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Edge application’s distributed nature presents significant challenges for developers in orchestrating and managing the multitenant
applications. In this paper, we propose a practical edge cloud software framework for deploying multitenant distributed smart
applications. Here we exploit commodity, a low cost embedded board to form distributed edge clusters. The cluster of geo-
distributed and wireless edge nodes not only power multitenant IoT applications that are closer to the data source and the user, but
also enable developers to remotely deploy and orchestrate application containers over the cloud. Specifically, we propose building a
software platform to manage the distributed edge nodes along with support services to deploy and launch isolated and multitenant
user applications through a lightweight container. In particular, we propose an architectural solution to improve the resilience of
edge cloud services through peer collaborated service migration when the failures happen or when resources are overburdened.
We focus on giving the developers a single point control of the infrastructure over the intermittent and lossy wide area networks

(WANs) and enabling the remote deployment of multitenant applications.

1. Introduction

In recent decades, cloud computing has emerged in the
information and communication world, providing various
types of services, storage, computing, and networking. Data is
aggregated to cloud data stores for intelligent processing with
unlimited resources; applications are delivered and updated
to data centers in real time; and computing infrastructure
and resources can be shared with other applications on the
go without interference. However, the main cloud is hosted
in core data centers, which are sometimes far from the end
user. This may introduce a considerable delay for end users’
applications, thus preventing the deployment of services
that are sensitive to latency, for example, cyber-physical-
systems (CPS), smart cities applications, security monitoring,
connected vehicles for Intelligent Transport Systems (ITS), or
Internet of Things (IoT) [1-3]. Low latency analytics and real-
time response are especially important for cyber-physical-
system (CPS) applications. The dominant approach of
aggregating all data to the data center stresses communication

links, thus inflating the timeliness of analytics. Moving much
of the processing to the locations where the event is hap-
pening facilitates real-time response and low communication
overhead. To address the problem of the long latency, cloud
services should be moved more proximally to the edge of
mobile network [4, 5]. There is need for a system that can
proactively provide computing services for these CPS and IoT
devices as needed.

Mobile edge computing (MEC) can be understood as a
specific case of mobile cloud computing (MCC), where the
computing/storage resources are supposed to be in proximity
to the user equipment (UE) [6, 7]. Hence, MEC can offer
significantly lower latencies and jitter when compared to
the MCC. Consequently, mobile edge computing may be
considered one of the key enablers of Internet of Things (IoT)
as it offers (1) low latency combined with location awareness
due to proximity of the computing devices to the edge of
the network, (2) widespread geographical distribution when
compared to the data center; (3) interconnection of a very
large number of nodes (e.g., wireless sensors); and (4) support
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of streaming and real-time applications [8]. Many organi-
zations contribute to the concept of edge computing under
different initiatives, for example, the mobile edge computing
(MEQ) initiative by ETSI, Fog computing by Cisco [9,10], and
cloudlet by Carnegie Mellon University [11, 12]. Nevertheless,
MEC also imposes huge additional challenges, including (1)
multitenant support [13]; (2) automatic orchestration; and (3)
resilience and availability.

(1) Multitenant Support. The support for multiple cus-
tomers to use a single instance of the software infrastructure
has been evolving from decades. We are leveraging the
conceptual model of multitenant software architecture which
is to run a single instance of software on a server and
serving multiple tenants. The group of end customers/clients
requiring the services of this edge cloud framework is called
a tenant. These tenants share common access policies and
have dedicated privileges for accessing our edge framework.
Each tenant is provided with a shared instance including
data storage, configuration and user management, and other
preferences. With this type of software architecture for IoT
models, we are utilizing data aggregation benefits through
acquiring data from centralized storage instead of different
database schemas, and the cost to implement multitenancy
can also be minimized as a single instance is being used by
many customers which substitutes the invested amount for
memory and processing overhead.

IoT and CPS application developers need an infras-
tructure to support multitenant applications. Several of the
existing edge computing platforms support either a single-
user application, an application specific cloudlet, or a single
service-oriented cloudlet. To operate, maintain, and secure
this edge cloud network, researchers must grapple with
multiple vendor-specific computing and sensing modules
to implement complex high-level management policies. For
example, multiple companies are applying to install smart
sensors in street lights. However, this can be rather slow
and labor-intensive due to the administrative process of
determining which companies to offer permission. After the
nodes are installed, they become the private property of the
vendor. That said, it is difficult for new applications and
services to utilize this existing platform. Similar to cloud
computing, the computing and sensing modules available
in edge nodes should be virtualized as a resource pool that
integrates a cluster of applications to provide agility, respon-
siveness, and less overhead than traditional hypervisor-based
virtualization. Despite many previous proposals to make the
VMs in data centers easier to manage, many approaches are
not fit for this edge cloud scenario or only amount to stop-gap
solutions because of the underlying highly distributed and
low-complex infrastructure.

(2) Automatic Orchestration. Application developers
need a hassle free way to deploy, test, and update their
multitenant applications to remote nodes in a seamless
manner and ensure the services are running smoothly with
high availability. However, at the present time applications
spanning cloud and edge are still provisioned manually. Dif-
ferent from current cloud infrastructure in data centers, city-
wide infrastructure contains thousands of geo-distributed
wireless edge nodes deployed in residential areas, streets,
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or parks. Enabling automatic application orchestration in
each edge node with high reliability is unachievable using
existing solutions. To provide a robust environment where
developers can remotely deploy and debug their applications
in the cloud of edge nodes, the orchestration layer with the
remote management dashboard is a must-have to enable
automation.

(3) Resilience and Availability. Due to the limited
computing and storage resources of the edge node, the
fully distributed deployment, and the unpredictable service
requests, it is hard for developers to ensure resilient appli-
cation and services. Different from data center networks
where cable/fiber connections are more reliable, edge cloud
infrastructure involves distributed heterogeneous gateways
and unreliable wireless links. As unpredictable disasters and
attacks increase, we need a resilient network design for
the edge cloud infrastructure that avoids any single point
of failure and keeps all the edge nodes connected to vital
services. The deployed smart application should be able to
easily reroute via the software-defined infrastructure while
at the same time collaborating with nearby peers to achieve
improved disaster preparedness and response. The adaptive
monitoring software will determine when the hardware is
likely to fail, when resources will exceed capacity, or where
attacks are happening, and finally, deliver the agility and
flexibility needed to support multitenant smart applications.

Abstracting the hardware edge node to multitenant
applications can help improve device utilization, lower the
system deployment cost, and accelerate the real world testing
and deployment of new applications. However, to support
multitenant isolated applications on an edge device node, an
edge cloud software platform with the following capabilities
is needed: (1) providing multiple virtual computing resources
to multiple applications; (2) supporting application isolation
for secure multitenancy; (3) creating a versatile runtime envi-
ronment that supports a variety of technologies and devices
from different vendors; and (4) providing a remote dashboard
of the edge cloud that enables third-party application ven-
dors/users to launch and manage applications remotely. To
enable remote orchestration of multitenant IoT applications,
numerous attempts have been made to extend the flexibility of
the cloud into distributed mini data centers such as cloudlets.
Stack4Things extends the OpenStack for IoT applications
[14] while Openstack++ provides multitenancy through VM
based computing resources [15]. This solution of providing
hypervisor-based computing resource to establish multite-
nancy adds a redundant software abstraction layer, thus creat-
ing a nondeterministic application. However, the integration
of various server-oriented technologies makes the system
heavy and expensive to use in IoT applications. Moreover,
these solutions do not emphasize the continuity of services
and high availability. Edge nodes are commodity hardware
nodes distributed in the harsh environments and running
computation for applications with unpredictable demand.
There lacks a system to provide continuous multitenancy
infrastructure services for application vendors when a device
in the cluster or an edge node is overburdened.

In this paper, we propose an architecture for a Platform-
as-a-Service (PaaS) to automate multi-tenant IoT and CPS
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FIGURE 1: The architecture diagram of system implementation.

applications provisioning in an edge computing environ-
ment. Based on our previous results [16], we propose a soft-
ware framework to enable the envisioned edge cloud platform
with three key functionalities: (1) supporting multitenant
isolated user applications via lightweight virtualization; (2)
providing a cloud dashboard for remote programming and
application management; and (3) featuring robust network
connectivity agnostic to network mediums. The framework
provides computing resources through a lighter, more deter-
ministic container-based virtualization (i.e., [aaS). The com-
puting resource holds all the dependent libraries and runtime
environments required to run the isolated application (PaaS).
The edge cloud provides a solution offering remote dynamic
discovery that enables the user to control and manage
applications remotely through a web application dashboard.
To ensure service availability and resilience, we propose
solutions to seamlessly migrate services amongst nearby
edge nodes via lightweight communication protocols when
a failure happens or when the resources are overburdened.
As a use case, the proposed PaaS was employed to provision
multitenant stateless IoT applications that run on top of low
complexity edge devices, for example, Raspberry Pi, NVIDIA
JETSON, and Beaglebone.

2. System Overview

2.1. System Design. Cloud computing is a promising paradigm
with many inherent advantages, such as the easy and effi-
cient provisioning of new applications and resources, not to
mention scalability [17]. It encompasses Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), and Software-
as-a-Service (SaaS). Application providers use platforms
(offered as PaaS) to provision (ie., develop, deploy, and
manage) applications. Edge environment is composed of

heterogeneous mobile and low-end devices. The computing
capabilities are not comparable to the state of the art servers
at the data centers. Existing PaaSs (e.g., Cloud Foundry
and Google Cloud Platform) do not enable the provisioning
of applications with components spanning cloud and the
edge node. Most IoT and CPS applications are manually
provisioned today.

We propose a Paa$ for these remote edge nodes and orga-
nize them as a pool of resources for IoT and CPS applications
with collaboration mechanisms to provide high availability
and fault tolerance for application developers. To meet these
requirements, we focus on two design directions for this
edge computing platform. The first is to build a scalable
and lightweight execution environment that enables flexible
provisioning of resources for multitenant applications over a
wide area network (WAN). The second is to provide users
a programmable system to manipulate their applications
deployed on remote resources and ensure resilience and zero
downtime via fault tolerant solutions.

2.2. Overview of System Implementation. (1) Cloud Dash-
board. When many applications are deployed using the same
IoT infrastructure, resource isolation across different compo-
nents and between applications is necessary. Container tech-
nology is an ideal choice due to its lightweight virtualization
and small memory footprint [18]. Since all applications share
the OS, restarting a container does not require the OS to
restart. Docker’s union file system combines layers into a
single image, making it ideal for hosting applications in the
edge computing platform.

As shown in Figure 1, the cloud dashboard contains three
major parts: user interface, database, and messaging services.
These three components are interfaced by the request handler
module. The requests generated by users in the user interface



are queued by the handler module and then stored to the
database to maintain a copy.

User Interface. The user interface provides a user-
friendly web application which allows the user to easily
create, deploy, start, stop, and remove remote applications.
The dashboard serves as the centralized interface for the users
to interact with their own applications. For example, users
can check the status of their application, control the settings,
collect the results, and debug the software. The dashboard
can display the collected data as a graph, monitor the com-
putational resources, aggregate the result files to download,
and display the available end edge nodes. For example, an
authenticated user can login to the dashboard and access
his/her edge node. A user can also deploy his/her application
to the preferred edge node through this dashboard.

Messaging Service. Messaging services have become
an important portion of the Internet of Things. Messaging
services not only include communication between two nodes,
but also provide security and reliability. The messaging ser-
vice takes care of transmitting the message to the desired node
through the public Internet for the services of device or end
node registration, heartbeat information, message transfer,
and application deployment. Device or end node registration
with the server is also a criterion for our project. The
communication between the end node and server, remote
configurations to register the end nodes to the server, and
the secure communication are fulfilled with the help of our
proposed messaging service.

We utilize the Web Application Messaging Protocol
(WAMP), which is an open standard WebSocket protocol,
to provide the application interface over the fusion link.
Through the combination of the WAMP with the fusion
link, sensor devices without internet connection can be
reached, which also provides resilient connection services
robust to the Internet loss. We support two types of logic
connection: remote procedure calls and publish-subscribe
messaging services. WAMP is mainly used for distributed,
multiclient (edge nodes in our use case scenario), and
server applications. Autobahn framework and Crossbar are
used to host a server for message routing. Autobahn is
an open-source implementation of WAMP and Websocket.
Crossbar is a networking platform designed to handle routing
for distributed and micro-service applications. The server
and client are coupled via a publish & subscribe (PubSub)
approach through a router to publish an “abstract” topic to
the subscribed client. After the transmission is complete, the
server and client are decoupled by the router (also named
broker), which keeps track of subscriptions. When an “event”
is published by a publisher to a topic, the broker looks up the
record to determine the list of subscribers and then forwards
the information (the “event”) to those subscribers.

Database. The database will be used to save information
related to the user, container, the location of the stored
results, and so on. We utilize a relational database to establish
the relationship between different management entities. To
achieve modularity, the database is divided into five compo-
nents, i.e., user, computation, image, device, and storage. A
relationship is established between the modular DB tables
to link the user to the resources allocated to him/her on
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the edge cloud platform. The database access on the cloud
is done through a database service which links the DB to
other modules through REST APIs. This offers portability
and provides language/platform independent interface while
offering a loose coupling with other service modules.

(2) Edge Node: Container Management. Containers pro-
vide a complete software package required to run a user’s
applications on the edge node by abstracting the underlying
operating system. There are different techniques to manage
the containers deployed on a machine such as Swarm [18],
Kubernetes, Fleet, and so on [19]. Swarm container manage-
ment is effective and lightweight when compared to other
techniques. It converts all the Docker hosts into one single
virtual host. All the nodes created on the edge device are
controlled, scheduled, monitored, and cleared using swarm
manager. Swarm manager also helps us to keep a check on
resource utilization.

In our system, containers are launched with applications
requested by each user. All dependent libraries to run the
application inside a container are installed before executing
an application. Every user can deploy a new container for each
application and obtain the results. Once the execution of an
application is completed, containers are deleted automatically
by the Docker daemon.

3. Cloud Orchestration Framework for
the Remote Edge Node

3.1. Resilient Network with High Mobility. Existing cloud
solutions require either a private network or fixed IP address,
which is not achievable for the distributed edge nodes. Most
of the edge nodes are connected to the public Internet without
fixed IP and some of them even connect through IEEE 802.15-
based sensor networks, for example, the 6LoWPAN network.
We propose building a fusion link solution to manage the
distributed edge nodes through lightweight messaging ser-
vices. We propose utilizing a resilient messaging tunnel to
manage the distributed edge nodes, making it agnostic to
network mediums as well as supporting dynamic access and
mobility support. This messaging service will enable us to
contact any remote node based on ID instead of fixed IP.
We propose an architectural solution to remotely access edge
cloud management services through intermittent Internet
connections and close the connection to save power when
necessary. Specifically, we build a network overlay above the
WAN and 6LoWPAN. When the edge node is not accessible
via the WAN, our network overlay will automatically switch
the connection from WAN to the 6LoWPAN. Our network
overlay also helps to bridge the WAN connection to the
6LoWPAN network, which served as a gateway that seam-
lessly bridge the Internet world (WAN side) to the sensor
world (6LoWPAN side).

Handling Registration and Heartbeat. Every end node
which connects to the server is registered with a unique ID.
Each unique ID is part of the topic while subscribing. When
a user requests to perform actions on the end device, this
unique ID is used to publish the request to the desired end
node. The periodic heartbeat message is transmitted to the
server from all the registered end nodes to make sure the
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end device is available for the user. The heartbeat message
contains information about the device ID. The very first
heartbeat is considered for device registration. The heartbeat
consists of device ID, location, and architecture of the device,
which are updated to the database upon registration.

3.2. Cloud Dashboard. In the cloud dashboard, user registra-
tion is the first step, upon which the user can log in to the user
dashboard to orchestrate the end nodes. Various commands
such as start, stop, create, and remove a container, as well as
upload and download a file from a virtual space on the end
node are provided for the user. The requests from the user
are received through a REST API. The requests which are
intended for the end device are filtered. The filtered requests
are then checked for validity, to make sure all the required
fields exist in the request. With any field missing, an error
message to the user is transmitted. With this validity check
on the server, the failure of command execution on the end
device is reduced and also the response time to update the
error to the user is decreased. Once the validity check is
passed, URI is formed based on the device ID and the request
raised. Since device ID would be unique for all the registered
devices, the “event” is published to the specific device as
intended by the user.

Create Container API. Lightweight virtual spaces are
provided to users to deploy and execute applications. These
virtual spaces can be created by the click of a button from a
user dashboard. Each container is given a unique name by
appending the username along with the requested container
name. During the creation of a new container, if the requested
image is not preinstalled on the device, then the image is
fetched from the Docker hub and created. Any custom images
can be uploaded to the Docker hub by the user requested to
pull when required.

Start, Stop, and Remove Container API. Each virtual
space can be orchestrated from the user dashboard. Some
commands provided to the user are to start, stop, and
remove. Each of the commands is transferred to end through
the server from the user dashboard. Upon receiving the
command, the corresponding API is executed. A negative
response is transferred back if the API fails. If not, then a
positive response is sent.

Device ID Generation. When the end node application
is started, the device name and MAC address of the device
are fetched. The same is concatenated in the form “device
name / MAC address.” With the help of both the device
name and MAC address, it is possible to keep each device
ID unique, thus helping to differentiate the message to be
published according to the device selected by the user.

Location of Device. The location of the device is mapped
during deployment and stored in the cloud as one of the
key traits of the edge node. This helps to classify each device
based on the location. Developers can make use of this
feature to deploy their application to a specific location. For
example, smart city-based applications utilize the location as
the service segment.

Architecture of the Device. The architecture of the end
node is fetched and updated during the device registration.
We support multiple devices with Linux operating systems,

for example, ARM and x86 CPU. Example device architecture
includes device name, CPU type, memory, and disk. Con-
tainer compatibility is based on the architecture. Hence, by
detecting the architecture, suitable containers can be listed
to the user for deployment. On successful login, a user can
access his/her dashboard. In the dashboard, the user can
find a list of containers created by all the devices. The user
can also control the containers by clicking the container
control buttons and see the device information by selecting
the device.

4. Edge Node Virtualization

4.1. Edge Node. (1) Device Registration and Maintenance. An
edge node can be any embedded device such as Beaglebone
Black, Raspberry Pi, Jetson TX1, and so on. Edge node, upon
booting up registers to the server with a device name, trans-
mits periodic heartbeats to indicate the node is alive. Once
the device boots up, a registration message is transmitted to
the server. The registration message consists of device ID. The
device ID is unique to each device. The device subscribes to
all the “events” with a unique URI containing the device ID.
After registering, the device sends a periodic heartbeat. The
heartbeat is a short command message to the server to test the
connectivity. Once the device boots up, the device checks for
an Internet connection and tries reconnecting to the Internet.
Once the Internet connection is established, the device forms
a device name, detects its location and architecture, and
transmits periodically to the server to indicate the end node
is alive. The heartbeat stops when the device turns off. When
the server did not receive the heartbeat for a long period
of time, the cloud framework will inform users about the
unavailability of the device, hence unregistering from the list
for usage.

The node also transmits device information and container
status periodically to the server. The device info contains
the device ID, device name, memory consumption, CPU
usage, disk memory available, operating system on edge node,
and kernel version. All this information is contained in the
heartbeat message and updated to the server periodically. The
CPU information can be used to detect the available system
resources before deploying containers.

Docker engine is installed on the edge node, allowing
the users to deploy their application by creating contain-
ers. Docker provides numerous amounts of packages for
developers to design and develop application programming
interfaces for creating, deleting, running applications, and so
on. The edge node communicates with a WAMP agent to
receive the commands issued by users. The response from the
edge node is sent back to notify the user about the action
taken by the Docker. Every application creates a container
which is isolated from other containers running on the same
Docker engine. This isolation is provided by the Docker
technology. Once the Docker engine is installed on the end
node, the Docker daemon runs on boot up of the end node
and continues to run as long as the end node is not turned off.
As soon as a command is issued from the user, the Docker
receives a command from the WAMP agent and performs
the necessary action. The status of the container is updated



periodically. The status message contains the container name,
status, and device name to detect both the device maintaining
the container and the image name. Container status can
be redirected to inform the user about the status of each
container. All status messages are updated to the database
and will notify the user if some of the parameters exceed the
specified boundaries.

(2) Handle Remote Request and Deploy Application. The
subscribed “event” of the edge node receives the request
from the server, containing information about the container
control. The received request is then parsed to the format
as required by the Docker API. During “create” request,
each container is renamed according to the user’s demand.
Container names received through the request are further
formatted to fit in the form “username-containerName.” By
doing so, each container created has a unique name. Once
the container is created, a unique container ID returned by
the Docker API is tagged along with the container name for
more clarity. The response returned by the Docker API is
transmitted to the server to indicate the user and also the
same in a database.

The application file from the developer can be down-
loaded from the cloud dashboard to the specific containers
in the remote edge node when the user requests. The user
can upload their application file via.tar format and command
script about running the application. The cloud dashboard
will handle all the requests and validate the files through
defined policy. User requests, after validated on the server,
are transmitted to the respective edge node. The received
commands contain the location of application file on the
server which is used for download. When the node receives
the application file, it extracts the.tar file and runs the com-
mand script to execute the application. This process makes
it easy and flexible to deploy the application to the remote
edge node without being burdened by different run-time
environments and configurations during the deployment
process. Any applications, as long as they can be formatted as
a.tar file and command script, can be deployed through our
edge computing dashboard.

5. Ensure Service Resilience via
Container Migration

Cyber-physical systems are deployed in a variety of hostile
environments that are subjected to changes such as hardware
failures, extreme weather, natural disasters, terrorist attacks,
and even cyber attacks. The quality of the underlying network
that connects these edge nodes varies at different conditions
with high dynamics. Lossy network leads to loss of con-
siderable resources and data by genuine users. A resilient
and scalable infrastructure is needed to enable the proper
operation of remote edge and IoT nodes in this type of
remote, hostile environment.

When physical edge nodes are down, we utilize a fail-
over approach using the high-availability images to restore
the edge node operating system. However, it takes a long
time for this process to restore the whole operating system.
We also monitor each container in the cloud dashboard
by using heartbeat and restoring a container when it is
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down. However, the data may be destroyed depending on
the timing of failures because restoration methods of failed
edge nodes and containers are independent. Moreover, with
the decrease in size and computational powers of edge nodes,
a single node cannot handle the dynamic workload for IoT
applications. IoT applications provide sensing and actuating
approaches for real-time events. However, demand for the
events is hard to predict. Different from data centers that
can serve the dynamic demand via pool resources, the local
resources available in one edge node are not sufficient for
high application demand. An efficient mechanism to migrate
services amongst the edge nodes is needed without disturbing
the underlying sensor mesh when failure happens or the
resources are overburdened. Service migrations between
the edge nodes are also important for mission critical IoT
operations such as intelligent transport systems or connected
vehicles.

Therefore, we propose a fast and reliable restoration
method with a uniform method for plural-type virtual
resources. In our method, the local framework in the primary
edge node predicts the node failure and insufficient resources
and notifies the virtual resource arrangement scheduler, after
which a virtual resource arrangement scheduler queries the
cloud for potential nearby edge nodes for collaboration. It
determines both the type of peer nodes required to migrate
the container and application data from the primary node to
the peer node. The virtual resource arrangement scheduler
also buffers new sensor data and restores the application
in the peer node for data processing without data loss. We
implement the proposed method and show its effectiveness
regarding peer collaboration through container migration.

5.1. Connections and Collaborations between Peers. Figure 2
shows an overview of the container migration scenario.
Considering intermittent WAN connections, the peer node
many not be reached even given close physical distance. To
improve connectivity resilience, we propose a network overlay
over the WAN and low complexity 6LoWPAN technologies
for peer connections. If the peer node is connectable via the
WAN, the Message Queuing Telemetry Transport (MQTT)
protocol will be used to initiate the container migration
process. If the WAN connection is lost, our network overlay
will automatically pick up the lost connection via 6LoWPAN
via MQTT protocol. MQTT is a lightweight machine-to-
machine protocol with very little implementation footprint-
ing. We utilize the feature whereby MQTT is available in both
WAN and 6LoWPAN. The MQT'T broker functionalities are
integrated at the edge computing embedded platforms which
serve as a message exchange channel for container migration.

When a primary node wants to connect to the peer node
with the broker, its makes a connection call first followed by
a subscribe message. It has a variable list of topic(s) along
with QoS value. The QoS value is defined as the level of
collaborations provided by the peer node. We define three
levels of QoS values: (1) Level “0”: the peer node can provide
messaging services and can help contact its own nearby
peers for collaboration, but the available resources are not
sufficient to migrate the container; (2) Level “1”: persistent
storage is available to ensure container delivery, but the
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CPU and memory resources are not sufficient for executing
the application; and (3) Level “2”: persistent storage, CPU,
and memory resources are all available for the container
migration. It is the highest availability of services, and the
primary node can start the container migration immediately.

The message flow of the QoS Level “2” is shown in
Figure 3. A message is deleted from persistent storage after
publishing a topic only when a PUBREC message from the
server is acknowledged with a PUBREL and PUBCOMP. This
signifies that the initial sender exchange is completed. Next,
the broker sends the message to each subscriber by sending
them PUBLISH messages with the message payload. After
message receipt, each subscriber sends a PUBREC message
in acknowledgment, which the server responds to with a
PUBREL (publish release message). After each subscriber
acknowledges with a PUBCOMP message, the server deletes
the message from the persisted store, and the QoS Level 2
message send sequence is complete.

We also provide the application programming interface
for developers to control the process. The available program-
ming interface is shown in Table 1.

5.2. Service Optimization for the Migration. The container
migration provides an effective way for us to continue ser-
vices when the primary node suffers resource overburden or
failures. However, performing the migration frequently or in
unnecessary conditions lowers the overall performance due
to migration overhead. One specific example is the prolonged

TaBLE 1: Application programming interface.

1 getMessage(fileSrc) Send a file/string

2 connect(deviceID,topic) establishes a blocking call to the
broker

3 sendFile Send file after getMessage()

4 recieveQ Retrieve everything from queue

e one element at a time from the

5 receiveSingle
queue

6 Disconnect() To disconnect from the broker

latency when the closest edge node migrates the services to
the peer node with a longer latency. To optimize the service
migration process, we perform quantified decision process
for the migration and minimize the overall cost.

Let us assume that the MEC system is composed of a set of
N edge nodes (ENs), named n ~ I'y, 1 < n < N, where each
EN is referred to with an index of n. We define the number
of containers as ¢ ~ I5,1 < ¢ < C, where one container
or multiple containers belong to one user. We assume one
container has one application running for the application
isolation purpose. Our system is designed for delay-sensitive
applications. This requires the container should be deployed
in the nearest EN, to guarantee the desired ultra-short latency
tmm.

Let d,(c) denote the deployment of container to the edge
node n for the c-th container. Assume T() is the latency
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estimation function; U() is the computational requirement
function; M,, denotes the total computational capability for
node z. In the initial step of container deployment, we achieve
T(d,(c)) = ™", i.e., by deploying the application container to
achieve minimum latency. Let p,(m) denote the probability
of peer node selection from node 7 to node m. The problem
of minimizing the overall cost can be formulated according
to the following linear program model:

o T (dy (0))
mlnlxmlze ;m

subject to Z (U(d,()) <M, n=1,...,N. M

ty, >T(d, ()=t c=1,...,C.

The objective aims to minimize the total cost, which is
proportional to the latency and inversely proportional to the
remaining computational capability. The constraints account
for the limited resources of ENs and the latency test with
regard to the threshold ¢,,.

5.3. Launching Docker Image in the Peer Node. Once the
peer node has been selected, information about the image,
repository, and port is forwarded in the message. This

information is extracted at the remote node and a “run”
command is performed. The programmer can even choose
to send the Dockerfile and its dependencies. The program
converts it into a message bean, serialize the sender’s end, and
deserializes the receivers’ end. The image can be built, pushed,
and executed. The metadata is sent back to the primary node,
which later pushes to the cloud dashboard. For container
migration, the image can be check-pointed and restored on
another free node.

6. Evaluation

Performance is evaluated by deploying the cloud dashboard
server on AWS and considering an embedded board with
ARM CPU as the end node. The following performance is
impacted by the available network upload and download
bandwidth. In our analysis, the upload bandwidth is observed
to be 11.45 Mbps and download bandwidth is observed to be
24.2 Mbps. To emulate real application data, we utilize one
example sensor processing workload by processing the sensor
data sent to the edge node for floating point operations.
We utilize a 50 by 50 matrix storing sensor data and then
perform window-based convolution on the edge node. A total
of 5000 floating point multiplications and 2500 floating point
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additions are performed with every set of data sent by the
Sensor.

6.1. Cloud Dashboard. Figure 4(a) shows the interface of
the cloud dashboard. This interface provides an overview
for developers to control the infrastructure. The available
containers and devices are listed in this overview. Figure 4(b)
shows the interface for developers to launch containers to the
remote edge node.

Figure 5(a) shows the list of available edge nodes in
the cloud dashboard. When the developer wants to get the
detailed information of the edge node, he or she can click
it and get the overall device monitoring results as shown in
Figure 5(b).

When one developer wants to deploy the application to
one container in the edge node, he or she can view the
details of the container as shown in Figure 6(a) and upload
applications by selecting the files as shown in Figure 6(b).

6.2. Launch and Manage Containers from the Cloud. Perfor-
mance for Creating a Remote Container by Downloading
a New Image from the Cloud. Figure 7(a) shows the perfor-
mance for creating a remote container by downloading a new

image from the cloud. This is the first step when users want
to deploy their applications to the remote edge node. Users
can select the type of the container image and push it to the
edge node. Figure 7(a) represents the time required to pull an
image from Docker hub in the cloud and create a container in
the edge node from the downloaded image. For performance
analysis purpose, we consider different five images with sizes
ranging from 1.5kB to 350MB. The calculated time includes
the download time of the images and the time for creating a
container out of them. Network latency is assumed to be equal
during the course of evaluation.

It takes approximately 3.75 seconds to pull a hello-world
image (which is of 1.8kB in size) from the Docker hub
and create a container. Upon issuing the command, the
Docker daemon looks for the image in the cache, and if it
does not find it, then it will pull the latest image from the
hub and creates a container using this image. Similarly, the
“training/postgres” image consumes a time of just over a
minute to pull and deploy a container. When compared with
the small size image, there is an exponential increase in the
time factor. The reason behind this is that the Docker daemon
requires more time to create an image for large packages
in addition to the linear downloading time. Figure 7(a)
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clearly suggests that bigger image sizes require more overhead
time, including downloading and creating a container of that
image.

Performance for Creating a Remote Container via
Local Existing Images. Figure 7(b) represents the time
required by the Docker daemon to create a container using
an image stored in the cache. When a user requests to create
a container with a specific image, the application passes the
image name and the container name to the Docker daemon.
Docker daemon then looks through the cache to find out if
the image is stored in it or not. If the image is available, it
will pull the existing image from Docker hub and create the
container. The performance measured here is the comparison
between the time taken to create a docker container with
the help of docker and the time taken to process all the
commands received from the user.

To evaluate the performance, we downloaded 5 images
with various sizes and applications. Our service layer con-
sumed approximately 10 milliseconds to create a container

with the “hello-world” image. Similarly, 241 milliseconds is
required to create a container using the “training/postgres”
image. The reason behind the time difference is that the latter
creates a database in a container which consumes more time
when compared with the earlier one which only prints “hello-
world.”

6.3. Multitenant Applications for the Edge Node. Resource
Utilization of the Docker Image. To estimate the resource
utilization of the docker image in practical IoT scenarios, we
launched the Master and Agent on two edge nodes. From
Figure 8(a), the memory utilization of the Master (master
and slave services are all running) is slightly higher than the
standalone slave. From Figure 8(b), we observed that our
framework’s CPU utilization remains high when it launches
its services and spikes when scheduling the container. After
the containers are fully scheduled, minimal overhead is
observed. While the tasks are running, the node can dedicate
all the system’s resources for the IoT application needs.
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Framework Overhead. To test the case of the framework
overhead for supporting multitenant applications, we evalu-
ated the CPU and memory consumption of the edge node
when multiple containers are launched on the two agents. As
shown in Figures 9(a) and 9(b), the CPU time and memory
are calculated by averaging the results from ten attempts of
launching multiple containers varying from 0 ~ 3. All in all,
CPU consumption of the standalone agent is 2.36 times better
than the master, while the overall CPU overhead is small,
with less than 5%. The memory overhead does not change
significantly when increasing the number of containers since
the tenant container resides on the disk rather than the
memory.

Hardware Independence. The total time required to
create the container depends on the image size and type as
well as the overhead time of our service layers in our edge
computing framework. We developed the service layer using
messaging-driven transparent APIs and make it independent
of different hardware platforms. This flexibility is very impor-
tant in utilizing different hardware platforms from different
vendors to create a common edge-computing platform for
multitenant applications. To analyze the system overhead,
we performed the container creation operation on different
platforms, i.e., Beaglebone Black, NVIDIA Jetson TXI, and
Intel desktop computer having the configuration of Intel
i5-3320M, a clock speed of 2.6GHz, and 8 GB of physical
memory. It was observed that container creation time does
not differ much from different platforms. The difference of
about 0.15 milliseconds is the amount of time consumed by
our platform on the end node. This time is approximately
equal across platforms: Beaglebone Black (ARM CPU), Jetson
TX1(ARM CPU), and the computer with an Intel CPU (X86).

Container Density. The key feature of our proposed
edge-computing platform lies in the multitenancy support.
Specifically, one edge node can launch multiple isolated
containers and support multiple developer groups simulta-
neously without interference. The number of containers to

be supported on an edge device depends on the available
computing resources and the size of each container. We
tested the following platforms: (1) the Beaglebone Black with
total disk space of 4GB, available disk space of 1.8GB; (2)
NVIDIA Jetson TXI with total disk space of 16GB, available
disk space of 4.6GB; and (3) Intel computer with total disk
space of 256GB, available disk space of 118GB. One Ubuntu
image of 188MB was considered for analysis. On Beaglebone
Black, we observed that, with the creation of eight containers,
the system was overloaded and slowed down. Hence, it is
recommended to use light weight containers with the size
of 5MB to 40MB. On Jetson TXI, 15 containers were created
and the system performance did not degrade. There were no
limitations on the computer since the available disk space was
much higher.

6.4. Deploy and Manage Multitenant Applications. Our dash-
board provides functions for users to upload their appli-
cations to the remote containers in the edge node. The
applications can be the source code, compiled executable
files, or Jave compressed packages. To facilitate multiple
application file requirement, we utilize a common format
(.tar) for all applications. When users want to upload their
applications to the edge node, they need to prepare their
application in terms of the.tar format. Then, the web server
will transfer the application file uploaded by the user to the
edge node through our messaging service layer using two
steps: (1) transfer the application file to the web server and
(2) transfer the application file from the web server to the
edge node. The file size varies from 4 KB to 15 MB. The
performance analyzed here is in comparison to theoretical
values calculated by the formula “file size x 8 / network
bandwidth.” Overhead of 50% is added for file sizes lesser
than 1 MB and 10% for file sizes greater than IMB.

Transfer the Application File to the Web Server. To
evaluate the performance of uploading an application file
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from the user dashboard to WebServer, we perform time con-
sumption calculations based on a fixed network bandwidth
(11.45Mbps as the upload speed). The network bandwidth is
assumed to be constant over the course of evaluation.

The web server reads the compressed application file
using “multer” and uploads serially through an HTTP
request. The uploaded file is then moved to a unique storage
space with a unique ID. When the file is too big, we
divide them into several small compressed files, which are
then transferred. The total time consumed includes the file
compression, division, and transfer. As shown in Figure 10(a),
the results show that the time consumed is almost linear
with the increase in application files. The difference in time
observed is due to the time taken by our platform to process
the data, create a directory, upload the file, and update the
database.

Transferring the Application File to the Edge Node.
Application files uploaded by the user are transferred from
the user dashboard to the remote node and installed by
the application into the deployed container. This section
analyzes the performance by measuring the time to transfer
the application file from the server to edge node. The fixed
download bandwidth (24.2Mbps) is utilized in the evaluation
process. The network bandwidth is assumed to be constant
over the course of evaluation.

Our platform transfers the compressed application file by
reading a chunk of data stored on the server and transmitting
it to end node serially through an HTTP request. The received
chunk of data is stored on a file locally on the end node.
Several compressed files were transferred from server to the
edge node, and the time consumed by each compressed file
was recorded. The file size varied from 4 KB to 15 MB.
As shown in Figure 10(a) and Fig. ?2, the time consumed
was almost linear with respect to the application size. The
difference in time observed is due to the time taken by our
platform to fetch the data, assemble the file, and load the
application to the container. This analysis was performed on
the hardware of the Begalebone Black.

To test the performance independence on different hard-
ware platforms, we conduct the evaluation of the time taken
to transfer the application file to the edge node in different

platforms: Begalebone Black, NVIDIA Jetson TXl, and a
computer having the configuration of Intel i5-3320M, with
2.6GHz clock and 8GB of physical memory. As shown in
Figure 11(a), there was a negligible amount of time difference
when performed on different platforms.

Sending Commands and Debugging the Edge Node.
The WAMP messaging protocol was used in our platform
to communicate between server and end node, for example,
transmitting a command from the user dashboard to the
end node to obtain a response. WAMP protocol is an
asynchronous communication protocol, which is an added
advantage of our platform. Our platform makes use of the
publish and subscribe feature of WAMP. While transmitting a
command from the server to end node or while transmitting
a response from the end node to the server, commands and
response are noted in a string format. The string size differs
for various commands and responses. It was observed that
the time taken to transfer a string of 56 characters (56 bytes)
was around 1.68 milliseconds. Different commands from
users were translated to a string which constituted different
sizes; hence time consumed to transfer a command from
the server to end node varied from 1.68 milliseconds to 2.37
milliseconds. Similarly, a response from the end node to the
server was timed, and it was observed that the time consumed
was in the range of 2.53 milliseconds to 2.84 milliseconds.

As a user requests to fetch the log file for the debugging
purpose, a command from the cloud dashboard is transferred
to the edge (end) node and fetches the log result file from
the edge node to the cloud dashboard. The transfer of the
file from the edge node to Webserver is achieved with the
help of HTTP protocol. The log file available on the end
node is read in the form of chunk and is transmitted from
the edge node to cloud dashboard. The received chunk is
copied onto a file on the server until the end of the file.
Different sized result files were considered to measure the
time taken. An upload speed of 11.45Mbps is considered
during the evaluation. Figure 11(b) shows the required time
to fetch the log file with respect to different file sizes. The
difference in time is due to the time caused by our platform
to send a message from the Webserver to end node, process
the request, copy the file from the container to the local path,
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locate the file, and then transfer to the cloud. This analysis
measures the time required for the complete procedure which
consists of sending a command from user dashboard, routing
the command to a particular edge node, copying the file from
container to the local path on the edge node, transferring the
file from to the server, pointing to the messaging service lay
to download, and transferring of file to the user dashboard.

6.5. The Evaluation of the Service Migration. Latency Test
of the Service Migration. To quantify the latency of the
service migration between peer nodes, we conducted the
latency tests for different modules at the different stages
of the service migration. Figure 12 shows the latency costs
for different modules in service migration. We evaluate the
latency in the primary node and the peer node, respectively.
Module 1 (selecting the peer nodes), module 2 (sending small
configuration files), and module 3 (sending big dependency
files) in Figure 12 are measured in the primary node. The

completion of the protocol to choose a working peer node
takes 586 ms. Once the working secondary node is chosen,
sending configuration and dependency files is much faster.
For example, 60kB of data takes 36 ms. The delay of mod-
ule 4 is measured in the peer node, which calculates the
total migration time taken between receiving the “Resource
Request” and finishing the “Activate Subscription.”
Resource Utilization during Service Migration. This
experiment uses two edge nodes as one example to evaluate
the coordinated service migration and the impact on the CPU
utilization. Once the error happens, or the capacity limits are
reached in the primary edge node, the agent in the primary
edge node will initiate a service migration request to its peer
node. At this point even if connected sensor nodes continue
to publish messages, the MQTT broker stores the messages
in the queue until the service is migrated. The exchanged
messages between these two peer nodes include commands
and the corresponding executable routines. When the initial
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message exchange is finished, the primary node starts to
transfer the dependent files to the peer node. Figure 13
shows the CPU workload of the two peer nodes during
migration. When the service migration happens, the CPU
utilization of the primary gradually reduces to zero, while the
peer node’s CPU utilization increases after the user’s services
are migrated. The peer node starts to perform the service
computations received from the data source. The initial spike
in the secondary node’s CPU performance is due to the
processing of the “RequestResource” command.

6.6. Comparison of Our Platform with VPN-Based Solutions.
As shown in Table 2, when comparing with existing solutions,
for example, Stack4Things [14, 20], the advantage of our
solution includes multitenancy support in the remote edge
node, compatible with various applications, which allows
remote access as well as remote debugging and data transfer.

The second type of related solution is VPN-based cloud
solutions [10]. Resin.io is one of the commercialized solutions
that utilize the VPN network connecting the distributed
Linux containers [21, 22]. They utilize a VPN-based IP
network to connect various remote edge nodes (outside
the data center) through the public Internet. VPN-based
solutions make it simple to apply existing cloud solutions for
the remote edge computing platform. A VPN-based remote
access mechanism is one of the commonly used approaches
to access a remote node on a private network. For example,
existing cloud solutions require a private network with a
fixed IP address to connect to a peer computing node.
Leveraging the VPN connection, the private network can
be expanded to the network edge. This works by creating a
secured network connection over the public network like the
Internet. VPN can connect multiple sites over large distances
typical of a WAN (Wide Area Network). Typically, all the
users connected to and authenticated by a single public
VPN server (which again routes the user requests over the
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TABLE 2: Comparison of our platform with Stack4Things.
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FIGURE 14: The performance comparison with VPN based
approaches.

Internet to another VPN server) are distributed in various
geographical sites where the edge device is deployed. All the
devices deployed are part of a virtualized private network.
However, this kind of solution has multiple limitations: it (1)
does not support dynamic edge node mobility; (2) has high
overhead in terms of connecting remote edge nodes; and (3)
is not robust in terms of linking failure.

To compare our approach with VPN-based solutions, we
deploy an OpenVPN server in the Amazon EC2 Server. The
edge devices connect to the VPN server to be a part of a single
private network accessible from the server. A webserver to
upload and download a file is run on the server, as well as
a client to measure the upload and download throughput. As
shown in Figure 14, our approach is 12.6% better than VPN
for various application sizes. The reason is that our approach
is more lightweight and flexible than VPN-based solutions.

The summary of the differences is included in Table 3. Our
major advantages include lightweight connection, support
dynamic node access, flexibility in terms of connection
failure, and congested bandwidth.

6.7. Comparison of Our Container Migration Solution with
CRIU. Checkpoint/Restore In Userspace (CRIU) is a soft-
ware tool that can freeze a running application (or part
of it) and checkpoint it as a collection of files on disk for
the Linux operating system. You can then use the files to
restore the application and run it exactly as it was during
the time of the freeze. Many projects are using this feature
for the container migration process. CRUI currently used by
OpenVZ, LXC/LXD, Docker, and other software, and CRIU
packages is included into many Linux distributions.

To compare the performance of our custom designed
container migration scheme, we utilize the freeze time as the
performance metric. A smaller value of freeze time means
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TABLE 3: The performance comparison with VPN-based approach.

Our Approach

VPN based remote access

Requires no network configuration.
Provides automatic registration of device when
deployed in any private network.

Requires configuration of VPN server running parallel
with the platform service on the server.

Gives a consistent latency for upload and download,
independent of the location of the device.

Latency is highly influenced by the distance between
the device and the server.

Gives auto-reconnect when the device is deployed in
unreliable network.

VPN server may or may not provide auto-connectivity.

Requires limited bandwidth as it uses WAMP
messaging.

VPN connectivity relies on high bandwidth as it
channels the network over the Internet.
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FIGURE 15: Comparison of our container migration solution with CRIU.

better service availability. As shown in Figure 15, our solution
achieves better service availability than CRIU for different
container images, i.e., web app, hello-world container image,
sql server training/postgres, a busybox in backend, and a
looper image which loops numbers indefinitely.

7. Related Work

Mobile Edge Computing (MEC). Mobile edge computing
(MEC), which provides cloud computing capabilities, offers
a new paradigm to liberate mobile devices from heavy com-
putation workloads [4]. In conventional cloud computing
systems, remote public clouds, e.g., Amazon Web Services,
Google Cloud Platform, and Microsoft Azure, are leveraged,
and thus long latency may be incurred due to data exchange
in wide area networks (WANSs) [5]. In contrast, MEC has
the potential to significantly reduce latency, avoid congestion,
and prolong the battery lifetime of edge devices. The first
form of the edge computing is the cloudlet [23-25]. The
idea behind the cloudlet is to place computers with high
computation power at strategic locations in order to provide
both computation resources and storage in vicinity [4]. How
to offload the computation tasks from the mobile devices to

a physically proximate MEC server remains a major research
challenge [4, 17, 25].

A more general concept of the edge computing, when
compared to cloudlets, is known as a fog computing (intro-
duced by Cisco in 2012) [8]. The key motivation is to enable
a processing of the Internet of Things (IoT) and big data
applications on billions of connected devices at the edge of
network [26]. Cisco, along with other big industry players,
e.g., Intel, Dell, and ARM, formed an open fog consortium
[11] in 2015. While the MCC is a fully centralized approach
with farms of computers usually placed at one or few
locations, edge computing is meant to be deployed in a fully
distributed manner. On the other hand, the edge computing
provides only limited computational and storage resources
with respect to the mobile cloud computing (MCC). With fog
computing, some of the components of an application could
be hosted and executed in a cloud Platform-as-a-Service
(PaaS) and interact with the other components hosted and
executed in the fog, thus closer to the end-user and/or data
sources such as wireless sensors [17].

As edge computing is gaining the much-deserved pop-
ularity, recent years have seen the evolution of many edge
computing platform solutions. These platform solutions often
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provide a set of software services that offloads the data on the
network, which is then usually sent to the centralized cloud.
Some of the major players in the edge cloud are companies
like Cisco and Akamai [10, 27-29]. Akamai cloudlets provide
vendor application that is designed to solve specific business
and operational challenges [20, 30]. This is Software as a
Service at the network edge. Cisco IoX [28] is a fog computing
platform that provides a single VM instance of Linux for
computing which runs beside their network OS on routers,
switches, etc. The application runs alongside the network OS
that obtains sensor data from the wireless network for the
edge computed tasks. CMU Cloudlets [12] adopt a similar
framework of fog computing, in which a Cloudlet server,
similar to the Fog server, is deployed in the proximity
of mobile users and processes the computing requests of
mobile devices in real time for video streaming and data
processing.

OpenStack [31, 32] is an open source cloud management
software platform that manages the underlying hardware
infrastructure to provide computing, storage, and networking
resources to third-party user applications. OpenStack can
be extended to cloudlet at the network edge to provide
robust services [15]. For example, Stack4Things [14] and
OpenStack++ [15] provide an OpenStack-based edge cloud
framework for “Sensing and Actuation as a Service” [33, 34].
The open edge computing community also claims to provide
the extension of OpenStack to the cloudlet [11]. However, the
integration of various server-oriented technologies makes the
system heavy and expensive to use in low-complex IoT and
CPS applications.

8. Conclusions

This paper proposes an edge computing platform solution for
developers to remotely orchestrate edge devices without car-
ing about their physical location, or their network configura-
tion. Leveraging the minimal usage of network bandwidth via
asynchronous communication between servers and clients,
we enable developers to deploy applications in a virtualized
space, debug, analyze their performance, and retrieve the
results of the remote applications. We utilize the Docker
technology to provide a lightweight virtual space in the form
of containers, which consume less memory when compared
to virtual machines, thus providing an advantage due to
the memory constraints of embedded environments. To
improve the system resilience, we proposed a fusion link that
automatically selects the available connectivity services based
on WAN and 6LoWPAN. We utilize the MQTT protocol to
provide a unified connectivity interface for developers. Our
platform is useful for applications that require low latency
with a dynamic and unpredictable workload, and also in some
applications where there is no fixed IP address for connec-
tions to be established between the user and end nodes. For
the future research direction, we will further reduce overhead
when deploying the applications. Specifically, we will enable
a secure shell option to a specific container, which will allow
developers to have fine-grained control of the container.
We will also enable sensor and hardware interface sharing
between multiple containers.
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