to connect to a server
and stay connected. Publish and consumption of mes-
sages is about 20 Bytes. Once a connection is built, there
isn’t a need to tear it down hence reducing overhead
drastically. The reason for not the simple HTTP for this
purpose is that HTTP is stateless which makes it a great
choice for request response type architecture but its text
based source information doesnt allow it to push data.
Pertaining to our use case to orchestrate containers on
edge nodes. We propose the installation of MQTT broker
on the Raspberry Pi. This is considered the master. The
edge node connects to this broker which in turn connects
to the Global Master (On the cloud). Other Raspberry
pi hosts in the network will be termed agents and will
be required to migrate the container. The global master
keeps IP addresses, images, container IDs, and topics
of all the hosts in the network. The master orchestrates
the activity of container migration by publishing the IP
address of the Free Node over the MQTT broker.

2) Using CRIU integration with Docker : A top level
checkpoint sub-command in Docker should be used to
create a new checkpoint, and list or delete an existing
checkpoint. These checkpoints are stored and managed
by Docker, unless you specify a custom storage path.
The master will now checkpoint a live container us-
ing the checkpoint command in docker. This will halt
the current process and no new process logs will be
printed. To restore the container the master will redirect
messages through MQTT to the free node in the network
using the restore command. The restore command can be
used to restore the container into a completely different
container and thus achieving our goal of container
migration.

VI. EVALUATION

The performance evaluation is performed by deploying a
server on AWS and considering Beaglebone Black as the
end node. The following performance is impacted by the
network upload and download bandwidth. In our analysis the
upload bandwidth is observed to be 11.45 Mbps and download
bandwidth is observed to be 24.2 Mbps.

A. Performance for creating a remote container by down-
loading a new image from the cloud

. Fig. 10 shows the performance for creating a remote
container by downloading a new image from the cloud. This
is the first step when the user want to deploy their application
to the remote edge node. The user can select the type of
the container image and push it the edge node. The Fig. 10
represents the time required to pull an image from Docker
hub in the cloud and create a container in the edge node from
the downloaded image. For performance analysis purpose, we



considered different 5 images with size ranging from 1.5kB to
350MB. The calculated time includes the downloading time
of the image and the time of creating a container out of it.
Network latency is assumed to be equal during the course of
evaluation.

To pull hello-world image, which is of 1.8kB in size from
Docker hub and create a container it took approximately 3.75
secs. Upon issuing the command, Docker daemon initials
looks for the image in the cache and if doesn’t find it
then will pull the latest image from the hub and creates a
container using this image. Similarly, the “training/postgres”
image consumes a time of just over a minute to pull and
deploy a container. When compared with the small size image,
there is an exponential increase in the time factor. The reason
behind this is that the Docker daemon requires more time to
create an image for large packages in additional to the linear
downloading time. Fig. 10 clearly suggests that, bigger image
sizes require more overhead time including downloading and
creating a container of that image.

3.751.46

24.36

33.9

61.05

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400

Ti
m
e	
Ta
ke
n	
(s
ec
)

Container	Size	(Mb)

Fig. 10. The time taken to create container for new images with different
size.

B. Upload Applications to the Edge Node

To evaluate the performance of uploading an application
file from user dashboard to webserver, we perform time
consumption calculation based on a fixed network bandwidth
(11.45Mbps as the upload speed). The network bandwidth is
assumed to be constant over the course of evaluation.

The web server reads the compressed application file using
“multer” and uploads serially through a HTTP request. The
uploaded file is then moved to a unique storage space with
unique ID. When the file is too big, we will divide them into
several small compressed files, then these compressed files
will be transferred. The total time consumed includes the file
compression, division, and transfer. As shown in Fig. 11a, the
results show that the time consumed was almost linear with
increase in application files. The difference in time observed
is due to the time taken by our platform to process the data,
create a directory, upload the file and update the database.

C. Getting the log file from the edge node

As user requests to fetch the log file for the debugging pur-
pose, a command from the cloud dashboard will be transferred

0.193 0.808

4.76

11.03

0.0036
0.768

3.53

10.61

0

2

4

6

8

10

12

0.004 1 5 15

Ti
m
e	
Ta
ke
	(s
ec
)

Application	Size	(Mb)

Our	Platform Theoretical

(a) To the web server

0.144
0.623

2.83

7.13

0.0017 0.33

1.67

5.008

0

1

2

3

4

5

6

7

8

0.004 1 5 15

Ti
m
e	
Ta
ke
	(s
ec
)

Application	Size	(Mb)

Our	Platform Theoretical

(b) To the edge node

Fig. 11. The time taken to transfer the application file: (a) to the web server;
(b) to the edge node.

0.289

1.245
1.823

4.437

0.0053

1.038
1.382

3.168

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

0.004 1 1.3 2.8

Ti
m
e	
Ta
ke
n	
(s
ec
)

Log	file	Size	(Mb)

Our	Platform theoretical

Fig. 12. The time taken to transfer the log file from the edge node to the
cloud dashboard.

to the end node, and fetches the log result file from end node
to the cloud dashboard. The transfer of file from end node to
webserver is achieved with the help of HTTP protocol. The log
file available on the end node is read in the form of chunk and
is transmitted from end node to cloud dashboard. The received
chunk is copied onto a file on the server until the end of file.
Different sized result files were considered to measure time
and the time taken. Upload speed of 11.45Mbps is considered
during the evaluation. Fig. 12 shows the required time to fetch
the log file with respect to different file sizes. The difference
in time is due to the time taken by our platform to send a
message from webserver to end node, process the request,
copy the file from the container to the local path, locate the
file and then transfer to the cloud. This analysis measures the
time required for the complete procedure which constitutes of,
send a command from user dashboard, route the command to a
particular edge node, copy the file from container to the local
path on the edge node, transfer the file from to the server,
point to the messaging service lay to download and transfer
of file to the user dashboard.

VII. RELATED WORK

There have been numerous publications relating to the issue
being handled through this project, majority falling in the
following category:

1) Cloud Computing [1], [2], [3], [4]: Vision, Architecture
and Characteristics. The rapid growth of using cloud-
based services in recent years is an impossible fact to be
denied as it has increased the efficiency in accessing to



shared pools of configurable computing resources. Ac-
cording to this rapid growth, it is anticipated that cloud
computing will be the most important and challenging
issue in IT industry.

2) Edge Computing [5], [6], [7]: Vision and Challenges.
Cloud computing can get strained to its limits with peta
bytes of data being produced in the coming time and
hence the need of a conglomeration of edge computing
with it is an emerging requirement to provide low
latency for systems without compromising the efficiency
of the system.

3) A survey of fog computing [8]: concepts, applications
and issues. Despite the increasing usage of cloud com-
puting, there are still issues unsolved due to the in-
herent problem of cloud computing such as unreliable
latency, lack of mobility support and location-awareness.
Fog computing, also termed edge computing, can ad-
dress those problems by providing elastic resources and
services to end users at the edge of network, while
cloud computing are more about providing resources
distributed in the core network.

VIII. CONCLUSION

We aim at leveraging the minimal usage of network band-
width by asynchronous communication between server and
client. Docker technology provides a lightweight virtual space
in the form of containers. Containers consume less memory
when compared to a virtual machine, which is an advantage
due to the memory constraints in embedded environment.
These containers can communicate over the network which
allows us to remotely orchestrate it through a dashboard.
The use of an effective dashboard improves the utility of the
software application and the following the UI design principles
mentioned in the paper, improves the accessibility of the user
interface, making it more user friendly. The ongoing work on
container migration will enhance the present architecture of
the system and strive towards achieving fault tolerance with
almost zero downtimes.

ACKNOWLEDGMENT

I would like to thank Dr. KaiKai Liu for his constant
guidance in this project. Dr. Liu’s valuable inputs on the topic
of edge computing and container migration encouraged me
to research on these topics and think about prospective ways
to include container migration in the project,Edge Computing
Embedded Platform.

REFERENCES

[1] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
“Fog computing: Principles, architectures, and applications,” arXiv
preprint arXiv:1601.02752, 2016.

[2] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog:
Towards a comprehensive definition of fog computing,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 5, pp. 27–32, 2014.

[3] R. Mora, “Cisco iox: Making fog real for iot, blogs@ cisco-cisco blogs,
june 2015.”

[4] Z. Pang, L. Sun, Z. Wang, E. Tian, and S. Yang, “A survey of cloudlet
based mobile computing,” in Cloud Computing and Big Data (CCBD),
2015 International Conference on. IEEE, 2015, pp. 268–275.

[5] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, 2012.

[6] A. Solano, R. Dormido, N. Duro, and J. M. Sánchez, “A self-provisioning
mechanism in openstack for iot devices,” Sensors, vol. 16, no. 8, p. 1306,
2016.

[7] K. Ha and M. Satyanarayanan, “Openstack++ for cloudlet deployment,”
School of Computer Science Carnegie Mellon University Pittsburgh,
2015.

[8] G. I. Klas, “Fog computing and mobile edge cloud gain momentum open
fog consortium etsi mec and cloudlets,” 2015.


